abdullah's picture
Add files using upload-large-folder tool
02a43a2 verified
raw
history blame
46.6 kB
1
00:00:21,850 --> 00:00:25,810
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ูˆุงุตู„ ู…ุง ุจุฏุฃู†ุง ููŠู‡ ููŠ
2
00:00:25,810 --> 00:00:30,430
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจุฏุฃู†ุง ุจุงู„normal subgroups ุฃุนุทูŠู†ุง
3
00:00:30,430 --> 00:00:34,310
ุชุนุฑูŠู ู„ู„normal subgroups ูˆุนุฑูู†ุง ุฃู† ุงู„ุชุนุฑูŠู ู„ู‡
4
00:00:34,310 --> 00:00:39,230
ุฃูˆุฌู‡ ู…ุฎุชู„ูุฉ ุจุฏู„ ูˆุฌู‡ ุซู„ุงุซุฉ ุซู… ุงู†ุชู‚ู„ู†ุง ุจุนุฏ ุฐู„ูƒ ุฅู„ู‰
5
00:00:39,230 --> 00:00:44,970
ุงู„factor groups ูˆุนู†ุงุตุฑ ุงู„factor groups ูƒู„ู‡ุง ู‡ูŠ
6
00:00:44,970 --> 00:00:49,930
left cosets ูˆุงุฎุฐู†ุง ุนู„ู‰ ุฐู„ูƒ ู…ุซุงู„ุง ูˆุงุญุฏุง ูˆู‡ุฐุง ู‡ูˆ
7
00:00:49,930 --> 00:00:55,520
ุงู„ู…ุซุงู„ ุฑู‚ู… 2 ุจู‚ูˆู„ ูŠูุชุฑุถ ุฃู† ุฌูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† Z18
8
00:00:55,520 --> 00:00:59,600
ูˆุงุฎุฏู†ุง ุงู„subgroup ู…ู†ู‡ุง ู‡ูŠ ุงู„subgroup generated
9
00:00:59,600 --> 00:01:06,820
by 6 ุงู„ุนู†ุงุตุฑ ุชุจุนู‡ุง 0 6 12 ุงู„ุขู† ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงู„ู€ H
10
00:01:06,820 --> 00:01:15,780
normal subgroup ู…ู† Z18 ุฃู… ู„ุงุŸ ุจุฏู†ุง ุงู„ุฅุฌุงุจุฉ Normal
11
00:01:15,780 --> 00:01:19,220
ู„ูŠุดุŸ ู„ุฃู† ุฌูŠ
12
00:01:22,380 --> 00:01:27,080
ุฃูˆู„ ู…ุซุงู„ ุฃุฎุฏุชู‡ ู…ุนุงูƒ ู„ูˆ ูƒุงู†ุช ุงู„ู€ group abelian ูŠุจู‚ู‰
13
00:01:27,080 --> 00:01:31,660
any subgroup is normal ุชู…ุงู… ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
14
00:01:31,660 --> 00:01:37,800
ุจู‚ูˆู„ู‡ then ุงู„ู€ H is a normal subgroup ู…ู† Z18
15
00:01:37,800 --> 00:01:48,050
because ุงู„ู„ูŠ ู‡ูˆ Z18 is abelian ูƒูˆูŠุณ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ
16
00:01:48,050 --> 00:01:52,990
ุฃูƒูˆู† ุงู„factor group ุฃูˆ ุจุฏูŠ ุฃุนุฑู ุงู„factor group
17
00:01:52,990 --> 00:02:00,710
ููŠู‡ุง ูƒู… element ู‡ุฐูŠ ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ู€ order ุงู„ู€ order ู„ู€
18
00:02:00,710 --> 00:02:09,490
