abdullah's picture
Add files using upload-large-folder tool
b4e65c0 verified
raw
history blame
49.5 kB
1
00:00:21,090 --> 00:00:25,950
ุฃุญู†ุง ูˆุงุตู„ูˆู† ู…ุง ุจุฏุฃู†ุง ููŠู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ ุญู„ ุงู„ู„ูŠ
2
00:00:25,950 --> 00:00:30,570
ู‡ูˆ ุงู„ู…ุณุงุฆู„ ุนู„ู‰ ุดุจุชุฑ ุซู…ุงู†ูŠุฉ ุงู„ุงูƒุณุชุงู†ุงุฏุงุฑูƒุช ุจุฑูˆุฏุฑูƒ
3
00:00:30,570 --> 00:00:35,110
ูˆุตู„ู†ุง ู„ุณุคุงู„ ูˆุงุญุฏ ูˆุฃุฑุจุนูŠู† ุจู‚ูˆู„ express automorphism
4
00:00:35,110 --> 00:00:40,070
ู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† in the form ZM ุงูƒุณุชุงู†ุงุฏุงุฑูƒุช ุจุฑูˆุฏุฑูƒ
5
00:00:40,070 --> 00:00:41,390
ู…ุน ZN
6
00:00:43,960 --> 00:00:48,680
ุจู…ุนู†ู‰ ุขุฎุฑ ุจุฏูŠ ุฃุฌูŠุจ ุฌุฑูˆุจ ู„ุฌุฑูˆุจ ู‡ุฐู‡ ุชุจู‚ู‰ isomorphic
7
00:00:48,680 --> 00:00:54,060
ู„ู…ุงู… ู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุทุจ ุงุญู†ุง ุนู†ุฏู†ุง ุงู„ู€ U ุฎู…ุณุฉ
8
00:00:54,060 --> 00:00:59,680
ูˆุนุดุฑูŠู† solution ุนู†ุฏู†ุง
9
00:00:59,680 --> 00:01:07,500
ุงู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุงู„ู„ูŠ ู‡ูˆ U ุฎู…ุณุฉ ู„ูƒู„ ุชุฑุจูŠุน ุงู„ุดูƒู„
10
00:01:07,500 --> 00:01:16,670
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ isomorphic ุฃูˆ ุงู„ atomorphism ู„ู€ U
11
00:01:16,670 --> 00:01:23,730
ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ู‡ุฐู‡ ุชุณุงูˆูŠ U ุฎู…ุณุฉ ุชุฑุจูŠุน ู…ุจุงุดุฑุฉ ุทุจุนุงู‹
12
00:01:23,730 --> 00:01:32,770
ุฃุฎุฐุช ุนู†ุฏูƒ ุฃู† ุงู„ู€ U ู…ุฑููˆุนุฉ ู„ู€ prime P ูˆู…ุฑููˆุนุฉ ู„ุฃุณ N
13
00:01:32,770 --> 00:01:39,550
U P ุฃุณ N ู†ุงู‚ุต P ุฃุณ N minus ุงู„ one ูƒุชุจู†ุงู‡ุง ู…ุนูƒู…
14
00:01:39,550 --> 00:01:45,390
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ุขุฎุฑ ู…ุญุงุถุฑุฉ ุชุฌุฏู‡ุง ู…ูˆุฌูˆุฏุฉ ู…ุนูƒ ู†ุญุงูˆู„
15
00:01:45,390 --> 00:01:50,950
ู†ุทุจู‚ ู‡ุฐุง ุงู„ูƒู„ุงู… ุนุงู„ู…ูŠุงู‹ ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน ูŠุจู‚ู‰ ุจู†ุงุก
16
00:01:50,950 --> 00:01:55,330
ุนู„ูŠู‡ ูŠูˆ ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ูƒุชุจู†ุงู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„
17
00:01:55,330 --> 00:01:58,070
ู‡ุฐู‡ isomorphic ู„ู…ูŠู†ุŸ
18
00:02:02,510 --> 00:02:09,870
Isomorphic ู„ุฒุฏ P ุงู„ู„ูŠ ู‡ูŠ ุฎู…ุณุฉ ุชุฑุจูŠุน ู†ุงู‚ุต ุฎู…ุณุฉ ุฃุณ
19
00:02:09,870 --> 00:02:14,390
ุงุซู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง
20
00:02:14,390 --> 00:02:19,790
ุงู„ูƒู„ุงู… ู‡ุฐู‡ ุชุณุงูˆูŠ ู…ู† ุฎู…ุณุฉ ุชุฑุงุจูŠุน ู„ูŠู‡ ุฎู…ุณุฉ ูˆุนุดุฑูŠู†
21
00:02:19,790 --> 00:02:27,090
ูˆู‡ุฐู‡ ุฎู…ุณุฉ ูˆุณูˆุงุญุฏ ูŠุจู‚ู‰ ุฒุฏ ุนุดุฑูŠู† ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
22
00:02:27,090 --> 00:02:31,710
ู‡ุฐุง U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุฃู†ุง ู…ุง ุจุฏูŠ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุจุฏูŠ
23
00:02:31,710 --> 00:02:38,540
ุงุชูˆู…ูˆุฑูุฒู… ู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุฅุฐุง ุจู†ุงุก ุนู„ูŠู‡ atomorphism
24
00:02:38,540 --> 00:02:47,580
ู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุงู„ู„ูŠ ู‡ูŠ isomorphic ู„ู…ู‡ู… ุงู„ู„ูŠ ู‡ูˆ
25
00:02:47,580 --> 00:02:54,750
atomorphism ู„ู€ Z ุนุดุฑูŠู† ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุฃุฎุฐู†ุง
26
00:02:54,750 --> 00:03:03,470
ูƒู…ุงู† ู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ุงุชูˆู…ูˆุฑูุฒู… ู„ู€ ZN ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู€ UN
27
00:03:03,470 --> 00:03:10,830
ุดุจุทุฑ ุงู„ู„ูŠ ู‚ุจู„ู‡ ุขุฎุฑ ู†ุธุฑูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู€ U20
28
00:03:11,920 --> 00:03:19,120
U20 ู‡ุฐู‡ ุงู„ู„ูŠ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุชุณุงูˆูŠ U ุฃุฑุจุนุฉ ููŠ
29
00:03:19,120 --> 00:03:25,440
ุฎู…ุณุฉ ูˆุงู„ุงุฑุจุนุฉ ุฎู…ุณุฉ are relatively prime ูŠุจู‚ู‰ ู‡ุฐู‡
30
00:03:25,440 --> 00:03:34,070
isomorphic ู„ู…ูŠู†ุŸ ู„ู„ูŠ ู‡ูˆ isomorphic ุฃูˆ ู‡ุฏู‰ ุชุณุงูˆูŠ
31
00:03:34,070 --> 00:03:39,990
ุฃูˆ isomorphic ุฏูุบุฑูŠ ู„ู…ู‡ู… ู„ู€ U ุฃุฑุจุนุฉ external
32
00:03:39,990 --> 00:03:49,530
product ู…ุน U ุฎู…ุณุฉ ู…ุฑุฉ ุซุงู†ูŠุฉ ู„ู€ U ุฃุฑุจุนุฉ ู‡ุฏู‰ U ุงุซู†ูŠู†
33
00:03:49,530 --> 00:03:58,130
ุชุฑุจูŠุนู‡ุฐู‡ ุฃุฎุฐู†ุงู‡ุง ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู…ูŠู†ุŸ ู„ุฒุฏ ุฏูŠ ุงุซู†ูŠู† ูˆู‡ุฐู‡
34
00:03:58,130 --> 00:04:03,170
ุจุชุทุจู‚ ุนู„ูŠู‡ุง ุงู„ู‚ุงุนุฏุฉ ุงู„ู„ูŠ ุทุจู‚ู†ุงู‡ุง ููˆู‚ ุชู…ุงู…ุงู‹ ูŠุจู‚ู‰
35
00:04:03,170 --> 00:04:10,730
ุจุงู„ุฏุงุฌูŠ ุฃู‚ูˆู„ ู‡ุฐุง ุฒุฏ ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ ู†ุงู‚ุต ุฎู…ุณุฉ ุฃุณ ูˆุงุญุฏ
36
00:04:10,730 --> 00:04:17,180
ู†ุงู‚ุต ูˆุงุญุฏู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุฒุฏ ุงุซู†ูŠู† external by
37
00:04:17,180 --> 00:04:22,880
product ู‡ุฐู‡ ุฎู…ุณุฉ ูˆู‡ุฐู‡ ุฎู…ุณุฉ ูˆุตูุฑ ุฎู…ุณุฉ ูˆุตูุฑ ุฃุจูˆุงุญุฏ
38
00:04:22,880 --> 00:04:29,420
ุฎู…ุณุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุฃุฑุจุนุฉ ุฒุฏ ุฃุฑุจุนุฉ ุฒุฏ ุฃุฑุจุนุฉ ุงู‡
39
00:04:29,420 --> 00:04:35,300
ุฒุฏ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฒุฏ ุฃุฑุจุนุฉ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„
40
00:04:35,300 --> 00:04:41,050
atomorphism ู„ูŠู‡ ุฎู…ุณุฉ ูˆุนุดุฑูŠู† isomorphic ู„ู…ู‡ู… ู„ุฒุฏ
41
00:04:41,050 --> 00:04:45,490
ุงุซู†ูŠู† external product ุฒุฏ ุฃุฑุจุนุฉ ูˆุจุงู„ุชุงู„ูŠ ุนู†ุฏูŠ
42
00:04:45,490 --> 00:04:50,030
ุซู…ุงู†ูŠุฉ atomorphism ู…ู† ุงู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุฅู„ู‰ ุงู„ู€ U
43
00:04:50,030 --> 00:04:54,910
ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุงุชุณู„ ุจุบุถ ุงู„ู†ุธุฑ ุนู† ุดูƒู„ู‡ู… ู‚ุงู„ ู„ูŠ ุงูƒุชุจู„ูŠ
44
00:04:54,910 --> 00:05:01,170
ุงู„ atomorphism ู„ู€ U ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ุดูƒู„ ZM ููŠ ZN
45
00:05:01,170 --> 00:05:05,310
ูŠุจู‚ู‰ ู‡ูŠ ูƒุชุจุชู„ู‡ ุจุงู„ุดูƒู„ ู‡ุฐุง ุจุงุณุชุฎุฏุงู… ุงู„ู‚ูˆุงุนุฏ ุงู„ู„ูŠ
46
00:05:05,310 --> 00:05:08,130
ุฃุฎุฐู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ
47
00:05:10,010 --> 00:05:20,890
ุจุนุฏู‡ุง ุจูŠู‚ูˆู„ ู„ูŠู‡ ููŠ 46 ูŠุจู‚ู‰ 46 ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุจูŠู‚ูˆู„
48
00:05:20,890 --> 00:05:28,510
ู‡ุงุชู„ูŠ isomorphism ุจุฏู†ุง isomorphism ู…ู† ูˆูŠู† ู„ูˆูŠู†ุŸ ููŠ
49
00:05:28,510 --> 00:05:34,770
ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ group Z12 ุฅู„ู‰ ู…ูŠู†ุŸ
50
00:05:37,910 --> 00:05:46,330
ุงู„ุณุคุงู„ ุณุชุฉ ุฃุฑุจุน ูŠู‚ูˆู„ ุฒ ุฃุฑุจุน ููŠ ุฒ ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุฒ ุฃุฑุจุน
51
00:05:46,330 --> 00:05:52,270
