|
1 |
|
00:00:21,850 --> 00:00:25,810 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ููุงุตู ู
ุง ุจุฏุฃูุง ููู ูู |
|
|
|
2 |
|
00:00:25,810 --> 00:00:30,430 |
|
ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ุจุฏุฃูุง ุจุงูnormal subgroups ุฃุนุทููุง |
|
|
|
3 |
|
00:00:30,430 --> 00:00:34,310 |
|
ุชุนุฑูู ููnormal subgroups ูุนุฑููุง ุฃู ุงูุชุนุฑูู ูู |
|
|
|
4 |
|
00:00:34,310 --> 00:00:39,230 |
|
ุฃูุฌู ู
ุฎุชููุฉ ุจุฏู ูุฌู ุซูุงุซุฉ ุซู
ุงูุชูููุง ุจุนุฏ ุฐูู ุฅูู |
|
|
|
5 |
|
00:00:39,230 --> 00:00:44,970 |
|
ุงูfactor groups ูุนูุงุตุฑ ุงูfactor groups ูููุง ูู |
|
|
|
6 |
|
00:00:44,970 --> 00:00:49,930 |
|
left cosets ูุงุฎุฐูุง ุนูู ุฐูู ู
ุซุงูุง ูุงุญุฏุง ููุฐุง ูู |
|
|
|
7 |
|
00:00:49,930 --> 00:00:55,520 |
|
ุงูู
ุซุงู ุฑูู
2 ุจููู ููุชุฑุถ ุฃู ุฌู ูู ุนุจุงุฑุฉ ุนู Z18 |
|
|
|
8 |
|
00:00:55,520 --> 00:00:59,600 |
|
ูุงุฎุฏูุง ุงูsubgroup ู
ููุง ูู ุงูsubgroup generated |
|
|
|
9 |
|
00:00:59,600 --> 00:01:06,820 |
|
by 6 ุงูุนูุงุตุฑ ุชุจุนูุง 0 6 12 ุงูุขู ุงูุณุคุงู ูู ูู ุงูู H |
|
|
|
10 |
|
00:01:06,820 --> 00:01:15,780 |
|
normal subgroup ู
ู Z18 ุฃู
ูุงุ ุจุฏูุง ุงูุฅุฌุงุจุฉ Normal |
|
|
|
11 |
|
00:01:15,780 --> 00:01:19,220 |
|
ููุดุ ูุฃู ุฌู |
|
|
|
12 |
|
00:01:22,380 --> 00:01:27,080 |
|
ุฃูู ู
ุซุงู ุฃุฎุฏุชู ู
ุนุงู ูู ูุงูุช ุงูู group abelian ูุจูู |
|
|
|
13 |
|
00:01:27,080 --> 00:01:31,660 |
|
any subgroup is normal ุชู
ุงู
ูุจูู ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
14 |
|
00:01:31,660 --> 00:01:37,800 |
|
ุจูููู then ุงูู H is a normal subgroup ู
ู Z18 |
|
|
|
15 |
|
00:01:37,800 --> 00:01:48,050 |
|
because ุงููู ูู Z18 is abelian ูููุณ ุฅุฐุง ุจุฏู ุฃุฑูุญ |
|
|
|
16 |
|
00:01:48,050 --> 00:01:52,990 |
|
ุฃููู ุงูfactor group ุฃู ุจุฏู ุฃุนุฑู ุงูfactor group |
|
|
|
17 |
|
00:01:52,990 --> 00:02:00,710 |
|
ูููุง ูู
element ูุฐู ุชู
ุงู
ูุจูู ุงูู order ุงูู order ูู |
|
|
|
18 |
|
00:02:00,710 --> 00:02:09,490 |
|
Z18 ุงูู
ูุฏูููู 6 ุจุฏู ูุณุงูู ููู ููุชููู 6 ูุจูู ุงูู |
|
|
|
19 |
|
00:02:09,490 --> 00:02:16,510 |
|
order ูู Z18 ู
ูุณูู
ุง ุนูู ุงูู order ููู H ูุงููู ูู |
|
|
|
20 |
|
00:02:16,510 --> 00:02:25,600 |
|
ุนุจุงุฑุฉ ุนู 18 ุนูู 3 ูุจูู 6 elements ูุจูู ุงูู group ูุฐู |
|
|
|
21 |
|
00:02:25,600 --> 00:02:31,460 |
|
ูููุง ุณุชุฉ ุนูุงุตุฑ ุจุฏู ุฃุนุฑู ู
ู ูุฐู ุงูุนูุงุตุฑ ูุจูู ุจุฑูุญ |
|
|
|
22 |
|
00:02:31,460 --> 00:02:41,160 |
|
ุจููู ูู the elements of Z ุงูุชู
ูุชุงุดุฑ modulo 6 are |
|
|
|
23 |
|
00:02:43,100 --> 00:02:49,600 |
|
ุงูุฃููุงู ูู H itself ุฃู ุงูู subgroup generated by 6 |
|
|
|
24 |
|
00:02:49,600 --> 00:02:55,000 |
|
ุงูุซุงูู ูู 1 ุฒุงุฆุฏ ุงูู subgroup generated by 6 |
|
|
|
25 |
|
00:02:55,000 --> 00:03:00,580 |
|
ุงูุซุงูุซ 2 ุฒุงุฆุฏ ุงูู subgroup generated by 6 |
|
|
|
26 |
|
00:03:00,580 --> 00:03:06,280 |
|
ุงูุฑุงุจุน ูู 3 ุฒุงุฆุฏ ุงูู subgroup generated by 6 |
|
|
|
27 |
|
00:03:14,080 --> 00:03:20,300 |
|
ุงูุณุงุฏุณ ูุงูุฃุฎูุฑ ูู 5 ุฒู ุงูู subgroup generated by |
|
|
|
28 |
|
00:03:20,300 --> 00:03:26,920 |
|
6 ุฃู ุฃู ุฃู left coset 6 ุจุนุฏ ุฐูู ูู ุฌูุช ูู ููุช ูู 6 |
|
|
|
29 |
|
00:03:26,920 --> 00:03:31,040 |
|
ุฒู ุงูู subgroup generated by 6 ุจููู ูู ูู ู
ูู ูู |
|
|
|
30 |
|
00:03:31,040 --> 00:03:36,640 |
|
ุงูุฃุตููุฉ ุงูู subgroup ุงูุฃุตููุฉ ูู ุฌูุช ูู ููุช ูู 7 ุฒู |
|
|
|
31 |
|
00:03:36,640 --> 00:03:40,000 |
|
ุงูู subgroup generated by 6 ุจููู ูู ูู ุงูู 1 ูููุฐุง |
|
|
|
32 |
|
00:03:40,610 --> 00:03:45,190 |
|
ุงูุขู ุฏุงุฎู ูุฐู ุงูู group ูู ุจุฏู ุฃุฌู
ุน ุฃู ุจุฏู ุฃุนุฑู ุงูู |
|
|
|
33 |
|
00:03:45,190 --> 00:03:50,610 |
|
order ููู ุจุฏู ุฃุญุณุจู ูุจูู ูุญุฏ ููุง ุงุญูุง ุงูุชูููุง ู
ู |
|
|
|
34 |
|
00:03:50,610 --> 00:03:57,450 |
|
ุนูุงุตุฑ ูุฐู ุงูู group ูู ุจุฏู ุฃุฌู ุขุฎุฐ ู
ุซูุง 3 ุฒุงุฆุฏ |
|
|
|
35 |
|
00:03:57,450 --> 00:04:03,350 |
|
ุงูู subgroup generated by 6 ุจุฏู ุฃุฌู
ุน ู
ุน ู
ููุ ู
ุน |
|
|
|
36 |
|
00:04:03,350 --> 00:04:08,560 |
|
ุงูู 5 ุฒุงุฆุฏ ุงูู subgroup generated by 6 ูุนูู ูุฃู |
|
|
|
37 |
|
00:04:08,560 --> 00:04:14,100 |
|
.. ูุฃู ุจุฏู ุฃุถุฑุจ two left cosets ูู ุจุนุถูู
ููู ูู
ุง |
|
|
|
38 |
|
00:04:14,100 --> 00:04:19,000 |
|
ูุงูุช ุงูุนู
ููุฉ ุนู
ููุฉ ุฌู
ุนูุฉ ูุจูู ุถุฑุจ ุจุณ ูุชุญูู ุฅูู |
|
|
|
39 |
|
00:04:19,000 --> 00:04:22,720 |
|
ุฌู
ุนูุฉ ุงูู
ุฑุฉ ุงููู ูุงุชุช ูููุง ุงูู operation ุงููู ุนูู |
|
|
|
40 |
|
00:04:22,720 --> 00:04:28,010 |
|
ุงูู left cosets ูุฐู ุฅู ุงูู A H ู
ุถุฑูุจ ูู B H ุจูููู A |
|
|
|
41 |
|
00:04:28,010 --> 00:04:35,270 |
|
B F H ูุจูู ู
ุนูู ูุฐุง ุงูููุงู
ูุฐุง ุจูููู 3 ุฒุงุฆุฏ |
|
|
|
42 |
|
00:04:35,270 --> 00:04:40,770 |
|
5 ุฒุงุฆุฏ ุงูู subgroup generated by 6 3 ุฒุงุฆุฏ |
|
|
|
43 |
|
00:04:40,770 --> 00:04:46,450 |
|
5 ูุฏุงุดุ 8 8 ุจุดูู ู
ููู
ุงูู 6 ุจุธู ูุฏุงุดุ |
|
|
|
44 |
|
00:04:46,450 --> 00:04:51,490 |
|
2 ูุจูู ูุฐุง 2 ุฒุงุฆุฏ ุงูู subgroup generated |
|
|
|
45 |
|
00:04:51,490 --> 00:04:58,110 |
|
by 6 ูููุง ูุจูู any two left cosets ูู ุฌู
ุนุชูู
|
|
|
|
46 |
|
00:04:58,110 --> 00:05:03,790 |
|
ููุนุทููู ูุงุญุฏุฉ ู
ู ุงูุณุช ูุฅุชููู ูุฐูู ูู ุจุฏู ุฃุฌูุจ ู
ุซูุง |
|
|
|
47 |
|
00:05:03,790 --> 00:05:08,550 |
|
ุงูู order ูุฃู ูุงุญุฏุฉ ู
ููู
ูุจูู ุจุฏู ุฃุฑูุญ ุฃุดูู ูุฏุงุด |
|
|
|
48 |
|
00:05:08,550 --> 00:05:13,550 |
|
ุงูุฑูู
ุงููู ุจุฏู ุฃุญุท ุฃุณ ููุฐุง ุงูู element ุจุญูุซ ูุนุทููู |
|
|
|
49 |
|
00:05:13,550 --> 00:05:17,590 |
|
main ุงูู identity ูุนูู ูุนุทููู ุงูู subgroup generated |
|
|
|
50 |
|
00:05:17,590 --> 00:05:23,420 |
|
by ุงูู 6 ุจุงูุถุจุท ุชู
ุงู
ุง ู
ุซููุง ูู ุฌูุช ููุช ุจุฏู ุฃุนุฑู |
|
|
|
51 |
|
00:05:23,420 --> 00:05:27,920 |
|
ูุฏุงุด ุงูู order ููู 2 ุฒุงุฆุฏ ุงูู subgroup generated |
|
|
|
52 |
|
00:05:27,920 --> 00:05:34,380 |
|
by 6 ุจุฏู ุจูููู ูููุณ ุงูุขู ู
ุด ููุญูุจ ุงูู order ููุฐุง |
|
|
|
53 |
|
00:05:34,380 --> 00:05:39,160 |
|
ุจุฏู ุฃุฑูุญ ุฃุฑูุน ููุฃุณ 1 ูุงูุฃุณ 2 ูุงูุฃุณ 3 |
|
|
|
54 |
|
00:05:39,160 --> 00:05:45,560 |
|
ูุบุงูุฉ ู
ุง ุฃูุตู ูู
ููุ ููู identity element ูู
ุซููุง ูู ุจุฏ |
|
|
|
55 |
|
00:05:45,560 --> 00:05:50,380 |
|