Z18 ุงู„ู…ูˆุฏูŠูˆู„ูˆ 6 ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„ู‡ ู„ูุชูƒูˆู‡ 6 ูŠุจู‚ู‰ ุงู„ู€
19
00:02:09,490 --> 00:02:16,510
order ู„ู€ Z18 ู…ู‚ุณูˆู…ุง ุนู„ู‰ ุงู„ู€ order ู„ู„ู€ H ูˆุงู„ู„ูŠ ู‡ูˆ
20
00:02:16,510 --> 00:02:25,600
ุนุจุงุฑุฉ ุนู† 18 ุนู„ู‰ 3 ูŠุจู‚ู‰ 6 elements ูŠุจู‚ู‰ ุงู„ู€ group ู‡ุฐู‡
21
00:02:25,600 --> 00:02:31,460
ููŠู‡ุง ุณุชุฉ ุนู†ุงุตุฑ ุจุฏูŠ ุฃุนุฑู ู…ู† ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ูŠุจู‚ู‰ ุจุฑูˆุญ
22
00:02:31,460 --> 00:02:41,160
ุจู‚ูˆู„ ู„ู‡ the elements of Z ุงู„ุชู…ู†ุชุงุดุฑ modulo 6 are
23
00:02:43,100 --> 00:02:49,600
ุงู„ุฃูˆู„ุงู† ู‡ูˆ H itself ุฃูˆ ุงู„ู€ subgroup generated by 6
24
00:02:49,600 --> 00:02:55,000
ุงู„ุซุงู†ูŠ ู‡ูˆ 1 ุฒุงุฆุฏ ุงู„ู€ subgroup generated by 6
25
00:02:55,000 --> 00:03:00,580
ุงู„ุซุงู„ุซ 2 ุฒุงุฆุฏ ุงู„ู€ subgroup generated by 6
26
00:03:00,580 --> 00:03:06,280
ุงู„ุฑุงุจุน ู‡ูˆ 3 ุฒุงุฆุฏ ุงู„ู€ subgroup generated by 6
27
00:03:14,080 --> 00:03:20,300
ุงู„ุณุงุฏุณ ูˆุงู„ุฃุฎูŠุฑ ู„ู‡ 5 ุฒูŠ ุงู„ู€ subgroup generated by
28
00:03:20,300 --> 00:03:26,920
6 ุฃูŠ ุฃูŠ ุฃูŠ left coset 6 ุจุนุฏ ุฐู„ูƒ ู„ูˆ ุฌูŠุช ู„ูŠ ู‚ู„ุช ู„ูŠ 6
29
00:03:26,920 --> 00:03:31,040
ุฒูŠ ุงู„ู€ subgroup generated by 6 ุจู‚ูˆู„ ู„ูƒ ู‡ูŠ ู…ูŠู† ู‡ูŠ
30
00:03:31,040 --> 00:03:36,640
ุงู„ุฃุตู„ูŠุฉ ุงู„ู€ subgroup ุงู„ุฃุตู„ูŠุฉ ู„ูˆ ุฌูŠุช ู„ูŠ ู‚ู„ุช ู„ูŠ 7 ุฒูŠ
31
00:03:36,640 --> 00:03:40,000
ุงู„ู€ subgroup generated by 6 ุจู‚ูˆู„ ู„ูƒ ู‡ูŠ ุงู„ู€ 1 ูˆู‡ูƒุฐุง
32
00:03:40,610 --> 00:03:45,190
ุงู„ุขู† ุฏุงุฎู„ ู‡ุฐู‡ ุงู„ู€ group ู„ูˆ ุจุฏูŠ ุฃุฌู…ุน ุฃูˆ ุจุฏูŠ ุฃุนุฑู ุงู„ู€
33
00:03:45,190 --> 00:03:50,610
order ูƒูŠู ุจุฏูŠ ุฃุญุณุจู‡ ูŠุจู‚ู‰ ู„ุญุฏ ู‡ู†ุง ุงุญู†ุง ุงู†ุชู‡ูŠู†ุง ู…ู†
34
00:03:50,610 --> 00:03:57,450
ุนู†ุงุตุฑ ู‡ุฐู‡ ุงู„ู€ group ู„ูˆ ุจุฏูŠ ุฃุฌูŠ ุขุฎุฐ ู…ุซู„ุง 3 ุฒุงุฆุฏ
35
00:03:57,450 --> 00:04:03,350
ุงู„ู€ subgroup generated by 6 ุจุฏูŠ ุฃุฌู…ุน ู…ุน ู…ูŠู†ุŸ ู…ุน
36
00:04:03,350 --> 00:04:08,560
ุงู„ู€ 5 ุฒุงุฆุฏ ุงู„ู€ subgroup generated by 6 ูŠุนู†ูŠ ูƒุฃู†
37
00:04:08,560 --> 00:04:14,100
