|
1 |
|
00:00:21,090 --> 00:00:25,950 |
|
ุฃุญูุง ูุงุตููู ู
ุง ุจุฏุฃูุง ููู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ููู ุญู ุงููู |
|
|
|
2 |
|
00:00:25,950 --> 00:00:30,570 |
|
ูู ุงูู
ุณุงุฆู ุนูู ุดุจุชุฑ ุซู
ุงููุฉ ุงูุงูุณุชุงูุงุฏุงุฑูุช ุจุฑูุฏุฑู |
|
|
|
3 |
|
00:00:30,570 --> 00:00:35,110 |
|
ูุตููุง ูุณุคุงู ูุงุญุฏ ูุฃุฑุจุนูู ุจููู express automorphism |
|
|
|
4 |
|
00:00:35,110 --> 00:00:40,070 |
|
ูู U ุฎู
ุณุฉ ูุนุดุฑูู in the form ZM ุงูุณุชุงูุงุฏุงุฑูุช ุจุฑูุฏุฑู |
|
|
|
5 |
|
00:00:40,070 --> 00:00:41,390 |
|
ู
ุน ZN |
|
|
|
6 |
|
00:00:43,960 --> 00:00:48,680 |
|
ุจู
ุนูู ุขุฎุฑ ุจุฏู ุฃุฌูุจ ุฌุฑูุจ ูุฌุฑูุจ ูุฐู ุชุจูู isomorphic |
|
|
|
7 |
|
00:00:48,680 --> 00:00:54,060 |
|
ูู
ุงู
ูู U ุฎู
ุณุฉ ูุนุดุฑูู ุทุจ ุงุญูุง ุนูุฏูุง ุงูู U ุฎู
ุณุฉ |
|
|
|
8 |
|
00:00:54,060 --> 00:00:59,680 |
|
ูุนุดุฑูู solution ุนูุฏูุง |
|
|
|
9 |
|
00:00:59,680 --> 00:01:07,500 |
|
ุงูู U ุฎู
ุณุฉ ูุนุดุฑูู ุงููู ูู U ุฎู
ุณุฉ ููู ุชุฑุจูุน ุงูุดูู |
|
|
|
10 |
|
00:01:07,500 --> 00:01:16,670 |
|
ุงููู ุนูุฏูุง ูุฐู isomorphic ุฃู ุงู atomorphism ูู U |
|
|
|
11 |
|
00:01:16,670 --> 00:01:23,730 |
|
ุฎู
ุณุฉ ูุนุดุฑูู ูุฐู ุชุณุงูู U ุฎู
ุณุฉ ุชุฑุจูุน ู
ุจุงุดุฑุฉ ุทุจุนุงู |
|
|
|
12 |
|
00:01:23,730 --> 00:01:32,770 |
|
ุฃุฎุฐุช ุนูุฏู ุฃู ุงูู U ู
ุฑููุนุฉ ูู prime P ูู
ุฑููุนุฉ ูุฃุณ N |
|
|
|
13 |
|
00:01:32,770 --> 00:01:39,550 |
|
U P ุฃุณ N ูุงูุต P ุฃุณ N minus ุงู one ูุชุจูุงูุง ู
ุนูู
|
|
|
|
14 |
|
00:01:39,550 --> 00:01:45,390 |
|
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูู ุขุฎุฑ ู
ุญุงุถุฑุฉ ุชุฌุฏูุง ู
ูุฌูุฏุฉ ู
ุนู ูุญุงูู |
|
|
|
15 |
|
00:01:45,390 --> 00:01:50,950 |
|
ูุทุจู ูุฐุง ุงูููุงู
ุนุงูู
ูุงู ุนูู ุฃุฑุถ ุงููุงูุน ูุจูู ุจูุงุก |
|
|
|
16 |
|
00:01:50,950 --> 00:01:55,330 |
|
ุนููู ูู ุฎู
ุณุฉ ูุนุดุฑูู ูุชุจูุงูุง ุจุงูุดูู ูุฐู ุจูุฏุฑ ุฃููู |
|
|
|
17 |
|
00:01:55,330 --> 00:01:58,070 |
|
ูุฐู isomorphic ูู
ููุ |
|
|
|
18 |
|
00:02:02,510 --> 00:02:09,870 |
|
Isomorphic ูุฒุฏ P ุงููู ูู ุฎู
ุณุฉ ุชุฑุจูุน ูุงูุต ุฎู
ุณุฉ ุฃุณ |
|
|
|
19 |
|
00:02:09,870 --> 00:02:14,390 |
|
ุงุซููู ูุงูุต ูุงุญุฏ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ูุฐุง |
|
|
|
20 |
|
00:02:14,390 --> 00:02:19,790 |
|
ุงูููุงู
ูุฐู ุชุณุงูู ู
ู ุฎู
ุณุฉ ุชุฑุงุจูุน ููู ุฎู
ุณุฉ ูุนุดุฑูู |
|
|
|
21 |
|
00:02:19,790 --> 00:02:27,090 |
|
ููุฐู ุฎู
ุณุฉ ูุณูุงุญุฏ ูุจูู ุฒุฏ ุนุดุฑูู ุดูู ุงููู ุนูุฏูุง ููุง |
|
|
|
22 |
|
00:02:27,090 --> 00:02:31,710 |
|
ูุฐุง U ุฎู
ุณุฉ ูุนุดุฑูู ุฃูุง ู
ุง ุจุฏู U ุฎู
ุณุฉ ูุนุดุฑูู ุจุฏู |
|
|
|
23 |
|
00:02:31,710 --> 00:02:38,540 |
|
ุงุชูู
ูุฑูุฒู
ูู U ุฎู
ุณุฉ ูุนุดุฑูู ุฅุฐุง ุจูุงุก ุนููู atomorphism |
|
|
|
24 |
|
00:02:38,540 --> 00:02:47,580 |
|
ูู U ุฎู
ุณุฉ ูุนุดุฑูู ุงููู ูู isomorphic ูู
ูู
ุงููู ูู |
|
|
|
25 |
|
00:02:47,580 --> 00:02:54,750 |
|
atomorphism ูู Z ุนุดุฑูู ุงูุดูู ุงููู ุนูุฏูุง ููุง ุฃุฎุฐูุง |
|
|
|
26 |
|
00:02:54,750 --> 00:03:03,470 |
|
ูู
ุงู ูุธุฑูุฉ ุณุงุจูุฉ ุงุชูู
ูุฑูุฒู
ูู ZN ุงูุฒู ู
ูุฑูู ูู UN |
|
|
|
27 |
|
00:03:03,470 --> 00:03:10,830 |
|
ุดุจุทุฑ ุงููู ูุจูู ุขุฎุฑ ูุธุฑูุฉ ูุจูู ูุฐุง ุงูุฒู ู
ูุฑูู ูู U20 |
|
|
|
28 |
|
00:03:11,920 --> 00:03:19,120 |
|
U20 ูุฐู ุงููู ุจูุฏุฑ ุฃูุชุจูุง ุงููู ูู ุชุณุงูู U ุฃุฑุจุนุฉ ูู |
|
|
|
29 |
|
00:03:19,120 --> 00:03:25,440 |
|
ุฎู
ุณุฉ ูุงูุงุฑุจุนุฉ ุฎู
ุณุฉ are relatively prime ูุจูู ูุฐู |
|
|
|
30 |
|
00:03:25,440 --> 00:03:34,070 |
|
isomorphic ูู
ููุ ููู ูู isomorphic ุฃู ูุฏู ุชุณุงูู |
|
|
|
31 |
|
00:03:34,070 --> 00:03:39,990 |
|
ุฃู isomorphic ุฏูุบุฑู ูู
ูู
ูู U ุฃุฑุจุนุฉ external |
|
|
|
32 |
|
00:03:39,990 --> 00:03:49,530 |
|
product ู
ุน U ุฎู
ุณุฉ ู
ุฑุฉ ุซุงููุฉ ูู U ุฃุฑุจุนุฉ ูุฏู U ุงุซููู |
|
|
|
33 |
|
00:03:49,530 --> 00:03:58,130 |
|
ุชุฑุจูุนูุฐู ุฃุฎุฐูุงูุง ุงูุฒู ู
ูุฑูู ูู
ููุ ูุฒุฏ ุฏู ุงุซููู ููุฐู |
|
|
|
34 |
|
00:03:58,130 --> 00:04:03,170 |
|
ุจุชุทุจู ุนูููุง ุงููุงุนุฏุฉ ุงููู ุทุจููุงูุง ููู ุชู
ุงู
ุงู ูุจูู |
|
|
|
35 |
|
00:04:03,170 --> 00:04:10,730 |
|
ุจุงูุฏุงุฌู ุฃููู ูุฐุง ุฒุฏ ุฎู
ุณุฉ ุฃุณ ูุงุญุฏ ูุงูุต ุฎู
ุณุฉ ุฃุณ ูุงุญุฏ |
|
|
|
36 |
|
00:04:10,730 --> 00:04:17,180 |
|
ูุงูุต ูุงุญุฏูุฐุง ุงูููุงู
ูุณุงูู ุฒุฏ ุงุซููู external by |
|
|
|
37 |
|
00:04:17,180 --> 00:04:22,880 |
|
product ูุฐู ุฎู
ุณุฉ ููุฐู ุฎู
ุณุฉ ูุตูุฑ ุฎู
ุณุฉ ูุตูุฑ ุฃุจูุงุญุฏ |
|
|
|
38 |
|
00:04:22,880 --> 00:04:29,420 |
|
ุฎู
ุณุฉ ูุงูุต ูุงุญุฏ ุงููู ูู ุฃุฑุจุนุฉ ุฒุฏ ุฃุฑุจุนุฉ ุฒุฏ ุฃุฑุจุนุฉ ุงู |
|
|
|
39 |
|
00:04:29,420 --> 00:04:35,300 |
|
ุฒุฏ ุฃุฑุจุนุฉ ูุจูู ูุฐู ุฒุฏ ุฃุฑุจุนุฉ ู
ุนูุงู ูุฐุง ุงูููุงู
ุฃู ุงู |
|
|
|
40 |
|
00:04:35,300 --> 00:04:41,050 |
|
atomorphism ููู ุฎู
ุณุฉ ูุนุดุฑูู isomorphic ูู
ูู
ูุฒุฏ |
|
|
|
41 |
|
00:04:41,050 --> 00:04:45,490 |
|
ุงุซููู external product ุฒุฏ ุฃุฑุจุนุฉ ูุจุงูุชุงูู ุนูุฏู |
|
|
|
42 |
|
00:04:45,490 --> 00:04:50,030 |
|
ุซู
ุงููุฉ atomorphism ู
ู ุงูู U ุฎู
ุณุฉ ูุนุดุฑูู ุฅูู ุงูู U |
|
|
|
43 |
|
00:04:50,030 --> 00:04:54,910 |
|
ุฎู
ุณุฉ ูุนุดุฑูู ุงุชุณู ุจุบุถ ุงููุธุฑ ุนู ุดูููู
ูุงู ูู ุงูุชุจูู |
|
|
|
44 |
|
00:04:54,910 --> 00:05:01,170 |
|
ุงู atomorphism ูู U ุฎู
ุณุฉ ูุนุดุฑูู ุนูู ุดูู ZM ูู ZN |
|
|
|
45 |
|
00:05:01,170 --> 00:05:05,310 |
|
ูุจูู ูู ูุชุจุชูู ุจุงูุดูู ูุฐุง ุจุงุณุชุฎุฏุงู
ุงูููุงุนุฏ ุงููู |
|
|
|
46 |
|
00:05:05,310 --> 00:05:08,130 |
|
ุฃุฎุฐูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ |
|
|
|
47 |
|
00:05:10,010 --> 00:05:20,890 |
|
ุจุนุฏูุง ุจูููู ููู ูู 46 ูุจูู 46 ุจูููู ู
ุง ูุฃุชู ุจูููู |
|
|
|
48 |
|
00:05:20,890 --> 00:05:28,510 |
|
ูุงุชูู isomorphism ุจุฏูุง isomorphism ู
ู ููู ููููุ ูู |
|
|
|
49 |
|
00:05:28,510 --> 00:05:34,770 |
|
ู
ู ุงููู ูู ุงู group Z12 ุฅูู ู
ููุ |
|
|
|
50 |
|
00:05:37,910 --> 00:05:46,330 |
|
ุงูุณุคุงู ุณุชุฉ ุฃุฑุจุน ูููู ุฒ ุฃุฑุจุน ูู ุฒ ุซูุงุซุฉ ูุจูู ุฒ ุฃุฑุจุน |
|
|
|
51 |
|
00:05:46,330 --> 00:05:52,270 |
|
ูุณุชููู ุฏุงููุง product ู
ุน ุฒ ุซูุงุซุฉ ู
ุน ุฒ ุซูุงุซุฉ ุจููู |
|
|
|
52 |
|
00:05:52,270 --> 00:05:56,740 |
|
ุนุฑู ููู ุงููู ูู isomorphism ู
ู ุงู group ูุฐู ูู |
|
|
|
53 |
|
00:05:56,740 --> 00:06:01,240 |
|
group ูุฐู ุฃูุง ุจุนุทูู ุงู function ูุงูุช ุนููู ุชุซุจุช |
|
|
|
54 |
|
00:06:01,240 --> 00:06:05,620 |
|
ุฃููุง one to one and ุงูุช ูุชุฎุฏู
ุฎุงุตูุงุช ุงู |
|
|
|
55 |
|
00:06:05,620 --> 00:06:08,680 |
|
isomorphism ุงู function ุงููู ุจุชููู ุนูููุง ุดุจู |
|
|
|
56 |
|
00:06:08,680 --> 00:06:14,630 |
|
ุจุงูุดูู ุงูุชุงูู phi of x ูุจูู x ููู ู