ุงูู 2 ุฒุงุฆุฏ ุงูู subgroup generated by 6 ููู |
|
|
|
56 |
|
00:05:50,380 --> 00:05:56,100 |
|
ุชุฑุจูุน ุซุงูู ุงููู ูู ุญุงุตู ุถุฑุจ ุงูู 2 ูุนูู ุญุงุตู |
|
|
|
57 |
|
00:05:56,100 --> 00:06:00,640 |
|
ุฌู
ุน ุงูู 2 ูุนูู 2 ู
ุถุฑูุจุฉ ูู ูุฐุง ุงูู element |
|
|
|
58 |
|
00:06:00,640 --> 00:06:05,910 |
|
ูุฃู ุงูู operation ุนู
ููุฉ ุฌู
ุนูุฉ ูุจูู ูุฐุง ุนุจุงุฑุฉ ุนู ู
ููุ |
|
|
|
59 |
|
00:06:05,910 --> 00:06:11,150 |
|
ุนุจุงุฑุฉ ุนู 4 ุฒู ุงูู subgroup generated by 6 ูุง |
|
|
|
60 |
|
00:06:11,150 --> 00:06:15,770 |
|
ูุณุงูู ุงูู identity element ูุจูู ุจูุงุก ุนููู ุจุฏู ุขุฎุฐ |
|
|
|
61 |
|
00:06:15,770 --> 00:06:21,410 |
|
2 ุฒู ุงูู subgroup generated by 6 ุงููู ุชูุนูุจ |
|
|
|
62 |
|
00:06:21,410 --> 00:06:26,350 |
|
ูุจูู ูุฐุง ุจุฏู ูุณุงูู 6 ุฒู ุงูู subgroup generated |
|
|
|
63 |
|
00:06:26,350 --> 00:06:32,940 |
|
by 6 ูุฏุงุด ูุนุทููู ูุฐุงุ 6 itself ูุจูู ุงูู order ููุฐุง |
|
|
|
64 |
|
00:06:32,940 --> 00:06:37,720 |
|
ุงูู element ูุณุงูู 3 ูุจูู ูุฐุง ุงูููุงู
ูุนุทููู ุฃู |
|
|
|
65 |
|
00:06:37,720 --> 00:06:42,840 |
|
ุงูู order ูู 2 ุฒุงุฆุฏ subgroup generated by 6 is |
|
|
|
66 |
|
00:06:42,840 --> 00:06:47,600 |
|
equal to 3 ูููุฐุง ูุจูู ููู ุจุฏูุง ูุถุฑุจุ ููู ุจุฏูุง |
|
|
|
67 |
|
00:06:47,600 --> 00:06:53,780 |
|
ูุฌู
ุนุ ููู ุจุฏูุง ูุณููุ ูู ู
ุซุงู ูุฏุงู
ู ุทูุจ ููุฌู ูุฃุฎุฐ |
|
|
|
68 |
|
00:06:53,780 --> 00:06:56,160 |
|
ู
ุซุงู example three |
|
|
|
69 |
|
00:07:02,940 --> 00:07:13,320 |
|
ุจููู ูู ุฅู ุงูู G ุชุณุงูู D4 ูุงูู subgroup ุงููู ูู K |
|
|
|
70 |
|
00:07:13,320 --> 00:07:20,740 |
|
ูู ุงูู subgroup generated by R180 ุทุจุนุง ูุฐู ูุง |
|
|
|
71 |
|
00:07:20,740 --> 00:07:27,220 |
|
ููุฌุฏ ูููุง ุฅูุง ุนูุตุฑูู ุงููู ูู ุงูู R0 ูุงูู R180 |
|
|
|
72 |
|
00:07:27,220 --> 00:07:34,160 |
|
ุฃุธู ูู
ุงู ูู ูุฐุง ุงูู center ุชุจุน ุงูู D4 ููุง ูุฃุ ุฎูููุง |
|
|
|
73 |
|
00:07:34,160 --> 00:07:38,620 |
|
ูุฌุฑุจ ููุฐุง ุฅูู ูู ูุงูุช ุงูู Z ูู D N ูุง ูููุง ุงูู |
|
|
|
74 |
|
00:07:38,620 --> 00:07:43,800 |
|
Identity ููุท ูุง ุฅู
ุง ูููุง ุงูู Identity ูุงูู 180 |
|
|
|
75 |
|
00:07:43,800 --> 00:07:49,980 |
|
ุญุณุจ ุงูู D ูุฐู ูู ูู ุญุณุจ ุงูู Nุ ูู ูู odd ููุง |
|
|
|
76 |
|
00:07:49,980 --> 00:07:57,460 |
|
evenุ ูุจูู ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุจุฏูุง find the |
|
|
|
77 |
|
00:07:57,460 --> 00:08:04,590 |
|
elements of ุทุจุนุง ูู ูุฐุง ุงูููุงู
ุจุฏู ูุนุทููุง ู
ุฏุงู
ูุฐู |
|
|
|
78 |
|
00:08:04,590 --> 00:08:11,650 |
|
ููู ุจุงูุดูู ุงููู ุนูุฏูุง ููุง Z of D4 ุงูุณุคุงู ูู ูู ูุฐู |
|
|
|
79 |
|
00:08:11,650 --> 00:08:17,130 |
|
normal subgroup ู
ู D4ุ ููุดุ ูุฃู ุนูุงุตุฑูุง ุฏุงุฆู
ุง |
|
|
|
80 |
|
00:08:17,130 --> 00:08:23,210 |
|
ุชุชุนุงู
ู ู
ุน ุฌู
ูุน ุนูุงุตุฑ ุงูุฌุฑูุจ ููุฏ ุฃุฎุฐูุงูู
ู
ุซูุง ุณุงุจูุง |
|
|
|
81 |
|
00:08:23,210 --> 00:08:31,840 |
|
ูุจูู ุจุฌู ุจูููู then ุงูู K is normal subgroup ูู D4 |
|
|
|
82 |
|
00:08:31,840 --> 00:08:43,840 |
|
ูุจูู find the elements ุจุฏูุง ุนูุงุตุฑ of D4 modulo K |
|
|
|
83 |
|
00:08:43,840 --> 00:08:47,720 |
|
ูุจูู ุนูุงุตุฑ ุงูfactor group ุงููู ุนูุฏูุง ูุฐู |
|
|
|
84 |
|
00:08:54,650 --> 00:08:58,190 |
|
ูุจูู ุจุฏุฃ ุฃุฑูุญ ุฃุฏูุฑ ุนูู ุนูุงุตุฑ ุงูfactor group ุงููู |
|
|
|
85 |
|
00:08:58,190 --> 00:09:02,750 |
|
ุนูุฏูุง ููุง ุฃูู ุดูุก ุจุฏุฃ ุฃุนุฑู ูุฏุงุด ูููุง ุนูุงุตุฑ ูุจู |
|
|
|
86 |
|
00:09:02,750 --> 00:09:08,850 |
|
ู
ุง ุฃุฑูุญ ุฃุฏูุฑ ุทูุจ ุงูุนูุงุตุฑ ุชุจุนูุง ูู ุงูู left cosets ุฃู |
|
|
|
87 |
|
00:09:08,850 --> 00:09:15,050 |
|
ูู distinct left cosets ูุจูู ุงูู order ูู D4 modulo |
|
|
|
88 |
|
00:09:15,050 --> 00:09:22,990 |
|
K ุจุฏู ูุณุงูู ุงูู order ูู D4 ู
ูุณูู
ุง ุนูู ุงูู order ูู K |
|
|
|
89 |
|
00:09:22,990 --> 00:09:28,790 |
|
ูุฐู 8 ููุฐู 2 ูุจูู ุนุฏุฏ ุงูุนูุงุตุฑ ูููุง ูุณุงูู |
|
|
|
90 |
|
00:09:28,790 --> 00:09:34,690 |
|
ูุฏุฑ 4 ุนูุงุตุฑ ุจุฏู ุฃุฑูุญ ุฃุฏูุฑ ุนูู ูุฐู ุงูุนูุงุตุฑ |
|
|
|
91 |
|
00:09:34,690 --> 00:09:40,790 |
|
ูุจูู ุจุฏู ุฃุจุฏุฃ ุจุงูู left coset ุงูุฃููู ุทุจุนุง R0 ูR180 |
|
|
|
92 |
|
00:09:40,790 --> 00:09:46,330 |
|
ูู ุถุฑุจุชูุง ูู K ุจุชุธููุง ูู
ุง ูู ูุจูู ุจููููุง ุตูุนุฉ ุดุฌุฉ ู |
|
|
|
93 |
|
00:09:46,330 --> 00:09:52,840 |
|
ุจุฑูุญ ุขุฎุฐ R90 ูู main ูู ุงูู K ูุจูู ุจุฏุฃ ุฃุถุฑุจูุง ูู |
|
|
|
94 |
|
00:09:52,840 --> 00:09:59,920 |
|
ุงูุนูุงุตุฑ ุงููู ุฌูุง ุจุตูุฑ R90 ููุฐู R90 ูู R180 ุงููู |
|
|
|
95 |
|
00:09:59,920 --> 00:10:11,200 |
|
ูุจูู ุฏุงุดุฑุฉ R270 ูู ุจุงูุถุจุท ุชู
ุงู
ุง ูู
ุงู R270 ูู K ูุจูู |
|
|
|
96 |
|
00:10:11,200 --> 00:10:14,840 |
|
ูุฏูู ู
ุด ุชูุชูู ุงูู left coset ุณูุงุก ุฅูู
ุง ูู ุงูุญูููุฉ |
|
|
|
97 |
|
00:10:14,840 --> 00:10:22,280 |
|
left coset ูุงุญุฏุฉ ุจุงูู
ูุซู ุจุฏู ุฃุฑูุญ ุฃุฌูุจ ูู ู
ููุ ุงูู H |
|
|
|
98 |
|
00:10:22,280 --> 00:10:29,200 |
|
ูู K ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุงููู ูู ูู
ุง ุฃุถุฑุจ ุงูู H ูู |
|
|
|
99 |
|
00:10:29,200 --> 00:10:37,040 |
|
R0 ุจุชุนุทููุง H ุฃู ููุง ุจุชุนุทููุง H ูู R180 ุจุงูุดูู |
|
|
|
100 |
|
00:10:37,040 --> 00:10:42,850 |
|
ุงููู ุนูุฏูุง ูุฐุง ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุงูู H ููุง ุนูุฏู |
|
|
|
101 |
|
00:10:42,850 --> 00:10:46,990 |
|
ูู ุงูู ุฌุฏูู ูู ุตูุญุฉ 1 ู80 ุงูู H ูู ุงูู R180 |
|
|
|
102 |
|
00:10:46,990 --> 00:10:54,250 |
|
ุงููู ูู main of V ูุชุณุงูู ูุฐูู ุงูู V ูู K |
|
|
|
103 |
|
00:10:54,250 --> 00:10:59,950 |
|
ูุฅู ูู ุถุฑุจุช ุงูู V ูู K ุจุตูุฑ ููุง V ูููุง V ุจR180 ุงููู |
|
|
|
104 |
|
00:10:59,950 --> 00:11:04,210 |
|
ูู ุนุจุงุฑุฉ ุนู main ุน ุงูู H ูุจูู ุตุงุฑูุง |
|
|
|
105 |
|
00:11:04,210 --> 00:11:11,700 |
|
ุฅุซูุชูู ูููุณุช ูุงุญุฏุฉ ุจุงูู
ูุซู ูู ุฑูุญุช ุฌุจุช ูู ุงูู D ูู |
|
|
|
106 |
|
00:11:11,700 --> 00:11:18,900 |
|
main ูู ุงูู K ูุจูู ูุฐู ุจุฏูุง ุชุนุทูู D ูููุง D ูู R |
|
|
|
107 |
|
00:11:18,900 --> 00:11:25,660 |
|
180 ูุฐู ุจุฏูุง ุชุนุทูู D ูD' ูุงููู ูู |
|
|
|
108 |
|
00:11:25,660 --> 00:11:31,800 |
|
ุจุฏูุง ุชุณุงูู D' ูุฐูู K ูุจูู ุฃุตุจุญ ุนูุฏู the |
|
|
|
109 |
|
00:11:31,800 --> 00:11:33,740 |
|
elements |
|