.. ูƒุฃู† ุจุฏูŠ ุฃุถุฑุจ two left cosets ููŠ ุจุนุถู‡ู… ู„ูƒู† ู„ู…ุง
38
00:04:14,100 --> 00:04:19,000
ูƒุงู†ุช ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุฌู…ุนูŠุฉ ูŠุจู‚ู‰ ุถุฑุจ ุจุณ ูŠุชุญูˆู„ ุฅู„ู‰
39
00:04:19,000 --> 00:04:22,720
ุฌู…ุนูŠุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ู‚ู„ู†ุง ุงู„ู€ operation ุงู„ู„ูŠ ุนู„ู‰
40
00:04:22,720 --> 00:04:28,010
ุงู„ู€ left cosets ู‡ุฐู‡ ุฅู† ุงู„ู€ A H ู…ุถุฑูˆุจ ููŠ B H ุจูŠูƒูˆู† A
41
00:04:28,010 --> 00:04:35,270
B F H ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‡ุฐุง ุจูŠูƒูˆู† 3 ุฒุงุฆุฏ
42
00:04:35,270 --> 00:04:40,770
5 ุฒุงุฆุฏ ุงู„ู€ subgroup generated by 6 3 ุฒุงุฆุฏ
43
00:04:40,770 --> 00:04:46,450
5 ู‚ุฏุงุดุŸ 8 8 ุจุดูŠู„ ู…ู†ู‡ู… ุงู„ู€ 6 ุจุธู„ ู‚ุฏุงุดุŸ
44
00:04:46,450 --> 00:04:51,490
2 ูŠุจู‚ู‰ ู‡ุฐุง 2 ุฒุงุฆุฏ ุงู„ู€ subgroup generated
45
00:04:51,490 --> 00:04:58,110
by 6 ู‡ูŠู‡ุง ูŠุจู‚ู‰ any two left cosets ู„ูˆ ุฌู…ุนุชู‡ู…
46
00:04:58,110 --> 00:05:03,790
ู‡ูŠุนุทูŠู†ูŠ ูˆุงุญุฏุฉ ู…ู† ุงู„ุณุช ู„ุฅุชู†ูŠู† ู‡ุฐูˆู„ ู„ูˆ ุจุฏูŠ ุฃุฌูŠุจ ู…ุซู„ุง
47
00:05:03,790 --> 00:05:08,550
ุงู„ู€ order ู„ุฃูŠ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฑูˆุญ ุฃุดูˆู ู‚ุฏุงุด
48
00:05:08,550 --> 00:05:13,550
ุงู„ุฑู‚ู… ุงู„ู„ูŠ ุจุฏูŠ ุฃุญุท ุฃุณ ู„ู‡ุฐุง ุงู„ู€ element ุจุญูŠุซ ูŠุนุทูŠู†ูŠ
49
00:05:13,550 --> 00:05:17,590
main ุงู„ู€ identity ูŠุนู†ูŠ ูŠุนุทูŠู†ูŠ ุงู„ู€ subgroup generated
50
00:05:17,590 --> 00:05:23,420
by ุงู„ู€ 6 ุจุงู„ุถุจุท ุชู…ุงู…ุง ู…ุซู„ู‹ุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ุจุฏูŠ ุฃุนุฑู
51
00:05:23,420 --> 00:05:27,920
ู‚ุฏุงุด ุงู„ู€ order ู„ู„ูŠ 2 ุฒุงุฆุฏ ุงู„ู€ subgroup generated
52
00:05:27,920 --> 00:05:34,380
by 6 ุจุฏูŠ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุงู„ุขู† ู…ุด ู‡ู†ุญูŠุจ ุงู„ู€ order ู„ู‡ุฐุง
53
00:05:34,380 --> 00:05:39,160
ุจุฏูŠ ุฃุฑูˆุญ ุฃุฑูุน ู„ู„ุฃุณ 1 ูˆุงู„ุฃุณ 2 ูˆุงู„ุฃุณ 3
54
00:05:39,160 --> 00:05:45,560
ู„ุบุงูŠุฉ ู…ุง ุฃูˆุตู„ ู„ู…ูŠู†ุŸ ู„ู„ู€ identity element ูู…ุซู„ู‹ุง ู„ูˆ ุจุฏ
55
00:05:45,560 --> 00:05:50,380