ูƒุณุชูŠู†ูˆ ุฏุงูŠูƒุง product ู…ุน ุฒ ุซู„ุงุซุฉ ู…ุน ุฒ ุซู„ุงุซุฉ ุจู‚ูˆู„
52
00:05:52,270 --> 00:05:56,740
ุนุฑู ู„ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ isomorphism ู…ู† ุงู„ group ู‡ุฐู‡ ู„ู„
53
00:05:56,740 --> 00:06:01,240
group ู‡ุฐู‡ ุฃู†ุง ุจุนุทูŠูƒ ุงู„ function ูˆุงู†ุช ุนู„ูŠูƒ ุชุซุจุช
54
00:06:01,240 --> 00:06:05,620
ุฃู†ู‡ุง one to one and ุงู†ุช ูˆุชุฎุฏู… ุฎุงุตูŠุงุช ุงู„
55
00:06:05,620 --> 00:06:08,680
isomorphism ุงู„ function ุงู„ู„ูŠ ุจุชู‚ูˆู„ ุนู„ูŠู‡ุง ุดุจู‡
56
00:06:08,680 --> 00:06:14,630
ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ phi of x ูŠุจู‚ู‰ x ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ู‡ุฐู‡ุŸ ููŠ
57
00:06:14,630 --> 00:06:19,810
Z12 ุจุฏูŠ ุฃุฌุณู…ู‡ุง ุฅู„ู‰ ู…ุฑูƒุจุชูŠู† ูˆุงุญุฏุฉ ู…ูˆุฌูˆุฏุฉ ููŠ Z4
58
00:06:19,810 --> 00:06:25,390
ูˆุงุญุฏุฉ ู…ูˆุฌูˆุฏุฉ ููŠ Z3 ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดูƒู„
59
00:06:25,390 --> 00:06:33,210
ุงู„ุชุงู„ูŠ ุทุจุนุงู‹ ุงู„ุนุฏุฏ ุงู„ู„ูŠ ู‡ู†ุง ููŠ Z12 ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ุงู„ู„ูŠ
60
00:06:33,210 --> 00:06:38,470
ู‡ูˆ ุงู„ุนุฏุฏ ู‚ุฏ ูŠูƒูˆู† ู…ู† ุนู†ุฏ ุงู„ zero ู„ุบุงูŠุฉ ู…ู† ุงู„ 11
61
00:06:38,470 --> 00:06:44,350
ูˆู‡ูƒุฐุง ุฅุฐุง ุจุฏู‰ ุฃุฎู„ูŠ ู…ุฑูƒุจุฉ ู…ูˆุฌูˆุฏุฉ ููŠ Z4 ูˆู…ุฑูƒุจุฉ
62
00:06:44,350 --> 00:06:51,030
ู…ูˆุฌูˆุฏุฉ ููŠ Z3 ุฅุฐุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง X modulo 4 ูˆ
63
00:06:51,030 --> 00:06:57,070
ุงู„ู…ุฑูƒุจุฉ ุงู„ุซุงู†ูŠุฉ X modulo 3 ูŠุนู†ูŠ ุงู„ุนุฏุฏ ุงู„ู„ูŠ ุจุงุฎุฏู‡
64
00:06:57,070 --> 00:07:04,230
ู…ู† Z12 ุฃูƒุจุฑ ู…ู† 4 ูˆู„ุง ุฃูƒุจุฑ ู…ู† 3 ุงูุชุฑุถ ูƒุงู† 2 ูŠุจู‚ู‰
65
00:07:04,230 --> 00:07:07,830
ุจุงุฌูŠ ุจู‚ูˆู„ ูุงูŠ ุงู ุงุซู†ูŠู† ูŠุณูˆู‰ ุงุซู†ูŠู† ู…ูˆุฏูŠูˆู„ู‡ ุฃุฑุจุนุฉ
66
00:07:07,830 --> 00:07:11,130
ุงู„ู„ูŠ ู‡ูˆ ุจุงุซู†ูŠู† ูˆุงุซู†ูŠู† ู…ูˆุฏูŠูˆู„ู‡ ุซู„ุงุซุฉ ุงู„ู„ูŠ ู‡ูˆ
67
00:07:11,130 --> 00:07:16,510
ุจุงุซู†ูŠู† ู„ูƒู† ู„ูˆ ู‚ู„ุช ู„ู‡ ุฎู…ุณุฉ ูุงูŠ ุฎู…ุณุฉ ุจุฏูŠ ูŠูƒูˆู† ู‡ู†ุง
68
00:07:16,510 --> 00:07:20,370
ูˆุงุญุฏ ูˆู‡ู†ุง ูƒุฏุงุด ูˆู‡ู†ุง ุงุซู†ูŠู† ูˆู‡ูƒุฐุง ูŠุจู‚ู‰ ู‡ุงูŠ
69
00:07:20,370 --> 00:07:23,490
ุงู„ู…ู‚ุตูˆุฏุฉ ู‡ุงูŠ ุงู„ function ู‚ุฏุงู…ูƒ ุจุณ ุชุจุชู„ูŠู‡ุง one to
70
00:07:23,490 --> 00:07:30,670
one and on to ูˆุชุฎุฏู… ุฎุงุตูŠุฉ ุงู„ isomorphism ู‡ุฐุง ู‚ุงู„ ู„ู‡
71
00:07:30,670 --> 00:07:35,210
ุณุชุฉ ูˆุฃุฑุจุนูŠู† ุซู…ุงู†ูŠุฉ ูˆุฃุฑุจุนูŠู† ุจูŠู‚ูˆู„ูˆุง show that five
72
00:07:35,210 --> 00:07:42,310
is an isomorphism
73
00:07:42,310 --> 00:07:48,650
ู…ู† ุฒุฏ ุซู„ุงุซุฉ cross ุฒุฏ ุฎู…ุณุฉ ู„ุฒุฏ ุฎู…ุณุฉ ุนุดุฑ ูŠุจู‚ู‰ ุซู…ุงู†ูŠุฉ
74
00:07:48,650 --> 00:07:59,630
ูˆุฃุฑุจุนูŠู† ุฃู† ููŠ ู…ู† ู…ู† ุฒุฏ ุซู„ุงุซุฉ external product ู…ุน
75
00:07:59,630 --> 00:08:07,090
ู…ูŠู†ุŸ ู…ุน z ุฎู…ุณุฉ ู„ู…ู†ุŸ ู„ z ุฎู…ุณุฉ ุนุดุฑ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
76
00:08:07,090 --> 00:08:14,410
ู‡ุฐุง z ุฎู…ุณุฉ ุนุดุฑ ูˆ ุจุญูŠุซ ุฃู†ู‡ ุงู„ five of ุงุซู†ูŠู† ูˆุซู„ุงุซุฉ
77
00:08:14,410 --> 00:08:20,370
ุจุฏู‡ ูŠุณูˆู‰ ุงุซู†ูŠู† ุจู‚ูˆู„ find an element a ูˆ b ููŠ ู‡ุฐุง
78
00:08:20,370 --> 00:08:26,050
ุจุญูŠุซ ุงู„ maps to one ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ
79
00:08:26,050 --> 00:08:31,950
element a ูˆ b ุตูˆุฑุชู‡ main ุตูˆุฑุชู‡ ุงู„ูˆุงุญุฏ ุฃูˆ five of a
80
00:08:31,950 --> 00:08:36,570
ูˆ b ุงู„ู„ูŠ ุจุชุนุทูŠู†ุง main ุจุชุนุทูŠู†ุง ุงู„ูˆุงุญุฏ
81
00:08:41,470 --> 00:08:46,970
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ููŠ ุฃู†ุง isomorphism ุงู„ isomorphism
82
00:08:46,970 --> 00:08:55,090
ู…ู† ุงู„ group z3 external to z5 ุฅู„ู‰ z15 ูˆููŠ ุฃู†ุง ู…ุนุทุน
83
00:08:55,090 --> 00:08:58,810
ุฃู† ููŠู„ู… ุงุชุฃุซุฑ ุนู„ู‰ ุงู„ุงุซู†ูŠู† ูˆุงู„ุซู„ุงุซุฉ ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ
84
00:08:58,810 --> 00:09:05,390
ุงุซู†ูŠู† ุฌู„ูŠู‡ุงุช ู„ู„ุนู†ุตุฑ a ูˆb ู„ุตูˆุฑุชู‡ ู…ู†ุŸ ู„ุตูˆุฑุชู‡ ุงู„ูˆุงุญุฏ
85
00:09:05,390 --> 00:09:09,190
ุงู„ุตุญูŠุญ ุญุฏ ููŠูƒูˆ ุญู„ ู‡ุฐุง ุงู„ุณุคุงู„ุŸ
86
00:09:12,670 --> 00:09:19,130
ุงู‡ ูŠุนู†ูŠ ู…ุฏู† ุงู…ุชุญุงู†ุงุช ู…ุด ุฏุงุนูŠ ู„ู„ุญู„ ูƒูˆูŠุณ ุทูŠุจ ุนู„ู‰ ุฃูŠ
87
00:09:19,130 --> 00:09:24,310
ุญุงู„ ุฃู†ุง ู…ุฑุฉ ุญู„ุชู„ูƒูˆุง ุณุคุงู„ ุดุจูŠู‡ ุจู‡ุฐุง ููŠ ุงู„ู„ูŠ ู‚ุจู„ ู„ู…ุง
88
00:09:24,310 --> 00:09:28,110
ุฃุฎุฐู†ุง ุงู„ isomorphism ุญู„ุชู„ูƒูˆุง ุณุคุงู„ ุดุจูŠู‡ ุจู‡ ุจุณ ู‡ุฐุง
89
00:09:28,110 --> 00:09:33,060
ุงู„ูุฑู‚ ุจูŠู†ู‡ ูˆุจูŠู† ู‡ุฐุง ู‡ุฐุง ู…ูƒูˆู† ู…ู† ู…ูŠู†ุŸ ู…ู† order pair
90
00:09:33,060 --> 00:09:36,880
order pair ูˆุงู„ู„ู‡ ู…ุด order pair ุจุชูุฑุฌุด ุนู†ู‡ุง ุดูˆู ูŠุง
91
00:09:36,880 --> 00:09:41,180
ุณูŠุฏูŠ ุฃู†ุง ุจุฏูŠ ุงู„ุนู†ุตุฑ a ูˆ b ุงู„ู„ูŠ ุตูˆุฑุชู‡ ุชุญุช ุฃุซูŠุฑ ุงู„ูุง
92
00:09:41,180 --> 00:09:47,540
ูŠุณุงูˆูŠ ูˆุงุญุฏ ู‡ู†ุงูƒ ูƒุงู† ุจุฏูŠ ุดูƒู„ ุงู„ isomorphism ุนุจุงุฑุฉ
93
00:09:47,540 --> 00:09:51,440
ุนู† ุฅูŠุดุŸ ูƒุงู† ููŠ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ู„ูƒู† ู‡ุฐุง ู„ุฃ ุจุฏูŠ ุงู„
94
00:09:51,440 --> 00:09:57,040
order a ูˆ b ุงู„ู„ูŠ ุตูˆุฑุชู‡ ุชุณุงูˆูŠ ู…ูŠู†ุŸ ุชุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญ
95
00:09:57,460 --> 00:10:02,300
ุจู‚ูˆู„ ูƒูˆูŠุณ ุจุญุงูˆู„ ุงุณุชุฎุฏุงู… ุงู„ู…ุนู„ูˆู…ุฉ ู‡ุฐู‡ ุจู‚ุฏุฑ ุงู„ุฅู…ูƒุงู†
96
00:10:02,300 --> 00:10:08,820
ูˆู„ุฐู„ูƒ ุจุญุงูˆู„ ุฃุฌูŠุจ ุงู„ู…ุนุทู‰ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ููŠ ุงู„ุตูˆุฑุฉ
97
00:10:08,820 --> 00:10:12,920
ุงู„ู„ูŠ ู‚ุฏุงู…ูŠ ู‡ู†ุง ูŠุนู†ูŠ ุจุฏูŠ ุฃุฌูŠุจ ุนู„ุงู‚ุฉ ุชุฑุจุท ุจูŠู† ุงู„ูˆุงุญุฏ
98
00:10:12,920 --> 00:10:18,140
ูˆุงุซู†ูŠู† ุงู„ู„ูŠ ุนู†ุฏู†ุง ุญุชู‰ ู†ู‚ุฏุฑ ู†ุญุณุจ ูƒู… ู‡ุฐุง ุงู„ element
99
00:10:18,140 --> 00:10:24,930
ุงู„ุขู† ู„ูˆ ุฌูŠุช ูˆุงุญุฏ ุงู„ูˆุงุญุฏ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุฃูŠ group ูู†ูŠุงุช
100
00:10:24,930 --> 00:10:31,430
ุฒุฏ ุฎู…ุณุฉ ุนุดุฑ ู‡ู„ ู‡ุฐุง ุงู„ูˆุงุญุฏ ูŠูƒุงูุฆ ุฑู‚ู… ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ
101
00:10:31,430 --> 00:10:37,490
ู…ูŠู†ุŸ ุฎู…ุณุฉ ุนุดุฑ ู…ู…ุชุงุฒ ูŠุนู†ูŠ ุงู„ูˆุงุญุฏ ู‡ุฐุง ุจุงู„ุถุจุท ู‡ูˆ ุนุจุงุฑุฉ ุนู†
102
00:10:37,490 --> 00:10:45,610
ุฎู…ุณุฉ ุนุดุฑ modulo ุฎู…ุณุฉ ุนุดุฑ ุชู…ุงู… ุงู„ู€ ุฎู…ุณุฉ ุนุดุฑ ู…ุด ู‡ูŠ ุนุจุงุฑุฉ ุนู†
103
00:10:45,610 --> 00:10:53,640
ุซู…ุงู†ูŠุฉ ููŠ ุงุซู†ูŠู† modulo ุฎู…ุณุฉ ุนุดุฑ ุชู…ุงู… ุทุจ ุงุซู†ูŠู† ู…ุฏูŠู„ู‡
104
00:10:53,640 --> 00:10:58,380
ุฎู…ุณุฉ ุนุดุฑ ู…ุง ู‡ูˆ ุงุซู†ูŠู† ุตุญ ูˆู„ุง ู„ุฃุŸ ูŠุจู‚ู‰ ุงุซู†ูŠู† ุงู„ู„ูŠ ุนู†ุฏูŠ
105
00:10:58,380 --> 00:11:02,580
ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุดูŠู„ู‡ุง ูˆุฃูƒุซุฑ ุจุฏู„ู‡ุง ููŠ ุฃูˆ ููŠ ุงุซู†ูŠู† ูˆ
106
00:11:02,580 --> 00:11:08,740
ุซู„ุงุซุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ ุซู…ุงู†ูŠุฉ ููŠ ููŠ ุฃูˆ ููŠ
107
00:11:08,740 --> 00:11:16,810
ุงุซู†ูŠู† ูˆุซู„ุงุซุฉ ูƒุฃู† ุงู„ู…ุซู„ ุฅูŠุดุŸ ูƒุฃู†ู‡ ุซู…ุงู†ูŠุฉ ุฃู†ุง ู‡ุฏู…
108
00:11:16,810 --> 00:11:21,250
ุทู„ุนู‡ุง ู…ู† ุฌูˆุง ุงู„ุฌูˆุณ ูˆุทู„ุนู‡ุง ู…ูŠู†ุŸ ุจุฑุง ูˆุฒูŠ ู…ุง ูƒู†ุง ู†ู‚ูˆู„
109
00:11:21,250 --> 00:11:27,190
Alpha of ุฎู…ุณุฉ ูŠุณูˆู‰ ุฎู…ุณุฉ ููŠ Alpha of ูˆุงุญุฏ ุชู…ุงู… ู‡ู†ุง
110
00:11:27,190 --> 00:11:31,850
ู†ูุณ ุงู„ููƒุฑุฉ ุจุงู„ุถุจุท ุชู…ุงู…ุงู‹ ูƒุฃู†ู‡ ุซู…ุงู†ูŠุฉ ูƒุงู†ุช ุฌูˆุง ูˆุฃู†ุง
111
00:11:31,850 --> 00:11:36,310
ุทู„ุนุชู‡ุง ุจุฑุง ุฅุฐุง ุจุฏุฃ ุฏุฎู„ุชู‡ุง ุฌูˆุง ูŠุจู‚ู‰ ู„ูˆ ุฏุฎู„ุชู‡ุง ุฌูˆุง
112
00:11:36,310 --> 00:11:41,710
ู‡ุถุฑุจู‡ุง ูˆูŠู†ุŸ ููŠ ูƒู„ ุนู†ุตุฑ ู…ู† ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ุจุณ ุงุซู†ูŠู† ู‡ุฐู‡
113
00:11:41,710 --> 00:11:47,790
ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸ ููŠ ุฒุฏ ุซู„ุงุซุฉ ูˆุงู„ุซู„ุงุซุฉ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุฒุฏ
114
00:11:47,790 --> 00:11:51,730
ุฎู…ุณุฉ ุฅุฐุง ุนู†ุฏ ุงู„ุถุฑุจ ุจุฏูƒ ุชุชุฑุนูŠ ู…ู†ุŸ ุจุฏูƒ ุชุชุฑุนูŠ
115
00:11:51,730 --> 00:11:57,430
ุงู„ู†ุชูŠุฌุฉ ุฅุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏู‡ ูŠุณุงูˆูŠ five
116
00:11:57,430 --> 00:12:04,190
ุซู…ุงู†ูŠุฉ ููŠ ุงุซู†ูŠู† modulo ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุซู„ุงุซุฉ
117
00:12:04,190 --> 00:12:11,000
ูˆุงู„ู…ุฑูƒุจุฉ ุงู„ุซุงู†ูŠุฉ ุซู…ุงู†ูŠุฉ ููŠ ุซู„ุงุซุฉ modulo ุฎู…ุณุฉ ู‡ุฐุง
118
00:12:11,000 --> 00:12:16,680
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณูˆู‰ five ุซู…ุงู†ูŠุฉ ููŠ ุงุซู†ูŠู† ุจุณุชุนุด ู…ุถูŠู„ู‡
119
00:12:16,680 --> 00:12:22,800
ุซู„ุงุซุฉ ุจูŠุจู‚ู‰ ูˆุงุญุฏ ูŠุจู‚ู‰ ูˆุงุญุฏ ูˆุซู„ุงุซุฉ ููŠ ุซู…ุงู†ูŠุฉ ุฃุฑุจุนุฉ
120
00:12:22,800 --> 00:12:28,320
ูˆุนุดุฑูŠู† ู…ุถูŠู„ู‡ ุฎู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ
121
00:12:28,320 --> 00:12:33,520
ุนู†ุฏูŠ ู‡ูˆ ุตูˆุฑุฉ ุงู„ order per man ูˆุงุญุฏ ูˆุฃุฑุจุนุฉ ู‡ุฐุง
122
00:12:33,520 --> 00:12:40,200
ู…ุนู†ุงู‡ ุฃู† ุงู„ a ูˆุงู„ b ุจุฏู‡ ูŠุณูˆู‰ ุฌุฏุงุด ูˆุงุญุฏ ูˆุฃุฑุจุนุฉ
123
00:12:45,820 --> 00:12:52,020
ุทูŠุจ ู‡ุฐุง ูƒุงู† ุณุคุงู„ ุงู„ู„ูŠ ู‡ูˆ ุซู…ุงู†ูŠุฉ ูˆุฃุฑุจุนูŠู† ุจุฏู†ุง ู†ุฑูˆุญ
124
00:12:52,020 --> 00:12:57,840
ู„ุณุคุงู„ ุซู…ุงู†ูŠุฉ ูˆุฎู…ุณูŠู† ุซู…ุงู†ูŠุฉ ูˆุฎู…ุณูŠู† ุจูŠู‚ูˆู„ ู„ูŠ without
125
00:12:57,840 --> 00:13:02,100
doing any calculations in atomorphism Z ุนุดุฑูŠู†
126
00:13:02,100 --> 00:13:07,940
determine how many elements of automorphism Z ุนุดุฑูŠู†
127
00:13:07,940 --> 00:13:16,560
ุงู„ order ู„ู‡ู… ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุจุฏูŠ ุณุคุงู„ ุซู…ุงู†ูŠุฉ ูˆ ุฎู…ุณูŠู†
128
00:13:16,560 --> 00:13:31,780
the number of elements of order four in automorphism
129
00:13:31,780 --> 00:13:33,640
ู„ุฒุงุฏ ุนุดุฑูŠู†
130
00:13:40,950 --> 00:13:46,130
ุจู‚ูˆู„ ุงุฌูŠุจู„ูŠ ูƒุงู… ุนู†ุตุฑ ููŠ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ุฒุฏ ุนุดุฑูŠู† ุงู„
131
00:13:46,130 --> 00:13:51,070
order ุงู„ู„ูŠ ู„ู‡ู… ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุจุฏูˆู†ู‡ุง ุจุฏูˆู† ู…ุง ุงุฑูˆุญ
132
00:13:51,070 --> 00:13:56,330
ุฃุจุญุซ ููŠ ุดูƒู„ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู‡ุฏูˆู„ ุจุฏูƒ ุชุนุฑูู„ูŠ ูƒุฏู‡ ุจุฏูˆู†
133
00:13:56,330 --> 00:14:01,850
ู…ุง ุชุนุฑูู„ูŠ ุดูƒู„ ูˆู„ุง function ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ solution
134
00:14:01,850 --> 00:14:07,150
ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ุง ุจุฏูŠ ุงุณุชุฎุฏู… ุฃูŠ ุดุบู„ุฉ ู„ู‡ุง
135
00:14:07,150 --> 00:14:11,470
ุนู„ุงู‚ุฉ ุจุงู„ automorphism ู„ Z ุนุดุฑูŠู† ุงุญู†ุง ุนู†ุฏู†ุง ุงู„
136
00:14:11,470 --> 00:14:16,790
automorphism ู„ Z ุนุดุฑูŠู† ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู…ูŠู† ูŠุง ุดุจุงุจุŸ ู„ ุงู„
137
00:14:16,790 --> 00:14:23,750
U ุนุดุฑูŠู† ู…ู…ุชุงุฒ ูˆ ุงู„ U ุนุดุฑูŠู† ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ U ุงู„ู„ูŠ ู‡ูŠ
138
00:14:23,750 --> 00:14:31,010
ุนุจุงุฑุฉ ุนู† U ุฃุฑุจุนุฉ ููŠ ุฎู…ุณุฉ ูˆุงู„ุงุฑุจุนุฉ ููŠ ุงู„ุฎู…ุณุฉ are
139
00:14:31,010 --> 00:14:35,870
relatively prime ู…ุฏุงู… relatively prime ูŠุจู‚ู‰ ู‡ุฐู‡
140
00:14:35,870 --> 00:14:47,070
isomorphic ู„ู…ุงู† ู„ U4 external product ู…ุน U5 ุงู„ U4
141
00:14:47,070 --> 00:14:54,570
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ isomorphic ู„ู…ุงู† ู„ Z2 external product
142
00:14:54,570 --> 00:14:56,230
ู…ุน U5
143
00:15:00,200 --> 00:15:05,120
ุนุดุงู† ุฃุถูŠุน ูˆู‚ุช ููŠู‡ุง ูŠุจู‚ู‰ isomorphic ู„ุฒุฏ ุฃุฑุจุนุฉ ุฅุฐุง
144
00:15:05,120 --> 00:15:11,720
ุนู†ุฏูŠ ุซู…ุงู†ูŠุฉ ุงุชูˆู…ูˆุฑูุฒู… ู„ู…ุงู† ู„ุฒุฏ ุนุดุฑูŠู† ุจุฏูŠ ุงุฏูˆุฑ ู…ู†
145
00:15:11,720 --> 00:15:17,440
ุงู„ุซู…ุงู†ูŠุฉ ู‡ุฏูˆู„ ูŠุจู‚ู‰ ู…ุง ูŠู†ุทุจู‚ ุนู„ู‰ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ุฒุฏ
146
00:15:17,440 --> 00:15:23,540
ุนุดุฑูŠู† ูŠู†ุทุจู‚ ุนู„ู‰ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู…ุงู† ู„ุฒุฏ ุงุซู†ูŠู† ร— ุชุงู†
147
00:15:23,540 --> 00:15:28,120
ุถุฑุจ product ู…ุน ู…ูŠู†ุŸ ู…ุน ุฒุฏ ุฃุฑุจุนุฉ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู…
148
00:15:28,120 --> 00:15:34,060
ู…ุฏุงู… ู‡ุฐู‡ ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู‡ุฐู‡ ุฅุฐุง ู„ูˆ ู„ุฌูŠุช ุฌุฏู‘ูŠุด ุนุฏุฏ
149
00:15:34,060 --> 00:15:38,300
ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ group ู‡ุฐู‡ ู„ู„ order ุฅู„ู‡ู… ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ
150
00:15:38,300 --> 00:15:42,340
ุจูƒูˆู† ุฌุจุช ุนุฏุฏ ุงู„ automorphisms ุงู„ู„ูŠ ุงู„ order ุฅู„ู‡ู…
151
00:15:42,340 --> 00:15:48,060
ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุฃุฑุจุนุฉ ูŠุนู†ูŠ ู‡ุฐู‡ ุตุนุจ ุงู„ุนู…ู„ ููŠู‡ุง ู„ูƒู† ู‡ุฐู‡
152
00:15:48,060 --> 00:15:54,020
ุณู‡ู„ ุงู„ุนู…ู„ ููŠู‡ุง ูˆู…ู† ู‡ู†ุง ุงู„ุชุญูˆูŠู„ุงุช ู‡ุฐู‡ ุจุชู†ู‚ู„ู†ุง ู…ู†
153
00:15:54,020 --> 00:15:59,480
ุฌุฑูˆุจ ุตุนุจ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง ุฅู„ู‰ ุฌุฑูˆุจ ุณู‡ู„ ุงู„ุชุนุงู…ู„ ู…ุนุงู‡ุง
154
00:16:01,670 --> 00:16:05,970
ุฃู†ุง ุจุฏูŠ ุฃุจุญุซ ุนู† ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠ Z2 Extended
155
00:16:05,970 --> 00:16:11,390
Product ูƒุฏู‡ ุนุฏุฏู‡ู… ุงู„ order ู„ู‡ู… ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู†ุŸ ุจุฏู‡
156
00:16:11,390 --> 00:16:16,970
ูŠุณุงูˆูŠ ุงู„ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุจุฏุงุชูŠ ุฃู‚ูˆู„ ู„ู‡ assume ุงูุชุฑุถ ุงู†ู‡