|
|
110 |
|
00:11:36,580 --> 00:11:43,360 |
|
The elements of D4 |
|
|
|
111 |
|
00:11:43,360 --> 00:11:50,720 |
|
modulo K R ุงูู element ุงูุฃูู ุงููู ูู ุงูู K itself |
|
|
|
112 |
|
00:11:50,720 --> 00:11:57,140 |
|
ูุงูู element ุงูุซุงูู ุงููู ูู ุงูู R90 ูู ุงูู K ุงููู |
|
|
|
113 |
|
00:11:57,140 --> 00:12:02,720 |
|
ุจุฏู ูุณุงูู R270 ูู K ูุงูู element ุงูุซุงูุซ |
|
|
|
114 |
|
00:12:02,720 --> 00:12:08,300 |
|
ุงููู ูู ุงูู HK ูุงูู element ุงูุฑุงุจุน ูุงูุฃุฎูุฑ ุงููู ูู |
|
|
|
115 |
|
00:12:08,300 --> 00:12:14,220 |
|
DK ูุจูู ูู ุงูุฃุฑุจุนุฉ ุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ุนูุฏูุง ูุงูุชู |
|
|
|
116 |
|
00:12:14,220 --> 00:12:19,460 |
|
ุชู
ุซู ุนูุงุตุฑ ุงูู factor group ุงููู ุนูุฏูุง ุจุงูุถุจุท ุชู
ุงู
ุง |
|
|
|
117 |
|
00:12:19,460 --> 00:12:26,620 |
|
ุทูุจ ุงููู ุฎุงุทุฑ ุฃุนุทูู exercise ููุฐุง exercise ูู ููุช ูู |
|
|
|
118 |
|
00:12:26,620 --> 00:12:35,490 |
|
little g ุชุณุงูู D4 itself ูุฎุฐ ูู ุงูู H ูู ุงูู |
|
|
|
119 |
|
00:12:35,490 --> 00:12:47,270 |
|
subgroup generated by R90 ุงูุณุคุงู ูู is ุงูู |
|
|
|
120 |
|
00:12:47,270 --> 00:12:59,970 |
|
D4 is D4 modulo H exist ูู ูุฐู ู
ูุฌูุฏุฉุ if so |
|
|
|
121 |
|
00:13:01,510 --> 00:13:05,110 |
|
if so find it |
|
|
|
122 |
|
00:13:07,500 --> 00:13:12,220 |
|
ุฅุฐุง ูุงู ุงูุฃู
ุฑ ูุฐูู ุจุฏูุง ุฅูุงูุง ุทุจุนุง ุงูู subgroup |
|
|
|
123 |
|
00:13:12,220 --> 00:13:16,500 |
|
generated by R90 ูููุง ูุฏุงุด ูุงู
ุนูุตุฑุ 4 |
|
|
|
124 |
|
00:13:16,500 --> 00:13:21,420 |
|
ุนูุงุตุฑ ูD4 ูููุง ูุฏุงุด 8 ุนูุงุตุฑ ูุจูู ุงูู index ููุง |
|
|
|
125 |
|
00:13:21,420 --> 00:13:25,800 |
|
ูุฏุงุดุ ู
ุฑุฉ ุงููู ูุงุชุช ุฃุฎุฐูุง ูู ุงูู group ุงูู index ููุง |
|
|
|
126 |
|
00:13:25,800 --> 00:13:29,180 |
|
ุฃู ุงูู subgroup ุงูู index ููุง ูุณุงูู ุงุซููู ุฅูุด ุจุชููู |
|
|
|
127 |
|
00:13:29,180 --> 00:13:33,360 |
|
ูุฐูุ ุฅูุด ุจุชูููุ normal subgroup ู
ุฏุงู
normal |
|
|
|
128 |
|
00:13:33,360 --> 00:13:38,010 |
|
subgroup ูุจูู ุงูู factor group exist ู
ุง ุฏุงู
exist |
|
|
|
129 |
|
00:13:38,010 --> 00:13:41,670 |
|
ูุฐุง ุฌูุงุจ ุงูุณุคุงู ุฃูู ููู
ูููู ุดููู ุจุฏูุง ูุนุฑู ู
ู |
|
|
|
130 |
|
00:13:41,670 --> 00:13:47,470 |
|
ูุงูุนูุตุฑูู ููุท ุงููู ู
ูุฌูุฏูู ูู ุงูู main ูู ุงูู factor a |
|
|
|
131 |
|
00:13:47,470 --> 00:13:52,190 |
|
group ูุฐุง ุจุงููุณุจุฉ ุงููู ุนูุฏูุง ููุฌู ูุงุฎุฏ ู
ุซุงู ุขุฎุฑ |
|
|
|
132 |
|
00:14:11,040 --> 00:14:17,680 |
|
ู
ุซุงู ุฑูู
ุฃุฑุจุนุฉ ุจูููู |
|
|
|
133 |
|
00:14:17,680 --> 00:14:28,420 |
|
little g ุจุฏูุง ุชุณุงูู A4 ู ุงูู H is a subgroup ู
ู |
|
|
|
134 |
|
00:14:28,420 --> 00:14:38,780 |
|
ู
ููุ ู
ู G ุญูุซ ุงูู H ูุฐู ูููุง ุงูุนูุงุตุฑ ุงูุชุงููุฉ |
|
|
|
135 |
|
00:14:39,460 --> 00:14:47,660 |
|
identity element ูุงุญุฏ ุงุซููู ุซูุงุซุฉ ุฃุฑุจุนุฉ ุงูุนูุตุฑ |
|
|
|
136 |
|
00:14:47,660 --> 00:14:52,880 |
|
ุงููู ุจุนุฏู ูุงุญุฏ ุซูุงุซุฉ ุงุซููู ุฃุฑุจุนุฉ ูุงุญุฏ ุซูุงุซุฉ ุงุซููู |
|
|
|
137 |
|
00:14:52,880 --> 00:15:00,240 |
|
ุฃุฑุจุนุฉ ุงูุนูุตุฑ ุงููู ุจุนุฏู ูุงุญุฏ ุฃุฑุจุนุฉ ุงุซููู ุซูุงุซุฉ ูุงุญุฏ |
|
|
|
138 |
|
00:15:00,240 --> 00:15:06,540 |
|
ุฃุฑุจุนุฉ ุงุซููู ุซูุงุซุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง number a |
|
|
|
139 |
|
00:15:06,540 --> 00:15:16,060 |
|
show that ุจููู ูู ุฃู ุงูู H is a normal subgroup ู
ู ู
ู |
|
|
|
140 |
|
00:15:16,060 --> 00:15:27,760 |
|
ุงูู G ูู
ุฑุฉ B show that ุจููู ูู ุฃู ุงูู A for modulo H |
|
|
|
141 |
|
00:15:27,760 --> 00:15:31,640 |
|
is cyclic |
|
|
|
142 |
|
00:16:01,560 --> 00:16:09,740 |
|
ุงูุขู ู
ูุงุทูู ุงูู G ูู ุงูู A4 ู
ู ุงูู A4 ูุฐู ู
ู
ุชุงุฒ ุฌุฏุง |
|
|
|
143 |
|
00:16:09,740 --> 00:16:14,760 |
|
ูุจูู ูุฐู the sixth of all even permutations of S4 |
|
|
|
144 |
|
00:16:14,760 --> 00:16:21,810 |
|
ุนุฏุฏ ุฃูุตุงุฑูุง ูุฏูุดุ 12 ุนูุตุฑ ุชู
ุงู
ูุจูู ุนุฏุฏ ุงูู A4 12 |
|
|
|
145 |
|
00:16:21,810 --> 00:16:26,530 |
|
ุนูุตุฑ ุฃุฎุฐูุง ุงูู subgroup ู
ููุง ุงูู subgroup ุงููู ูู H |
|
|
|
146 |
|
00:16:26,530 --> 00:16:31,710 |
|
ุฒู ู
ุง ุฃูุช ุดุงูู ุจููู ุนููู ุจุณุฃู ุงูุณุคุงู ูู ุงูู H ูุฐู |
|
|
|
147 |
|
00:16:31,710 --> 00:16:37,510 |
|
normal subgroup ู
ู G ุฃู
ูุงุ ุฅู ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช |
|
|
|
148 |
|
00:16:37,510 --> 00:16:45,410 |
|
ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ |
|
|
|
149 |
|
00:16:45,410 --> 00:16:47,170 |
|
ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง |
|
|
|
150 |
|
00:16:47,170 --> 00:16:47,450 |
|
ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช |
|
|
|
151 |
|
00:16:47,450 --> 00:16:47,470 |
|
ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช |
|
|
|
152 |
|
00:16:47,470 --> 00:16:47,730 |
|
ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง |
|
|
|
153 |
|
00:16:47,730 --> 00:16:48,330 |
|
ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช |
|
|
|
154 |
|
00:16:48,330 --> 00:17:00,070 |
|
ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง ูุงูุช ุนุงู
ุฉ ุฅุฐุง |
|
|
|
155 |
|
00:17:00,070 --> 00:17:08,110 |
|
ูุงูุช ุนุงู
ุฉ ูุฏุงุด ุงูู order ูุฃู element ู
ูุฌูุฏ ูู H ุฃู |
|
|
|
156 |
|
00:17:08,110 --> 00:17:14,690 |
|
ุฃู ุฃุฑุจุนุฉ ุฃู ุซูุงุซุฉ ูุนูู ุงุซููู ุฃู ุฃุฑุจุนุฉ ุฃู ุซูุงุซุฉ |
|
|
|
157 |
|
00:17:14,690 --> 00:17:20,970 |
|
ุนูุงุตุฑ ููููุชุด ูููู
ูุฏุงู
ู ูุฏุงุด ุงูู ุงุซููู ุฃู ุฃุฑุจุนุฉ ุจุณ |
|
|
|
158 |
|
00:17:20,970 --> 00:17:26,850 |
|
ุงุซููู ู
ุง ููุด ุบูุฑ ูุงุญุฏ ู
ุง ููุด ูุงุญุฏ ูุนูู ูุจูู ุงูู order |
|
|
|
159 |
|
00:17:26,850 --> 00:17:33,370 |
|
ุฅูุง ูุงุญุฏ ุฃู ุงุซููู ุงูู least common multiple ูู
ููุ ููู |
|
|
|
160 |
|
00:17:33,370 --> 00:17:38,230 |
|
cycles ุงููู ุนูุฏูุง ูุจูู ุงูู order ูุง ุฅู
ุง ูุงุญุฏ ูุง ุฅู
ุง |
|
|
|
161 |
|
00:17:38,230 --> 00:17:44,550 |
|
ุงุซููู ูุง ูุฒูุฏ ุนู ุฐูู ุทุจุนุง ูุฐู ู
ู
ูู ุชุนู
ู ูููุง |
|
|
|
162 |
|
00:17:44,550 --> 00:17:47,250 |
|
composition ููุฐู ู
ู
ูู ุชุนู
ู ูููุง composition ุฅู |
|
|
|
163 |
|
00:17:47,250 --> 00:17:51,650 |
|
ูุงูุช ุชูุฏุฑ ุทุจุนุง ูุฐู ู
ุง ููุด ุฅู
ูุงููุฉ ูุฐู ู