ูุฌูุฏุฉ ูุฐูุ ูู |
|
|
|
57 |
|
00:06:14,630 --> 00:06:19,810 |
|
Z12 ุจุฏู ุฃุฌุณู
ูุง ุฅูู ู
ุฑูุจุชูู ูุงุญุฏุฉ ู
ูุฌูุฏุฉ ูู Z4 |
|
|
|
58 |
|
00:06:19,810 --> 00:06:25,390 |
|
ูุงุญุฏุฉ ู
ูุฌูุฏุฉ ูู Z3 ูุจูู ุจูุฏุฑ ุฃููู ูู ูุฐู ุนูู ุงูุดูู |
|
|
|
59 |
|
00:06:25,390 --> 00:06:33,210 |
|
ุงูุชุงูู ุทุจุนุงู ุงูุนุฏุฏ ุงููู ููุง ูู Z12 ุงููู ูู ู
ููุ ุงููู |
|
|
|
60 |
|
00:06:33,210 --> 00:06:38,470 |
|
ูู ุงูุนุฏุฏ ูุฏ ูููู ู
ู ุนูุฏ ุงู zero ูุบุงูุฉ ู
ู ุงู 11 |
|
|
|
61 |
|
00:06:38,470 --> 00:06:44,350 |
|
ูููุฐุง ุฅุฐุง ุจุฏู ุฃุฎูู ู
ุฑูุจุฉ ู
ูุฌูุฏุฉ ูู Z4 ูู
ุฑูุจุฉ |
|
|
|
62 |
|
00:06:44,350 --> 00:06:51,030 |
|
ู
ูุฌูุฏุฉ ูู Z3 ุฅุฐุง ุจูุฏุฑ ุฃููู ูุฐุง X modulo 4 ู |
|
|
|
63 |
|
00:06:51,030 --> 00:06:57,070 |
|
ุงูู
ุฑูุจุฉ ุงูุซุงููุฉ X modulo 3 ูุนูู ุงูุนุฏุฏ ุงููู ุจุงุฎุฏู |
|
|
|
64 |
|
00:06:57,070 --> 00:07:04,230 |
|
ู
ู Z12 ุฃูุจุฑ ู
ู 4 ููุง ุฃูุจุฑ ู
ู 3 ุงูุชุฑุถ ูุงู 2 ูุจูู |
|
|
|
65 |
|
00:07:04,230 --> 00:07:07,830 |
|
ุจุงุฌู ุจููู ูุงู ุงู ุงุซููู ูุณูู ุงุซููู ู
ูุฏูููู ุฃุฑุจุนุฉ |
|
|
|
66 |
|
00:07:07,830 --> 00:07:11,130 |
|
ุงููู ูู ุจุงุซููู ูุงุซููู ู
ูุฏูููู ุซูุงุซุฉ ุงููู ูู |
|
|
|
67 |
|
00:07:11,130 --> 00:07:16,510 |
|
ุจุงุซููู ููู ูู ููุช ูู ุฎู
ุณุฉ ูุงู ุฎู
ุณุฉ ุจุฏู ูููู ููุง |
|
|
|
68 |
|
00:07:16,510 --> 00:07:20,370 |
|
ูุงุญุฏ ูููุง ูุฏุงุด ูููุง ุงุซููู ูููุฐุง ูุจูู ูุงู |
|
|
|
69 |
|
00:07:20,370 --> 00:07:23,490 |
|
ุงูู
ูุตูุฏุฉ ูุงู ุงู function ูุฏุงู
ู ุจุณ ุชุจุชูููุง one to |
|
|
|
70 |
|
00:07:23,490 --> 00:07:30,670 |
|
one and on to ูุชุฎุฏู
ุฎุงุตูุฉ ุงู isomorphism ูุฐุง ูุงู ูู |
|
|
|
71 |
|
00:07:30,670 --> 00:07:35,210 |
|
ุณุชุฉ ูุฃุฑุจุนูู ุซู
ุงููุฉ ูุฃุฑุจุนูู ุจูููููุง show that five |
|
|
|
72 |
|
00:07:35,210 --> 00:07:42,310 |
|
is an isomorphism |
|
|
|
73 |
|
00:07:42,310 --> 00:07:48,650 |
|
ู
ู ุฒุฏ ุซูุงุซุฉ cross ุฒุฏ ุฎู
ุณุฉ ูุฒุฏ ุฎู
ุณุฉ ุนุดุฑ ูุจูู ุซู
ุงููุฉ |
|
|
|
74 |
|
00:07:48,650 --> 00:07:59,630 |
|
ูุฃุฑุจุนูู ุฃู ูู ู
ู ู
ู ุฒุฏ ุซูุงุซุฉ external product ู
ุน |
|
|
|
75 |
|
00:07:59,630 --> 00:08:07,090 |
|
ู
ููุ ู
ุน z ุฎู
ุณุฉ ูู
ูุ ู z ุฎู
ุณุฉ ุนุดุฑ ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
76 |
|
00:08:07,090 --> 00:08:14,410 |
|
ูุฐุง z ุฎู
ุณุฉ ุนุดุฑ ู ุจุญูุซ ุฃูู ุงู five of ุงุซููู ูุซูุงุซุฉ |
|
|
|
77 |
|
00:08:14,410 --> 00:08:20,370 |
|
ุจุฏู ูุณูู ุงุซููู ุจููู find an element a ู b ูู ูุฐุง |
|
|
|
78 |
|
00:08:20,370 --> 00:08:26,050 |
|
ุจุญูุซ ุงู maps to one ูุจูู ุฃูุง ุจุฏู ุฃูุฌุฏ ุงููู ูู |
|
|
|
79 |
|
00:08:26,050 --> 00:08:31,950 |
|
element a ู b ุตูุฑุชู main ุตูุฑุชู ุงููุงุญุฏ ุฃู five of a |
|
|
|
80 |
|
00:08:31,950 --> 00:08:36,570 |
|
ู b ุงููู ุจุชุนุทููุง main ุจุชุนุทููุง ุงููุงุญุฏ |
|
|
|
81 |
|
00:08:41,470 --> 00:08:46,970 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉ ูู ุฃูุง isomorphism ุงู isomorphism |
|
|
|
82 |
|
00:08:46,970 --> 00:08:55,090 |
|
ู
ู ุงู group z3 external to z5 ุฅูู z15 ููู ุฃูุง ู
ุนุทุน |
|
|
|
83 |
|
00:08:55,090 --> 00:08:58,810 |
|
ุฃู ูููู
ุงุชุฃุซุฑ ุนูู ุงูุงุซููู ูุงูุซูุงุซุฉ ุงููุชูุฌุฉ ุชุณุงูู |
|
|
|
84 |
|
00:08:58,810 --> 00:09:05,390 |
|
ุงุซููู ุฌูููุงุช ููุนูุตุฑ a ูb ูุตูุฑุชู ู
ูุ ูุตูุฑุชู ุงููุงุญุฏ |
|
|
|
85 |
|
00:09:05,390 --> 00:09:09,190 |
|
ุงูุตุญูุญ ุญุฏ ูููู ุญู ูุฐุง ุงูุณุคุงูุ |
|
|
|
86 |
|
00:09:12,670 --> 00:09:19,130 |
|
ุงู ูุนูู ู
ุฏู ุงู
ุชุญุงูุงุช ู
ุด ุฏุงุนู ููุญู ูููุณ ุทูุจ ุนูู ุฃู |
|
|
|
87 |
|
00:09:19,130 --> 00:09:24,310 |
|
ุญุงู ุฃูุง ู
ุฑุฉ ุญูุชูููุง ุณุคุงู ุดุจูู ุจูุฐุง ูู ุงููู ูุจู ูู
ุง |
|
|
|
88 |
|
00:09:24,310 --> 00:09:28,110 |
|
ุฃุฎุฐูุง ุงู isomorphism ุญูุชูููุง ุณุคุงู ุดุจูู ุจู ุจุณ ูุฐุง |
|
|
|
89 |
|
00:09:28,110 --> 00:09:33,060 |
|
ุงููุฑู ุจููู ูุจูู ูุฐุง ูุฐุง ู
ููู ู
ู ู
ููุ ู
ู order pair |
|
|
|
90 |
|
00:09:33,060 --> 00:09:36,880 |
|
order pair ูุงููู ู
ุด order pair ุจุชูุฑุฌุด ุนููุง ุดูู ูุง |
|
|
|
91 |
|
00:09:36,880 --> 00:09:41,180 |
|
ุณูุฏู ุฃูุง ุจุฏู ุงูุนูุตุฑ a ู b ุงููู ุตูุฑุชู ุชุญุช ุฃุซูุฑ ุงููุง |
|
|
|
92 |
|
00:09:41,180 --> 00:09:47,540 |
|
ูุณุงูู ูุงุญุฏ ููุงู ูุงู ุจุฏู ุดูู ุงู isomorphism ุนุจุงุฑุฉ |
|
|
|
93 |
|
00:09:47,540 --> 00:09:51,440 |
|
ุนู ุฅูุดุ ูุงู ูู ุงูุณุคุงู ุงููู ุฌุงุจูู ููู ูุฐุง ูุฃ ุจุฏู ุงู |
|
|
|
94 |
|
00:09:51,440 --> 00:09:57,040 |
|
order a ู b ุงููู ุตูุฑุชู ุชุณุงูู ู
ููุ ุชุณุงูู ูุงุญุฏ ุตุญูุญ |
|
|
|
95 |
|
00:09:57,460 --> 00:10:02,300 |
|
ุจููู ูููุณ ุจุญุงูู ุงุณุชุฎุฏุงู
ุงูู
ุนููู
ุฉ ูุฐู ุจูุฏุฑ ุงูุฅู
ูุงู |
|
|
|
96 |
|
00:10:02,300 --> 00:10:08,820 |
|
ููุฐูู ุจุญุงูู ุฃุฌูุจ ุงูู
ุนุทู ูุฐุง ุงููู ูู ูุงุญุฏ ูู ุงูุตูุฑุฉ |
|
|
|
97 |
|
00:10:08,820 --> 00:10:12,920 |
|
ุงููู ูุฏุงู
ู ููุง ูุนูู ุจุฏู ุฃุฌูุจ ุนูุงูุฉ ุชุฑุจุท ุจูู ุงููุงุญุฏ |
|
|
|
98 |
|
00:10:12,920 --> 00:10:18,140 |
|
ูุงุซููู ุงููู ุนูุฏูุง ุญุชู ููุฏุฑ ูุญุณุจ ูู
ูุฐุง ุงู element |
|
|
|
99 |
|
00:10:18,140 --> 00:10:24,930 |
|
ุงูุขู ูู ุฌูุช ูุงุญุฏ ุงููุงุญุฏ ูุฐุง ู
ูุฌูุฏ ูู ุฃู group ูููุงุช |
|
|
|
100 |
|
00:10:24,930 --> 00:10:31,430 |
|
ุฒุฏ ุฎู
ุณุฉ ุนุดุฑ ูู ูุฐุง ุงููุงุญุฏ ููุงูุฆ ุฑูู
ุซุงูู ุงููู ูู |
|
|
|
101 |
|
00:10:31,430 --> 00:10:37,490 |
|
ู
ููุ ุฎู
ุณุฉ ุนุดุฑ ู
ู
ุชุงุฒ ูุนูู ุงููุงุญุฏ ูุฐุง ุจุงูุถุจุท ูู ุนุจุงุฑุฉ ุนู |
|
|
|
102 |
|
00:10:37,490 --> 00:10:45,610 |
|
ุฎู
ุณุฉ ุนุดุฑ modulo ุฎู
ุณุฉ ุนุดุฑ ุชู
ุงู
ุงูู ุฎู
ุณุฉ ุนุดุฑ ู
ุด ูู ุนุจุงุฑุฉ ุนู |
|
|
|
103 |
|
00:10:45,610 --> 00:10:53,640 |
|
ุซู
ุงููุฉ ูู ุงุซููู modulo ุฎู
ุณุฉ ุนุดุฑ ุชู
ุงู
ุทุจ ุงุซููู ู
ุฏููู |
|
|
|
104 |
|
00:10:53,640 --> 00:10:58,380 |
|
ุฎู
ุณุฉ ุนุดุฑ ู
ุง ูู ุงุซููู ุตุญ ููุง ูุฃุ ูุจูู ุงุซููู ุงููู ุนูุฏู |
|
|
|
105 |
|
00:10:58,380 --> 00:11:02,580 |
|
ูุฐู ุจูุฏุฑ ุฃุดูููุง ูุฃูุซุฑ ุจุฏููุง ูู ุฃู ูู ุงุซููู ู |
|
|
|
106 |
|
00:11:02,580 --> 00:11:08,740 |
|
ุซูุงุซุฉ ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุซู
ุงููุฉ ูู ูู ุฃู ูู |
|
|
|
107 |
|
00:11:08,740 --> 00:11:16,810 |
|
ุงุซููู ูุซูุงุซุฉ ูุฃู ุงูู
ุซู ุฅูุดุ ูุฃูู ุซู
ุงููุฉ ุฃูุง ูุฏู
|
|
|
|
108 |
|
00:11:16,810 --> 00:11:21,250 |
|
ุทูุนูุง ู
ู ุฌูุง ุงูุฌูุณ ูุทูุนูุง ู
ููุ ุจุฑุง ูุฒู ู
ุง ููุง ูููู |
|
|
|
109 |
|
00:11:21,250 --> 00:11:27,190 |
|
Alpha of ุฎู
ุณุฉ ูุณูู ุฎู
ุณุฉ ูู Alpha of ูุงุญุฏ ุชู
ุงู
ููุง |
|
|
|
110 |
|
00:11:27,190 --> 00:11:31,850 |
|
ููุณ ุงูููุฑุฉ ุจุงูุถุจุท ุชู
ุงู
ุงู ูุฃูู ุซู
ุงููุฉ ูุงูุช ุฌูุง ูุฃูุง |
|
|
|
111 |
|
00:11:31,850 --> 00:11:36,310 |
|