ุงู„ู€ 2 ุฒุงุฆุฏ ุงู„ู€ subgroup generated by 6 ู„ูƒู„
56
00:05:50,380 --> 00:05:56,100
ุชุฑุจูŠุน ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุญุงุตู„ ุถุฑุจ ุงู„ู€ 2 ูŠุนู†ูŠ ุญุงุตู„
57
00:05:56,100 --> 00:06:00,640
ุฌู…ุน ุงู„ู€ 2 ูŠุนู†ูŠ 2 ู…ุถุฑูˆุจุฉ ููŠ ู‡ุฐุง ุงู„ู€ element
58
00:06:00,640 --> 00:06:05,910
ู„ุฃู† ุงู„ู€ operation ุนู…ู„ูŠุฉ ุฌู…ุนูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ
59
00:06:05,910 --> 00:06:11,150
ุนุจุงุฑุฉ ุนู† 4 ุฒูŠ ุงู„ู€ subgroup generated by 6 ู„ุง
60
00:06:11,150 --> 00:06:15,770
ูŠุณุงูˆูŠ ุงู„ู€ identity element ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุขุฎุฐ
61
00:06:15,770 --> 00:06:21,410
2 ุฒูŠ ุงู„ู€ subgroup generated by 6 ุงู„ูƒู„ ุชูƒุนูŠุจ
62
00:06:21,410 --> 00:06:26,350
ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ูŠุณุงูˆูŠ 6 ุฒูŠ ุงู„ู€ subgroup generated
63
00:06:26,350 --> 00:06:32,940
by 6 ู‚ุฏุงุด ูŠุนุทูŠู†ูŠ ู‡ุฐุงุŸ 6 itself ูŠุจู‚ู‰ ุงู„ู€ order ู„ู‡ุฐุง
64
00:06:32,940 --> 00:06:37,720
ุงู„ู€ element ูŠุณุงูˆูŠ 3 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนุทูŠู†ูŠ ุฃู†
65
00:06:37,720 --> 00:06:42,840
ุงู„ู€ order ู„ู€ 2 ุฒุงุฆุฏ subgroup generated by 6 is
66
00:06:42,840 --> 00:06:47,600
equal to 3 ูˆู‡ูƒุฐุง ูŠุจู‚ู‰ ูƒูŠู ุจุฏู†ุง ู†ุถุฑุจุŸ ูƒูŠู ุจุฏู†ุง
67
00:06:47,600 --> 00:06:53,780
ู†ุฌู…ุนุŸ ูƒูŠู ุจุฏู†ุง ู†ุณูˆูŠุŸ ู‡ูŠ ู…ุซุงู„ ู‚ุฏุงู…ูƒ ุทูŠุจ ู†ูŠุฌูŠ ู†ุฃุฎุฐ
68
00:06:53,780 --> 00:06:56,160
ู…ุซุงู„ example three
69
00:07:02,940 --> 00:07:13,320
ุจู‚ูˆู„ ู„ูƒ ุฅู† ุงู„ู€ G ุชุณุงูˆูŠ D4 ูˆุงู„ู€ subgroup ุงู„ู„ูŠ ู‡ูŠ K
70
00:07:13,320 --> 00:07:20,740
ู‡ูŠ ุงู„ู€ subgroup generated by R180 ุทุจุนุง ู‡ุฐู‡ ู„ุง
71
00:07:20,740 --> 00:07:27,220
ูŠูˆุฌุฏ ููŠู‡ุง ุฅู„ุง ุนู†ุตุฑูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ R0 ูˆุงู„ู€ R180
72
00:07:27,220 --> 00:07:34,160
ุฃุธู† ูƒู…ุงู† ู‡ูŠ ู‡ุฐุง ุงู„ู€ center ุชุจุน ุงู„ู€ D4 ูˆู„ุง ู„ุฃุŸ ุฎู„ูŠู†ุง
73
00:07:34,160 --> 00:07:38,620
ู†ุฌุฑุจ ู‡ูƒุฐุง ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ Z ู„ู€ D N ูŠุง ููŠู‡ุง ุงู„ู€