ุง ููุด ุฅู
ูุงููุฉ |
|
|
|
164 |
|
00:17:51,650 --> 00:17:56,190 |
|
ูุฐู ูู
ุงู ู
ุง ููุด ุฅู
ูุงููุฉ ูุจูู ูุคูุงุก ุงูู order is giant |
|
|
|
165 |
|
00:17:56,190 --> 00:17:59,390 |
|
cycle ูุจูู ุงูู ุงุณููู
ุฉ ุงูู
ุทููุจุฉ ุงููู ุทูู ูู ูุงุญุฏุฉ |
|
|
|
166 |
|
00:17:59,390 --> 00:18:02,030 |
|
ู
ููู
ุงูู ุงุณููู
ุฉ ุงููู ุทูู ุงูุงุซููู ูุงูุงุซููู ุงููู ูู B2 |
|
|
|
167 |
|
00:18:02,630 --> 00:18:10,430 |
|
ูุจูู ูุฏูู ูู
ุงู ูุฏูู ูู ุงูุนูุงุตุฑ ุงููู ูู A4 ูุงููู ุงูู |
|
|
|
168 |
|
00:18:10,430 --> 00:18:16,410 |
|
order ุงููู ููู
ูุณุงูู ุงุซููู ุตุญุ ูุนูู ุฃูุช ูู ุฑุญุช |
|
|
|
169 |
|
00:18:16,410 --> 00:18:21,470 |
|
ููุชูุตููุงุช ุชุจุนุช A4 ูู ุตูุญุฉ 107 ู
ู ุงููุชุงุจ 107 ู
ู |
|
|
|
170 |
|
00:18:21,470 --> 00:18:28,330 |
|
ุงููุชุงุจ ุญุท ูู ูู ุนูุงุตุฑ ุงูู A4 ูู 12 ุตููู
ูู ุตู ูุฏูู ููุท |
|
|
|
171 |
|
00:18:28,630 --> 00:18:33,710 |
|
ูู
ุงููู ุงูู order ููู
ูุณุงูู ูุงุญุฏ ุฃู ุงุซููู ุบูุฑ ููู |
|
|
|
172 |
|
00:18:33,710 --> 00:18:37,430 |
|
ู
ุง ุฌุงุจุด ูุงูุจ ุงูุฃูุถุฉ ูู
ุนุธู
ูุง ูููู
ุฌุงุจูุง ู
ุงุก ูุฏุงู
ูู
|
|
|
|
173 |
|
00:18:37,430 --> 00:18:47,850 |
|
ูุจูู ุฃูู ุดุบูุฉ observe that observe that ูุงุญุธ ุฃู ุงูู |
|
|
|
174 |
|
00:18:47,850 --> 00:18:53,610 |
|
elements of |
|
|
|
175 |
|
00:18:53,610 --> 00:18:58,290 |
|
H are all |
|
|
|
176 |
|
00:19:01,630 --> 00:19:14,830 |
|
ุงูุฃุดูุงุก ู
ู A4 ุงูุชู ูุฏููุง order 2 ุฃู 1 |
|
|
|
177 |
|
00:19:18,250 --> 00:19:23,730 |
|
ูุจูู ุนูุงุตุฑ H ูู
ุง ูู ุนูุงุตุฑ A4 ุงููู ุงูู order ููู
|
|
|
|
178 |
|
00:19:23,730 --> 00:19:28,050 |
|
ูุณุงูู ุฅู
ุง ุงุซููู ุฃู ูุงุญุฏ ุทุจุนุง ุงูู order ุงููู ูุฐู |
|
|
|
179 |
|
00:19:28,050 --> 00:19:30,430 |
|
ุงุซููู ุงูู order ุงููู ูุฐู ุงุซููู ุงูู order ุงููู ูุฐู |
|
|
|
180 |
|
00:19:30,430 --> 00:19:35,990 |
|
ุงุซููู ุงูู order ุงููู ูุฐู ูุงุญุฏ ุชู
ุงู
ูุจูู ูุฏูู ูููู
|
|
|
|
181 |
|
00:19:35,990 --> 00:19:39,270 |
|
ุนูุงุตุฑ A4 ุจูุง ุงุณุชุซูุงุก |
|
|
|
182 |
|
00:19:42,420 --> 00:19:50,300 |
|
ูุฐู ุงูู
ุนููู
ุฉ ูุงุฒู
ุชููู ุนุงู
ุฉ ูุงุฒู
ุชููู ุนุงู
ุฉ |
|
|
|
183 |
|
00:19:55,440 --> 00:19:58,680 |
|
ู ุฃุซุจุช ุฃู ุญุงุตู ุงูู element ุชุจุน ุงูู G ูู ุงูู element |
|
|
|
184 |
|
00:19:58,680 --> 00:20:02,120 |
|
ุชุจุน ุงูู H ูู ู
ุนููุณ ุงูู element ุชุจุน ุงูู G ุจุฏู ูููู |
|
|
|
185 |
|
00:20:02,120 --> 00:20:08,260 |
|
ู
ูุฌูุฏ ูููุ ูู H ู
ู
ุชุงุฒ ุฅุฐุง ูุจูู ุฃูุง ุจุฑูุญ ุฃููู ูู ุฎุฏ ูู |
|
|
|
186 |
|
00:20:08,260 --> 00:20:15,080 |
|
Alpha ู
ูุฌูุฏุฉ ูู ุงูู A4 ู ุงูู Alpha does not belong |
|
|
|
187 |
|
00:20:15,080 --> 00:20:21,940 |
|
to H ุจุฏู ุฃุฎุฐูุง ู
ู ูููุ ู
ู ุฎุงุฑุฌ ุงูู H ู ุงูู Beta |
|
|
|
188 |
|
00:20:21,940 --> 00:20:29,210 |
|
ู
ูุฌูุฏุฉ ูููุ ูู H ูุจูู ุฃูุง ุฃุฎุฐุช Alpha ู
ูุฌูุฏุฉ ูู A4 ู |
|
|
|
189 |
|
00:20:29,210 --> 00:20:34,710 |
|
ุฎุงุฑุฌ H ูุฃุฎุฐุช ุงูู Beta ู
ูุฌูุฏุฉ ูู H ู
ูุฌูุฏุฉ ูู ุงููุ |
|
|
|
190 |
|
00:20:34,710 --> 00:20:43,380 |
|
ู
ูุฌูุฏุฉ ูู H ู
ูุฌูุฏุฉ ูู H ููุง ูุงุ ุจู
ุนูู ุขุฎุฑ ุงููู ุฅู |
|
|
|
191 |
|
00:20:43,380 --> 00:20:47,120 |
|
ูุงู ุงูู Alpha Beta Alpha ูุชุดูู ูู ุชุฑุจูุน ูุนุทุงูู ุงูู |
|
|
|
192 |
|
00:20:47,120 --> 00:20:52,640 |
|
identity ุฅุฐุง ุงูู order ูุณุงูู ุงุซููู ุฅุฐุง ูุชููู ูุงุญุฏ ู
ู |
|
|
|
193 |
|
00:20:52,640 --> 00:20:58,440 |
|
ูุฏูู ูุจูู ุจุชููู one ุจุชููู ูุงุฆุฏุฉ ูุจูู ููุง ุงูู order |
|
|
|
194 |
|
00:20:58,440 --> 00:21:04,110 |
|
ูุง ุจููุฏุฑุด ุซุงููุฉ ูุฃููุง ู
ูุฌูุฏุฉ ูู H ูุฃูู ูู H ูู ูุงุญุฏ |
|
|
|
195 |
|
00:21:04,110 --> 00:21:09,110 |
|
ุงูู order ูู ูุณุงูู ุงุซููู ูุจูู ุจุฏุงุฌู ุขุฎุฐ ูู ุงูุขู |
|
|
|
196 |
|
00:21:09,110 --> 00:21:15,430 |
|
Alpha Beta Alpha Inverse ููู ุชุฑุจูุน ูู Alpha Beta |
|
|
|
197 |
|
00:21:15,430 --> 00:21:21,440 |
|
Alpha Inverse Alpha Beta Alpha Inverse ูุฐุง ุงูุชุฑุจูุน |
|
|
|
198 |
|
00:21:21,440 --> 00:21:26,520 |
|
ุชุจุนูุง ุงูุขู ู
ู ุฎุงุตูุฉ ุงูู associativity ูุฐู Alpha |
|
|
|
199 |
|
00:21:26,520 --> 00:21:33,520 |
|
Beta ูู Alpha Inverse Alpha ูู Beta Alpha Inverse |
|
|
|
200 |
|
00:21:33,520 --> 00:21:38,060 |
|
ุฎุงุตูุฉ ุงูู associativity ุฏู
ุฌุช ุงุซููู ูุฏูู ู
ุงููู
ู
ุน |
|
|
|
201 |
|
00:21:38,060 --> 00:21:41,640 |
|
ุจุนุถ ุทุจ ูุฐุง ุงูุนูุตุฑ ูู ุงูู
ุนูุณ ูู ู
ุด ุจูุนุทููุง ุงูู |
|
|
|
202 |
|
00:21:41,640 --> 00:21:47,180 |
|
identity ูุจูู ุจุฑูุญ ู
ุน ุงูุณูุงู
ุฉ ูุจูู ุจุตูุฑ Alpha Beta |
|
|
|
203 |
|
00:21:47,180 --> 00:21:53,500 |
|
ุชุฑุจูุน Alpha Inverse ุจูุชุง ุชุฑุจูุน ุฃุจุฌุฏุงุด ูุฃููุง ู
ูุฌูุฏุฉ |
|
|
|
204 |
|
00:21:53,500 --> 00:22:00,540 |
|
ูููุ ูู H ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู Alpha ุงูู |
|
|
|
205 |
|
00:22:00,540 --> 00:22:07,780 |
|
identity ูู ุงูู Alpha Inverse ุงูุณุจุจ because ุฅู ุงูู |
|
|
|
206 |
|
00:22:07,780 --> 00:22:14,060 |
|
order ูู Beta ุจุฏู ูุณุงูู ูุฏุงุดุ ุจุฏู ูุณุงูู ุงุซููู ูุฐุง |
|
|
|
207 |
|
00:22:14,060 --> 00:22:18,020 |
|
ุงูุจุฑูุงู
ุฌ ุณูุนุทููุง ุงูู Alpha Alpha Inverse ุงููู ูู |
|
|
|
208 |
|
00:22:18,020 --> 00:22:21,000 |
|
ุงูู Main ุงูู Identity ุงุญูุง ุญุทููุงูุง ุจูุงุญุฏ ููุง |
|
|
|
209 |
|
00:22:21,000 --> 00:22:25,880 |
|
ูุบูุฑูุง ูุจูู ุนุฏููุง ุจูุงุญุฏ ูุจูู ูุฐุง ุงูุจุฑูุงู
ุฌ ุณูุนุทููุง |
|
|
|
210 |
|
00:22:25,880 --> 00:22:30,710 |
|
ุงูู Main ุงููู ูู ุจูุงุญุฏ ุตุญูุญ ูุจูู ุจูุงุก ุนููู ูุฐุง |
|
|
|
211 |
|
00:22:30,710 --> 00:22:36,170 |
|
ุณูุนุทููุง ุฃู ุงูู order ูู Alpha Beta Alpha Inverse ูู |
|
|
|
212 |
|
00:22:36,170 --> 00:22:43,370 |
|
ุงุซููู ูุฐุง ู
ุนูุงู ุฃู ุงูู Alpha Beta Alpha Inverse |
|
|
|
213 |
|
00:22:43,370 --> 00:22:46,910 |
|
ู
ูุฌูุฏุฉ ูู normal subgroup |
|
|
|
214 |
|
00:22:59,830 --> 00:23:06,380 |
|
ูุฐุง ุงูุญู ุงููู ุญูููุงู ูู ุงูู
ุทููุจ ุงูุฃูู ูู
ุฑุง a ุงูู
ุทููุจ |
|
|
|
215 |
|
00:23:06,380 --> 00:23:12,220 |
|
ุงูุซุงูู ูู
ุฑุง b ุจูููู ูู ูู ูู
ุฑุง b ุงุซุจุช ูู ุฃู ุงูู |
|
|
|
216 |
|
00:23:12,220 --> 00:23:17,120 |
|
factor group ุงููู ุนูุฏูุง ูุฐู is a cyclic group |
|
|
|
217 |
|
00:23:17,120 --> 00:23:25,220 |
|