ุทูุนุชูุง ุจุฑุง ุฅุฐุง ุจุฏุฃ ุฏุฎูุชูุง ุฌูุง ูุจูู ูู ุฏุฎูุชูุง ุฌูุง |
|
|
|
112 |
|
00:11:36,310 --> 00:11:41,710 |
|
ูุถุฑุจูุง ูููุ ูู ูู ุนูุตุฑ ู
ู ูุฐู ุงูุนูุงุตุฑ ุจุณ ุงุซููู ูุฐู |
|
|
|
113 |
|
00:11:41,710 --> 00:11:47,790 |
|
ู
ูุฌูุฏุฉ ูููุ ูู ุฒุฏ ุซูุงุซุฉ ูุงูุซูุงุซุฉ ูุฐู ู
ูุฌูุฏุฉ ูู ุฒุฏ |
|
|
|
114 |
|
00:11:47,790 --> 00:11:51,730 |
|
ุฎู
ุณุฉ ุฅุฐุง ุนูุฏ ุงูุถุฑุจ ุจุฏู ุชุชุฑุนู ู
ูุ ุจุฏู ุชุชุฑุนู |
|
|
|
115 |
|
00:11:51,730 --> 00:11:57,430 |
|
ุงููุชูุฌุฉ ุฅุฐุง ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏู ูุณุงูู five |
|
|
|
116 |
|
00:11:57,430 --> 00:12:04,190 |
|
ุซู
ุงููุฉ ูู ุงุซููู modulo ุงูุฃููู ุงููู ูู ุซูุงุซุฉ |
|
|
|
117 |
|
00:12:04,190 --> 00:12:11,000 |
|
ูุงูู
ุฑูุจุฉ ุงูุซุงููุฉ ุซู
ุงููุฉ ูู ุซูุงุซุฉ modulo ุฎู
ุณุฉ ูุฐุง |
|
|
|
118 |
|
00:12:11,000 --> 00:12:16,680 |
|
ุงูููุงู
ุจุฏู ูุณูู five ุซู
ุงููุฉ ูู ุงุซููู ุจุณุชุนุด ู
ุถููู |
|
|
|
119 |
|
00:12:16,680 --> 00:12:22,800 |
|
ุซูุงุซุฉ ุจูุจูู ูุงุญุฏ ูุจูู ูุงุญุฏ ูุซูุงุซุฉ ูู ุซู
ุงููุฉ ุฃุฑุจุนุฉ |
|
|
|
120 |
|
00:12:22,800 --> 00:12:28,320 |
|
ูุนุดุฑูู ู
ุถููู ุฎู
ุณุฉ ุงููู ูู ุฃุฑุจุนุฉ ูุจูู ุงููุงุญุฏ ุงููู |
|
|
|
121 |
|
00:12:28,320 --> 00:12:33,520 |
|
ุนูุฏู ูู ุตูุฑุฉ ุงู order per man ูุงุญุฏ ูุฃุฑุจุนุฉ ูุฐุง |
|
|
|
122 |
|
00:12:33,520 --> 00:12:40,200 |
|
ู
ุนูุงู ุฃู ุงู a ูุงู b ุจุฏู ูุณูู ุฌุฏุงุด ูุงุญุฏ ูุฃุฑุจุนุฉ |
|
|
|
123 |
|
00:12:45,820 --> 00:12:52,020 |
|
ุทูุจ ูุฐุง ูุงู ุณุคุงู ุงููู ูู ุซู
ุงููุฉ ูุฃุฑุจุนูู ุจุฏูุง ูุฑูุญ |
|
|
|
124 |
|
00:12:52,020 --> 00:12:57,840 |
|
ูุณุคุงู ุซู
ุงููุฉ ูุฎู
ุณูู ุซู
ุงููุฉ ูุฎู
ุณูู ุจูููู ูู without |
|
|
|
125 |
|
00:12:57,840 --> 00:13:02,100 |
|
doing any calculations in atomorphism Z ุนุดุฑูู |
|
|
|
126 |
|
00:13:02,100 --> 00:13:07,940 |
|
determine how many elements of automorphism Z ุนุดุฑูู |
|
|
|
127 |
|
00:13:07,940 --> 00:13:16,560 |
|
ุงู order ููู
ูุณุงูู ุฃุฑุจุนุฉ ุจุฏู ุณุคุงู ุซู
ุงููุฉ ู ุฎู
ุณูู |
|
|
|
128 |
|
00:13:16,560 --> 00:13:31,780 |
|
the number of elements of order four in automorphism |
|
|
|
129 |
|
00:13:31,780 --> 00:13:33,640 |
|
ูุฒุงุฏ ุนุดุฑูู |
|
|
|
130 |
|
00:13:40,950 --> 00:13:46,130 |
|
ุจููู ุงุฌูุจูู ูุงู
ุนูุตุฑ ูู ุงูุงุชูู
ูุฑูุฒู
ูุฒุฏ ุนุดุฑูู ุงู |
|
|
|
131 |
|
00:13:46,130 --> 00:13:51,070 |
|
order ุงููู ููู
ูุณุงูู ุฃุฑุจุนุฉ ุจุฏูููุง ุจุฏูู ู
ุง ุงุฑูุญ |
|
|
|
132 |
|
00:13:51,070 --> 00:13:56,330 |
|
ุฃุจุญุซ ูู ุดูู ุงูุงุชูู
ูุฑูุฒู
ูุฏูู ุจุฏู ุชุนุฑููู ูุฏู ุจุฏูู |
|
|
|
133 |
|
00:13:56,330 --> 00:14:01,850 |
|
ู
ุง ุชุนุฑููู ุดูู ููุง function ุจูููู ูููุณ ูุจูู solution |
|
|
|
134 |
|
00:14:01,850 --> 00:14:07,150 |
|
ูุจูู ู
ุนูู ูุฐุง ุงูููุงู
ุฃูุง ุจุฏู ุงุณุชุฎุฏู
ุฃู ุดุบูุฉ ููุง |
|
|
|
135 |
|
00:14:07,150 --> 00:14:11,470 |
|
ุนูุงูุฉ ุจุงู automorphism ู Z ุนุดุฑูู ุงุญูุง ุนูุฏูุง ุงู |
|
|
|
136 |
|
00:14:11,470 --> 00:14:16,790 |
|
automorphism ู Z ุนุดุฑูู ุงูุฒู ู
ูุฑูู ูู
ูู ูุง ุดุจุงุจุ ู ุงู |
|
|
|
137 |
|
00:14:16,790 --> 00:14:23,750 |
|
U ุนุดุฑูู ู
ู
ุชุงุฒ ู ุงู U ุนุดุฑูู ูุฐู ุงููู ูู U ุงููู ูู |
|
|
|
138 |
|
00:14:23,750 --> 00:14:31,010 |
|
ุนุจุงุฑุฉ ุนู U ุฃุฑุจุนุฉ ูู ุฎู
ุณุฉ ูุงูุงุฑุจุนุฉ ูู ุงูุฎู
ุณุฉ are |
|
|
|
139 |
|
00:14:31,010 --> 00:14:35,870 |
|
relatively prime ู
ุฏุงู
relatively prime ูุจูู ูุฐู |
|
|
|
140 |
|
00:14:35,870 --> 00:14:47,070 |
|
isomorphic ูู
ุงู ู U4 external product ู
ุน U5 ุงู U4 |
|
|
|
141 |
|
00:14:47,070 --> 00:14:54,570 |
|
ูุฐู ุงููู ูู isomorphic ูู
ุงู ู Z2 external product |
|
|
|
142 |
|
00:14:54,570 --> 00:14:56,230 |
|
ู
ุน U5 |
|
|
|
143 |
|
00:15:00,200 --> 00:15:05,120 |
|
ุนุดุงู ุฃุถูุน ููุช ูููุง ูุจูู isomorphic ูุฒุฏ ุฃุฑุจุนุฉ ุฅุฐุง |
|
|
|
144 |
|
00:15:05,120 --> 00:15:11,720 |
|
ุนูุฏู ุซู
ุงููุฉ ุงุชูู
ูุฑูุฒู
ูู
ุงู ูุฒุฏ ุนุดุฑูู ุจุฏู ุงุฏูุฑ ู
ู |
|
|
|
145 |
|
00:15:11,720 --> 00:15:17,440 |
|
ุงูุซู
ุงููุฉ ูุฏูู ูุจูู ู
ุง ููุทุจู ุนูู ุงูุงุชูู
ูุฑูุฒู
ูุฒุฏ |
|
|
|
146 |
|
00:15:17,440 --> 00:15:23,540 |
|
ุนุดุฑูู ููุทุจู ุนูู ุงูุงุชูู
ูุฑูุฒู
ูู
ุงู ูุฒุฏ ุงุซููู ร ุชุงู |
|
|
|
147 |
|
00:15:23,540 --> 00:15:28,120 |
|
ุถุฑุจ product ู
ุน ู
ููุ ู
ุน ุฒุฏ ุฃุฑุจุนุฉ ู
ุนูุงู ูุฐุง ุงูููุงู
|
|
|
|
148 |
|
00:15:28,120 --> 00:15:34,060 |
|
ู
ุฏุงู
ูุฐู ุงูุฒู ู
ูุฑูู ููุฐู ุฅุฐุง ูู ูุฌูุช ุฌุฏููุด ุนุฏุฏ |
|
|
|
149 |
|
00:15:34,060 --> 00:15:38,300 |
|
ุงูุนูุงุตุฑ ูู ุงู group ูุฐู ูู order ุฅููู
ูุณุงูู ุฃุฑุจุนุฉ |
|
|
|
150 |
|
00:15:38,300 --> 00:15:42,340 |
|
ุจููู ุฌุจุช ุนุฏุฏ ุงู automorphisms ุงููู ุงู order ุฅููู
|
|
|
|
151 |
|
00:15:42,340 --> 00:15:48,060 |
|
ูุณุงูู ู
ููุ ุฃุฑุจุนุฉ ูุนูู ูุฐู ุตุนุจ ุงูุนู
ู ูููุง ููู ูุฐู |
|
|
|
152 |
|
00:15:48,060 --> 00:15:54,020 |
|
ุณูู ุงูุนู
ู ูููุง ูู
ู ููุง ุงูุชุญูููุงุช ูุฐู ุจุชููููุง ู
ู |
|
|
|
153 |
|
00:15:54,020 --> 00:15:59,480 |
|
ุฌุฑูุจ ุตุนุจ ุงูุชุนุงู
ู ู
ุนุงูุง ุฅูู ุฌุฑูุจ ุณูู ุงูุชุนุงู
ู ู
ุนุงูุง |
|
|
|
154 |
|
00:16:01,670 --> 00:16:05,970 |
|
ุฃูุง ุจุฏู ุฃุจุญุซ ุนู ุงูุนูุงุตุฑ ุงููู ูู Z2 Extended |
|
|
|
155 |
|
00:16:05,970 --> 00:16:11,390 |
|
Product ูุฏู ุนุฏุฏูู
ุงู order ููู
ุจุฏู ูุณุงูู ู
ูุ ุจุฏู |
|
|
|
156 |
|
00:16:11,390 --> 00:16:16,970 |
|
ูุณุงูู ุงูุฃุฑุจุนุฉ ูุจูู ุจุฏุงุชู ุฃููู ูู assume ุงูุชุฑุถ ุงูู |
|
|
|
157 |
|
00:16:16,970 --> 00:16:23,250 |
|
ุนูุฏู element a ู b ู
ูุฌูุฏ ูู Z2 Extended Product ู
ุน |
|
|
|
158 |
|
00:16:23,250 --> 00:16:31,480 |
|
Z4 such that ุจุญูุซ ุงู ุงูุฃุฑุฏุฑ ูู A ู ูู B ุงููู ูู |
|
|
|
159 |
|
00:16:31,480 --> 00:16:36,660 |
|
ูุณุงูู ุงู least common multiple ููุฃุฑุฏุฑ ุจุชุงุจุน ุงู A |
|
|
|
160 |
|
00:16:36,660 --> 00:16:41,340 |
|
ูุงูุฃุฑุฏุฑ ุจุชุงุจุน ุงู B ูุฐุง ุงูููุงู
ุฏู ูุณุงูู ูุฏูุ ุฏู ูุณุงูู |
|
|
|
161 |
|
00:16:41,340 --> 00:16:45,220 |
|
ุฃุฑุจุนุฉ ุงูุฃุฑุฏุฑ |
|
|
|
162 |
|
00:16:45,220 --> 00:16:56,900 |
|
ุงูู
ุญุชู
ูุฉ ุงู orders of A are ู
ูู ูุง ุดุจุงุจุ ูุฏูุ ูุงุญุฏ |
|
|
|
163 |
|
00:16:56,900 --> 00:17:02,030 |
|
ู ูุฏูุ ูุงุญุฏ ูุงุซููู ูุฐู ุงูู elements ุจุชุงุน ุงูู z |
|
|
|
164 |
|
00:17:02,030 --> 00:17:05,630 |
|
ุงุซููู Zero ู ูุงุญุฏ Zero ูู ุงู identity ุงู order ูู |
|
|
|
165 |
|
00:17:05,630 --> 00:17:09,230 |
|
ุจูุงุญุฏ ู ุงููุงุญุฏ ูู ุงู order ุงุซููู ุงููู ูู ุฌู
ุนุช ูุงุญุฏ |
|
|
|
166 |
|
00:17:09,230 --> 00:17:11,830 |
|
ุฒู ูุงุญุฏ ูุณุงูู ุงุซููู ูุฒู ุงุซููู ุจ Zero ุงููู ูู ุงู |
|
|
|
167 |
|
00:17:11,830 --> 00:17:16,090 |
|
identity ูุจูู ุงู orders ุงูู
ุญุชู