157
00:16:16,970 --> 00:16:23,250
ุนู†ุฏูŠ element a ูˆ b ู…ูˆุฌูˆุฏ ููŠ Z2 Extended Product ู…ุน
158
00:16:23,250 --> 00:16:31,480
Z4 such that ุจุญูŠุซ ุงู† ุงู„ุฃุฑุฏุฑ ู„ู€ A ูˆ ู„ู€ B ุงู„ู„ูŠ ู‡ูˆ
159
00:16:31,480 --> 00:16:36,660
ู„ุณุงูˆูŠ ุงู„ least common multiple ู„ู„ุฃุฑุฏุฑ ุจุชุงุจุน ุงู„ A
160
00:16:36,660 --> 00:16:41,340
ูˆุงู„ุฃุฑุฏุฑ ุจุชุงุจุน ุงู„ B ู‡ุฐุง ุงู„ูƒู„ุงู… ุฏูŠ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุฏูŠ ูŠุณุงูˆูŠ
161
00:16:41,340 --> 00:16:45,220
ุฃุฑุจุนุฉ ุงู„ุฃุฑุฏุฑ
162
00:16:45,220 --> 00:16:56,900
ุงู„ู…ุญุชู…ู„ุฉ ุงู„ orders of A are ู…ูŠู† ูŠุง ุดุจุงุจุŸ ูƒุฏู‡ุŸ ูˆุงุญุฏ
163
00:16:56,900 --> 00:17:02,030
ูˆ ูƒุฏู‡ุŸ ูˆุงุญุฏ ูˆุงุซู†ูŠู† ู‡ุฐู‡ ุงู„ู€ elements ุจุชุงุน ุงู„ู€ z
164
00:17:02,030 --> 00:17:05,630
ุงุซู†ูŠู† Zero ูˆ ูˆุงุญุฏ Zero ู‡ูˆ ุงู„ identity ุงู„ order ู„ู‡
165
00:17:05,630 --> 00:17:09,230
ุจูˆุงุญุฏ ูˆ ุงู„ูˆุงุญุฏ ู„ู‡ ุงู„ order ุงุซู†ูŠู† ุงู„ู„ูŠ ู„ูˆ ุฌู…ุนุช ูˆุงุญุฏ
166
00:17:09,230 --> 00:17:11,830
ุฒูŠ ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงุซู†ูŠู† ูุฒูŠ ุงุซู†ูŠู† ุจ Zero ุงู„ู„ูŠ ู‡ูˆ ุงู„
167
00:17:11,830 --> 00:17:16,090
identity ูŠุจู‚ู‰ ุงู„ orders ุงู„ู…ุญุชู…ู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ูˆ
168
00:17:16,090 --> 00:17:28,660
ุงุซู†ูŠู† and ุงู„ orders of B are ู…ู…ูƒู† ูˆุงุญุฏ ูˆุงุซู†ูŠู† ูˆุฃุฑุจุนุฉ
169
00:17:28,660 --> 00:17:32,760
ุชู…ุงู… ุชู„ุงุชุฉ ู…ุงููŠุด ุญุงุฌุฉ ู„ุฅู† ุงู„ุชู„ุงุชุฉ ู„ุง ุชู‚ุณู… ุงู„ุฃุฑุจุน
170
00:17:32,760 --> 00:17:36,740
ูŠุจู‚ู‰ ุงู…ุง ุงู„ order ุงูŠ ูˆุงุญุฏ ุฃูˆ ุงุซู†ูŠู† ุฃูˆ ุฃุฑุจุน ุทูŠุจ
171
00:17:36,740 --> 00:17:40,140
ู‡ุฏูˆู„ ุงู„ุฑู‚ู…ูŠู† ู„ูˆ ุจุฏูŠ ุงุฌูŠุจ ุงู„ least common multiple
172
00:17:40,140 --> 00:17:45,620
ู…ุน ู‡ุฏูˆู„ ุจุดูƒู„ูˆู„ูŠ ู…ุดูƒู„ุฉุŸ ู„ุฃ ูˆุงุญุฏ ุงุซู†ูŠู† ู‡ูŠ ูˆุงุญุฏ ูˆ
173
00:17:45,620 --> 00:17:49,900
ุงุซู†ูŠู† ุฅุฐุง ู‡ุฏูˆู„ ุจุฏูˆู† ุชููƒูŠุฑ ุจุฏูŠ ุงุฎุฏ ุงู„ุงู†ุตุงุฑูŠู† ุฒูŠ ู…ุง
174
00:17:49,900 --> 00:17:55,280
ู‡ู… ู„ูƒู† ุจุฏูŠ ุงุฏูˆุฑ ู‡ู†ุง ุงู„ุงุฑู‚ุงู… ุงู„ู„ูŠ ุจุชุนู…ู„ูŠ ุงู„ least
175
00:17:55,280 --> 00:17:58,920
common multiple ู…ุน ู…ูŠู†ุŸ ู…ุน ู‡ุฏูˆู„ ุจูŠุนุทูŠู†ูŠ ุฃุฑุจุนุฉ
176
00:17:58,920 --> 00:18:03,180
ุงู„ุณุคุงู„ ู‡ูˆ ู„ูˆ ูƒุงู† ุฎุฏุช ุงู„ุนู†ุงุตุฑ ุงู„ order ุงู„ู„ูŠ ู„ู‡ู…
177
00:18:03,180 --> 00:18:08,020
ูˆุงุญุฏ ูˆ ุงุซู†ูŠู† ุจูŠุฌูŠุจูˆู„ูŠ ุนู†ุงุตุฑ ูŠุจู‚ู‰ ู…ููŠุด insert ูŠุจู‚ู‰
178
00:18:08,020 --> 00:18:12,980
ู…ููŠุด ุงุฎุฏ ุงู„ุง ุงู„ู„ูŠ ุงู„ order ู„ู‡ ูŠุณุงูˆูŠ ู…ุงู† ุฃุฑุจุนุฉ ูู‚ุท ูˆ
179
00:18:12,980 --> 00:18:16,760
ู‡ุฏูˆู„ ุจุฏูŠ ุฃุฎุฏู‡ู… ู‡ู… ุงุซู†ูŠู† ุฒูŠ ู…ุง ู‡ู… ูƒูˆูŠุณ ู‡ุฏูˆู„ ุดูˆู
180
00:18:16,760 --> 00:18:20,860
ู‡ุฏูˆู„ ุจูŠุนุทูˆู†ูŠ ุชุจุฏู„ ุชุงู† ุฃูˆ ุจูŠุนุทูˆู†ูŠ ุงุซู†ูŠู† ุนู„ู‰ ุทูˆู„
181
00:18:20,860 --> 00:18:27,940
ุงู„ุฎุท ูˆ ู‡ุฏูˆู„ ุชุนุงู„ู‰ ู†ุดูˆู ุงูŠุด ุจุฏูŠ ู†ุนู…ู„ ููŠู‡ู… ุงู„ุขู† z
182
00:18:27,940 --> 00:18:34,100
four ู‡ุฐุง ูƒู… ุนู†ุตุฑ ุงู„ order ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ููŠ z
183
00:18:34,100 --> 00:18:43,270
four ูˆ ู…ูŠู† ูƒู…ุงู†ุŸ ูˆุงู„ุชู„ุงุชุฉ ู…ููŠุด ุบูŠุฑู‡ู… ู…ููŠุด ุบูŠุฑู‡ู… ูŠุจู‚ู‰
184
00:18:43,270 --> 00:18:51,870
ุงู„ Z for has ูˆุงุญุฏ and ุชู„ุงุชุฉ of order ุฃุฑุจุน ูŠุนู†ูŠ ูƒุงู…
185
00:18:51,870 --> 00:18:58,170
ุฎูŠุงุฑ ุนู†ุฏูŠุŸ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ A ู„ู‡ุง ุฎูŠุงุฑุงุช two choices
186
00:18:58,170 --> 00:19:06,930
for A for B ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง two choices for B ุทูŠุจ ูƒุงู…
187
00:19:06,930 --> 00:19:10,530
ุจู‚ู‰ ูƒุงู… ุฎูŠุงุฑ ู„ุฅูŠู‡ุŸ ุฎุฏ ุฒูŠ ู…ุง ุจุฏูƒ ู„ุฅู† order ูˆุงุญุฏ
188
00:19:10,530 --> 00:19:14,990
ูˆุงุชู†ูŠู† ุจูŠูุฑุฌูˆุด ู…ุนุงูŠุง ู…ุน ุงู„ุฃุฑุจุน ูŠุจู‚ู‰ ู‡ู†ุง ูƒู…ุงู† two
189
00:19:14,990 --> 00:19:24,550
choices for b ุฅุฐู† ุนุฏุฏ ุงู„ุนุฏุฏ ุชุจุนู‡ู… ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ู‡ู†ุง
190
00:19:24,550 --> 00:19:35,450
the number of elements of order for
191
00:19:37,350 --> 00:19:44,950
is ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ูˆูŠุณุงูˆูŠ ุฃุฑุจุนุฉ elements ูŠุจู‚ู‰
192
00:19:44,950 --> 00:19:49,650
ู…ุงุนู†ุฏูŠุด ุฅู„ุง ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ุงู„ order ู„ู‡ู… ูŠุณุงูˆูŠ four
193
00:19:49,650 --> 00:19:54,110
ูˆุจุงู„ุชุงู„ูŠ ุงู„ automorphism ู„ุฒุฏ ุนุดุฑูŠู† ูŠูˆุฌุฏ ููŠู‡ ุฌุฏู‘ุงุด
194
00:19:54,110 --> 00:19:59,690
ูŠุจู‚ู‰ ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ุงู„ order ู„ู‡ุง ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุงู†ุŸ ุจุฏู‡
195
00:19:59,690 --> 00:20:05,310
ูŠุณุงูˆูŠ ุนุดุฑูŠู† ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ุนู†ุฏู†ุง
196
00:20:12,060 --> 00:20:17,500
ู„ุงุญุธ ุฃู† ู‡ุฐู‡ ุงู„ุฃุณุฆู„ุฉ ูƒู„ู‡ุง ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนู„ู‰ ู…ุง ุฏุฑุณู†ุงู‡
197
00:20:17,500 --> 00:20:23,240
ููŠ ุงู„ุฌุฒุก ุงู„ู†ุธุฑูŠ ููŠ ุขุฎุฑ ู…ุญุงุถุฑุฉ ููŠ ู‡ุฐุง section ุงู„ุขู†
198
00:20:23,240 --> 00:20:30,840
ู†ู†ุชู‚ู„ ุฅู„ู‰ ุงู„ุดุงุจุชุฑ ุงู„ุฐูŠ ูŠู„ูŠู‡ ูˆู‡ูˆ ุดุงุจุชุฑ ุชุณุนุฉ ุชุณุนุฉ
199
00:20:30,840 --> 00:20:37,300
normal subgroups
200
00:20:37,300 --> 00:20:40,680
and factor
201
00:20:44,630 --> 00:20:49,990
and factor groups
202
00:20:49,990 --> 00:20:56,610
definition
203
00:20:56,610 --> 00:21:01,010
a
204
00:21:01,010 --> 00:21:05,670
subgroup H
205
00:21:05,670 --> 00:21:13,250
of a group G is called
206
00:21:16,320 --> 00:21:29,000
is called a normal is called a normal subgroup of
207
00:21:29,000 --> 00:21:40,680
g subgroup of g f ุงู„ a h ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ h a ู„ูƒู„
208
00:21:40,680 --> 00:21:50,920
ุงู„ a ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ g b ู„ุง ุงุณุชุฎุฏุงู… we denote this
209
00:21:50,920 --> 00:22:02,720
by ุงู„ H is a normal subgroup of G note
210
00:22:02,720 --> 00:22:05,880
ุงู„
211
00:22:05,880 --> 00:22:11,680
A H ุฏูŠ ุณุงูˆูŠ ุงู„ H A does not
212
00:22:15,740 --> 00:22:21,240
imply that ุงู†
213
00:22:21,240 --> 00:22:36,120
ุงู„ a h ุจุฏุฑ ูŠุณุงูˆูŠ ุงู„ h a but means that ุงู† ุงู„ a h
214
00:22:36,120 --> 00:22:41,700
one ุจุฏุฑ ูŠุณุงูˆูŠ ุงู„ h two a
215
00:22:44,410 --> 00:22:50,070
ุฃูˆู„ ู†ุธุฑูŠุฉ theorem a
216
00:22:50,070 --> 00:22:54,430
subgroup a
217
00:22:54,430 --> 00:23:07,070
subgroup H a subgroup H of G is normal is normal
218
00:23:07,070 --> 00:23:18,730
in G if and only if ุงู„ู€ X H X inverse subset ู…ู† H
219