ุจูููู ูู ุฎูุต ุชุนุงู ูุดูู ูุฏุงุด ุงูู order ููู A for modulo |
|
|
|
218 |
|
00:23:25,220 --> 00:23:32,140 |
|
H ุงููู ุจููู ุนูููุง ูุจูู ูุฐุง ุจุฏู ูุณุงูู ุงูู order ููู A4 |
|
|
|
219 |
|
00:23:32,140 --> 00:23:37,480 |
|
ุนูู ุงูู order ููู H ูุฐู ุนุจุงุฑุฉ ุนู ุงุซูุง ุนุดุฑ ุนูู ุฃุฑุจุนุฉ |
|
|
|
220 |
|
00:23:37,480 --> 00:23:42,380 |
|
ูุณุงูู ูุฏูุดุ ุซูุงุซุฉ |
|
|
|
221 |
|
00:23:42,380 --> 00:23:52,590 |
|
is prime ูุฑุฌุน ูู
ููุ ูุฑุฌุน ูุฃุฎุฐูุง ูุธุฑูุฉ ู
ุดููุฑุฉ ูููุง ูู |
|
|
|
222 |
|
00:23:52,590 --> 00:23:57,050 |
|
ุงูุฌุจุฑ ูุธุฑูุฉ ุงูู grunge ู ุงูู crawlers ุงููู ุนูููุง ุงูู |
|
|
|
223 |
|
00:23:57,050 --> 00:24:01,870 |
|
crawlers ุฑูู
ุชูู
ูุงู ุจูููู ูู ุฅุฐุง ูุงู ุงูู order ููู |
|
|
|
224 |
|
00:24:01,870 --> 00:24:06,550 |
|
group ุฃู ููู sub group ุงูู prime number ูุจูู ูู... |
|
|
|
225 |
|
00:24:06,550 --> 00:24:16,750 |
|
ูู cyclic group ูุจูู by her previous corollary |
|
|
|
226 |
|
00:24:19,010 --> 00:24:26,770 |
|
ุงููู ูู ุงุซููู ุนูู ูุธุฑูุฉ Lagrange we have ุฅู ุงูู A4 |
|
|
|
227 |
|
00:24:26,770 --> 00:24:35,790 |
|
modulo H is cyclic ุทูุจ |
|
|
|
228 |
|
00:24:35,790 --> 00:24:45,560 |
|
ุญุงุจุจ ุฃุชุนุฑู ุนูู ุดูู ุงูุนูุงุตุฑ check that ุชุฃูุฏ ูู ุฃู ุงูู |
|
|
|
229 |
|
00:24:45,560 --> 00:24:53,820 |
|
A4 modulo H ุนูุงุตุฑูุง ุงููู ูู
ุนูู ุงูุดูู ุงูุชุงูู ุงูู H |
|
|
|
230 |
|
00:24:53,820 --> 00:25:03,560 |
|
ูุงุญุฏ ุงุซููู ุซูุงุซุฉ ูู H ูุงุญุฏ ุซูุงุซุฉ ุงุซููู ูู H ููู |
|
|
|
231 |
|
00:25:03,560 --> 00:25:12,180 |
|
ุจุฏู ุฃุนุฑููุงุ ูุจูู ุจุฏู ุฃู
ุณู ุงูุนูุงุตุฑ ู
ู ุฎุงุฑุฌ H ูุฃู ุฃู |
|
|
|
232 |
|
00:25:12,180 --> 00:25:15,660 |
|
ุนูุตุฑ ู
ุง ูุดุชุบูู ูู H ุจุฏู ุชุทูุน ููุณ ุงูู H ุฅุฐุง ูุชุฑูุญ |
|
|
|
233 |
|
00:25:15,660 --> 00:25:22,100 |
|
ุฃุฌูุจ ููุนูุงุตุฑ ุงููู ุถุงููุฉ ูู A4 ุตูุญุฉ 107 ูุชุถุฑุจูู
ููู |
|
|
|
234 |
|
00:25:22,100 --> 00:25:26,800 |
|
ุชุถุฑุจ ู
ู ูู ุงูุนูุงุตุฑ ุงููู ุนูุฏู ุฏุงุฆู
ุง ูุงุจุฏุง ุญูุทูุน |
|
|
|
235 |
|
00:25:26,800 --> 00:25:33,870 |
|
ูุงุญุฏ ู
ู ุงูุซูุงุซุฉ ุฏูู ุฅุฐุง ูุงุฒู
ุฃุฌูุจูุง ูู ูุฃู ุญุงุฌุฉ |
|
|
|
236 |
|
00:25:33,870 --> 00:25:42,110 |
|
ุจุชูุฒู
ูุฌุฏูู ุจูุฌูุจููุง ูู ุฃูุง ุจุฏูู ุชุจูู ูุงูู
ูููุณ |
|
|
|
237 |
|
00:25:42,110 --> 00:25:47,870 |
|
ุญุงูุธ ุชู
ุงู
ูุจูู ุงูู A for module H ุงููู ุนูุงุตุฑูุง H |
|
|
|
238 |
|
00:25:47,870 --> 00:25:53,690 |
|
ูุงุญุฏ ุงุซููู ุซูุงุซุฉ H ูุงุญุฏ ุซูุงุซุฉ ุงุซููู H ุทุจ ุงูุณุคุงู ูู |
|
|
|
239 |
|
00:25:53,690 --> 00:25:57,230 |
|
ูุฏุงุด ุงูู order ููุฐู ุงูู element |
|
|
|
240 |
|
00:26:05,570 --> 00:26:17,390 |
|
ุฃุฑุจุนุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ |
|
|
|
241 |
|
00:26:17,390 --> 00:26:21,630 |
|
ุณุชุฉ |
|
|
|
242 |
|
00:26:23,010 --> 00:26:27,830 |
|
ูุง ูุงุญุฏ ูุง ุซูุงุซุฉ ูุบูุฑ ููู ู
ุง ููุด ููุด ุจุงูู
ุฑุฉ ูุงุญุฏ ูู |
|
|
|
243 |
|
00:26:27,830 --> 00:26:31,830 |
|
ูุจูู ุบุตุจ ุนูู ูุนูู ุงูู order ุฅูู ูุณุงูู ุซูุงุซุฉ ุงูุญูู |
|
|
|
244 |
|
00:26:31,830 --> 00:26:35,750 |
|
ูุฐู ูู
ุชุฌุฏ ุทูููุง ุซูุงุซุฉ ุงูู
ููุถ ูู
ุง ุชููู ุชุฑุจูุน ุชุจุฏุฃ |
|
|
|
245 |
|
00:26:35,750 --> 00:26:39,610 |
|
ุชุฑุจูุน ูุฐู ููุฐู ุซุงุจุชุฉ ุชููู ุชูุนูุฏ ุงููุนุจ ูุฐู ููุฐู |
|
|
|
246 |
|
00:26:39,610 --> 00:26:43,870 |
|
ุซุงุจุชุฉ ูุฐู ุทูููุง ูุณุงูู ุซูุงุซุฉ ูุนูู ุงูู order ุฅูู ูุณุงูู |
|
|
|
247 |
|
00:26:43,870 --> 00:26:48,070 |
|
ุซูุงุซุฉ ูุจูู ุงูู order ููู ูุงุญุฏ ู
ู ูุฐูู ุซูุงุซุฉ ูุจูู ูู |
|
|
|
248 |
|
00:26:48,070 --> 00:26:53,990 |
|
ูุงุญุฏ ุนุจุงุฑุฉ ุนู generator ูู
ูุ ููู group ุงููู ุนูุฏูุง |
|
|
|
249 |
|
00:26:53,990 --> 00:27:03,170 |
|
ูุนูู ูุจูู ุจุงุฌู ุจููู clearly ูู
ุงู ุฅูู ุงููุงุญุฏ ุงุซููู |
|
|
|
250 |
|
00:27:03,170 --> 00:27:14,650 |
|
ุซูุงุซุฉ each and clearly ุฅูู each of ูู of ุงููุงุญุฏ |
|
|
|
251 |
|
00:27:14,650 --> 00:27:24,930 |
|
ุงุชููู ุชูุงุชุฉ ูู H ููุงุญุฏ ุชูุงุชุฉ ุงุชููู ูู H is a |
|
|
|
252 |
|
00:27:24,930 --> 00:27:36,580 |
|
generator for ุงูู a4 modulo H ูุงูุณุจุจ because ุฅู ุงูู |
|
|
|
253 |
|
00:27:36,580 --> 00:27:44,760 |
|
order ูููุงุญุฏ ุงุชููู ุซูุงุซุฉ ูู H ุจุฏู ูุณุงูู ุงูู order |
|
|
|
254 |
|
00:27:44,760 --> 00:27:51,780 |
|
ูููุงุญุฏ ุชูุงุชุฉ ุงุชููู ูู H ุจุฏู ูุณุงูู ูุฏู ุชูุงุชุฉ ูุจูู |
|
|
|
255 |
|
00:27:51,780 --> 00:27:55,580 |
|
ูู ูุงุญุฏ ูููู
ุนุจุงุฑุฉ ุนู generator |
|
|
|
256 |
|
00:27:59,280 --> 00:28:04,300 |
|
ุทุจ ุฎููููู ุฃุณุฃู ูู ูุงุญุฏ ู
ุนููุณ ูููุณู ูุงููู ูุงุญุฏ |
|
|
|
257 |
|
00:28:04,300 --> 00:28:10,640 |
|
ูููู
ู
ุนููุณ ุงูุซุงูู ุจู
ุนูู ูู ุงููุงุญุฏ ุงุชููู ุชูุงุชุฉ ู |
|
|
|
258 |
|
00:28:10,640 --> 00:28:15,620 |
|
ุงููุงุญุฏ ุชูุงุชุฉ ุงุชููู ู
ุนููุณ ูููุณู ูู ูุงุญุฏ ูุงููู |
|
|
|
259 |
|
00:28:15,620 --> 00:28:19,820 |
|
ุงุชููู ู
ุนููุณุฉ ูุจุนุถ ุชุนุงููุง ุงุถุฑุจูู
ูู ุจุนุถ ุงููุงุญุฏ |
|
|
|
260 |
|
00:28:19,820 --> 00:28:24,800 |
|
ุจูุฑูุญ ููููุ ูุงูุชูุงุชุฉ ุจูุฑูุญ ูู
ููุ ุตู ุนูู ุดุฌุฑ ุงูู |
|
|
|
261 |
|
00:28:24,800 --> 00:28:28,850 |
|
identity ุงููุงุญุฏ ุฑุงุญ ุนูู ุงููุงุญุฏ ุจูู
ุณู ุงูุชูุงุชุฉ ุจุชุฑูุญ |
|
|
|
262 |
|
00:28:28,850 --> 00:28:34,190 |
|
ูู
ููุ ูุงุชููู ูุงูุงุชููู ุจุชุฑูุญ ุตู ุนูู ุดุฌุฑ ุงูู identity |
|
|
|
263 |
|
00:28:34,190 --> 00:28:37,950 |
|
ุงูุงุชููู ุจูุฑูุญ ูููุงุญุฏ ูุงููุงุญุฏ ุจูุฑูุญ ูุงุชููู ูุจูู ุงูู |
|
|
|
264 |
|
00:28:37,950 --> 00:28:43,630 |
|
identity ูุจูู ูู ูุงุญุฏ ูููู
ู
ุนููุณ ููุขุฎุฑ ูููุณ ู
ุนููุณ |
|
|
|
265 |
|
00:28:43,630 --> 00:28:51,040 |
|
ูููุณู ุฅุฐุง ุงูู element ูุฐุง ูู ุญุฏ ุฐุงุชู ูู ู
ุนููุณ ูู
ูุ |
|
|
|
266 |
|
00:28:51,040 --> 00:28:57,480 |
|
ููุฐุง ุงูู element ููู ููุณ ุงูููุช ุงูู element ูุฐุง ููู |
|
|
|
267 |
|
00:28:57,480 --> 00:29:03,160 |
|
ูู ู
ุนููุณ ููุฐุง ุงูู element ูู ุงูู factor group ูุฃู ูู |
|
|
|
268 |
|
00:29:03,160 --> 00:29:12,730 |
|
ุถุฑุจุชูู
ูู ุจุนุถูู
ุณุฃุญุตู ุนูู ุงูู identity not that ุงู |
|
|
|
269 |
|
00:29:12,730 --> 00:29:22,690 |
|
ุงููุงุญุฏ ุงุชููู ุชูุงุชุฉ each is the inverse of ุงููุงุญุฏ |
|
|
|
270 |
|
00:29:22,690 --> 00:29:24,870 |
|
ุชูุงุชุฉ ุงุชููู each because |
|
|
|