ูุฉ ุงููู ูู ูุงุญุฏ ู |
|
|
|
168 |
|
00:17:16,090 --> 00:17:28,660 |
|
ุงุซููู and ุงู orders of B are ู
ู
ูู ูุงุญุฏ ูุงุซููู ูุฃุฑุจุนุฉ |
|
|
|
169 |
|
00:17:28,660 --> 00:17:32,760 |
|
ุชู
ุงู
ุชูุงุชุฉ ู
ุงููุด ุญุงุฌุฉ ูุฅู ุงูุชูุงุชุฉ ูุง ุชูุณู
ุงูุฃุฑุจุน |
|
|
|
170 |
|
00:17:32,760 --> 00:17:36,740 |
|
ูุจูู ุงู
ุง ุงู order ุงู ูุงุญุฏ ุฃู ุงุซููู ุฃู ุฃุฑุจุน ุทูุจ |
|
|
|
171 |
|
00:17:36,740 --> 00:17:40,140 |
|
ูุฏูู ุงูุฑูู
ูู ูู ุจุฏู ุงุฌูุจ ุงู least common multiple |
|
|
|
172 |
|
00:17:40,140 --> 00:17:45,620 |
|
ู
ุน ูุฏูู ุจุดููููู ู
ุดููุฉุ ูุฃ ูุงุญุฏ ุงุซููู ูู ูุงุญุฏ ู |
|
|
|
173 |
|
00:17:45,620 --> 00:17:49,900 |
|
ุงุซููู ุฅุฐุง ูุฏูู ุจุฏูู ุชูููุฑ ุจุฏู ุงุฎุฏ ุงูุงูุตุงุฑูู ุฒู ู
ุง |
|
|
|
174 |
|
00:17:49,900 --> 00:17:55,280 |
|
ูู
ููู ุจุฏู ุงุฏูุฑ ููุง ุงูุงุฑูุงู
ุงููู ุจุชุนู
ูู ุงู least |
|
|
|
175 |
|
00:17:55,280 --> 00:17:58,920 |
|
common multiple ู
ุน ู
ููุ ู
ุน ูุฏูู ุจูุนุทููู ุฃุฑุจุนุฉ |
|
|
|
176 |
|
00:17:58,920 --> 00:18:03,180 |
|
ุงูุณุคุงู ูู ูู ูุงู ุฎุฏุช ุงูุนูุงุตุฑ ุงู order ุงููู ููู
|
|
|
|
177 |
|
00:18:03,180 --> 00:18:08,020 |
|
ูุงุญุฏ ู ุงุซููู ุจูุฌูุจููู ุนูุงุตุฑ ูุจูู ู
ููุด insert ูุจูู |
|
|
|
178 |
|
00:18:08,020 --> 00:18:12,980 |
|
ู
ููุด ุงุฎุฏ ุงูุง ุงููู ุงู order ูู ูุณุงูู ู
ุงู ุฃุฑุจุนุฉ ููุท ู |
|
|
|
179 |
|
00:18:12,980 --> 00:18:16,760 |
|
ูุฏูู ุจุฏู ุฃุฎุฏูู
ูู
ุงุซููู ุฒู ู
ุง ูู
ูููุณ ูุฏูู ุดูู |
|
|
|
180 |
|
00:18:16,760 --> 00:18:20,860 |
|
ูุฏูู ุจูุนุทููู ุชุจุฏู ุชุงู ุฃู ุจูุนุทููู ุงุซููู ุนูู ุทูู |
|
|
|
181 |
|
00:18:20,860 --> 00:18:27,940 |
|
ุงูุฎุท ู ูุฏูู ุชุนุงูู ูุดูู ุงูุด ุจุฏู ูุนู
ู ูููู
ุงูุขู z |
|
|
|
182 |
|
00:18:27,940 --> 00:18:34,100 |
|
four ูุฐุง ูู
ุนูุตุฑ ุงู order ุงููู ุจูุณุงูู ุฃุฑุจุนุฉ ูู z |
|
|
|
183 |
|
00:18:34,100 --> 00:18:43,270 |
|
four ู ู
ูู ูู
ุงูุ ูุงูุชูุงุชุฉ ู
ููุด ุบูุฑูู
ู
ููุด ุบูุฑูู
ูุจูู |
|
|
|
184 |
|
00:18:43,270 --> 00:18:51,870 |
|
ุงู Z for has ูุงุญุฏ and ุชูุงุชุฉ of order ุฃุฑุจุน ูุนูู ูุงู
|
|
|
|
185 |
|
00:18:51,870 --> 00:18:58,170 |
|
ุฎูุงุฑ ุนูุฏูุ ุงุซููู ูุจูู ุงู A ููุง ุฎูุงุฑุงุช two choices |
|
|
|
186 |
|
00:18:58,170 --> 00:19:06,930 |
|
for A for B ูุฐุง ุจุฏู ูุนุทููุง two choices for B ุทูุจ ูุงู
|
|
|
|
187 |
|
00:19:06,930 --> 00:19:10,530 |
|
ุจูู ูุงู
ุฎูุงุฑ ูุฅููุ ุฎุฏ ุฒู ู
ุง ุจุฏู ูุฅู order ูุงุญุฏ |
|
|
|
188 |
|
00:19:10,530 --> 00:19:14,990 |
|
ูุงุชููู ุจููุฑุฌูุด ู
ุนุงูุง ู
ุน ุงูุฃุฑุจุน ูุจูู ููุง ูู
ุงู two |
|
|
|
189 |
|
00:19:14,990 --> 00:19:24,550 |
|
choices for b ุฅุฐู ุนุฏุฏ ุงูุนุฏุฏ ุชุจุนูู
ูุณุงูู ูุจูู ููุง |
|
|
|
190 |
|
00:19:24,550 --> 00:19:35,450 |
|
the number of elements of order for |
|
|
|
191 |
|
00:19:37,350 --> 00:19:44,950 |
|
is ุงุซููู ูู ุงุซููู ููุณุงูู ุฃุฑุจุนุฉ elements ูุจูู |
|
|
|
192 |
|
00:19:44,950 --> 00:19:49,650 |
|
ู
ุงุนูุฏูุด ุฅูุง ุฃุฑุจุนุฉ ุนูุงุตุฑ ุงู order ููู
ูุณุงูู four |
|
|
|
193 |
|
00:19:49,650 --> 00:19:54,110 |
|
ูุจุงูุชุงูู ุงู automorphism ูุฒุฏ ุนุดุฑูู ููุฌุฏ ููู ุฌุฏูุงุด |
|
|
|
194 |
|
00:19:54,110 --> 00:19:59,690 |
|
ูุจูู ุฃุฑุจุนุฉ ุนูุงุตุฑ ุงู order ููุง ุจุฏู ูุณุงูู ู
ุงูุ ุจุฏู |
|
|
|
195 |
|
00:19:59,690 --> 00:20:05,310 |
|
ูุณุงูู ุนุดุฑูู ุชู
ุงู
ูุจูู ูุฐุง ุงููู ุนูุฏูุง |
|
|
|
196 |
|
00:20:12,060 --> 00:20:17,500 |
|
ูุงุญุธ ุฃู ูุฐู ุงูุฃุณุฆูุฉ ูููุง ุชุทุจูู ู
ุจุงุดุฑ ุนูู ู
ุง ุฏุฑุณูุงู |
|
|
|
197 |
|
00:20:17,500 --> 00:20:23,240 |
|
ูู ุงูุฌุฒุก ุงููุธุฑู ูู ุขุฎุฑ ู
ุญุงุถุฑุฉ ูู ูุฐุง section ุงูุขู |
|
|
|
198 |
|
00:20:23,240 --> 00:20:30,840 |
|
ููุชูู ุฅูู ุงูุดุงุจุชุฑ ุงูุฐู ูููู ููู ุดุงุจุชุฑ ุชุณุนุฉ ุชุณุนุฉ |
|
|
|
199 |
|
00:20:30,840 --> 00:20:37,300 |
|
normal subgroups |
|
|
|
200 |
|
00:20:37,300 --> 00:20:40,680 |
|
and factor |
|
|
|
201 |
|
00:20:44,630 --> 00:20:49,990 |
|
and factor groups |
|
|
|
202 |
|
00:20:49,990 --> 00:20:56,610 |
|
definition |
|
|
|
203 |
|
00:20:56,610 --> 00:21:01,010 |
|
a |
|
|
|
204 |
|
00:21:01,010 --> 00:21:05,670 |
|
subgroup H |
|
|
|
205 |
|
00:21:05,670 --> 00:21:13,250 |
|
of a group G is called |
|
|
|
206 |
|
00:21:16,320 --> 00:21:29,000 |
|
is called a normal is called a normal subgroup of |
|
|
|
207 |
|
00:21:29,000 --> 00:21:40,680 |
|
g subgroup of g f ุงู a h ุจุฏู ูุณุงูู ุงู h a ููู |
|
|
|
208 |
|
00:21:40,680 --> 00:21:50,920 |
|
ุงู a ุงููู ู
ูุฌูุฏุฉ ูู g b ูุง ุงุณุชุฎุฏุงู
we denote this |
|
|
|
209 |
|
00:21:50,920 --> 00:22:02,720 |
|
by ุงู H is a normal subgroup of G note |
|
|
|
210 |
|
00:22:02,720 --> 00:22:05,880 |
|
ุงู |
|
|
|
211 |
|
00:22:05,880 --> 00:22:11,680 |
|
A H ุฏู ุณุงูู ุงู H A does not |
|
|
|
212 |
|
00:22:15,740 --> 00:22:21,240 |
|
imply that ุงู |
|
|
|
213 |
|
00:22:21,240 --> 00:22:36,120 |
|
ุงู a h ุจุฏุฑ ูุณุงูู ุงู h a but means that ุงู ุงู a h |
|
|
|
214 |
|
00:22:36,120 --> 00:22:41,700 |
|
one ุจุฏุฑ ูุณุงูู ุงู h two a |
|
|
|
215 |
|
00:22:44,410 --> 00:22:50,070 |
|
ุฃูู ูุธุฑูุฉ theorem a |
|
|
|
216 |
|
00:22:50,070 --> 00:22:54,430 |
|
subgroup a |
|
|
|
217 |
|
00:22:54,430 --> 00:23:07,070 |
|
subgroup H a subgroup H of G is normal is normal |
|
|
|
218 |
|
00:23:07,070 --> 00:23:18,730 |
|
in G if and only if ุงูู X H X inverse subset ู
ู H |
|
|
|
219 |
|
00:23:18,730 --> 00:23:24,870 |
|
ููู ุงู X ุงููู ู
ูุฌูุฏุฉ ูู ุงู group G |
|
|
|
220 |
|
00:24:16,580 --> 00:24:22,060 |
|
ูุฑุฌุน ู
ุฑุฉ ุซุงููุฉ ูุจูู ุฃูุง ุนูุฏู ุฌุฑูุจ ุฌุฏูุฏุฉ ูุณู
ููุง |
|
|
|
221 |
|
00:24:22,060 --> 00:24:27,040 |
|
normal subgroup ุงููู ุจุชุญูููู ุดุฑุท ู
ุนูู ุงู factor |
|
|
|
222 |
|
00:24:27,040 --> 00:24:32,640 |
|
group ุจุฏู ุฃูุดุฆ ุฌุฑูุจ ุฌุฏูุฏุฉ ุจูุงุณุทุฉ ุงู subgroup ุงููู |
|
|
|
223 |
|
00:24:32,640 --> 00:24:36,340 |
|
ุนุฑูุชู ุฏู ูุฎูููุง ูู ุงูุฃูู ู
ุน ุงู normal subgroup |
|
|
|
224 |
|
00:24:36,340 --> 00:24:41,720 |
|
ููุชูุนุจ ุฏูุฑ ูุจูุฑ ูู ุนูู
ุงูุฌุจุฑ ูุฎุงุตุฉ ูู ู
ูุถูุน ุงูุฌุฑูุจ |
|
|
|
225 |
|
00:24:41,720 --> 00:24:46,880 |
|
ุงู subgroup H ู
ู ุงูุฌุฑูุจ G ุจุณู
ููุง normal subgroup |
|
|
|
226 |
|
00:24:46,880 --> 00:24:53,390 |
|
ู
ู G ุฅุฐุง ูุงู ุงูู A H ูู ุงูู H A for all A belongs |
|
|
|
227 |
|
00:24:53,390 --> 00:24:57,970 |
|
to G ูุนูู ุฅุฐุง ูุงู ุงู right coset ูู ุงู left coset |
|
|
|
228 |
|
00:24:57,970 --> 00:25:04,280 |
|
ูุฌู
ูุน ุนูุงุตุฑ G ูุจูู ุจููู ูุฐุง ุจููู ุนูููุง ุงู normal |
|
|
|
229 |
|
00:25:04,280 --> 00:25:10,660 |
|
subgroup ู
ู G ุทุจุนุง ุงุญูุง ุณุงุจูุง ููุง ูููู ุงู A H ููุณ |