74
00:07:38,620 --> 00:07:43,800
Identity ูู‚ุท ูŠุง ุฅู…ุง ููŠู‡ุง ุงู„ู€ Identity ูˆุงู„ู€ 180
75
00:07:43,800 --> 00:07:49,980
ุญุณุจ ุงู„ู€ D ู‡ุฐู‡ ู‡ู„ ู‡ูŠ ุญุณุจ ุงู„ู€ NุŸ ู‡ู„ ู‡ูŠ odd ูˆู„ุง
76
00:07:49,980 --> 00:07:57,460
evenุŸ ูŠุจู‚ู‰ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุจุฏู†ุง find the
77
00:07:57,460 --> 00:08:04,590
elements of ุทุจุนุง ููŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุนุทูŠู†ุง ู…ุฏุงู… ู‡ุฐูŠ
78
00:08:04,590 --> 00:08:11,650
ู‡ูŠูƒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง Z of D4 ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู‡ุฐู‡
79
00:08:11,650 --> 00:08:17,130
normal subgroup ู…ู† D4ุŸ ู„ูŠุดุŸ ู„ุฃู† ุนู†ุงุตุฑู‡ุง ุฏุงุฆู…ุง
80
00:08:17,130 --> 00:08:23,210
ุชุชุนุงู…ู„ ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ ุงู„ุฌุฑูˆุจ ูˆู‚ุฏ ุฃุฎุฐู†ุงู‡ู… ู…ุซู„ุง ุณุงุจู‚ุง
81
00:08:23,210 --> 00:08:31,840
ูŠุจู‚ู‰ ุจุฌูŠ ุจู‚ูˆู„ู‡ then ุงู„ู€ K is normal subgroup ููŠ D4
82
00:08:31,840 --> 00:08:43,840
ูŠุจู‚ู‰ find the elements ุจุฏู†ุง ุนู†ุงุตุฑ of D4 modulo K
83
00:08:43,840 --> 00:08:47,720
ูŠุจู‚ู‰ ุนู†ุงุตุฑ ุงู„factor group ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
84
00:08:54,650 --> 00:08:58,190
ูŠุจู‚ู‰ ุจุฏุฃ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ ุนู†ุงุตุฑ ุงู„factor group ุงู„ู„ูŠ
85
00:08:58,190 --> 00:09:02,750
ุนู†ุฏู†ุง ู‡ู†ุง ุฃูˆู„ ุดูŠุก ุจุฏุฃ ุฃุนุฑู ู‚ุฏุงุด ููŠู‡ุง ุนู†ุงุตุฑ ู‚ุจู„
86
00:09:02,750 --> 00:09:08,850
ู…ุง ุฃุฑูˆุญ ุฃุฏูˆุฑ ุทูŠุจ ุงู„ุนู†ุงุตุฑ ุชุจุนู‡ุง ูƒู„ ุงู„ู€ left cosets ุฃูˆ
87
00:09:08,850 --> 00:09:15,050
ูƒู„ distinct left cosets ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ D4 modulo
88
00:09:15,050 --> 00:09:22,990
K ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู€ D4 ู…ู‚ุณูˆู…ุง ุนู„ู‰ ุงู„ู€ order ู„ู€ K
89
00:09:22,990 --> 00:09:28,790
ู‡ุฐู‡ 8 ูˆู‡ุฐู‡ 2 ูŠุจู‚ู‰ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠู‡ุง ูŠุณุงูˆูŠ
90
00:09:28,790 --> 00:09:34,690