00:23:18,730 --> 00:23:24,870
ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ group G
220
00:24:16,580 --> 00:24:22,060
ู†ุฑุฌุน ู…ุฑุฉ ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ ุฌุฑูˆุจ ุฌุฏูŠุฏุฉ ู‡ุณู…ูŠู‡ุง
221
00:24:22,060 --> 00:24:27,040
normal subgroup ุงู„ู„ูŠ ุจุชุญู‚ู‚ู„ูŠ ุดุฑุท ู…ุนูŠู† ุงู„ factor
222
00:24:27,040 --> 00:24:32,640
group ุจุฏูŠ ุฃู†ุดุฆ ุฌุฑูˆุจ ุฌุฏูŠุฏุฉ ุจูˆุงุณุทุฉ ุงู„ subgroup ุงู„ู„ูŠ
223
00:24:32,640 --> 00:24:36,340
ุนุฑูุชู‡ ุฏูŠ ูุฎู„ูŠู†ุง ููŠ ุงู„ุฃูˆู„ ู…ุน ุงู„ normal subgroup
224
00:24:36,340 --> 00:24:41,720
ูˆู‡ุชู„ุนุจ ุฏูˆุฑ ูƒุจูŠุฑ ููŠ ุนู„ู… ุงู„ุฌุจุฑ ูˆุฎุงุตุฉ ููŠ ู…ูˆุถูˆุน ุงู„ุฌุฑูˆุจ
225
00:24:41,720 --> 00:24:46,880
ุงู„ subgroup H ู…ู† ุงู„ุฌุฑูˆุจ G ุจุณู…ูŠู‡ุง normal subgroup
226
00:24:46,880 --> 00:24:53,390
ู…ู† G ุฅุฐุง ูƒุงู† ุงู„ู€ A H ู‡ูˆ ุงู„ู€ H A for all A belongs
227
00:24:53,390 --> 00:24:57,970
to G ูŠุนู†ูŠ ุฅุฐุง ูƒุงู† ุงู„ right coset ู‡ูŠ ุงู„ left coset
228
00:24:57,970 --> 00:25:04,280
ู„ุฌู…ูŠุน ุนู†ุงุตุฑ G ูŠุจู‚ู‰ ุจู‚ูˆู„ ู‡ุฐุง ุจู‚ูˆู„ ุนู„ูŠู‡ุง ุงู„ normal
229
00:25:04,280 --> 00:25:10,660
subgroup ู…ู† G ุทุจุนุง ุงุญู†ุง ุณุงุจู‚ุง ูƒู†ุง ู†ู‚ูˆู„ ุงู„ A H ู„ูŠุณ
230
00:25:10,660 --> 00:25:15,300
ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ุชูƒูˆู† subgroup ู„ูƒู† ุฃู† ูƒุงู†ุช normal ูŠุจู‚ู‰
231
00:25:15,300 --> 00:25:21,240
automatic ู‡ุฐุง subgroup ุฃู†ุช ู…ุนู…ู„ ูŠุจู‚ู‰ ุงู„ H ุงู„ู„ูŠ ู‡ูŠ
232
00:25:21,240 --> 00:25:26,010
subgroup ู…ู† G ุจู‚ูˆู„ ุนู„ูŠู‡ุง normal subgroup ุฅุฐุง ูƒุงู†
233
00:25:26,010 --> 00:25:30,510
ุงู„ู€ left coset ูŠุณุงูˆูŠ ุงู„ู€ right coset ูˆุงุฎุชุตุงุฑุง ุจุฏู„
234
00:25:30,510 --> 00:25:34,910
ู…ุง ุฃู‚ูˆู„ ุงู„ู€ H is a normal subgroup ู…ู† G ุจุฏูŠ ุฃุนุจุฑ
235
00:25:34,910 --> 00:25:41,230
ุจุงู„ุฑู…ุฒ ุงู„ู…ุซู„ุซ ู‚ุงุนุฏุชู‡ ุฌู‡ุฉ G ูˆุงู„ุฑุฃุณ ุชุจุนู‡ ุฌู‡ุฉ ู…ู†ุŸ ุฌู‡ุฉ
236
00:25:41,230 --> 00:25:44,950
H ุฎู„ูŠ ุจุงู„ูƒ ู…ุด ุญูŠ ุงู„ู„ู‡ ุชุฎู„ูŠ ุงู„ู‚ุงุนุฏุฉ ุชุญุช ูˆุงู„ุฑุฃุณ
237
00:25:44,950 --> 00:25:50,570
ููˆู‚ ุงู„ุฑุฃุณ ุฏุงุฆู…ุง ุฌู‡ุฉ ุงู„ subgroup ูˆุงู„ู‚ุงุนุฏุฉ ุฌู‡ุฉ ู…ู†ุŸ ุฌู‡ุฉ
238
00:25:50,570 --> 00:25:54,950
ุงู„ group ุทุจ ููŠ ุดุบู„ ู…ู…ูƒู† ูŠูู‡ู…ู‡ุง ุงู„ูˆุงุญุฏ ุบู„ุท ู…ู† ุฎู„ุงู„
239
00:25:54,950 --> 00:25:58,610
ุงู„ condition ุงู„ู„ูŠ ุญุงุทู‡ ู‡ุฐุง ุงูŠุด ุงู„ุญุงุฌุฉ ุงู„ุบู„ุท ู„ูˆ ุฌูŠุช
240
00:25:58,610 --> 00:26:04,790
ู‚ูˆู„ุชูƒ a h ูŠุณุงูˆูŠ h a ู‡ุฐุง ูƒู„ุงู… ุฎุทุฃ ุฃู†ุง ู„ู…ุง ุฃู‚ูˆู„ a h
241
00:26:04,790 --> 00:26:08,370
ุจูŠุณุงูˆูŠ ุดูŠุก ูŠุนู†ูŠ ุงู„ left coset ุจูŠุณุงูˆูŠ ุงู„ right coset
242
00:26:08,370 --> 00:26:14,570
ุฅุฐุง ุจุฏูŠ ุฃุชูƒู„ู… ุจู„ุบุฉ ุงู„ elements ุจูŠู‚ูˆู„ a h one ูŠุณุงูˆูŠ
243
00:26:16,110 --> 00:26:20,010
ู‡ูˆ ุงู„ู€ H2 ุฑู‚ู… ุซุงู†ูŠ ูˆ element ุซุงู†ูŠ ู„ูŠุณ ู†ูุณ ุงู„
244
00:26:20,010 --> 00:26:24,930
element ู‚ุฏ ูŠูƒูˆู† ู†ูุณ ุงู„ element ู„ูƒู† in general ู„ุฃ
245
00:26:24,930 --> 00:26:31,370
ู…ุด ุตุญูŠุญ ูŠุจู‚ู‰ ู„ู…ุง ุฃู‚ูˆู„ ู‡ุฐู‡ H ุจูŠุณุงูˆูŠ HA ูŠุนู†ูŠ AH1
246
00:26:31,370 --> 00:26:37,290
ุจูŠุณุงูˆูŠ H2A ุฑู‚ู… ุซุงู†ูŠ ุฃูˆ element ุซุงู†ูŠ ุบูŠุฑ ุงู„ element
247
00:26:37,290 --> 00:26:42,350
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุจู‚ูˆู„ุด AH ุจูŠุณุงูˆูŠ HA ูˆ ู„ู…ุง ุจู‚ูˆู„ AH1
248
00:26:42,350 --> 00:26:45,090
ูŠุณุงูˆูŠ H2A
249
00:26:46,550 --> 00:26:51,370
ุงู„ุชุนุฑูŠู ู‡ุฐุง ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏูŠ ุฃุญุงูˆู„ ุฃุตูŠุบู‡ ุตูŠุงุบุฉ ุฃุฎุฑู‰ุŒ
250
00:26:51,370 --> 00:26:55,910
ุชู…ุงู…ุŸ ู„ูŠู‡ุงุดูŠ ุงู„ุตูŠุงุบุฉ ุงู„ุฃุฎุฑู‰ุŸ ุจู„ ุจุฏู„ ุงู„ุตูŠุงุบุฉ ุชู„ุงุชุฉ
251
00:26:56,420 --> 00:27:01,320
ุฃูŠู‘ุด ุงู„ุตูŠุบุฉ ุงู„ุฃุฎุฑู‰ุŸ ุฃู†ุง ุจุฅู…ูƒุงู†ูŠ ู‡ู†ุง ู„ูˆ ุถุฑุจุช ููŠ ุงู„ู€ A
252
00:27:01,320 --> 00:27:05,300
inverse ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ุฃูˆ ุงู„ู€ A inverse ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„
253
00:27:05,300 --> 00:27:10,540
ูุจูŠุตูŠุฑ ุนู†ุฏูŠ A H A inverse ูŠุณุงูˆูŠ ู…ู†ุŸ ูŠุณุงูˆูŠ ุงู„ู€ H ุดุฑุท
254
00:27:10,540 --> 00:27:15,920
ุงู„ู€ normality ุฃูˆ ู„ูˆ ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ุจูŠุตูŠุฑ ุงู„ู€ H
255
00:27:15,920 --> 00:27:23,260
ูŠุณุงูˆูŠ A inverse H A ุดุฑุทุงู†ูŠ ู„ู„ู€ normality ู…ู…ูƒู† ุฃู‚ูˆู„
256
00:27:23,260 --> 00:27:31,150
AH small A inverse ู…ูˆุฌูˆุฏุฉ ููŠ H ูƒุงุจุชู„ ู„ุฃู† ู‡ุฐุง
257
00:27:31,150 --> 00:27:36,170
ุจูŠุณุชูˆูŠ H ูŠุจู‚ู‰ ุงู„ู€ A H small A inverse ูƒู€ element
258
00:27:36,170 --> 00:27:42,450
ู…ูˆุฌูˆุฏ ููŠ H ุจุฑุถู‡ ุดุฑุท ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุตูŠุบุฉ ุฃุฎุฑู‰
259
00:27:42,450 --> 00:27:46,550
ู„ู„ู€ normality ู†ุธุฑูŠุชู‡ุง ุฏู‡ ุฃูŠู‘ุด ุจุชู‚ูˆู„ูŠุŸ ุจู‚ูˆู„ ุงูุชุฑุถ ุงู„ู€ H
260
00:27:46,550 --> 00:27:50,070
normal subgroup ุฃูˆ ุงู„ู€ H ู‡ูŠ normal subgroup ู…ู† G if
261
00:27:50,070 --> 00:27:55,300
and only if ุงู„ู€ X H X inverse subset ู…ู† ู…ูŠู†ุŸ ู…ู† H
262
00:27:55,300 --> 00:28:00,140
ู…ุง ู‡ูˆ ุฅู† ูƒุงู† ุงู„ุชุณุงูˆูŠ ุญุงุตู„ ุฅุฐู† automatic ู‡ุฏูŠ ู…ูŠู†ุŸ
263
00:28:00,140 --> 00:28:04,420
ู‡ุฐู‡ subset ู…ู† ู‡ุฐู‡ ุทุจุนู‹ุง ุงู„ุชุณุงูˆูŠ ุญุตู„ ู…ู† ู‡ู†ุง ู‚ู„ุช ู„ูƒ ู„ูˆ
264
00:28:04,420 --> 00:28:08,480
ุถุฑุจุช ููŠ ุงู„ู€ A inverse ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ู„ุดู…ุงู„ ุจูŠุทู„ุน
265
00:28:08,480 --> 00:28:12,800
ุงู„ุชุณุงูˆูŠ ุฃู†ุง ุจุฏุฃ ุฃุฎุชุตุฑ ูˆู„ุง ุฃู‚ูˆู„ ุงู„ุชุณุงูˆูŠ ุจุฏุฃ ุฃู‚ูˆู„
266
00:28:12,800 --> 00:28:17,220
ุงู„ู€ subset ุฑุบู… ุฃู† ุงู„ุชุณุงูˆูŠ ูƒู…ุงู† ุตุญูŠุญ ุทูŠุจ ู…ุดุงู† ู‡ูŠูƒ
267
00:28:17,220 --> 00:28:23,480
ุจู†ุฑูˆุญ ู†ุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจู‚ู‰ ุจุฏุงูŠุชูŠ ุฃู‚ูˆู„ู‡ assume
268
00:28:23,480 --> 00:28:30,780
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ H is a normal subgroup ู…ู† G then
269
00:28:34,230 --> 00:28:39,130
ูŠุจู‚ู‰ ุฃู†ุง ูุฑุถุช ุฃู† ุงู„ู€ H ู‡ุฐู‡ normal subgroup ู…ู† G
270
00:28:39,130 --> 00:28:45,790
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ูŠุตูŠุฑ ุนู†ุฏูŠ A H ูŠุณุงูˆูŠ H A ุญุณุจ ู…ุง
271
00:28:45,790 --> 00:28:52,070
ุญุณุจ ุงู„ู€ definition ุฃูˆ ู…ุดุงู† ุฎู„ูŠ ู†ูุณ ุงู„ุฑู…ูˆุฒ ูŠุจู‚ู‰ ุจุฏู‡
272
00:28:52,070 --> 00:28:58,950
ุฃู‚ูˆู„ X H ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู€ H X ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
273
00:28:58,950 --> 00:29:01,090
G ุจู„ุง ุงุณุชุซู†ุงุก
274
00:29:03,680 --> 00:29:10,640
ุทูŠุจ ุชู…ุงู… ุฃู†ุง ุจุฏูŠ ุฃุฎู„ู‚ ููŠ ุงู„ู…ุซุงู„ X H X inverse ูŠุจู‚ู‰
275