271 |
|
00:29:28,030 --> 00:29:33,110 |
|
ูู ุถุฑุจุช ูู ุจุนุถ ุจุฏู ุฃุทูู ู
ูู ุงูู identity element ูู |
|
|
|
272 |
|
00:29:33,110 --> 00:29:39,630 |
|
H ูู 1 3 2 H ุญุณุจ ุงูุชุนุฑูู ุนูู ุงูู factor group ุงูู |
|
|
|
273 |
|
00:29:39,630 --> 00:29:44,090 |
|
operation ููููุง ุจูุถุฑุจ ุงูู two elements ูู ุจุนุถ ูุจูู |
|
|
|
274 |
|
00:29:44,090 --> 00:29:54,540 |
|
123 132 ูู H ููุณุงูู ูู
ุณู ุงูุฃูู ู
ุฑุฉ ุชุงููุฉ ุงููุงุญุฏ |
|
|
|
275 |
|
00:29:54,540 --> 00:30:00,420 |
|
ุตูุฑุชู ุชูุงุชุฉ ูุงูุชูุงุชุฉ ุตูุฑุชูุง ูุงุญุฏ ูุจูู ู
ุง ุนูุฏูุด ุฅูุง |
|
|
|
276 |
|
00:30:00,420 --> 00:30:05,780 |
|
ุงููุงุญุฏ ูู
ุณู ุงููู ุจุนุฏู ุงุชููู ุงุชููู ุตูุฑุชู ูุงุญุฏ |
|
|
|
277 |
|
00:30:05,780 --> 00:30:11,540 |
|
ูุงููุงุญุฏ ุตูุฑุชู ุงุชููู ูุจูู ุฌุงููุฉ ูู
ุณู ุงูุชูุงุชุฉ ุชูุงุชุฉ |
|
|
|
278 |
|
00:30:11,540 --> 00:30:16,930 |
|
ุตูุฑุชูุง ุงุชููู ูุงุชููู ุตูุฑุชูุง ุชูุงุชุฉ ูุจูู ุฌุงููุฉ ููุฐุง |
|
|
|
279 |
|
00:30:16,930 --> 00:30:22,850 |
|
ุงูู main ุงูู H ุงููู ุจุชุนุทูู ุงูู H itself ูุฃู ูุฐุง |
|
|
|
280 |
|
00:30:22,850 --> 00:30:28,890 |
|
ููู ุจุงูู identity element ูุจูู ุจูุงุก ุนููู ูุนูุง ูุฐุง |
|
|
|
281 |
|
00:30:28,890 --> 00:30:33,470 |
|
ุงูู element ูู ู
ุนููุณ ูู
ููุ ู
ุนููุณ ููู element ุงููู |
|
|
|
282 |
|
00:30:33,470 --> 00:30:34,550 |
|
ุนูุฏูุง ูุฐุง |
|
|
|
283 |
|
00:30:52,470 --> 00:31:00,730 |
|
ูุจูู ูุฐุง ูุงู ู
ุซุงู ุฃุฑุจุนุฉ ู
ุซุงู |
|
|
|
284 |
|
00:31:00,730 --> 00:31:01,470 |
|
ุฎู
ุณุฉ |
|
|
|
285 |
|
00:31:06,680 --> 00:31:14,420 |
|
ุจููู ูู U 32 ุจุชุณุงูู U 32 ุงููู ุนูุงุตุฑูุง |
|
|
|
286 |
|
00:31:14,420 --> 00:31:22,540 |
|
ุทุจุนุง ุงููู ูู ูุงุญุฏ ูุชูุงุชุฉ ูุฎู
ุณุฉ ูุณุจุนุฉ ูุชู
ุงููุฉ |
|
|
|
287 |
|
00:31:22,540 --> 00:31:39,910 |
|
ุชุณุนุฉ ุนุดุฑ ุงุญุฏุงุด ุชูุชุงุด ุงุฑุจุนุชุงุด ุฎู
ุณุชุงุด 15 16 17 19 20 |
|
|
|
288 |
|
00:31:39,910 --> 00:32:00,830 |
|
21 20 23 ุจุนุฏ 23 24 25 27 28 29 31 ู
ุง ููุด ุบูุฑูุง ุทูุจ |
|
|
|
289 |
|
00:32:00,830 --> 00:32:06,930 |
|
ูุฐุง ุจุฏู ูุนุทููู ุฅู ุงูู order ูููู ุงุชููู ูุชูุงุชูู ุจุฏู |
|
|
|
290 |
|
00:32:06,930 --> 00:32:12,030 |
|
ูุณุงูู ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุฃุฑุจุนุฉ ุฎู
ุณุฉ ุณุชุฉ ุณุจุนุฉ ุชู
ุงููุฉ |
|
|
|
291 |
|
00:32:12,030 --> 00:32:15,550 |
|
ุชุณุนุฉ ุนุดุฑ ุงุญุฏุงุดุฑ ุงุชูุงุดุฑ ุชูุงุชุงุดุฑ ุงุฑุจุนุงุดุฑ ุฎู
ุณุงุดุฑ |
|
|
|
292 |
|
00:32:15,550 --> 00:32:20,730 |
|
ุณุชุงุดุฑ ุนูุตุฑ ูู ุงูู group ุงููู ุนูุฏูุง ููุง ุจุฏูุง ูุฑูุญ |
|
|
|
293 |
|
00:32:20,730 --> 00:32:26,980 |
|
ูุงุฎุฏ sub group ู
ููุง let ุงูู H ูู ุงูู subgroup |
|
|
|
294 |
|
00:32:26,980 --> 00:32:32,420 |
|
generated by ุฎู
ุณุชุงุดุฑ ูุงููู ู
ุง ููุด ูููุง ุฅูุง ุงูุนูุตุฑูู |
|
|
|
295 |
|
00:32:32,420 --> 00:32:41,000 |
|
ูุงุญุฏ ูุฎู
ุณุชุงุดุฑ ุงูุณุคุงู ูู ูู ุงูู H ูุฐู abelianุ ุงูู |
|
|
|
296 |
|
00:32:41,000 --> 00:32:46,150 |
|
H just a normal subgroup ู
ู ุงูู U ุชูุงุชุฉุ ูุนู
ูุฃู |
|
|
|
297 |
|
00:32:46,150 --> 00:32:52,690 |
|
ูุฐูู ุงูู U ุงุชููู ูุชูุงุชูู is abelian ูุจูู then ุงูู |
|
|
|
298 |
|
00:32:52,690 --> 00:32:59,110 |
|
H is a normal subgroup ู
ู ุงูู U ุงุชููู ูุชูุงุชูู |
|
|
|
299 |
|
00:32:59,110 --> 00:33:07,010 |
|
because ุงูุณุจุจ because ุฅู U ุงุชููู ูุชูุงุชูู is a |
|
|
|
300 |
|
00:33:07,010 --> 00:33:11,990 |
|
abelian ู
ุนูุงุชู ุจูุฏุฑ ุฃููู ุงูู factor group ูุนูู ุงูู |
|
|
|
301 |
|
00:33:11,990 --> 00:33:18,650 |
|
factor group exist ูุจูู ูุฐุง ุจุฏู ูุนุทูู ุฅู ุงูู U 32 |
|
|
|
302 |
|
00:33:18,650 --> 00:33:29,290 |
|
modulo H modulo H exist ู
ูุฌูุฏุฉ ุงูุณุคุงู ูู ุทุจ ุจููุฏุฑ |
|
|
|
303 |
|
00:33:29,290 --> 00:33:34,730 |
|
ูุฌูุจ ุนูุงุตุฑูุง ูุจู ุงูุณุคุงู ูุจูู ุงูู order ููู 32 |
|
|
|
304 |
|
00:33:34,730 --> 00:33:42,390 |
|
modulo H ุจุฏู ูุณุงูู ุงููู ูู 16 ุนูู ูุฏุงุด ุนูู 2 ู |
|
|
|
305 |
|
00:33:42,390 --> 00:33:48,630 |
|
ูุณุงูู 8 ูุจูู ูุฐุง ุงูู group ูุฐู ูููุง ุซู
ุงููุฉ ุนูุงุตุฑ |
|
|
|
306 |
|
00:33:48,630 --> 00:33:52,230 |
|
ุงุณู
ุน ุงูุณุคุงู ุงูู question is |
|
|
|
307 |
|
00:33:58,580 --> 00:34:09,400 |
|
ุงูุณุคุงู ูู ูู is ุงูู G modulo H isomorphic ูู Z |
|
|
|
308 |
|
00:34:09,400 --> 00:34:12,160 |
|
ุชู
ุงููุฉ ููุง Z |
|
|
|
309 |
|
00:34:35,940 --> 00:34:43,120 |
|
ุทูุจ ูุฑุฌุน ูุณูุงููุง ู
ุฑุฉ ุชุงููุฉ ุจููู ูู ุงุญูุง ุฌู ุฃุฎุฏูุง ุงูู |
|
|
|
310 |
|
00:34:43,120 --> 00:34:47,540 |
|
U32 ุฃุฎุฏูุง ุงูู subgroup generated by ุฎู
ุณุชุงุดุฑ ุงููู |
|
|
|
311 |
|
00:34:47,540 --> 00:34:53,220 |
|
ูููุงุด ุงููู ุบูุฑ ุนูุตุฑูู ูุงุญุฏ ูุฎู
ุณุชุงุดุฑ ูุฎู
ุณุชุงุดุฑ ุชุฑุจูุน |
|
|
|
312 |
|
00:34:53,220 --> 00:35:02,080 |
|
ู
ุชูู ูุฎู
ุณุฉ ูุนุดุฑูู ุงููู ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ูู U32 ูุฃู |
|
|
|
313 |
|
00:35:02,080 --> 00:35:09,100 |
|
ุงูู 224 ูู ู
ุถุงุนูุงุช 32 ูุจูู ู
ุง ููุด ูููุง ุฅูุง ุนูุตุฑูู |
|
|
|
314 |
|
00:35:09,100 --> 00:35:13,780 |
|
any subgroup ู
ู ุงูู abelian group is normal ูุจูู ุงูู |
|
|
|
315 |
|
00:35:13,780 --> 00:35:18,000 |
|
subgroup ุงููู ุฃุฎุฏูุงูุง normal subgroup ู
ู ุงูู U32 |
|
|
|
316 |
|
00:35:18,000 --> 00:35:23,420 |
|
ูุจูู ุงูู factor group exist ููููุง ุซู
ุงููุฉ ุนูุงุตุฑ |
|
|
|
317 |
|
00:35:23,730 --> 00:35:30,010 |
|
ุงูุณุคุงู ูู ูู ุงูู G-modulation isomorphic ูู Z8 ููุง ูู |
|
|
|
318 |
|
00:35:30,010 --> 00:35:35,050 |
|
Z4 external product ู
ุน Z2 ููุง ูู Z2 external |
|
|
|
319 |
|
00:35:35,050 --> 00:35:40,730 |
|
product ู
ุน Z2 external product ู
ุน Z2 ูุฐูู ุฃู
ูุงุ |
|
|
|
320 |
|
00:35:40,730 --> 00:35:46,920 |
|
ูุฐู ุชู
ุงู ุนูุงุตุฑ ูุฐู ุชู
ุงู ุนูุงุตุฑูุฐู ุชู
ุงู
ุนูุงุตุฑ ุชู
ุงู
|
|
|
|
321 |
|
00:35:46,920 --> 00:35:52,680 |
|
ุงูุชู
ุงู
ุจุฏูุง ููุฌู ูุดูู ู
ูู ูุณุชุจุนุฏ ูู
ูู ูุฎููู ูุฏุงุด |
|
|
|
322 |
|
00:35:52,680 --> 00:35:57,560 |
|
ุฃูุจุฑ order ูุฃู element ู
ูุฌูุฏ ููุง ุชู
ุงููุฉ ุชู
ุงููุฉ |
|
|
|
323 |
|
00:35:57,560 --> 00:36:03,960 |
|
ูุฏุงุด ุฃูุจุฑ order ูุฃู element ููุง ูุฏุงุด ุฃุฑุจุนุฉ ู
ุง ูุฒูุฏุด |
|
|
|
324 |
|
00:36:03,960 --> 00:36:06,740 |
|