ู‚ุฏุฑ 4 ุนู†ุงุตุฑ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ
91
00:09:34,690 --> 00:09:40,790
ูŠุจู‚ู‰ ุจุฏูŠ ุฃุจุฏุฃ ุจุงู„ู€ left coset ุงู„ุฃูˆู„ู‰ ุทุจุนุง R0 ูˆR180
92
00:09:40,790 --> 00:09:46,330
ู„ูˆ ุถุฑุจุชู‡ุง ููŠ K ุจุชุธู„ู‡ุง ูƒู…ุง ู‡ูŠ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ุง ุตูุนุฉ ุดุฌุฉ ูˆ
93
00:09:46,330 --> 00:09:52,840
ุจุฑูˆุญ ุขุฎุฐ R90 ููŠ main ููŠ ุงู„ู€ K ูŠุจู‚ู‰ ุจุฏุฃ ุฃุถุฑุจู‡ุง ููŠ
94
00:09:52,840 --> 00:09:59,920
ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุฌูˆุง ุจุตูŠุฑ R90 ูˆู‡ุฐู‡ R90 ููŠ R180 ุงู„ู„ูŠ
95
00:09:59,920 --> 00:10:11,200
ูŠุจู‚ู‰ ุฏุงุดุฑุฉ R270 ู‡ูŠ ุจุงู„ุถุจุท ุชู…ุงู…ุง ูƒู…ุงู† R270 ููŠ K ูŠุจู‚ู‰
96
00:10:11,200 --> 00:10:14,840
ู‡ุฏูˆู„ ู…ุด ุชู†ุชู‡ูŠ ุงู„ู€ left coset ุณูˆุงุก ุฅู†ู…ุง ููŠ ุงู„ุญู‚ูŠู‚ุฉ
97
00:10:14,840 --> 00:10:22,280
left coset ูˆุงุญุฏุฉ ุจุงู„ู…ู‘ุซู„ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฌูŠุจ ู„ู‡ ู…ูŠู†ุŸ ุงู„ู€ H
98
00:10:22,280 --> 00:10:29,200
ููŠ K ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ุฃุถุฑุจ ุงู„ู€ H ููŠ
99
00:10:29,200 --> 00:10:37,040
R0 ุจุชุนุทูŠู†ุง H ุฃูˆ ู‡ู†ุง ุจุชุนุทูŠู†ุง H ููŠ R180 ุจุงู„ุดูƒู„
100
00:10:37,040 --> 00:10:42,850
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ H ู‡ู†ุง ุนู†ุฏูƒ
101
00:10:42,850 --> 00:10:46,990
ููŠ ุงู„ู€ ุฌุฏูˆู„ ููŠ ุตูุญุฉ 1 ูˆ80 ุงู„ู€ H ููŠ ุงู„ู€ R180
102
00:10:46,990 --> 00:10:54,250
ุงู„ู„ูŠ ู‡ูŠ main of V ูˆุชุณุงูˆูŠ ูƒุฐู„ูƒ ุงู„ู€ V ููŠ K
103
00:10:54,250 --> 00:10:59,950
ู„ุฅู† ู„ูˆ ุถุฑุจุช ุงู„ู€ V ููŠ K ุจุตูŠุฑ ู‡ู†ุง V ูˆู‡ู†ุง V ุจR180 ุงู„ู„ูŠ
104
00:10:59,950 --> 00:11:04,210
ู‡ูŠ ุนุจุงุฑุฉ ุนู† main ุน ุงู„ู€ H ูŠุจู‚ู‰ ุตุงุฑูˆุง
105
00:11:04,210 --> 00:11:11,700
ุฅุซู†ุชูŠู† ูˆู„ูŠุณุช ูˆุงุญุฏุฉ ุจุงู„ู…ู‘ุซู„ ู„ูˆ ุฑูˆุญุช ุฌุจุช ู„ู‡ ุงู„ู€ D ููŠ
106
00:11:11,700 --> 00:11:18,900
main ููŠ ุงู„ู€ K ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุนุทูŠูƒ D ูˆู‡ู†ุง D ููŠ R
107
00:11:18,900 --> 00:11:25,660
180 ู‡ุฐู‡ ุจุฏู‡ุง ุชุนุทูŠูƒ D ูˆD' ูˆุงู„ู„ูŠ ู‡ูŠ
108
00:11:25,660 --> 00:11:31,800