00:29:10,640 --> 00:29:15,440
ุจู†ุงุก ุนู„ูŠู‡ ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุชูŠ ุงู„ูŠู…ูŠู† ููŠ X
276
00:29:15,440 --> 00:29:21,840
inverse ุฃูŠู‘ุด ุงู„ู„ูŠ ุจุฏูŠ ูŠุตูŠุฑุŸ ุจุฏูŠ ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ X H X
277
00:29:21,840 --> 00:29:26,950
inverse ุจุฏูŠ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู€ H ู‡ุฐุง ู…ุนู†ุงู‡
278
00:29:26,950 --> 00:29:34,030
ู…ุฏุงู… ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ุงู„ู€ X H X inverse subset ู…ู† ู…ูŠู†ุŸ ู…ู†
279
00:29:34,030 --> 00:29:39,110
ุงู„ู€ H ูˆุงู„ู€ H subset ู…ู† ุงู„ู€ X H X inverse ู…ุง ุนู„ูŠู†ุง
280
00:29:39,110 --> 00:29:43,770
ูŠุจู‚ู‰ ู‡ุงูŠ ุฌูŠุจุช ู„ู‡ ู…ูŠู†ุŸ ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุจุฏูŠ ุฃุฌูŠุจ ู„ู‡ ุงู„ุดุฑุท
281
00:29:43,770 --> 00:29:45,630
ุงู„ุซุงู†ูŠ conversely
282
00:29:49,190 --> 00:29:57,170
assume ุงูุชุฑุถ ุฃู† ุงู„ู€ X H X inverse subset ู…ู† ู…ูŠู†ุŸ
283
00:29:57,170 --> 00:30:03,330
subset ู…ู† H ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุฃู† ุงู„ู€ H ู‡ุฐู‡ ู…ุนู‡ุง is a
284
00:30:03,330 --> 00:30:09,690
normal subgroup ู…ู† ุฌูŠ ุทูŠุจ ุจุฌูŠ ุจู‚ูˆู„ู‡ then
285
00:30:12,460 --> 00:30:19,120
ุฃูˆ ู‚ุจู„ then ู‡ุฐู‡ ุงู„ุตุญูŠุญุฉ ุฅุญู†ุง ูุฑุถู†ุงู‡ุง ู„ูƒู„ ุงู„ู€ X ุงู„ู„ูŠ
286
00:30:19,120 --> 00:30:24,920
ู…ูˆุฌูˆุฏุฉ ุฃูˆูŠุง ููŠ ุงู„ู€ group G ุจุฏูŠ ุฃุณุฃู„ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ุงู„ู€
287
00:30:24,920 --> 00:30:28,680
X inverse ู…ูˆุฌูˆุฏุฉ ููŠ G ูˆู„ุง ู„ุงุŸ ู„ุฃู† ุงู„ู€ G ุฌุฑูˆุจู‡
288
00:30:28,680 --> 00:30:35,210
ุงู„ู…ุนูƒุณ ู…ูˆุฌูˆุฏ ูŠุจู‚ู‰ ุจุฌูŠ ุจู‚ูˆู„ู‡ then ุงู„ู€ X inverse
289
00:30:35,210 --> 00:30:41,390
ู…ูˆุฌูˆุฏุฉ ููŠ G implies ุจุฏูŠ ุฃุทุจู‚ ุนู„ูŠู‡ุง ุงู„ุดุฑุท ู‡ุฐุง ูŠุจู‚ู‰
290
00:30:41,390 --> 00:30:47,370
ู„ูˆ ุฌูŠุช ุทุจู‚ุช ุนู„ูŠู‡ุง ุงู„ุดุฑุท ู‡ุฐุง ุจูŠุตูŠุฑ X inverse H X
291
00:30:47,370 --> 00:30:52,850
inverse inverse ุงู„ู„ูŠ ู‡ูˆ subset ู…ู† ู…ู†ุŸ subset ู…ู† H
292
00:30:55,030 --> 00:31:02,150
ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ู†ุง main ุฃู† ุงู„ู€ X inverse H
293
00:31:02,150 --> 00:31:11,830
X subset ู…ู† main subset ู…ู† main ู…ู† H ุทูŠุจ
294
00:31:11,830 --> 00:31:19,130
ูƒูˆูŠุณ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ุฌุจุช ุฃูˆ ู‚ุฏุฑุช ุฃุซุจุช ุฃู†
295
00:31:19,130 --> 00:31:26,430
ุงู„ู€ H ู‡ูŠ ุงู„ู€ subset ู…ู† ู…ู† ุงู„ู€ X inverse HX ุจุชู…
296
00:31:26,430 --> 00:31:31,550
ุงู„ู…ุทู„ูˆุจ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุนุชุจุฑ ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ุฑู‚ู… ูˆุงุญุฏ ุจุฏูŠ ุขุฌูŠ
297
00:31:31,550 --> 00:31:38,030
ู„ู„ุฎุทูˆุฉ ุฑู‚ู… ุงุซู†ูŠู† ุงู„ุฎุทูˆุฉ ุฑู‚ู… ูˆุงุญุฏ ู„ูˆ ุถุฑุจุชู‡ุง ููŠ X ู…ู†
298
00:31:38,030 --> 00:31:45,830
ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ุฃูŠู‘ุด ุจูŠุตูŠุฑ ุงู„ู€ X X inverse ููŠ ู…ู†ุŸ ููŠ
299
00:31:45,830 --> 00:31:54,050
ุงู„ู€ H ูˆู‡ู†ุง X ุจุฏูŠ ุชุจู‚ู‰ subset ู…ู† ุงู„ู€ X H ุถุฑุจุช ู…ู† ุฌู‡ุฉ
300
00:31:54,050 --> 00:31:58,610
ุงู„ุดู…ุงู„ ููŠ X ูŠุจู‚ู‰ ู‡ุฐุง ุฃูŠู‘ุด ุจุฏูŠ ูŠุนุทูŠูƒุŸ ู‡ุฐุง ุจุฏูŠ
301
00:31:58,610 --> 00:32:06,330
ูŠุนุทูŠูƒ ุฃู† ุงู„ู€ H X subset ู…ู† ุงู„ู€ X H ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงุถุฑุจ
302
00:32:06,330 --> 00:32:12,090
ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ุงู„ู€ X inverse ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจู†ุง ููŠ ุงู„ู€
303
00:32:12,090 --> 00:32:19,250
X inverse ุจูŠุตูŠุฑ ุงู„ู€ H ู‡ูŠ subset ู…ู† X H X inverse ูˆ
304
00:32:19,250 --> 00:32:22,550
ู‡ุฐู‡ ุงู„ุนู„ุงู‚ุฉ ุฑู‚ู… ุงุซู†ูŠู† ุฃุทู„ุน ู„ูŠ ููŠ ุงู„ูˆุงุญุฏ ูˆุงุซู†ูŠู†
305
00:32:22,550 --> 00:32:33,120
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง from ูˆุงุญุฏ and ุงุซู†ูŠู† we have ุฅู†
306
00:32:33,120 --> 00:32:40,620
ุงู„ู€ X H X inverse ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ H ุทุจ
307
00:32:40,620 --> 00:32:47,100
ุงุถุฑุจ ู„ู„ุทุฑููŠู† ููŠ X ู…ู† ุฌู‡ุชูŠ ุงู„ูŠู…ูŠู† ูŠุจู‚ู‰ X H ุจุฏู‡
308
00:32:47,100 --> 00:32:52,780
ูŠุณุงูˆูŠ H X ู‡ุงู„ุชุนุฑูŠู ู…ูŠู†ุŸ ุงู„ู€ normal ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠูƒ
309
00:32:52,780 --> 00:32:57,660
ุฃู† ุงู„ู€ H is a normal subgroup ู…ู† ู…ูŠู†ุŸ ู…ู† G ูˆุฃู†ุช
310
00:32:57,660 --> 00:33:00,120
ู‡ู†ุง ู…ู† ุงู„ู…ุณุฃู„ุฉ
311
00:33:04,330 --> 00:33:12,130
ุงู„ุขู† ุฎุฐ ู„ูŠ ู‡ุงู„ู…ู„ุงุญุธุฉ ุงู„ู„ูŠ ู‚ู„ุช ู„ูƒ ู‚ุจู„ ู‚ู„ูŠู„ ูˆู‡ูŠ ุตูˆุฑุฉ
312
00:33:12,130 --> 00:33:17,030
ู…ู† ุตูˆุฑุฉ ุงู„ู€ normality ุจูŠู‚ูˆู„ ู„ูŠ the above theorem the
313
00:33:17,030 --> 00:33:26,450
above theorem the above theorem can be written as
314
00:33:26,450 --> 00:33:36,160
can be written as ู…ู…ูƒู† ู†ูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุฃู†
315
00:33:36,160 --> 00:33:46,820
ุงู„ู€ a ุฃูˆ ุงู„ู€ h is a normal subgroup ู…ู† g if and only
316
00:33:46,820 --> 00:33:56,180
if ุงู„ู€ x h x inverse belongs ู„ู…ู†ุŸ belongs ู„ู€ ุงู„ู€ H ู„ูƒู„
317
00:33:56,180 --> 00:34:01,340
ุงู„ู€ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ ุฌูŠุจ ุจู„ุง ุงุณุชุซู†ุงุก
318
00:34:18,040 --> 00:34:25,960
ู…ุฑุฉ ุซุงู†ูŠุฉ ุงู„ู…ู„ุงุญุธุฉ ู‡ุฐู‡ ุจุชู‚ูˆู„ ุฃู† ุงู„ุชุนุฑูŠู ุงู„ู€
319
00:34:25,960 --> 00:34:32,640
normality ุงุณุชู†ุชุฌ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ุงู„ุขู† ุฃู†ุง ุจุฏูŠ
320
00:34:32,640 --> 00:34:37,240
ุฃุตูŠุบู‡ุง ู‡ุฐู‡ ู…ุฑุฉ ุซุงู†ูŠุฉ ูุจุฌูŠ ุจู‚ูˆู„ ุงู„ู€ H normal
321
00:34:37,240 --> 00:34:42,220
subgroup ู…ู† G ุฅุฐุง ูƒุงู† X H ูŠุง small ูŠุนู†ูŠ element ู…ู†
322
00:34:42,220 --> 00:34:47,460
H ููŠ X inverse ุจู‚ูˆู„ belong to H ู„ุฃู†ู‡ ุตุงุฑ ุนู†ุตุฑ
323
00:34:47,460 --> 00:34:51,640
ุงู„ุนู†ุตุฑ ุจู‚ูˆู„ุด substitute ุฅู†ู…ุง ุจู‚ูˆู„ main belong to H
324
00:34:51,640 --> 00:34:55,760
ูŠุนู†ูŠ ุญุตู„ ุถุฑุจ ุงู„ู€ X ุงู„ู„ูŠ ู‡ูˆ ู…ู† G ููŠ ุงู„ู€ element ุงู„ู„ูŠ
325
00:34:55,760 --> 00:34:58,580
ู‡ูˆ ู…ู† H ููŠ ู…ุนูƒูˆุณ ุงู„ู€ element ุชุจุน ุงู„ู€ G ุงู„ุซู„ุงุซุฉ
326
00:34:58,580 --> 00:35:02,970
ุจุฏูŠูƒูˆู† one ู…ูˆุฌูˆุฏ ููŠ H ูˆู‡ูŠ ุงู„ู…ูˆุถูˆุน ุชุจุนู‡ุง ู‡ุฐูŠ normal
327
00:35:02,970 --> 00:35:07,290
ุฅุฐุง ูƒุงู† ุงู„ู€ X H X inverse belongs to the main ู„ู„ู€ H
328
00:35:07,290 --> 00:35:12,130
ูŠุจู‚ู‰ ู„ูˆ ู‚ุงู„ูŠ ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง ุฃุซุจุช ุฃู† ุงู„ู€ H is a normal
329
00:35:12,130 --> 00:35:18,130
subgroup ู…ู† G ูŠูƒููŠู†ูŠ main ู‡ุฐุง ุงู„ุดุฑุท ุฃูˆ ู‡ุฐุง ุงู„ุดุฑุท ุฃูˆ
330
00:35:18,130 --> 00:35:22,190