|
|
|
230 |
|
00:25:10,660 --> 00:25:15,300 |
|
ุจุงูุถุฑูุฑุฉ ุฃู ุชููู subgroup ููู ุฃู ูุงูุช normal ูุจูู |
|
|
|
231 |
|
00:25:15,300 --> 00:25:21,240 |
|
automatic ูุฐุง subgroup ุฃูุช ู
ุนู
ู ูุจูู ุงู H ุงููู ูู |
|
|
|
232 |
|
00:25:21,240 --> 00:25:26,010 |
|
subgroup ู
ู G ุจููู ุนูููุง normal subgroup ุฅุฐุง ูุงู |
|
|
|
233 |
|
00:25:26,010 --> 00:25:30,510 |
|
ุงูู left coset ูุณุงูู ุงูู right coset ูุงุฎุชุตุงุฑุง ุจุฏู |
|
|
|
234 |
|
00:25:30,510 --> 00:25:34,910 |
|
ู
ุง ุฃููู ุงูู H is a normal subgroup ู
ู G ุจุฏู ุฃุนุจุฑ |
|
|
|
235 |
|
00:25:34,910 --> 00:25:41,230 |
|
ุจุงูุฑู
ุฒ ุงูู
ุซูุซ ูุงุนุฏุชู ุฌูุฉ G ูุงูุฑุฃุณ ุชุจุนู ุฌูุฉ ู
ูุ ุฌูุฉ |
|
|
|
236 |
|
00:25:41,230 --> 00:25:44,950 |
|
H ุฎูู ุจุงูู ู
ุด ุญู ุงููู ุชุฎูู ุงููุงุนุฏุฉ ุชุญุช ูุงูุฑุฃุณ |
|
|
|
237 |
|
00:25:44,950 --> 00:25:50,570 |
|
ููู ุงูุฑุฃุณ ุฏุงุฆู
ุง ุฌูุฉ ุงู subgroup ูุงููุงุนุฏุฉ ุฌูุฉ ู
ูุ ุฌูุฉ |
|
|
|
238 |
|
00:25:50,570 --> 00:25:54,950 |
|
ุงู group ุทุจ ูู ุดุบู ู
ู
ูู ูููู
ูุง ุงููุงุญุฏ ุบูุท ู
ู ุฎูุงู |
|
|
|
239 |
|
00:25:54,950 --> 00:25:58,610 |
|
ุงู condition ุงููู ุญุงุทู ูุฐุง ุงูุด ุงูุญุงุฌุฉ ุงูุบูุท ูู ุฌูุช |
|
|
|
240 |
|
00:25:58,610 --> 00:26:04,790 |
|
ูููุชู a h ูุณุงูู h a ูุฐุง ููุงู
ุฎุทุฃ ุฃูุง ูู
ุง ุฃููู a h |
|
|
|
241 |
|
00:26:04,790 --> 00:26:08,370 |
|
ุจูุณุงูู ุดูุก ูุนูู ุงู left coset ุจูุณุงูู ุงู right coset |
|
|
|
242 |
|
00:26:08,370 --> 00:26:14,570 |
|
ุฅุฐุง ุจุฏู ุฃุชููู
ุจูุบุฉ ุงู elements ุจูููู a h one ูุณุงูู |
|
|
|
243 |
|
00:26:16,110 --> 00:26:20,010 |
|
ูู ุงูู H2 ุฑูู
ุซุงูู ู element ุซุงูู ููุณ ููุณ ุงู |
|
|
|
244 |
|
00:26:20,010 --> 00:26:24,930 |
|
element ูุฏ ูููู ููุณ ุงู element ููู in general ูุฃ |
|
|
|
245 |
|
00:26:24,930 --> 00:26:31,370 |
|
ู
ุด ุตุญูุญ ูุจูู ูู
ุง ุฃููู ูุฐู H ุจูุณุงูู HA ูุนูู AH1 |
|
|
|
246 |
|
00:26:31,370 --> 00:26:37,290 |
|
ุจูุณุงูู H2A ุฑูู
ุซุงูู ุฃู element ุซุงูู ุบูุฑ ุงู element |
|
|
|
247 |
|
00:26:37,290 --> 00:26:42,350 |
|
ุงููู ุนูุฏูุง ูุจูู ุจูููุด AH ุจูุณุงูู HA ู ูู
ุง ุจููู AH1 |
|
|
|
248 |
|
00:26:42,350 --> 00:26:45,090 |
|
ูุณุงูู H2A |
|
|
|
249 |
|
00:26:46,550 --> 00:26:51,370 |
|
ุงูุชุนุฑูู ูุฐุง ุงููู ุนูุฏูุง ุจุฏู ุฃุญุงูู ุฃุตูุบู ุตูุงุบุฉ ุฃุฎุฑูุ |
|
|
|
250 |
|
00:26:51,370 --> 00:26:55,910 |
|
ุชู
ุงู
ุ ูููุงุดู ุงูุตูุงุบุฉ ุงูุฃุฎุฑูุ ุจู ุจุฏู ุงูุตูุงุบุฉ ุชูุงุชุฉ |
|
|
|
251 |
|
00:26:56,420 --> 00:27:01,320 |
|
ุฃููุด ุงูุตูุบุฉ ุงูุฃุฎุฑูุ ุฃูุง ุจุฅู
ูุงูู ููุง ูู ุถุฑุจุช ูู ุงูู A |
|
|
|
252 |
|
00:27:01,320 --> 00:27:05,300 |
|
inverse ู
ู ุฌูุฉ ุงููู
ูู ุฃู ุงูู A inverse ู
ู ุฌูุฉ ุงูุดู
ุงู |
|
|
|
253 |
|
00:27:05,300 --> 00:27:10,540 |
|
ูุจูุตูุฑ ุนูุฏู A H A inverse ูุณุงูู ู
ูุ ูุณุงูู ุงูู H ุดุฑุท |
|
|
|
254 |
|
00:27:10,540 --> 00:27:15,920 |
|
ุงูู normality ุฃู ูู ุถุฑุจุช ู
ู ุฌูุฉ ุงูุดู
ุงู ุจูุตูุฑ ุงูู H |
|
|
|
255 |
|
00:27:15,920 --> 00:27:23,260 |
|
ูุณุงูู A inverse H A ุดุฑุทุงูู ููู normality ู
ู
ูู ุฃููู |
|
|
|
256 |
|
00:27:23,260 --> 00:27:31,150 |
|
AH small A inverse ู
ูุฌูุฏุฉ ูู H ูุงุจุชู ูุฃู ูุฐุง |
|
|
|
257 |
|
00:27:31,150 --> 00:27:36,170 |
|
ุจูุณุชูู H ูุจูู ุงูู A H small A inverse ูู element |
|
|
|
258 |
|
00:27:36,170 --> 00:27:42,450 |
|
ู
ูุฌูุฏ ูู H ุจุฑุถู ุดุฑุท ุงููู ุงููู ูู ุตูุบุฉ ุฃุฎุฑู |
|
|
|
259 |
|
00:27:42,450 --> 00:27:46,550 |
|
ููู normality ูุธุฑูุชูุง ุฏู ุฃููุด ุจุชููููุ ุจููู ุงูุชุฑุถ ุงูู H |
|
|
|
260 |
|
00:27:46,550 --> 00:27:50,070 |
|
normal subgroup ุฃู ุงูู H ูู normal subgroup ู
ู G if |
|
|
|
261 |
|
00:27:50,070 --> 00:27:55,300 |
|
and only if ุงูู X H X inverse subset ู
ู ู
ููุ ู
ู H |
|
|
|
262 |
|
00:27:55,300 --> 00:28:00,140 |
|
ู
ุง ูู ุฅู ูุงู ุงูุชุณุงูู ุญุงุตู ุฅุฐู automatic ูุฏู ู
ููุ |
|
|
|
263 |
|
00:28:00,140 --> 00:28:04,420 |
|
ูุฐู subset ู
ู ูุฐู ุทุจุนูุง ุงูุชุณุงูู ุญุตู ู
ู ููุง ููุช ูู ูู |
|
|
|
264 |
|
00:28:04,420 --> 00:28:08,480 |
|
ุถุฑุจุช ูู ุงูู A inverse ู
ู ุงููู
ูู ุฃู ูุดู
ุงู ุจูุทูุน |
|
|
|
265 |
|
00:28:08,480 --> 00:28:12,800 |
|
ุงูุชุณุงูู ุฃูุง ุจุฏุฃ ุฃุฎุชุตุฑ ููุง ุฃููู ุงูุชุณุงูู ุจุฏุฃ ุฃููู |
|
|
|
266 |
|
00:28:12,800 --> 00:28:17,220 |
|
ุงูู subset ุฑุบู
ุฃู ุงูุชุณุงูู ูู
ุงู ุตุญูุญ ุทูุจ ู
ุดุงู ููู |
|
|
|
267 |
|
00:28:17,220 --> 00:28:23,480 |
|
ุจูุฑูุญ ูุซุจุช ุตุญุฉ ูุฐุง ุงูููุงู
ูุจูู ุจุฏุงูุชู ุฃูููู assume |
|
|
|
268 |
|
00:28:23,480 --> 00:28:30,780 |
|
ุงููู ูู ุงูู H is a normal subgroup ู
ู G then |
|
|
|
269 |
|
00:28:34,230 --> 00:28:39,130 |
|
ูุจูู ุฃูุง ูุฑุถุช ุฃู ุงูู H ูุฐู normal subgroup ู
ู G |
|
|
|
270 |
|
00:28:39,130 --> 00:28:45,790 |
|
ูุจูู ุจูุงุก ุนููู ุจุฏู ูุตูุฑ ุนูุฏู A H ูุณุงูู H A ุญุณุจ ู
ุง |
|
|
|
271 |
|
00:28:45,790 --> 00:28:52,070 |
|
ุญุณุจ ุงูู definition ุฃู ู
ุดุงู ุฎูู ููุณ ุงูุฑู
ูุฒ ูุจูู ุจุฏู |
|
|
|
272 |
|
00:28:52,070 --> 00:28:58,950 |
|
ุฃููู X H ุจุฏู ูุณุงูู ุงูู H X ููู ุงูู X ุงููู ู
ูุฌูุฏุฉ ูู |
|
|
|
273 |
|
00:28:58,950 --> 00:29:01,090 |
|
G ุจูุง ุงุณุชุซูุงุก |
|
|
|
274 |
|
00:29:03,680 --> 00:29:10,640 |
|
ุทูุจ ุชู
ุงู
ุฃูุง ุจุฏู ุฃุฎูู ูู ุงูู
ุซุงู X H X inverse ูุจูู |
|
|
|
275 |
|
00:29:10,640 --> 00:29:15,440 |
|
ุจูุงุก ุนููู ูู ุถุฑุจุช ุงูุทุฑููู ู
ู ุฌูุชู ุงููู
ูู ูู X |
|
|
|
276 |
|
00:29:15,440 --> 00:29:21,840 |
|
inverse ุฃููุด ุงููู ุจุฏู ูุตูุฑุ ุจุฏู ูุตูุฑ ุนูุฏู ุงูู X H X |
|
|
|
277 |
|
00:29:21,840 --> 00:29:26,950 |
|
inverse ุจุฏู ูุณุงูู ู
ููุ ุจุฏู ูุณุงูู ุงูู H ูุฐุง ู
ุนูุงู |
|
|
|
278 |
|
00:29:26,950 --> 00:29:34,030 |
|
ู
ุฏุงู
ูุณุงูู ูุจูู ุงูู X H X inverse subset ู
ู ู
ููุ ู
ู |
|
|
|
279 |
|
00:29:34,030 --> 00:29:39,110 |
|
ุงูู H ูุงูู H subset ู
ู ุงูู X H X inverse ู
ุง ุนูููุง |
|
|
|
280 |
|
00:29:39,110 --> 00:29:43,770 |
|
ูุจูู ูุงู ุฌูุจุช ูู ู
ููุ ุงูุดุฑุท ุงูุฃูู ุจุฏู ุฃุฌูุจ ูู ุงูุดุฑุท |
|
|
|
281 |
|
00:29:43,770 --> 00:29:45,630 |
|
ุงูุซุงูู conversely |
|
|
|
282 |
|
00:29:49,190 --> 00:29:57,170 |
|
assume ุงูุชุฑุถ ุฃู ุงูู X H X inverse subset ู
ู ู
ููุ |
|
|
|
283 |
|
00:29:57,170 --> 00:30:03,330 |
|
subset ู
ู H ุจุฏู ุฃุญุงูู ุฃุซุจุช ุฃู ุงูู H ูุฐู ู
ุนูุง is a |
|
|
|
284 |
|
00:30:03,330 --> 00:30:09,690 |
|
normal subgroup ู
ู ุฌู ุทูุจ ุจุฌู ุจูููู then |
|
|
|
285 |
|
00:30:12,460 --> 00:30:19,120 |
|
ุฃู ูุจู then ูุฐู ุงูุตุญูุญุฉ ุฅุญูุง ูุฑุถูุงูุง ููู ุงูู X ุงููู |
|
|
|
286 |
|
00:30:19,120 --> 00:30:24,920 |
|
ู
ูุฌูุฏุฉ ุฃููุง ูู ุงูู group G ุจุฏู ุฃุณุฃู ุงูุณุคุงู ุงูุชุงูู ุงูู |