ุนู ุฃุฑุจุนุฉ ุงููู ูู least common multiple ููุฃุฑุจุนุฉ |
|
|
|
325 |
|
00:36:06,740 --> 00:36:10,620 |
|
ูุงุชููู ุฃู ููุฃุฑุจุนุฉ ูุงููุงุญุฏ ุณูุงู
ูุฏุงุด ุงูู maximum |
|
|
|
326 |
|
00:36:10,620 --> 00:36:14,510 |
|
order ูุฃู element ููุง ุงุชููู ูุจูู ุฃูุจุฑ ูุงุญุฏ ููุงู |
|
|
|
327 |
|
00:36:14,510 --> 00:36:19,050 |
|
ุชู
ุงููุฉ ุฃูุจุฑ ูุงุญุฏ ุงุชููู ูุฃูุจุฑ ูุงุญุฏ ููุง ุฃุฑุจุนุฉ ุทุจ |
|
|
|
328 |
|
00:36:19,050 --> 00:36:24,590 |
|
ุงูุณุคุงู ูู ุงูู G modulo H ูููุง ุซู
ุงููุฉ ุนูุงุตุฑ ูู ุฑูุญุช |
|
|
|
329 |
|
00:36:24,590 --> 00:36:29,770 |
|
ุนูุงุตุฑูุง ูููู
lift ูู ุณุชุฉ ูู ุฑูุญุช ููุฃูุฑ ุงูุณุจุน lift |
|
|
|
330 |
|
00:36:29,770 --> 00:36:34,730 |
|
ูู ุณุชุฉ ููุฌูุชู ูุณุงูู ุชู
ุงููุฉ ู
ุนูุงุชู ูุฐุง generator |
|
|
|
331 |
|
00:36:34,730 --> 00:36:39,470 |
|
ูุจุงูุชุงูู isomorphic ูู Z ุชู
ุงููุฉ ููู ุฅุฐุง ู
ุง ูุฌูุชูุด |
|
|
|
332 |
|
00:36:39,470 --> 00:36:44,600 |
|
ูููุง ููุง generator ุฅุฐุง ูุง ูู
ูู ุฃู ุชููู isomorphic |
|
|
|
333 |
|
00:36:44,600 --> 00:36:49,580 |
|
ูู
ุนูู ูู Z ุชู
ุงููุฉ ุจูุธู ุงุญุชู
ุงู ููุง ูุง ุฅู
ุง ูู Z |
|
|
|
334 |
|
00:36:49,580 --> 00:36:52,440 |
|
ุฃุฑุจุนุฉ cross product ู
ุน Z ุงุชููู ุฃู Z ุงุชููู |
|
|
|
335 |
|
00:36:52,440 --> 00:36:55,700 |
|
cross product ู
ุน Z ุงุชููู cross product ู
ุน |
|
|
|
336 |
|
00:36:55,700 --> 00:37:01,600 |
|
Z ุงุชููู ุงูุซุงููุฉ ูุฐูู ูุฐู ุงูุนูุงุตุฑ ูุฏุงู
ู ูููุง |
|
|
|
337 |
|
00:37:01,600 --> 00:37:07,260 |
|
ูุณุชุทูุน ุฃู ูุญุตู ุนูู left coset ุฃูู ูุงุญุฏุฉ ุชุจูู ุงูุฃูู |
|
|
|
338 |
|
00:37:07,260 --> 00:37:11,800 |
|
ูุงุญุฏ ุจุชุถุฑุจ ุงูุชูุงุชุฉ ูู K ูู H ู
ุด ูุฐู left coset |
|
|
|
339 |
|
00:37:11,800 --> 00:37:18,600 |
|
ูุฐูู ูุนูู ุฃุญุฏ ุนูุงุตุฑ ู
ู ุงูู group ุงูุขู ุจุฏุงุฌู ุฃูููู |
|
|
|
340 |
|
00:37:18,600 --> 00:37:26,880 |
|
ุชูุงุชุฉ H ูุฐู ู
ูุฌูุฏุฉ ูู ุงูู U ุชููู ูุชูุงุชูู modulo |
|
|
|
341 |
|
00:37:26,880 --> 00:37:35,790 |
|
ุงููู ูู ู
ู H ูู ุฌูุช ุชูุงุชุฉ H ูู ูุฐู ุชุณุงูู H ุชุณููุ |
|
|
|
342 |
|
00:37:35,790 --> 00:37:40,950 |
|
ูุนูู ูู ุถุฑุจุช ููุง ูู ู
ู ูู ุชูุงุชุฉ ุจุตูุฑ ุชูุงุชุฉ ูุชูุงุชุฉ |
|
|
|
343 |
|
00:37:40,950 --> 00:37:45,470 |
|
ูู ุฎู
ุณุชุงุดุฑ ุจุฎู
ุณุฉ ูุฃุฑุจุนูู ุดูุก ุงููู ุจูุจูู ุชูุชุงุด ูู |
|
|
|
344 |
|
00:37:45,470 --> 00:37:52,790 |
|
ูู Hุ ูุฃ ุงุชููู ูู ุฌูุช ููุช ูู ุชูุงุชุฉ H ููู ุชุฑุจูุน |
|
|
|
345 |
|
00:37:55,240 --> 00:37:59,440 |
|
ุขู ูุนูู ูู ุทูุน ุงูู identity ุงุชููู ูุฐู ุจุชุฌุณู
|
|
|
|
346 |
|
00:37:59,440 --> 00:38:03,620 |
|
ุงูุชู
ุงููุฉ ูุนูู ู
ู
ูู ู
ุด ูู ู
ุดููุฉ ูุฐุง ุงูููุงู
ุจุฏู |
|
|
|
347 |
|
00:38:03,620 --> 00:38:12,460 |
|
ูุณุงูู ุชุณุนุฉ H ูู ุชุณุนุฉ H ุชุณุงูู H ุงุถุฑุจูุง ุชุณุนุฉ ููุฐู |
|
|
|
348 |
|
00:38:12,460 --> 00:38:17,400 |
|
ุชุณุนุฉ ูู ุฎู
ุณุชุงุดุฑ ุฅุฐุง ูุง ูู
ูู ุฃู ุชุณุงูู ู
ูู H ุฃุฎุฏ ุชูุงุชุฉ |
|
|
|
349 |
|
00:38:17,400 --> 00:38:24,320 |
|
H ุชููุจ ูุฃ ูุฃู ุงูุชูุงุชุฉ ูุง ุชูุณู
ู
ูู ุงูุชู
ุงููุฉ ูุจูู |
|
|
|
350 |
|
00:38:24,320 --> 00:38:27,420 |
|
ููุด element ุงูู order ุฅูู ูุณุงูู ุงูุชูุงุชุฉ ูุจูู ู
ุง |
|
|
|
351 |
|
00:38:27,420 --> 00:38:36,620 |
|
ุชุบูุจุด ุญุงูู ุฑูุญ ุนูู ู
ููุ ุนูู ุชูุงุชุฉ H ุฃูุณ ุฃุฑุจุนุฉ ูุจูู |
|
|
|
352 |
|
00:38:36,620 --> 00:38:41,060 |
|
ูุฐู ุนุจุงุฑุฉ ุนู ูุฏุงุด ุชุณุนุฉ ูู ุชุณุนุฉ ุจูุงุญุฏ ูุชู
ุงููู H |
|
|
|
353 |
|
00:38:41,060 --> 00:38:45,400 |
|
ูุฐุง ุงูููุงู
ูุณุงูู ุชููู ูุชูุงุชูู ูุชููู ูุชูุงุชูู |
|
|
|
354 |
|
00:38:45,400 --> 00:38:49,840 |
|
ุฃุฑุจุนุฉ ูุณุชูู ู
ู ูุงุญุฏ ูุชู
ุงููู ุณุชุงุดุฑ ููุงุญุฏ ู |
|
|
|
355 |
|
00:38:49,840 --> 00:38:57,580 |
|
ุณุจุนุชุงุดุฑ ูุจูู ูุฐู ุณุจุนุชุงุดุฑ H ูู ุงูุณุจุนุชุงุดุฑ H ุจูุณุงูู |
|
|
|
356 |
|
00:38:57,580 --> 00:39:03,980 |
|
Hุ ูุฃ ูุจูู ุณุนุฑ ุงูู order ููุฐุง ุงูู element ูุง ูู
ูู ุฃู |
|
|
|
357 |
|
00:39:03,980 --> 00:39:08,800 |
|
ูููู ุฃุฑุจุนุฉ ุฃุฑูุญ ุฃุฏูุฑ ุนูู ุฎู
ุณุฉ ูุณุชุฉ ูุณุจุนุฉ ูุจูู |
|
|
|
358 |
|
00:39:08,800 --> 00:39:13,020 |
|
automatic ุงูู order ุฅูู ูุณุงูู ูุฏุงุด ุชู
ุงููุฉ ูุฃู ุงูู order |
|
|
|
359 |
|
00:39:13,020 --> 00:39:16,100 |
|
ููู element ุงููู ุจูุฌุณู
ููู order ุงููู ุฌู
ุฏู ู
ุง ุชุญุตู |
|
|
|
360 |
|
00:39:16,100 --> 00:39:21,540 |
|
ุนูู ุทูู ุงูุฎุทุฉ ุจูุณุชูุชุฌูุง ูุจูู ูุฐุง ุจุฏู ูุนุทููุง ุฅู ุงูู |
|
|
|
361 |
|
00:39:21,540 --> 00:39:27,480 |
|
order ูุชูุงุชุฉ H ุจุฏู ูุณุงูู ูุฏุงุด ุชู
ุงููุฉ because |
|
|
|
362 |
|
00:39:30,700 --> 00:39:36,000 |
|
the order of |
|
|
|
363 |
|
00:39:36,000 --> 00:39:46,880 |
|
the element divide the order of the group |
|
|
|
364 |
|
00:39:51,730 --> 00:39:55,870 |
|
ูุฃู ุงูู order ููู element ุจูุฌุณู
ุงูู order ููู group |
|
|
|
365 |
|
00:39:55,870 --> 00:40:02,370 |
|
ูุจูู ูุง ูู
ูู ุฃู ุฃูุง ุฃุฌุฏ ุงูู order ุฎู
ุณุฉ ููุง ุณุชุฉ ููุง |
|
|
|
366 |
|
00:40:02,370 --> 00:40:07,230 |
|
ุณุจุนุฉ ุฅุฐุง ุงูู order ูุณุงูู ูู
ุงู ุชู
ุงููุฉ ู
ุนูุงุชู ูุฐุง ุงูู |
|
|
|
367 |
|
00:40:07,230 --> 00:40:17,290 |
|
element ู
ุงูู generator ูุจูู ููุง ุงูู ุซูุงุซุฉ H is a |
|
|
|
368 |
|
00:40:17,290 --> 00:40:19,150 |
|
generator |
|
|
|
369 |
|
00:40:20,550 --> 00:40:29,770 |
|
Four ุงููู ูู ู
ู ุงูู U ุงุชููู ูุชูุงุชูู modulo H ู
ุฏุงู
|
|
|
|
370 |
|
00:40:29,770 --> 00:40:36,150 |
|
generator ูุจูู ูุฐู ู
ุงููุง Cyclic ูุจูู ูุฐุง ูุนุทููุง ุฅู |
|
|
|
371 |
|
00:40:36,150 --> 00:40:45,570 |
|
U ุงุชููู ูุชูุงุชูู U ุงุชููู ูุชูุงุชูู modulo 11 is |
|
|
|
372 |
|
00:40:45,570 --> 00:40:51,500 |
|
cyclic Madame Cyclic ูุจูู ูู ูู
ูู ุฃู ุชููู |
|
|
|
373 |
|
00:40:51,500 --> 00:40:56,460 |
|
isomorphic ููุฐู ูุฃู ูุฐุง ุฃูุจุฑ order ููุง ูุณุงูู ุงุชููู |
|
|
|
374 |
|
00:40:56,460 --> 00:41:02,160 |
|
isomorphic ููุฐู ูุฃ ูุฃู ุฃูุจุฑ order ุนููุง ู
ูู ูุณุงูู |
|
|
|
375 |
|
00:41:02,160 --> 00:41:08,980 |
|
ุฃุฑุจุนุฉ ูุจูู ููุง ุงูู U ุชููู ูุชูุงุชู ู
ูุฏูู ุฃุญุฏุงุดุฑ |
|
|
|
376 |
|
00:41:08,980 --> 00:41:12,780 |
|
isomorphic ูู Z8 because |
|
|
|
377 |
|
00:41:16,450 --> 00:41:31,430 |
|
Z4 external like product ู
ุน Z2 has |
|
|
|
378 |
|
00:41:31,430 --> 00:41:34,490 |