ู‡ุฐุง ุงู„ุดุฑุท ูŠุจู‚ู‰ ุงู„ู„ูŠ ุชู‚ุฏุฑ ุนู„ูŠู‡ ู…ู† ุงู„ุซู„ุงุซุฉ ุงุดุชุบู„ู‡
331
00:35:22,190 --> 00:35:26,970
ูˆุชูˆูƒู„ ุนู„ู‰ ุงู„ู„ู‡ ุทูŠุจ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุฃุฎุฐ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ
332
00:35:26,970 --> 00:35:32,330
ูˆู†ุจุฏุฃ ุจุฃุจุณุท ุฃู†ูˆุงุน ุงู„ุฃู…ุซู„ุฉ ุงู„ุณุคุงู„ ู‡ูˆ ู„ูˆ ุนู†ุฏูŠ group
333
00:35:32,330 --> 00:35:37,470
abelian ูˆุงู„ุฌุฑูˆุจ ู‡ุฐู‡ ุฃุฎุฐุช ู…ู†ู‡ุง ุงู„ู€ subgroup ุงู„ุณุคุงู„
334
00:35:37,470 --> 00:35:45,270
ู‡ูˆ ู‡ู„ ุงู„ู€ subgroup ู‡ุฐู‡ ุจุชุจู‚ู‰ normal ูŠุนู†ูŠ ู‡ู„ ูŠุชุญู‚ู‚ ุงู„ู€
335
00:35:45,270 --> 00:35:50,160
condition ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุงู„ูŠุดุŸ ู„ุฃู† abelian ุฃู†ุง ุจู‚ูˆู„
336
00:35:50,160 --> 00:35:55,420
ุจู‚ุฏุฑ ุฃุจุฏู„ ู‡ุฏูˆู„ ุฃูŠ ู…ูƒุงู† ุจุนุถ ู„ูˆ ุจุฏู„ุชู‡ู… ุจูŠุตูŠุฑ H XX
337
00:35:55,420 --> 00:36:00,320
inverse ู„ูˆ H ููŠ E ู„ู‡ูˆ ุจู€ H ูŠุจู‚ู‰ H ู…ูˆุฌูˆุฏุฉ ูˆุฅู† ู…ูˆุฌูˆุฏุฉ
338
00:36:00,320 --> 00:36:03,720
ููŠ H ูˆุจุงู„ุชุงู„ูŠ ุงู„ุดุฑุท ู…ุชุญู‚ู‚ ุฅุฐุง ุงู„ู€ group ู‡ุฐูŠ ุฃูŠู‘ู‡ุŸ
339
00:36:03,720 --> 00:36:08,580
normal group ูŠุจู‚ู‰ ุฃูˆู„ ู‚ุงุนุฏุฉ ุจุฃุฎุฐู‡ุง ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€
340
00:36:08,580 --> 00:36:13,940
group abelian ูŠุจู‚ู‰ any subgroup is normal ูŠุจู‚ู‰
341
00:36:13,940 --> 00:36:29,400
ุฃูˆู„ ู…ุซุงู„ ุจูŠู‚ูˆู„ any subgroup of an abelian group is
342
00:36:29,400 --> 00:36:36,380
normal ู…ุซุงู„
343
00:36:36,380 --> 00:36:42,000
ุงุซู†ูŠู† ุทุจุนู‹ุง
344
00:36:42,000 --> 00:36:47,080
ุงู„ู€ condition ู‡ูŠู‡ ุนู†ุฏูƒ ุฃู‚ูˆู„ ู„ูƒ ู‡ุฐู‡ ู„ูˆ ุชุญู‚ู‚ ุงู„ู€
345
00:36:47,080 --> 00:36:51,820
condition ู‡ู†ุง ู…ูˆุฌูˆุฏ ุงู„ุขู† abelian ุจู‚ุฏุฑ ุฃุจุฏู„ู‡
346
00:36:51,820 --> 00:36:58,420
ูˆุจุงู„ุชุงู„ูŠ ุจูŠุจู‚ู‰ ุนู†ุฏูŠ H ู…ูˆุฌูˆุฏ ููŠู‡ H ุทูŠุจ ุงู„ู†ู‚ุทุฉ
347
00:36:58,420 --> 00:37:02,600
ุงู„ุซุงู†ูŠุฉ ุงู„ู€ center ุชุจุน ุงู„ู€ group ู‡ู„ ู‡ูˆ ุงู„ู€ subgroup
348
00:37:02,600 --> 00:37:03,460
ู…ู† ุงู„ู€ group G
349
00:37:06,550 --> 00:37:14,770
ุงู„ู€ Center ุชุจุน ุจุฌุฑูˆุจ ุงู„ู€ Z of G ุฃู†ุง ุฃุฏุนูŠ ุฃู† ุงู„ู€ A
350
00:37:14,770 --> 00:37:18,510
normal subgroup ู…ู†ูŠู†ุŸ ู…ู† G
351
00:37:21,130 --> 00:37:24,530
ุจุขุฌูŠ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุฅุฐุง ุชุญู‚ู‚ ุฃูŠู‘ condition ู…ู† ุงู„ู€
352
00:37:24,530 --> 00:37:28,850
conditions ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฏูˆู„ ุจูƒูˆู† ุฎู„ุตู†ุง ู…ู† ุงู„ู…ูˆุถูˆุน
353
00:37:28,850 --> 00:37:34,670
ุชู…ุงู… ูƒูŠู ุงู„ุขู† ุฎู„ุงู†ูŠ ู†ุญู‚ู‚ ุฃูŠู‘ condition ู‡ุงุฏูŠ ู‡ุงุฏูŠ
354
00:37:34,670 --> 00:37:40,550
ู‡ุงุฏูŠ ุงู„ุณูŠุงู†ุฉ ุจุชูุฑุฌุด ุนู†ู†ุง ุงู„ุขู† ู„ูˆ ุฑุญุช ุฃุฎุฐ ุฃูŠู‘ ุนู†ุตุฑ
355
00:37:40,550 --> 00:37:44,550
ุนู†ุฏูŠ ููŠ ุงู„ู€ group G ูˆุจุฏูŠ ุฃุถุฑุจู‡ ููŠ ุงู„ู€ center ุชุจุน ุงู„ู€
356
00:37:44,550 --> 00:37:47,350
H ู‡ู†ุง solution
357
00:37:50,630 --> 00:38:00,150
ุงู„ุขู† Z of G ู‡ูˆ ู…ุฌู„ุฏ ู…ู† G ุจุฏูŠ ุฃุนู…ู„ left coset ุนู†ุฏูŠ
358
00:38:00,150 --> 00:38:08,330
ูŠุจู‚ู‰ ุจุขุฏูŠ ุจู‚ูˆู„ู‡ ู„ูƒู„ ุงู„ู€ X ู…ูˆุฌูˆุฏ ููŠ G then ุงู„ู€ X ููŠ
359
00:38:08,330 --> 00:38:16,500
ุงู„ู€ center ุจุชุงุจุน ุงู„ู€ G ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุธู† ุงู„ู€ X ู‡ุฐูŠ ุชุชุนุงู…ู„
360
00:38:16,500 --> 00:38:23,060
ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ Z ุฃูˆ ุนู†ุงุตุฑ Z of G ุชุชุนุงู…ู„ ู…ุน ุฌู…ูŠุน
361
00:38:23,060 --> 00:38:28,820
ุนู†ุงุตุฑ G ุฅุฐุง ู‡ุฐูŠ ุชุชุนุงู…ู„ ู…ุน ุงู„ู€ Z ูƒู„ู‡ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง
362
00:38:28,820 --> 00:38:37,780
ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ Z of G Z of G ููŠ X ุงู„ุดูƒู„ ุงู„ู„ูŠ
363
00:38:37,780 --> 00:38:42,440
ุนู†ุฏู†ุง ู‡ู†ุง ูƒุงู† ุจุฅู…ูƒุงู†ูŠ ุฃุจุฏุฃ ุบูŠุฑ ู‡ูŠูƒ ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡
364
00:38:42,440 --> 00:38:49,540
ุชุนุงู„ ู†ุดูˆู X Z of G X inverse ุดูˆ ุจุฏู‡ ุชุนุทูŠู†ูŠ ูˆุฃุฌูŠุจ
365
00:38:49,540 --> 00:38:54,260
ู…ู† ูˆุฃุฌูŠุจ ุงู„ู€ X ุฃุจุฏู„ู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ุจุชูŠุฌูŠ ุงู„ู€ X ูŠุนู†ูŠ
366
00:38:54,260 --> 00:38:59,060
ูƒุงู† ุจุฅู…ูƒุงู†ูŠ ุจุฏู„ ู…ุง ุฃู‚ูˆู„ ู‡ูŠูƒ ุฃู‚ูˆู„ ุชุนุงู„ ู†ุดูˆู ุงู„ู€
367
00:38:59,060 --> 00:39:04,100
group ูŠุนู†ูŠ ูˆุฃุฑูˆุญ ุฃุญุท ู‡ู†ุง ู…ู† X inverse ุฃุดูˆู ูˆูŠู†
368
00:39:04,100 --> 00:39:09,030
ุจุฏู‡ ุชูˆุตู„ู†ูŠ ูŠุนู†ูŠ ุจู‚ูˆู„ ู„ูƒ ูƒูˆูŠุณ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู€ X ูƒู…ูŠูˆุช
369
00:39:09,030 --> 00:39:14,850
ู…ุน ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ Z ุฅุฐุง ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„
370
00:39:14,850 --> 00:39:21,320
Z of G ูˆู‡ู†ุง X ูˆู‡ุฐู‡ ุงู„ู€ X ุงู†ูุฑุณ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
371
00:39:21,320 --> 00:39:26,380
ุจุชุนุทูŠู†ุง ู…ูŠู†ุŸ ุงู„ู€ identity element ุงู„ู€ identity
372
00:39:26,380 --> 00:39:31,580
element ููŠ ุฃูŠู‘ subgroup ูˆุงู„ู„ู‡ ุจุชุนุทูŠู†ูŠ ู†ูุณ ุงู„ู€
373
00:39:31,580 --> 00:39:38,320
subgroup ุชู…ุงู… ูŠุจู‚ู‰ ุฃุณุงุฑ X Z of G X inverse ุจุฏูŠ
374
00:39:38,320 --> 00:39:44,480
ุฃุณูˆุฃ ู…ู† Z of G ุฃุถุฑุจ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ X ู‡ุฐุง ุจุฏูŠ
375
00:39:44,480 --> 00:39:52,350
ูŠุนุทูŠูƒ ุฅู† ุงู„ู€ X ููŠ Z of G ููŠ ุงู„ู€ X inverse ุจุฏู‡ ุชุฌูŠู„ูƒ
376
00:39:52,350 --> 00:39:59,750
ูƒู…ุงู† X ุจุฏู‡ ูŠุณุงูˆูŠ Z of G ููŠ ู…ู† ููŠ ุงู„ X ู‡ุฐุง ุจุฏู‡
377
00:39:59,750 --> 00:40:06,210
ูŠุนุทูŠู„ูƒ ุฅู† ุงู„ X ููŠ Z of G ุทู„ุนู„ูŠ ู‡ุฐุง ุงู„ุดูŠุก ุจูŠุนุทูŠู†ุง ุงู„
378
00:40:06,210 --> 00:40:10,250
identity ููŠ ุฃูŠ element ู…ู† ู†ูุณ ุงู„ element ูˆุงู„ุทุฑู
379
00:40:10,250 --> 00:40:17,650
ุงู„ูŠู…ูŠู† Z of G ุฃูˆ ุงู„ X ููŠ .. ู‡ุฐุง ุจูŠุนุทูŠูƒ Z of G ููŠ
380
00:40:17,650 --> 00:40:23,550
ู…ู†ุŸ ููŠ ุงู„ X ู‡ุฐุง ุจุฏูŠ ุฃุนุทูŠู„ูƒ ุฅู† Z of G is a normal
381
00:40:23,550 --> 00:40:27,590
subgroup ู…ู† G ูŠุนู†ูŠ .. ูŠุนู†ูŠ ู‚ู„ุช ุงู„ููƒุฑุฉ ุงู„ุจุณูŠุทุฉ
382
00:40:27,590 --> 00:40:31,710
ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุง ุฃูˆูŠ ุงู„ุซุงู†ูŠุฉ ูƒู„ู‡ ุจูŠุฃุฏูŠ ุฅู„ู‰ ู†ูุณ
383
00:40:31,710 --> 00:40:37,100
ุงู„ู…ูˆุถูˆุน ูˆุงู„ู„ู‡ ุจูŠูƒูู„ ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุง ุจุณ ุงุญู†ุง ู…ุณุญู†ุงู‡ุง
384
00:40:37,100 --> 00:40:43,080
ุงู„ู‚ุทุนุฉ ุงู„ู„ูŠ ูƒู†ุง .. ู‡ุฐู‡ ุงู„ุขู† X Z X inverse ุจุฏู‡ ูŠุณูˆูŠ
385
00:40:43,080 --> 00:40:47,080
ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณูˆูŠ ..