|
|
|
287 |
|
00:30:24,920 --> 00:30:28,680 |
|
X inverse ู
ูุฌูุฏุฉ ูู G ููุง ูุงุ ูุฃู ุงูู G ุฌุฑูุจู |
|
|
|
288 |
|
00:30:28,680 --> 00:30:35,210 |
|
ุงูู
ุนูุณ ู
ูุฌูุฏ ูุจูู ุจุฌู ุจูููู then ุงูู X inverse |
|
|
|
289 |
|
00:30:35,210 --> 00:30:41,390 |
|
ู
ูุฌูุฏุฉ ูู G implies ุจุฏู ุฃุทุจู ุนูููุง ุงูุดุฑุท ูุฐุง ูุจูู |
|
|
|
290 |
|
00:30:41,390 --> 00:30:47,370 |
|
ูู ุฌูุช ุทุจูุช ุนูููุง ุงูุดุฑุท ูุฐุง ุจูุตูุฑ X inverse H X |
|
|
|
291 |
|
00:30:47,370 --> 00:30:52,850 |
|
inverse inverse ุงููู ูู subset ู
ู ู
ูุ subset ู
ู H |
|
|
|
292 |
|
00:30:55,030 --> 00:31:02,150 |
|
ุฃู ุจู
ุนูู ุขุฎุฑ ุจูุฏุฑ ุฃููู ููุง main ุฃู ุงูู X inverse H |
|
|
|
293 |
|
00:31:02,150 --> 00:31:11,830 |
|
X subset ู
ู main subset ู
ู main ู
ู H ุทูุจ |
|
|
|
294 |
|
00:31:11,830 --> 00:31:19,130 |
|
ูููุณ ูุจูู ูุฐู ุงูุฎุทูุฉ ุงูุฃููู ูู ุฌุจุช ุฃู ูุฏุฑุช ุฃุซุจุช ุฃู |
|
|
|
295 |
|
00:31:19,130 --> 00:31:26,430 |
|
ุงูู H ูู ุงูู subset ู
ู ู
ู ุงูู X inverse HX ุจุชู
|
|
|
|
296 |
|
00:31:26,430 --> 00:31:31,550 |
|
ุงูู
ุทููุจ ูุจูู ุจุฏู ุฃุนุชุจุฑ ูุฐู ุงูุฎุทูุฉ ุฑูู
ูุงุญุฏ ุจุฏู ุขุฌู |
|
|
|
297 |
|
00:31:31,550 --> 00:31:38,030 |
|
ููุฎุทูุฉ ุฑูู
ุงุซููู ุงูุฎุทูุฉ ุฑูู
ูุงุญุฏ ูู ุถุฑุจุชูุง ูู X ู
ู |
|
|
|
298 |
|
00:31:38,030 --> 00:31:45,830 |
|
ุฌูุฉ ุงูุดู
ุงู ูุจูู ุฃููุด ุจูุตูุฑ ุงูู X X inverse ูู ู
ูุ ูู |
|
|
|
299 |
|
00:31:45,830 --> 00:31:54,050 |
|
ุงูู H ูููุง X ุจุฏู ุชุจูู subset ู
ู ุงูู X H ุถุฑุจุช ู
ู ุฌูุฉ |
|
|
|
300 |
|
00:31:54,050 --> 00:31:58,610 |
|
ุงูุดู
ุงู ูู X ูุจูู ูุฐุง ุฃููุด ุจุฏู ูุนุทููุ ูุฐุง ุจุฏู |
|
|
|
301 |
|
00:31:58,610 --> 00:32:06,330 |
|
ูุนุทูู ุฃู ุงูู H X subset ู
ู ุงูู X H ุจููุณ ุงูุทุฑููุฉ ุงุถุฑุจ |
|
|
|
302 |
|
00:32:06,330 --> 00:32:12,090 |
|
ู
ู ุฌูุฉ ุงููู
ูู ูู ุงูู X inverse ูุจูู ูู ุถุฑุจูุง ูู ุงูู |
|
|
|
303 |
|
00:32:12,090 --> 00:32:19,250 |
|
X inverse ุจูุตูุฑ ุงูู H ูู subset ู
ู X H X inverse ู |
|
|
|
304 |
|
00:32:19,250 --> 00:32:22,550 |
|
ูุฐู ุงูุนูุงูุฉ ุฑูู
ุงุซููู ุฃุทูุน ูู ูู ุงููุงุญุฏ ูุงุซููู |
|
|
|
305 |
|
00:32:22,550 --> 00:32:33,120 |
|
ูุจูู ุจุงุฌู ุจูููู ููุง from ูุงุญุฏ and ุงุซููู we have ุฅู |
|
|
|
306 |
|
00:32:33,120 --> 00:32:40,620 |
|
ุงูู X H X inverse ุจุฏู ูุณุงูู ู
ููุ ุจุฏู ูุณุงูู ุงูู H ุทุจ |
|
|
|
307 |
|
00:32:40,620 --> 00:32:47,100 |
|
ุงุถุฑุจ ููุทุฑููู ูู X ู
ู ุฌูุชู ุงููู
ูู ูุจูู X H ุจุฏู |
|
|
|
308 |
|
00:32:47,100 --> 00:32:52,780 |
|
ูุณุงูู H X ูุงูุชุนุฑูู ู
ููุ ุงูู normal ูุฐุง ุจุฏู ูุนุทูู |
|
|
|
309 |
|
00:32:52,780 --> 00:32:57,660 |
|
ุฃู ุงูู H is a normal subgroup ู
ู ู
ููุ ู
ู G ูุฃูุช |
|
|
|
310 |
|
00:32:57,660 --> 00:33:00,120 |
|
ููุง ู
ู ุงูู
ุณุฃูุฉ |
|
|
|
311 |
|
00:33:04,330 --> 00:33:12,130 |
|
ุงูุขู ุฎุฐ ูู ูุงูู
ูุงุญุธุฉ ุงููู ููุช ูู ูุจู ูููู ููู ุตูุฑุฉ |
|
|
|
312 |
|
00:33:12,130 --> 00:33:17,030 |
|
ู
ู ุตูุฑุฉ ุงูู normality ุจูููู ูู the above theorem the |
|
|
|
313 |
|
00:33:17,030 --> 00:33:26,450 |
|
above theorem the above theorem can be written as |
|
|
|
314 |
|
00:33:26,450 --> 00:33:36,160 |
|
can be written as ู
ู
ูู ููุชุจูุง ุนูู ุงูุดูู ุงูุชุงูู ุฃู |
|
|
|
315 |
|
00:33:36,160 --> 00:33:46,820 |
|
ุงูู a ุฃู ุงูู h is a normal subgroup ู
ู g if and only |
|
|
|
316 |
|
00:33:46,820 --> 00:33:56,180 |
|
if ุงูู x h x inverse belongs ูู
ูุ belongs ูู ุงูู H ููู |
|
|
|
317 |
|
00:33:56,180 --> 00:34:01,340 |
|
ุงูู X ุงููู ู
ูุฌูุฏ ูููุ ูู ุฌูุจ ุจูุง ุงุณุชุซูุงุก |
|
|
|
318 |
|
00:34:18,040 --> 00:34:25,960 |
|
ู
ุฑุฉ ุซุงููุฉ ุงูู
ูุงุญุธุฉ ูุฐู ุจุชููู ุฃู ุงูุชุนุฑูู ุงูู |
|
|
|
319 |
|
00:34:25,960 --> 00:34:32,640 |
|
normality ุงุณุชูุชุฌ ู
ู ุงููุธุฑูุฉ ุงููุธุฑูุฉ ุงูุขู ุฃูุง ุจุฏู |
|
|
|
320 |
|
00:34:32,640 --> 00:34:37,240 |
|
ุฃุตูุบูุง ูุฐู ู
ุฑุฉ ุซุงููุฉ ูุจุฌู ุจููู ุงูู H normal |
|
|
|
321 |
|
00:34:37,240 --> 00:34:42,220 |
|
subgroup ู
ู G ุฅุฐุง ูุงู X H ูุง small ูุนูู element ู
ู |
|
|
|
322 |
|
00:34:42,220 --> 00:34:47,460 |
|
H ูู X inverse ุจููู belong to H ูุฃูู ุตุงุฑ ุนูุตุฑ |
|
|
|
323 |
|
00:34:47,460 --> 00:34:51,640 |
|
ุงูุนูุตุฑ ุจูููุด substitute ุฅูู
ุง ุจููู main belong to H |
|
|
|
324 |
|
00:34:51,640 --> 00:34:55,760 |
|
ูุนูู ุญุตู ุถุฑุจ ุงูู X ุงููู ูู ู
ู G ูู ุงูู element ุงููู |
|
|
|
325 |
|
00:34:55,760 --> 00:34:58,580 |
|
ูู ู
ู H ูู ู
ุนููุณ ุงูู element ุชุจุน ุงูู G ุงูุซูุงุซุฉ |
|
|
|
326 |
|
00:34:58,580 --> 00:35:02,970 |
|
ุจุฏูููู one ู
ูุฌูุฏ ูู H ููู ุงูู
ูุถูุน ุชุจุนูุง ูุฐู normal |
|
|
|
327 |
|
00:35:02,970 --> 00:35:07,290 |
|
ุฅุฐุง ูุงู ุงูู X H X inverse belongs to the main ููู H |
|
|
|
328 |
|
00:35:07,290 --> 00:35:12,130 |
|
ูุจูู ูู ูุงูู ู
ู ุงูุขู ูุตุงุนุฏูุง ุฃุซุจุช ุฃู ุงูู H is a normal |
|
|
|
329 |
|
00:35:12,130 --> 00:35:18,130 |
|
subgroup ู
ู G ูููููู main ูุฐุง ุงูุดุฑุท ุฃู ูุฐุง ุงูุดุฑุท ุฃู |
|
|
|
330 |
|
00:35:18,130 --> 00:35:22,190 |
|
ูุฐุง ุงูุดุฑุท ูุจูู ุงููู ุชูุฏุฑ ุนููู ู
ู ุงูุซูุงุซุฉ ุงุดุชุบูู |
|
|
|
331 |
|
00:35:22,190 --> 00:35:26,970 |
|
ูุชููู ุนูู ุงููู ุทูุจ ุจุฏูุง ูุจุฏุฃ ูุฃุฎุฐ ุจุนุถ ุงูุฃู
ุซูุฉ |
|
|
|
332 |
|
00:35:26,970 --> 00:35:32,330 |
|
ููุจุฏุฃ ุจุฃุจุณุท ุฃููุงุน ุงูุฃู
ุซูุฉ ุงูุณุคุงู ูู ูู ุนูุฏู group |
|
|
|
333 |
|
00:35:32,330 --> 00:35:37,470 |
|
abelian ูุงูุฌุฑูุจ ูุฐู ุฃุฎุฐุช ู
ููุง ุงูู subgroup ุงูุณุคุงู |
|
|
|
334 |
|
00:35:37,470 --> 00:35:45,270 |
|
ูู ูู ุงูู subgroup ูุฐู ุจุชุจูู normal ูุนูู ูู ูุชุญูู ุงูู |
|
|
|
335 |
|
00:35:45,270 --> 00:35:50,160 |
|
condition ุงููู ุนูุฏู ูุฐุงููุดุ ูุฃู abelian ุฃูุง ุจููู |
|
|
|
336 |
|
00:35:50,160 --> 00:35:55,420 |
|
ุจูุฏุฑ ุฃุจุฏู ูุฏูู ุฃู ู
ูุงู ุจุนุถ ูู ุจุฏูุชูู
ุจูุตูุฑ H XX |
|
|
|
337 |
|
00:35:55,420 --> 00:36:00,320 |
|
inverse ูู H ูู E ููู ุจู H ูุจูู H ู
ูุฌูุฏุฉ ูุฅู ู
ูุฌูุฏุฉ |
|
|
|
338 |
|
00:36:00,320 --> 00:36:03,720 |
|
ูู H ูุจุงูุชุงูู ุงูุดุฑุท ู
ุชุญูู ุฅุฐุง ุงูู group ูุฐู ุฃูููุ |
|
|
|
339 |
|
00:36:03,720 --> 00:36:08,580 |
|
normal group ูุจูู ุฃูู ูุงุนุฏุฉ ุจุฃุฎุฐูุง ุฅูู ูู ูุงูุช ุงูู |
|
|
|
340 |
|
00:36:08,580 --> 00:36:13,940 |
|
group abelian ูุจูู any subgroup is normal ูุจูู |
|
|
|
341 |
|
00:36:13,940 --> 00:36:29,400 |
|
ุฃูู ู
ุซุงู ุจูููู any subgroup of an abelian group is |
|
|
|
342 |
|
00:36:29,400 --> 00:36:36,380 |
|
normal ู
ุซุงู |
|
|
|
343 |
|
00:36:36,380 --> 00:36:42,000 |
|
ุงุซููู ุทุจุนูุง |
|
|
|
344 |
|
00:36:42,000 --> 00:36:47,080 |
|
ุงูู condition ููู ุนูุฏู ุฃููู ูู ูุฐู ูู ุชุญูู ุงูู |