|
no element |
|
|
|
379 |
|
00:41:36,400 --> 00:41:43,400 |
|
of order ู
ุงููุด ููุง ุนูุตุฑ ูุจูู ูุฐู ุตุงุฑุช |
|
|
|
380 |
|
00:41:43,400 --> 00:41:51,220 |
|
isomorphic ูู ู
ููุ ูู .. ูู group ุงููู ุนูุฏูุง ูุฐู ุงูุขู |
|
|
|
381 |
|
00:41:51,220 --> 00:41:56,900 |
|
ุจุฏูุง ููุฌู ููุธุฑูุฉ ุทุจุนุง ุฃุฎุฏุช ุฃู
ุซูุฉ ูุง ุจุฃุณ ุจูุง ูุซูุฑุฉ |
|
|
|
382 |
|
00:41:56,900 --> 00:42:01,700 |
|
ุนูู ุงูู normal ู ุนูู ุงูู factor group ุจููุฌู ูุฃูู |
|
|
|
383 |
|
00:42:01,700 --> 00:42:08,430 |
|
ูุธุฑูุฉ ูู ูุฐุง ุงูู
ูุถูุน ุจุชููู ุงูู Center ุชุจุน ุงูู |
|
|
|
384 |
|
00:42:08,430 --> 00:42:16,690 |
|
Group G of |
|
|
|
385 |
|
00:42:16,690 --> 00:42:22,430 |
|
a |
|
|
|
386 |
|
00:42:22,430 --> 00:42:30,570 |
|
group G if ุงูู G modulo Center ุจุชุจุน ุงูู G is |
|
|
|
387 |
|
00:42:30,570 --> 00:42:36,820 |
|
cyclic then ุงูู G is abelian |
|
|
|
388 |
|
00:43:06,770 --> 00:43:07,570 |
|
ุฎููู ุจุฑูุฉ |
|
|
|
389 |
|
00:43:10,260 --> 00:43:14,500 |
|
ุนูุฏูุง Z of G ุงูู Center ุชุจุน ูู Group G ูุจูุนุฑู ุงูู |
|
|
|
390 |
|
00:43:14,500 --> 00:43:18,780 |
|
Center ุงููู ุจูุฌู
ุน ูู ุงูุนูุงุตุฑ ุงููู
ููุณ ู
ุน ุฌู
ูุน ุนูุงุตุฑ |
|
|
|
391 |
|
00:43:18,780 --> 00:43:23,120 |
|
G ุจุงูุงุณุชุซูุงุก ูุจูู ูู ูุงูุช ุงูู G modulo Z Cyclic |
|
|
|
392 |
|
00:43:23,120 --> 00:43:29,000 |
|
ูุจูู ุจูุซุจุช ูู ุฅูู G ุงูุฃุตููุฉ is Abelian ูุจูู |
|
|
|
393 |
|
00:43:29,000 --> 00:43:35,800 |
|
ุงูู
ุนุทูุงุช ุงููู ุนูุฏู ุฃ assume that ุฅู ุงูู G modulo Z |
|
|
|
394 |
|
00:43:35,800 --> 00:43:43,120 |
|
of G is Cyclic ู
ุง ุฏุงู
Cyclic ูุจูู ุฅูู ุงูุดุููุง |
|
|
|
395 |
|
00:43:43,120 --> 00:43:54,560 |
|
generator ู
ุง ุฏุงู
Cyclic ูุจูู ุงููG ูู ุงููZ of G ุจูA |
|
|
|
396 |
|
00:43:54,560 --> 00:43:56,160 |
|
generator |
|
|
|
397 |
|
00:43:57,710 --> 00:44:03,690 |
|
ููุชุฑุถ ุงู ูุฐุง generator ุงูู ูุนูู ุฃู element ูููุง |
|
|
|
398 |
|
00:44:03,690 --> 00:44:11,230 |
|
ูููู ูุฐุง ุงู element ู
ุฑููุน ูู
ููุ ูุฃุณ ู
ุญุฏุฏุฉ ูุจูู then |
|
|
|
399 |
|
00:44:11,230 --> 00:44:18,190 |
|
ุงูู g modulo center ุจุชุจุน ุงูู g ูู sub group ุฃู ุงู |
|
|
|
400 |
|
00:44:18,190 --> 00:44:23,850 |
|
group generated by g ูู ุงูู z of g ุจุงูุดูู ุงููู |
|
|
|
401 |
|
00:44:23,850 --> 00:44:30,950 |
|
ุนูุฏูุง ุงูุขู ุจุฏู ุฃููู ูู let ุงูู a ู ุงูู b ู
ูุฌูุฏุฉ ูู g |
|
|
|
402 |
|
00:44:30,950 --> 00:44:37,430 |
|
ุฅุฐุง ูุฏุฑุช ุฃุซุจุช ูู ุฅู ุงูู a ูู b ูู ุงูู b ูู a ุจุชู
ุง |
|
|
|
403 |
|
00:44:37,430 --> 00:44:44,990 |
|
ุงูู
ุทููุจ ุชู
ุงู
ุ ุฅุฐุง ุญุงุฌุฉ ุฃูููู ุงูุขู ุงูู a ู
ูุฌูุฏุฉ ูู |
|
|
|
404 |
|
00:44:44,990 --> 00:44:50,630 |
|
ุงูู a ูู ุงูู center ุจุชุจุน ุงูู g ุตุญ ููุง ูุงุ ุงูู element |
|
|
|
405 |
|
00:44:50,630 --> 00:44:57,550 |
|
A ู
ูุฌูุฏ ูู ุฃู lift-go set ุทุจ ูุฐุง ุงูู element ู
ูุฌูุฏ |
|
|
|
406 |
|
00:44:57,550 --> 00:45:04,750 |
|
ูู ุงูู group ูุฐู ููุง ูุงุ ุฅูู ูู ุงูู centerุ ู
ูุฌูุฏ |
|
|
|
407 |
|
00:45:04,750 --> 00:45:08,690 |
|
ููุง ููุง ูุงุ ุตุญุ ู
ุงููู ุจูุนุชู |
|
|
|
408 |
|
00:45:16,880 --> 00:45:28,400 |
|
ูุจูู ููุง ูุฐุง ุงูููุงู
ูุจูู ู
ูู
ูุจูู ู
ูู
|
|
|
|
409 |
|
00:45:28,400 --> 00:45:29,320 |
|
ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
|
|
|
|
410 |
|
00:45:29,320 --> 00:45:29,380 |
|
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู ู
ูู
ูุจูู |
|
|
|
411 |
|
00:45:29,380 --> 00:45:35,820 |
|
ู
ูู
ูุจูู ูุงููู ูู ุจุฏู ูุณุงูู GI ูู ุงูู center ุงููู |
|
|
|
412 |
|
00:45:35,820 --> 00:45:45,210 |
|
ุชุจุน ุงูู G for some I ุจุงูู
ุซู ุงูู B ู
ูุฌูุฏ ูู ุงูู B ูู |
|
|
|
413 |
|
00:45:45,210 --> 00:45:50,450 |
|
ุงูู Center ุจุชุงุจุน ุงูู G ู ุงููู ูู ุจุฏู ูุณุงูู G ูู |
|
|
|
414 |
|
00:45:50,450 --> 00:45:57,570 |
|
ุงูู Center ุจุชุงุจุน ุงูู G ู
ุฑููุน ูุฃูุณ J ููุฐุง GG ููู |
|
|
|
415 |
|
00:45:57,570 --> 00:46:05,970 |
|
Center ุจุชุงุจุน ุงูู Group G for some J ุงูุขู ุฎุฏูู AB |
|
|
|
416 |
|
00:46:08,110 --> 00:46:15,830 |
|
ูุจูู ุงูู a,b ุจุฏู ูุณุงูู ุงูู a,b ูุฐู a ู
ูุฌูุฏุฉ ููุง ูุจูู |
|
|
|
417 |
|
00:46:15,830 --> 00:46:21,990 |
|
ู
ูุฌูุฏุฉ ููุง ู
ุฏุงู
ู
ูุฌูุฏุฉ ููุง ูุจูู ุจูุฏุฑ ุฃููู ุฅู ุงูู a |
|
|
|
418 |
|
00:46:21,990 --> 00:46:31,550 |
|
ุชุณุงูู g,i,x for some x ููุฐุง ุจุฏู ูุนุทููู ุฅู b ุชุณุงูู |
|
|
|
419 |
|
00:46:31,550 --> 00:46:42,650 |
|
g,j,y for some y ูุงุฑุณู
Y ูุจูู ุงูู A ุจู ุจุฏู ูุณุงูู ุงู |
|
|
|
420 |
|
00:46:42,650 --> 00:46:49,630 |
|
A ุงููู ุนูุฏู ุงููู ูู main ุงููู ูู GIX ูุงูู B ุงููู ูู |
|
|
|
421 |
|
00:46:49,630 --> 00:46:52,070 |
|
GJY |
|
|
|
422 |
|
00:46:54,390 --> 00:46:59,310 |
|
ุงูุฅูุณ ูุงููุงู ูุงูุฅูุณ ูุงููุงู ูุงูุฅูุณ ูุงููุงู ูุง ุณูุฏู |
|
|
|
423 |
|
00:46:59,310 --> 00:47:03,910 |
|
ุงููู ูู
ูู ุงูู center ุฅุฐุง ุจูุฏุฑ ุฃุจุฏู ุฒู ู
ุง ุจุฏู ุชู
ุงู
|
|
|
|
424 |
|
00:47:03,910 --> 00:47:12,040 |
|
ูุจูู ูุฐุง ุจุชูุฏุฑ ุชูููู GI ุฌู ุฌู ูู ุงูู X Y ุจุฏูุช |
|
|
|
425 |
|
00:47:12,040 --> 00:47:17,700 |
|
ุงูุชูุชูู ูุฐูู ู
ุน ุจุนุถ ูุฅู X ู
ูุฌูุฏุฉ ูู ุงูู center ุทูุจ |
|
|
|
426 |
|
00:47:17,700 --> 00:47:26,200 |
|
ูุฐู ุจูุฏุฑ ุฃุจุฏู ูู
ุงู ุจูุฏุฑ ุฃููู ุฌู ุฌู ูู ุฌู I ููุฐู Y |
|
|
|
427 |
|
00:47:26,200 --> 00:47:26,860 |
|
ูู X |
|
|
|
428 |
|
00:47:30,120 --> 00:47:34,100 |
|
ุงูุขู ุจุฏู ุฃุจุฏู ูุฏูู ู
ุน ุจุนุถ ูุฅู ุงูู X ู ุงูู Y ูู ุงู |
|
|
|
429 |
|
00:47:34,100 --> 00:47:37,980 |
|
center ูุจุฏููุง ู
ุน ุจุนุถ ุฏูุฑู ูุจูู ูุฐุง ุงูููุงู
ูุจุฏู |
|
|
|
430 |
|
00:47:37,980 --> 00:47:51,200 |
|
ูุณุงูู GJ ู ููุง Y ู ููุง GIX ูุฐุง B ููุฐุง A ูุจูู G |
|
|
|
431 |
|
00:47:51,200 --> 00:47:54,180 |
|
Abelian ูุจูู ููุง Das |
|
|
|
432 |
|
00:48:02,290 --> 00:48:10,990 |
|
ูุจูู ู
ู ุงูุงููุฉ ุณุงุนุฏุง ุงู |
|
|
|
433 |
|
00:48:10,990 --> 00:48:15,070 |
|
ุทุจุนุง |
|
|
|
434 |
|
00:48:15,070 --> 00:48:23,230 |
|
ูุงู ู
ูุฌูุฏุฉ ููุง ูุจูู ุชุณุงูู GI ูู element ู
ู ุงู |
|
|
|
435 |
|
00:48:23,230 --> 00:48:28,890 |
|
center ุงูู X ู
ูุฌูุฏุฉ ูู ุงูู center ูุงูู Y ู
ูุฌูุฏุฉ ูู ุงู |
|
|
|
436 |
|
00:48:28,890 --> 00:48:30,590 |
|
center ูุฐูู |
|
|