386
00:40:47,080 --> 00:40:51,160
ุฎู„ูŠูƒู… ู…ุนุงูŠุง ุงุญู†ุง ู‡ุฐูŠ ุงู„ subgroup ุฃุฎุฏู†ุง X ููŠ G
387
00:40:51,160 --> 00:40:55,440
ูˆู‚ู„ู†ุง ุชุนุงู„ ุดูˆู ุงู„ู…ู‚ุฏุฑ ู‡ุฐุง ุฅูŠุด ุจูŠุนุทูŠู†ุง ูŠุนู†ูŠ ุฃู†ุง
388
00:40:55,440 --> 00:41:00,220
ุฌูŠุช ุฃุดูˆู ู‡ุฐุง ุดูˆ ุจุฏูŠ ูŠุนุทูŠู†ุง ุงู…ุดูŠ ุทู„ุน ู…ูŠู† ุทู„ุน ู‡ูˆ Z
389
00:41:00,220 --> 00:41:06,350
of G ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ subset ุงู„ู†ุธุฑูŠุฉ subset ูˆู…ุง ู‚ู„ู†ุงุด
390
00:41:06,350 --> 00:41:12,730
ุชุณุงูˆูŠ ู„ุฅู† ุงุญู†ุง ุงู„ู€ subset ุฌุจู†ุง ู…ู† ุงู„ูŠุณุงูˆูŠ ู„ูˆ ู‚ุฏุฑุช ุชุซุจุช
391
00:41:12,730 --> 00:41:17,230
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฅู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ู‡ุฐุง ุจูŠูƒูˆู† ู‚ุฏ ุงู„ูˆุงุฌุจ ุจุณ
392
00:41:17,230 --> 00:41:21,710
ุฃู†ุง ุจุฏูŠ ุฃุญุงูˆู„ ุฃุญุท ู„ูƒ ุงู„ุชุนุฑูŠู ูƒู„ุงู… ุตุญ ู…ุธุจูˆุท ู…ุง ุญุฏุง
393
00:41:21,710 --> 00:41:24,790
ุจูŠู‚ุฏุฑ ูŠู‚ูˆู„ ุบู„ุท ููŠู‡ ู‡ุฐุง ุจุณ ุฃู†ุง ุญุจูŠุช ุฃุฌูŠุจ ุงู„ุชุนุฑูŠู
394
00:41:24,790 --> 00:41:28,910
ุงู„ุฃุณุงุณูŠ ู„ูƒู† ู„ูˆ ู‚ู„ุช ู„ุญุฏ ู‡ู†ุง ูŠุจู‚ู‰ normal ุฎู„ุงุตู†ุง ูˆู„ุง
395
00:41:28,910 --> 00:41:34,440
ูˆุงุญุฏ ุงู„ู„ูŠ ุงุนุชุฑุถ ุนู„ูŠูƒ ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„ู†ุณุจุฉ ู„ู„ู…ุซุงู„ ุฑู‚ู…
396
00:41:34,440 --> 00:41:40,000
ุงุซู†ูŠู† ุทุจ ู†ุฌูŠุจ ู„ูƒ ู…ุซุงู„ ุฑู‚ู… ุซู„ุงุซุฉ ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ู„ูƒ ู…ู†
397
00:41:40,000 --> 00:41:44,800
ุงู„ุดุบู„ุงุช ุงู„ู„ูŠ ู…ุฑุช ุนู„ูŠูƒ ุจุฏู†ุง ู…ุด ู†ุจุนุฏ ู„ุณู‡ ุณู…ุนุช ุจุงู„
398
00:41:44,800 --> 00:41:49,000
special linear group of two by two matrices over R
399
00:41:49,000 --> 00:41:56,770
ุฃู†ุง ุฃุฏุนูŠ ุฅู† ู‡ุฐู‡ ูƒู…ุงู† normal ุงู„ุขู† ุงู„ู€ special linear
400
00:41:56,770 --> 00:42:02,150
group of two by two matrices over R ู‡ุฐูŠ normal ู…ู†
401
00:42:02,150 --> 00:42:06,070
ุงู„ู€ general linear group of two by two matrices
402
00:42:06,070 --> 00:42:11,990
over R ู„ูŠุด ู‡ุฐูŠุŸ ุจุฏูŠ ุฃุซุจุช ุดุฑุทูŠู† ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุฅู†ู‘ู‡ุง
403
00:42:11,990 --> 00:42:17,230
subgroup ุงุซู†ูŠู† ุจุฏูŠ ุฃุซุจุช ุฎุงุตูŠุฉ ุงู„ู€ normality ูŠุจู‚ู‰
404
00:42:17,230 --> 00:42:19,450
ุงู„ุขู† solution
405
00:42:22,250 --> 00:42:26,870
ุจุชุฑูˆุญ ุชู‚ูˆู„ ุฅูŠู‡ ุงู„ู€ special linear group of two by
406
00:42:26,870 --> 00:42:31,330
two matrices over R subgroup ู…ู† ุงู„ู€ general linear
407
00:42:31,330 --> 00:42:38,350
group of two by two matrices over R ูˆู‡ุฐู‡ ู…ุซุงู„
408
00:42:38,350 --> 00:42:47,010
ุณุงุจู‚ ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒ ุทุจ ูƒูˆูŠุณ ุงู„ุขู† ุจุฑูˆุญ ุขุฎุฐ
409
00:42:47,010 --> 00:42:51,990
element ู…ู† G ูˆุจุฏูŠ ุขุฎุฐ element ู…ู† ุงู„ู€ special ูˆุงุดูˆู
410
00:42:51,990 --> 00:42:55,690
ุญุตู„ ุถุฑุจ ุงู„ู€ element ู…ู† G ููŠ ุงู„ู€ element ู…ู† ุงู„ู€
411
00:42:55,690 --> 00:43:00,390
special ููŠ ู…ุนูƒูˆุณ ุงู„ู€ element ุชุจุนูŠ ุงู†ุทู„ุน ูˆุงู„ู„ู‡ ุงู„ู€
412
00:43:00,390 --> 00:43:03,330
determinant ุฅูŠู‡ ุงู„ู„ูŠ ุจุฏูŠ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจูŠูƒูˆู† ุญุตู„
413
00:43:03,330 --> 00:43:06,260
ุงู„ุถุฑุจ ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆุฅู†ู‘ ุงู„ู€ special ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€
414
00:43:06,260 --> 00:43:11,840
special ู‡ู‡ normal subgroup ู…ู† main ู…ู† G ูŠุจู‚ู‰
415
00:43:11,840 --> 00:43:14,480
ุจุงู„ุฏุงุฎู„ ุฃูƒุชุจ ู„ูƒ ุงู„ุญู„ ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุซุงู†ูŠุฉ
416
00:43:28,720 --> 00:43:34,740
ุฃูุชุฑุถ ุฃู† ุงู„ู€ A ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ general linear group of
417
00:43:34,740 --> 00:43:41,000
2 by 2 matrices over R ูˆูŠูƒูˆู† ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ special
418
00:43:41,000 --> 00:43:48,000
linear group of 2 by 2 matrices over R ุฃุฑูŠุฏ ุฃู† ุขุฎุฐ
419
00:43:48,000 --> 00:43:54,640
ุงู„ู€ A ุจู€ A ุฅู†ูุฑุณ ุฅุฐุง ูƒู†ุช ุฃุซุจุช ุฅู†ู‘ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€
420
00:43:54,640 --> 00:43:58,860
Special ูŠุจู‚ู‰ ู‡ูˆ ุงู„ุดุฑุท ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู„ูŠู‡ ุงู„ุดุฑุท ุงู„ุซุงู„ุซ
421
00:43:58,860 --> 00:44:03,200
ู‡ูˆ ุงู„ู…ุณุงุญู†ุฉ ุฃู‡ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุชู…ุงู… ูŠุจู‚ู‰ ุจุฏูŠ ุฃุญุงูˆู„
422
00:44:03,200 --> 00:44:09,300
ุฃุซุจุชู‡ุง ูุจุฏูŠ ุขุฎุฐ determinant ู„ู…ูŠู† ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ
423
00:44:09,300 --> 00:44:15,530
ูŠุจู‚ู‰ ุญุณุจ ุงู„ุฌุจุฑ ุงู„ุฎุทูŠ ู‡ุฐู‡ determinant ู„ู„ู€ A ููŠ
424
00:44:15,530 --> 00:44:19,970
ุงู„ู€ determinant ู„ู„ู€ B ููŠ ุงู„ู€ determinant ู„ู„ู€ A
425
00:44:19,970 --> 00:44:23,650
inverse ุตุงุฑูˆุง ู‡ุฏูˆุฑ ุงู„ู€ real numbers ุงู„ู€ real
426
00:44:23,650 --> 00:44:28,350
numbers are commutes ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ determinant ู„ู„ู€
427
00:44:28,350 --> 00:44:33,070
A ููŠ ุงู„ู€ determinant ู„ู„ู€ A inverse ููŠ ุงู„ู€
428
00:44:33,070 --> 00:44:37,870
determinant ู„ู„ู€ B ูŠุจู‚ู‰ .. ุจุฏูŠ ุฃุฑุฌุนู‡ ุฅู„ู‰ ุฃุตู„ู‡ ูŠุจู‚ู‰
429
00:44:37,870 --> 00:44:42,170
ุงู„ู€ determinant ู„ู„ู€ A ููŠ ุงู„ู€ A inverse ููŠ ุงู„ู€
430
00:44:42,170 --> 00:44:47,280
determinant ู„ู„ู€ B ุงู„ู…ุตููˆูุฉ ููŠู…ุง ุนูƒูˆุฒู‡ุง ุจุงู„ู€
431
00:44:47,280 --> 00:44:52,240
determinant ู„ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ููŠ ุงู„ู€ determinant ู„ู„ู€ B
432
00:44:52,240 --> 00:44:58,920
ู…ุญุฏุฏ ู…ุตููˆูุฉ ุงู„ูˆุญุฏุฉ ู‚ุฏูŠุดุŸ ูˆุงุญุฏ ุตุญูŠุญ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุจู€
433
00:44:58,920 --> 00:45:03,320
B ุจุฑุถู‡ ุจูˆุงุญุฏ ู„ุฃู†ู‡ุง ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸ ุจุงู„ู€ Special ูŠุจู‚ู‰
434
00:45:03,320 --> 00:45:09,800
ุงู„ู€
435
00:45:09,800 --> 00:45:14,980
ABA inverse ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Special Linear Group of
436
00:45:14,980 --> 00:45:20,280
2x2 matrices over R ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ Special Linear
437
00:45:20,280 --> 00:45:25,400
Group of 2x2 matrices over R is a normal subgroup
438
00:45:25,400 --> 00:45:30,620
ู…ู† ุงู„ู€ General Linear Group of 2x2 matrices over R
439
00:45:31,450 --> 00:45:38,970
ูŠุจู‚ู‰ ู‡ุฐุง ู…ุซุงู„ ุขุฎุฑ ุนู„ู‰ ุงู„ .. ุนู„ู‰ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฎุฐ ู…ุซุงู„
440
00:45:38,970 --> 00:45:43,390
ุฃุฑุจุนุฉ ู…ุซุงู„
441
00:45:43,390 --> 00:45:49,030
ุฃุฑุจุนุฉ the alternating
442
00:45:49,030 --> 00:45:53,490
group
443
00:45:53,490 --> 00:45:59,850
the alternating group ุฃุฑุจุนุฉ
444
00:46:04,190 --> 00:46:10,170
ุงู„ุซุงู†ูŠ ุฌุฑูˆุจ An is
445
00:46:10,170 --> 00:46:19,130
a normal subgroup ู…ู† ู…ู† ุงู„ู€ Sn ู„ูŠุด
446
00:46:19,130 --> 00:46:22,450
ู‡ุฐูŠ normal ุจุงุฌูŠ ุจู‚ูˆู„ู‡ because
447
00:46:26,200 --> 00:46:31,900
ุจุฏูŠ ุขุฎุฐ element ููŠ Sn ูˆ element ููŠ An ุทุจุนุง ุฃู†ุง
448
00:46:31,900 --> 00:46:36,460
ุฃุฎุฐู†ุงู‡ุง ุณุงุจู‚ุง ุฅู†ู‘ู‡ุง ุงู„ู€ subgroup ู…ุธุจูˆุท ุงู„ู€ a for
449
00:46:36,460 --> 00:46:42,680
because ุงู„ู€ An ู‡ุฐูŠ ุงู„ู€ subgroup ู…ู† ุงู„ู€ Sn and
450
00:46:45,520 --> 00:46:55,140
Alpha ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ S in and Beta ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ A in
451
00:46:55,140 --> 00:47:05,920
then ุฃุฎุฐ ุงู„ุนู†ุตุฑ Sn ูˆุงู„ุนู†ุตุฑ An ูˆู…ุนูƒุณ ุงู„ุนู†ุตุฑ Sm ู„ูˆ
452
00:47:05,920 --> 00:47:11,420
ุทู„ุน ู‡ุฐุง ุงู„ูƒู„ุงู… even ูŠุจู‚ู‰ ู‡ุฐุง ุญุตู„ุช ุถุฑุจูˆูŠู† ููŠ Sn
453
00:47:11,420 --> 00:47:19,110
ูŠูƒูˆู† ุฎู„ุตู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‡ุงุฏุฆุฉ ู‚ุฏ ุชูƒูˆู† even ูˆู‚ุฏ
454
00:47:19,110 --> 00:47:24,150
ุชูƒูˆู† odd ู„ู†ุง ููŠ ุงู„ู€ sense ุฅู† ูƒุงู† even ูŠุจู‚ู‰ ู…ุนูƒูˆุณุฉ
455
00:47:24,150 --> 00:47:28,370
even ู‡ุฐู‡ even ู…ุง ุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุฅู† ูƒุงู† ู‡ุฐู‡ odd ู‡ุฐู‡
456
00:47:28,370 --> 00:47:32,370
even ู‡ุฐู‡ odd ูŠุจู‚ู‰ ุงู„ู…ุฌู…ูˆุน ุงู„ู„ูŠ ู‡ูˆ even ูˆุจุงู„ุชุงู„ูŠ
457
00:47:32,370 --> 00:47:36,770
ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุทุจุนุง ุฃุซุจุชู†ุงู‡ุง ู‚ุจู„ ุฅูŠู‡
458
00:47:36,770 --> 00:47:44,930
ุฃุฎุฐู†ุงู‡ุง ุณุคุงู„ ูˆุญู„ู†ุงู‡ ูŠุจู‚ู‰ then ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ An
459
00:47:44,930 --> 00:47:54,870
because ุงู„ุณุจุจ ุฅู†ู‘ even ุฒุงุฆุฏ even ุฒุงุฆุฏ even ุจุฏู‡
460
00:47:54,870 --> 00:48:05,410
ูŠุณุงูˆูŠ even and odd ุฒุงุฆุฏ even ุฒุงุฆุฏ odd ุจุฏู‡ ูŠุนุทูŠู†ุง
461
00:48:05,410 --> 00:48:10,870
even ู…ุดุงู† ู‡ูŠูƒ ู‡ุฐู‡ normal ุทุจุนุง ุจู†ูƒู…ู„ ููŠ ุงู„ู…ุญุงุถุฑุฉ
462
00:48:10,870 --> 00:48:12,950
ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