|
|
|
345 |
|
00:36:47,080 --> 00:36:51,820 |
|
condition ููุง ู
ูุฌูุฏ ุงูุขู abelian ุจูุฏุฑ ุฃุจุฏูู |
|
|
|
346 |
|
00:36:51,820 --> 00:36:58,420 |
|
ูุจุงูุชุงูู ุจูุจูู ุนูุฏู H ู
ูุฌูุฏ ููู H ุทูุจ ุงูููุทุฉ |
|
|
|
347 |
|
00:36:58,420 --> 00:37:02,600 |
|
ุงูุซุงููุฉ ุงูู center ุชุจุน ุงูู group ูู ูู ุงูู subgroup |
|
|
|
348 |
|
00:37:02,600 --> 00:37:03,460 |
|
ู
ู ุงูู group G |
|
|
|
349 |
|
00:37:06,550 --> 00:37:14,770 |
|
ุงูู Center ุชุจุน ุจุฌุฑูุจ ุงูู Z of G ุฃูุง ุฃุฏุนู ุฃู ุงูู A |
|
|
|
350 |
|
00:37:14,770 --> 00:37:18,510 |
|
normal subgroup ู
ูููุ ู
ู G |
|
|
|
351 |
|
00:37:21,130 --> 00:37:24,530 |
|
ุจุขุฌู ุจูููู ูููุณ ุฅุฐุง ุชุญูู ุฃูู condition ู
ู ุงูู |
|
|
|
352 |
|
00:37:24,530 --> 00:37:28,850 |
|
conditions ุงููู ุนูุฏู ูุฏูู ุจููู ุฎูุตูุง ู
ู ุงูู
ูุถูุน |
|
|
|
353 |
|
00:37:28,850 --> 00:37:34,670 |
|
ุชู
ุงู
ููู ุงูุขู ุฎูุงูู ูุญูู ุฃูู condition ูุงุฏู ูุงุฏู |
|
|
|
354 |
|
00:37:34,670 --> 00:37:40,550 |
|
ูุงุฏู ุงูุณูุงูุฉ ุจุชูุฑุฌุด ุนููุง ุงูุขู ูู ุฑุญุช ุฃุฎุฐ ุฃูู ุนูุตุฑ |
|
|
|
355 |
|
00:37:40,550 --> 00:37:44,550 |
|
ุนูุฏู ูู ุงูู group G ูุจุฏู ุฃุถุฑุจู ูู ุงูู center ุชุจุน ุงูู |
|
|
|
356 |
|
00:37:44,550 --> 00:37:47,350 |
|
H ููุง solution |
|
|
|
357 |
|
00:37:50,630 --> 00:38:00,150 |
|
ุงูุขู Z of G ูู ู
ุฌูุฏ ู
ู G ุจุฏู ุฃุนู
ู left coset ุนูุฏู |
|
|
|
358 |
|
00:38:00,150 --> 00:38:08,330 |
|
ูุจูู ุจุขุฏู ุจูููู ููู ุงูู X ู
ูุฌูุฏ ูู G then ุงูู X ูู |
|
|
|
359 |
|
00:38:08,330 --> 00:38:16,500 |
|
ุงูู center ุจุชุงุจุน ุงูู G ุจุฏู ูุณุงูู ุฃุธู ุงูู X ูุฐู ุชุชุนุงู
ู |
|
|
|
360 |
|
00:38:16,500 --> 00:38:23,060 |
|
ู
ุน ุฌู
ูุน ุนูุงุตุฑ Z ุฃู ุนูุงุตุฑ Z of G ุชุชุนุงู
ู ู
ุน ุฌู
ูุน |
|
|
|
361 |
|
00:38:23,060 --> 00:38:28,820 |
|
ุนูุงุตุฑ G ุฅุฐุง ูุฐู ุชุชุนุงู
ู ู
ุน ุงูู Z ูููุง ุงููู ุนูุฏูุง |
|
|
|
362 |
|
00:38:28,820 --> 00:38:37,780 |
|
ูุจูู ูุฐุง ุจุฏู ูุนุทููู Z of G Z of G ูู X ุงูุดูู ุงููู |
|
|
|
363 |
|
00:38:37,780 --> 00:38:42,440 |
|
ุนูุฏูุง ููุง ูุงู ุจุฅู
ูุงูู ุฃุจุฏุฃ ุบูุฑ ููู ุฃุฑูุญ ุฃููู ูู |
|
|
|
364 |
|
00:38:42,440 --> 00:38:49,540 |
|
ุชุนุงู ูุดูู X Z of G X inverse ุดู ุจุฏู ุชุนุทููู ูุฃุฌูุจ |
|
|
|
365 |
|
00:38:49,540 --> 00:38:54,260 |
|
ู
ู ูุฃุฌูุจ ุงูู X ุฃุจุฏููุง ุจุงูุดูู ูุฐุง ุจุชูุฌู ุงูู X ูุนูู |
|
|
|
366 |
|
00:38:54,260 --> 00:38:59,060 |
|
ูุงู ุจุฅู
ูุงูู ุจุฏู ู
ุง ุฃููู ููู ุฃููู ุชุนุงู ูุดูู ุงูู |
|
|
|
367 |
|
00:38:59,060 --> 00:39:04,100 |
|
group ูุนูู ูุฃุฑูุญ ุฃุญุท ููุง ู
ู X inverse ุฃุดูู ููู |
|
|
|
368 |
|
00:39:04,100 --> 00:39:09,030 |
|
ุจุฏู ุชูุตููู ูุนูู ุจููู ูู ูููุณ ูุฐุง ุงูููุงู
ุงูู X ูู
ููุช |
|
|
|
369 |
|
00:39:09,030 --> 00:39:14,850 |
|
ู
ุน ุฌู
ูุน ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู Z ุฅุฐุง ูุฐู ุจูุฏุฑ ุฃููู |
|
|
|
370 |
|
00:39:14,850 --> 00:39:21,320 |
|
Z of G ูููุง X ููุฐู ุงูู X ุงููุฑุณ ุงููู ุนูุฏูุง ูุฐู |
|
|
|
371 |
|
00:39:21,320 --> 00:39:26,380 |
|
ุจุชุนุทููุง ู
ููุ ุงูู identity element ุงูู identity |
|
|
|
372 |
|
00:39:26,380 --> 00:39:31,580 |
|
element ูู ุฃูู subgroup ูุงููู ุจุชุนุทููู ููุณ ุงูู |
|
|
|
373 |
|
00:39:31,580 --> 00:39:38,320 |
|
subgroup ุชู
ุงู
ูุจูู ุฃุณุงุฑ X Z of G X inverse ุจุฏู |
|
|
|
374 |
|
00:39:38,320 --> 00:39:44,480 |
|
ุฃุณูุฃ ู
ู Z of G ุฃุถุฑุจ ู
ู ุฌูุฉ ุงููู
ูู ูู X ูุฐุง ุจุฏู |
|
|
|
375 |
|
00:39:44,480 --> 00:39:52,350 |
|
ูุนุทูู ุฅู ุงูู X ูู Z of G ูู ุงูู X inverse ุจุฏู ุชุฌููู |
|
|
|
376 |
|
00:39:52,350 --> 00:39:59,750 |
|
ูู
ุงู X ุจุฏู ูุณุงูู Z of G ูู ู
ู ูู ุงู X ูุฐุง ุจุฏู |
|
|
|
377 |
|
00:39:59,750 --> 00:40:06,210 |
|
ูุนุทููู ุฅู ุงู X ูู Z of G ุทูุนูู ูุฐุง ุงูุดูุก ุจูุนุทููุง ุงู |
|
|
|
378 |
|
00:40:06,210 --> 00:40:10,250 |
|
identity ูู ุฃู element ู
ู ููุณ ุงู element ูุงูุทุฑู |
|
|
|
379 |
|
00:40:10,250 --> 00:40:17,650 |
|
ุงููู
ูู Z of G ุฃู ุงู X ูู .. ูุฐุง ุจูุนุทูู Z of G ูู |
|
|
|
380 |
|
00:40:17,650 --> 00:40:23,550 |
|
ู
ูุ ูู ุงู X ูุฐุง ุจุฏู ุฃุนุทููู ุฅู Z of G is a normal |
|
|
|
381 |
|
00:40:23,550 --> 00:40:27,590 |
|
subgroup ู
ู G ูุนูู .. ูุนูู ููุช ุงูููุฑุฉ ุงูุจุณูุทุฉ |
|
|
|
382 |
|
00:40:27,590 --> 00:40:31,710 |
|
ุงูุฃููู ุงููู ูููุงูุง ุฃูู ุงูุซุงููุฉ ููู ุจูุฃุฏู ุฅูู ููุณ |
|
|
|
383 |
|
00:40:31,710 --> 00:40:37,100 |
|
ุงูู
ูุถูุน ูุงููู ุจูููู ุงููู ูููุงูุง ุจุณ ุงุญูุง ู
ุณุญูุงูุง |
|
|
|
384 |
|
00:40:37,100 --> 00:40:43,080 |
|
ุงููุทุนุฉ ุงููู ููุง .. ูุฐู ุงูุขู X Z X inverse ุจุฏู ูุณูู |
|
|
|
385 |
|
00:40:43,080 --> 00:40:47,080 |
|
ู
ููุ ุจุฏู ูุณูู .. |
|
|
|
386 |
|
00:40:47,080 --> 00:40:51,160 |
|
ุฎูููู
ู
ุนุงูุง ุงุญูุง ูุฐู ุงู subgroup ุฃุฎุฏูุง X ูู G |
|
|
|
387 |
|
00:40:51,160 --> 00:40:55,440 |
|
ููููุง ุชุนุงู ุดูู ุงูู
ูุฏุฑ ูุฐุง ุฅูุด ุจูุนุทููุง ูุนูู ุฃูุง |
|
|
|
388 |
|
00:40:55,440 --> 00:41:00,220 |
|
ุฌูุช ุฃุดูู ูุฐุง ุดู ุจุฏู ูุนุทููุง ุงู
ุดู ุทูุน ู
ูู ุทูุน ูู Z |
|
|
|
389 |
|
00:41:00,220 --> 00:41:06,350 |
|
of G ุงููู ูู ุงูู subset ุงููุธุฑูุฉ subset ูู
ุง ูููุงุด |
|
|
|
390 |
|
00:41:06,350 --> 00:41:12,730 |
|
ุชุณุงูู ูุฅู ุงุญูุง ุงูู subset ุฌุจูุง ู
ู ุงููุณุงูู ูู ูุฏุฑุช ุชุซุจุช |
|
|
|
391 |
|
00:41:12,730 --> 00:41:17,230 |
|
ูุฐุง ุงูููุงู
ุฅู ูุฐุง ุจูุณุงูู ูุฐุง ุจูููู ูุฏ ุงููุงุฌุจ ุจุณ |
|
|
|
392 |
|
00:41:17,230 --> 00:41:21,710 |
|
ุฃูุง ุจุฏู ุฃุญุงูู ุฃุญุท ูู ุงูุชุนุฑูู ููุงู
ุตุญ ู
ุธุจูุท ู
ุง ุญุฏุง |
|
|
|
393 |
|
00:41:21,710 --> 00:41:24,790 |
|
ุจููุฏุฑ ูููู ุบูุท ููู ูุฐุง ุจุณ ุฃูุง ุญุจูุช ุฃุฌูุจ ุงูุชุนุฑูู |
|
|
|
394 |
|
00:41:24,790 --> 00:41:28,910 |
|
ุงูุฃุณุงุณู ููู ูู ููุช ูุญุฏ ููุง ูุจูู normal ุฎูุงุตูุง ููุง |
|
|
|
395 |
|
00:41:28,910 --> 00:41:34,440 |
|
ูุงุญุฏ ุงููู ุงุนุชุฑุถ ุนููู ูุจูู ูุฐุง ุจุงููุณุจุฉ ููู
ุซุงู ุฑูู
|
|
|
|
396 |
|
00:41:34,440 --> 00:41:40,000 |
|
ุงุซููู ุทุจ ูุฌูุจ ูู ู
ุซุงู ุฑูู
ุซูุงุซุฉ ุฃูุง ุจุฏู ุฃุฌูุจ ูู ู
ู |
|
|
|
397 |
|
00:41:40,000 --> 00:41:44,800 |
|
ุงูุดุบูุงุช ุงููู ู
ุฑุช ุนููู ุจุฏูุง ู
ุด ูุจุนุฏ ูุณู ุณู
ุนุช ุจุงู |
|
|
|
398 |
|
00:41:44,800 --> 00:41:49,000 |
|
special linear group of two by two matrices over R |
|
|
|
399 |
|
00:41:49,000 --> 00:41:56,770 |
|
ุฃูุง ุฃุฏุนู ุฅู ูุฐู ูู
ุงู normal ุงูุขู ุงูู special linear |
|
|
|
400 |
|
00:41:56,770 --> 00:42:02,150 |
|
group of two by two matrices over R ูุฐู normal ู
ู |
|
|
|
401 |
|
00:42:02,150 --> 00:42:06,070 |
|
ุงูู general linear group of two by two matrices |
|
|
|
402 |
|