ุจุฏู‡ุง ุชุณุงูˆูŠ D' ูƒุฐู„ูƒ K ูŠุจู‚ู‰ ุฃุตุจุญ ุนู†ุฏูŠ the
109
00:11:31,800 --> 00:11:33,740
elements
110
00:11:36,580 --> 00:11:43,360
The elements of D4
111
00:11:43,360 --> 00:11:50,720
modulo K R ุงู„ู€ element ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ K itself
112
00:11:50,720 --> 00:11:57,140
ูˆุงู„ู€ element ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ R90 ููŠ ุงู„ู€ K ุงู„ู„ูŠ
113
00:11:57,140 --> 00:12:02,720
ุจุฏู‡ ูŠุณุงูˆูŠ R270 ููŠ K ูˆุงู„ู€ element ุงู„ุซุงู„ุซ
114
00:12:02,720 --> 00:12:08,300
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ HK ูˆุงู„ู€ element ุงู„ุฑุงุจุน ูˆุงู„ุฃุฎูŠุฑ ุงู„ู„ูŠ ู‡ูˆ
115
00:12:08,300 --> 00:12:14,220
DK ูŠุจู‚ู‰ ู‡ูŠ ุงู„ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ูˆุงู„ุชูŠ
116
00:12:14,220 --> 00:12:19,460
ุชู…ุซู„ ุนู†ุงุตุฑ ุงู„ู€ factor group ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุงู„ุถุจุท ุชู…ุงู…ุง
117
00:12:19,460 --> 00:12:26,620
ุทูŠุจ ุงู„ู„ูŠ ุฎุงุทุฑ ุฃุนุทูŠูƒ exercise ู‡ูƒุฐุง exercise ู„ูˆ ู‚ู„ุช ู„ูƒ
118
00:12:26,620 --> 00:12:35,490
little g ุชุณุงูˆูŠ D4 itself ูˆุฎุฐ ู„ูŠ ุงู„ู€ H ู‡ูŠ ุงู„ู€
119
00:12:35,490 --> 00:12:47,270
subgroup generated by R90 ุงู„ุณุคุงู„ ู‡ูˆ is ุงู„ู€
120
00:12:47,270 --> 00:12:59,970
D4 is D4 modulo H exist ู‡ู„ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉุŸ if so
121
00:13:01,510 --> 00:13:05,110
if so find it
122
00:13:07,500 --> 00:13:12,220
ุฅุฐุง ูƒุงู† ุงู„ุฃู…ุฑ ูƒุฐู„ูƒ ุจุฏู†ุง ุฅูŠุงู‡ุง ุทุจุนุง ุงู„ู€ subgroup
123
00:13:12,220 --> 00:13:16,500
generated by R90 ููŠู‡ุง ู‚ุฏุงุด ูƒุงู… ุนู†ุตุฑุŸ 4
124
00:13:16,500 --> 00:13:21,420
ุนู†ุงุตุฑ ูˆD4 ููŠู‡ุง ู‚ุฏุงุด 8 ุนู†ุงุตุฑ ูŠุจู‚ู‰ ุงู„ู€ index ู„ู‡ุง
125
00:13:21,420 --> 00:13:25,800
ู‚ุฏุงุดุŸ ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃุฎุฐู†ุง ู„ูˆ ุงู„ู€ group ุงู„ู€ index ู„ู‡ุง
126
00:13:25,800 --> 00:13:29,180
ุฃูˆ ุงู„ู€ subgroup ุงู„ู€ index ู„ู‡ุง ูŠุณุงูˆู‰ ุงุซู†ูŠู† ุฅูŠุด ุจุชูƒูˆู†
127
00:13:29,180 --> 00:13:33,360
ู‡ุฐู‡ุŸ ุฅูŠุด ุจุชูƒูˆู†ุŸ normal subgroup ู…ุฏุงู… normal