00:42:06,070 --> 00:42:11,990 |
|
over R ููุด ูุฐูุ ุจุฏู ุฃุซุจุช ุดุฑุทูู ุงูุดุฑุท ุงูุฃูู ุฅูููุง |
|
|
|
403 |
|
00:42:11,990 --> 00:42:17,230 |
|
subgroup ุงุซููู ุจุฏู ุฃุซุจุช ุฎุงุตูุฉ ุงูู normality ูุจูู |
|
|
|
404 |
|
00:42:17,230 --> 00:42:19,450 |
|
ุงูุขู solution |
|
|
|
405 |
|
00:42:22,250 --> 00:42:26,870 |
|
ุจุชุฑูุญ ุชููู ุฅูู ุงูู special linear group of two by |
|
|
|
406 |
|
00:42:26,870 --> 00:42:31,330 |
|
two matrices over R subgroup ู
ู ุงูู general linear |
|
|
|
407 |
|
00:42:31,330 --> 00:42:38,350 |
|
group of two by two matrices over R ููุฐู ู
ุซุงู |
|
|
|
408 |
|
00:42:38,350 --> 00:42:47,010 |
|
ุณุงุจู ูุฐู ุฃุซุจุชูุงูุง ูุจู ุฐูู ุทุจ ูููุณ ุงูุขู ุจุฑูุญ ุขุฎุฐ |
|
|
|
409 |
|
00:42:47,010 --> 00:42:51,990 |
|
element ู
ู G ูุจุฏู ุขุฎุฐ element ู
ู ุงูู special ูุงุดูู |
|
|
|
410 |
|
00:42:51,990 --> 00:42:55,690 |
|
ุญุตู ุถุฑุจ ุงูู element ู
ู G ูู ุงูู element ู
ู ุงูู |
|
|
|
411 |
|
00:42:55,690 --> 00:43:00,390 |
|
special ูู ู
ุนููุณ ุงูู element ุชุจุนู ุงูุทูุน ูุงููู ุงูู |
|
|
|
412 |
|
00:43:00,390 --> 00:43:03,330 |
|
determinant ุฅูู ุงููู ุจุฏู ูุณุงูู ูุงุญุฏ ุจูููู ุญุตู |
|
|
|
413 |
|
00:43:03,330 --> 00:43:06,260 |
|
ุงูุถุฑุจ ูุฐุง ู
ูุฌูุฏ ูุฅูู ุงูู special ูุจุงูุชุงูู ุงูู |
|
|
|
414 |
|
00:43:06,260 --> 00:43:11,840 |
|
special ูู normal subgroup ู
ู main ู
ู G ูุจูู |
|
|
|
415 |
|
00:43:11,840 --> 00:43:14,480 |
|
ุจุงูุฏุงุฎู ุฃูุชุจ ูู ุงูุญู ุนูู ุงูุดุฌุฑุฉ ุงูุซุงููุฉ |
|
|
|
416 |
|
00:43:28,720 --> 00:43:34,740 |
|
ุฃูุชุฑุถ ุฃู ุงูู A ู
ูุฌูุฏุฉ ูู ุงูู general linear group of |
|
|
|
417 |
|
00:43:34,740 --> 00:43:41,000 |
|
2 by 2 matrices over R ููููู ู
ูุฌูุฏุฉ ูู ุงูู special |
|
|
|
418 |
|
00:43:41,000 --> 00:43:48,000 |
|
linear group of 2 by 2 matrices over R ุฃุฑูุฏ ุฃู ุขุฎุฐ |
|
|
|
419 |
|
00:43:48,000 --> 00:43:54,640 |
|
ุงูู A ุจู A ุฅููุฑุณ ุฅุฐุง ููุช ุฃุซุจุช ุฅูู ูุฐู ู
ูุฌูุฏุฉ ูู ุงูู |
|
|
|
420 |
|
00:43:54,640 --> 00:43:58,860 |
|
Special ูุจูู ูู ุงูุดุฑุท ุงููู ูููุง ุนููู ุงูุดุฑุท ุงูุซุงูุซ |
|
|
|
421 |
|
00:43:58,860 --> 00:44:03,200 |
|
ูู ุงูู
ุณุงุญูุฉ ุฃู ูุฐู ู
ูุฌูุฏุฉ ุชู
ุงู
ูุจูู ุจุฏู ุฃุญุงูู |
|
|
|
422 |
|
00:44:03,200 --> 00:44:09,300 |
|
ุฃุซุจุชูุง ูุจุฏู ุขุฎุฐ determinant ูู
ูู ููุฐู ุงูู
ุตูููุฉ |
|
|
|
423 |
|
00:44:09,300 --> 00:44:15,530 |
|
ูุจูู ุญุณุจ ุงูุฌุจุฑ ุงูุฎุทู ูุฐู determinant ููู A ูู |
|
|
|
424 |
|
00:44:15,530 --> 00:44:19,970 |
|
ุงูู determinant ููู B ูู ุงูู determinant ููู A |
|
|
|
425 |
|
00:44:19,970 --> 00:44:23,650 |
|
inverse ุตุงุฑูุง ูุฏูุฑ ุงูู real numbers ุงูู real |
|
|
|
426 |
|
00:44:23,650 --> 00:44:28,350 |
|
numbers are commutes ูุจูู ูุฐุง ุงูู determinant ููู |
|
|
|
427 |
|
00:44:28,350 --> 00:44:33,070 |
|
A ูู ุงูู determinant ููู A inverse ูู ุงูู |
|
|
|
428 |
|
00:44:33,070 --> 00:44:37,870 |
|
determinant ููู B ูุจูู .. ุจุฏู ุฃุฑุฌุนู ุฅูู ุฃุตูู ูุจูู |
|
|
|
429 |
|
00:44:37,870 --> 00:44:42,170 |
|
ุงูู determinant ููู A ูู ุงูู A inverse ูู ุงูู |
|
|
|
430 |
|
00:44:42,170 --> 00:44:47,280 |
|
determinant ููู B ุงูู
ุตูููุฉ ููู
ุง ุนููุฒูุง ุจุงูู |
|
|
|
431 |
|
00:44:47,280 --> 00:44:52,240 |
|
determinant ูู
ุตูููุฉ ุงููุญุฏุฉ ูู ุงูู determinant ููู B |
|
|
|
432 |
|
00:44:52,240 --> 00:44:58,920 |
|
ู
ุญุฏุฏ ู
ุตูููุฉ ุงููุญุฏุฉ ูุฏูุดุ ูุงุญุฏ ุตุญูุญ ู
ุญุฏุฏ ุงูู
ุตูููุฉ ุจู |
|
|
|
433 |
|
00:44:58,920 --> 00:45:03,320 |
|
B ุจุฑุถู ุจูุงุญุฏ ูุฃููุง ู
ูุฌูุฏุฉ ูููุ ุจุงูู Special ูุจูู |
|
|
|
434 |
|
00:45:03,320 --> 00:45:09,800 |
|
ุงูู |
|
|
|
435 |
|
00:45:09,800 --> 00:45:14,980 |
|
ABA inverse ู
ูุฌูุฏุฉ ูู ุงูู Special Linear Group of |
|
|
|
436 |
|
00:45:14,980 --> 00:45:20,280 |
|
2x2 matrices over R ุจูุงุก ุนููู ุงูู Special Linear |
|
|
|
437 |
|
00:45:20,280 --> 00:45:25,400 |
|
Group of 2x2 matrices over R is a normal subgroup |
|
|
|
438 |
|
00:45:25,400 --> 00:45:30,620 |
|
ู
ู ุงูู General Linear Group of 2x2 matrices over R |
|
|
|
439 |
|
00:45:31,450 --> 00:45:38,970 |
|
ูุจูู ูุฐุง ู
ุซุงู ุขุฎุฑ ุนูู ุงู .. ุนูู ุงููู ุนูุฏูุง ุฎุฐ ู
ุซุงู |
|
|
|
440 |
|
00:45:38,970 --> 00:45:43,390 |
|
ุฃุฑุจุนุฉ ู
ุซุงู |
|
|
|
441 |
|
00:45:43,390 --> 00:45:49,030 |
|
ุฃุฑุจุนุฉ the alternating |
|
|
|
442 |
|
00:45:49,030 --> 00:45:53,490 |
|
group |
|
|
|
443 |
|
00:45:53,490 --> 00:45:59,850 |
|
the alternating group ุฃุฑุจุนุฉ |
|
|
|
444 |
|
00:46:04,190 --> 00:46:10,170 |
|
ุงูุซุงูู ุฌุฑูุจ An is |
|
|
|
445 |
|
00:46:10,170 --> 00:46:19,130 |
|
a normal subgroup ู
ู ู
ู ุงูู Sn ููุด |
|
|
|
446 |
|
00:46:19,130 --> 00:46:22,450 |
|
ูุฐู normal ุจุงุฌู ุจูููู because |
|
|
|
447 |
|
00:46:26,200 --> 00:46:31,900 |
|
ุจุฏู ุขุฎุฐ element ูู Sn ู element ูู An ุทุจุนุง ุฃูุง |
|
|
|
448 |
|
00:46:31,900 --> 00:46:36,460 |
|
ุฃุฎุฐูุงูุง ุณุงุจูุง ุฅูููุง ุงูู subgroup ู
ุธุจูุท ุงูู a for |
|
|
|
449 |
|
00:46:36,460 --> 00:46:42,680 |
|
because ุงูู An ูุฐู ุงูู subgroup ู
ู ุงูู Sn and |
|
|
|
450 |
|
00:46:45,520 --> 00:46:55,140 |
|
Alpha ู
ูุฌูุฏุฉ ูู ุงูู S in and Beta ู
ูุฌูุฏุฉ ูู ุงูู A in |
|
|
|
451 |
|
00:46:55,140 --> 00:47:05,920 |
|
then ุฃุฎุฐ ุงูุนูุตุฑ Sn ูุงูุนูุตุฑ An ูู
ุนูุณ ุงูุนูุตุฑ Sm ูู |
|
|
|
452 |
|
00:47:05,920 --> 00:47:11,420 |
|
ุทูุน ูุฐุง ุงูููุงู
even ูุจูู ูุฐุง ุญุตูุช ุถุฑุจููู ูู Sn |
|
|
|
453 |
|
00:47:11,420 --> 00:47:19,110 |
|
ูููู ุฎูุตูุง ูุจูู ูุฐุง ุงูููุงู
ูุงุฏุฆุฉ ูุฏ ุชููู even ููุฏ |
|
|
|
454 |
|
00:47:19,110 --> 00:47:24,150 |
|
ุชููู odd ููุง ูู ุงูู sense ุฅู ูุงู even ูุจูู ู
ุนููุณุฉ |
|
|
|
455 |
|
00:47:24,150 --> 00:47:28,370 |
|
even ูุฐู even ู
ุง ุนูุฏูุด ู
ุดููุฉ ุฅู ูุงู ูุฐู odd ูุฐู |
|
|
|
456 |
|
00:47:28,370 --> 00:47:32,370 |
|
even ูุฐู odd ูุจูู ุงูู
ุฌู
ูุน ุงููู ูู even ูุจุงูุชุงูู |
|
|
|
457 |
|
00:47:32,370 --> 00:47:36,770 |
|
ูุฐู ู
ูุฌูุฏุฉ ุนูู ุทูู ุงูุฎุท ุทุจุนุง ุฃุซุจุชูุงูุง ูุจู ุฅูู |
|
|
|
458 |
|
00:47:36,770 --> 00:47:44,930 |
|
ุฃุฎุฐูุงูุง ุณุคุงู ูุญููุงู ูุจูู then ูุฐู ู
ูุฌูุฏุฉ ูู ุงูู An |
|
|
|
459 |
|
00:47:44,930 --> 00:47:54,870 |
|
because ุงูุณุจุจ ุฅูู even ุฒุงุฆุฏ even ุฒุงุฆุฏ even ุจุฏู |
|
|
|
460 |
|
00:47:54,870 --> 00:48:05,410 |
|
ูุณุงูู even and odd ุฒุงุฆุฏ even ุฒุงุฆุฏ odd ุจุฏู ูุนุทููุง |
|
|
|
461 |
|
00:48:05,410 --> 00:48:10,870 |
|
even ู
ุดุงู ููู ูุฐู normal ุทุจุนุง ุจููู
ู ูู ุงูู
ุญุงุถุฑุฉ |
|
|
|
462 |
|
00:48:10,870 --> 00:48:12,950 |
|
ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู |
|
|