128
00:13:33,360 --> 00:13:38,010
subgroup ูŠุจู‚ู‰ ุงู„ู€ factor group exist ู…ุง ุฏุงู… exist
129
00:13:38,010 --> 00:13:41,670
ู‡ุฐุง ุฌูˆุงุจ ุงู„ุณุคุงู„ ุฃูˆู„ ูŠูˆู… ู†ู‡ู„ูƒ ุดููˆูŠ ุจุฏู†ุง ู†ุนุฑู ู…ู†
130
00:13:41,670 --> 00:13:47,470
ู‡ุงู„ุนู†ุตุฑูŠู† ูู‚ุท ุงู„ู„ูŠ ู…ูˆุฌูˆุฏูŠู† ููŠ ุงู„ู€ main ููŠ ุงู„ู€ factor a
131
00:13:47,470 --> 00:13:52,190
group ู‡ุฐุง ุจุงู„ู†ุณุจุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู†ูŠุฌูŠ ู†ุงุฎุฏ ู…ุซุงู„ ุขุฎุฑ
132
00:14:11,040 --> 00:14:17,680
ู…ุซุงู„ ุฑู‚ู… ุฃุฑุจุนุฉ ุจูŠู‚ูˆู„
133
00:14:17,680 --> 00:14:28,420
little g ุจุฏู‡ุง ุชุณุงูˆูŠ A4 ูˆ ุงู„ู€ H is a subgroup ู…ู†
134
00:14:28,420 --> 00:14:38,780
ู…ูŠู†ุŸ ู…ู† G ุญูŠุซ ุงู„ู€ H ู‡ุฐู‡ ููŠู‡ุง ุงู„ุนู†ุงุตุฑ ุงู„ุชุงู„ูŠุฉ
135
00:14:39,460 --> 00:14:47,660
identity element ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุงู„ุนู†ุตุฑ
136
00:14:47,660 --> 00:14:52,880
ุงู„ู„ูŠ ุจุนุฏู‡ ูˆุงุญุฏ ุซู„ุงุซุฉ ุงุซู†ูŠู† ุฃุฑุจุนุฉ ูˆุงุญุฏ ุซู„ุงุซุฉ ุงุซู†ูŠู†
137
00:14:52,880 --> 00:15:00,240
ุฃุฑุจุนุฉ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ุจุนุฏู‡ ูˆุงุญุฏ ุฃุฑุจุนุฉ ุงุซู†ูŠู† ุซู„ุงุซุฉ ูˆุงุญุฏ
138
00:15:00,240 --> 00:15:06,540
ุฃุฑุจุนุฉ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง number a
139
00:15:06,540 --> 00:15:16,060
show that ุจูŠู‘ู† ู„ูŠ ุฃู† ุงู„ู€ H is a normal subgroup ู…ู† ู…ู†
140
00:15:16,060 --> 00:15:27,760
ุงู„ู€ G ู†ู…ุฑุฉ B show that ุจูŠู‘ู† ู„ูŠ ุฃู† ุงู„ู€ A for modulo H
141
00:15:27,760 --> 00:15:31,640
is cyclic
142
00:16:01,560 --> 00:16:09,740
ุงู„ุขู† ู…ูˆุงุทูŠู† ุงู„ู€ G ู‡ูŠ ุงู„ู€ A4 ู…ู† ุงู„ู€ A4 ู‡ุฐูŠ ู…ู…ุชุงุฒ ุฌุฏุง
143
00:16:09,740 --> 00:16:14,760
ูŠุจู‚ู‰ ู‡ุฐูŠ the sixth of all even permutations of S4
144
00:16:14,760 --> 00:16:21,810
ุนุฏุฏ ุฃู†ุตุงุฑู‡ุง ูƒุฏู‡ุดุŸ 12 ุนู†ุตุฑ ุชู…ุงู… ูŠุจู‚ู‰ ุนุฏุฏ ุงู„ู€ A4 12
145
00:16:21,810 --> 00:16:26,530
ุนู†ุตุฑ ุฃุฎุฐู†ุง ุงู„ู€ subgroup ู…ู†ู‡ุง ุงู„ู€ subgroup ุงู„ู„ูŠ ู‡ูŠ H
146
00:16:26,530 --> 00:16:31,710
ุฒูŠ ู…ุง ุฃู†ุช ุดุงูŠู ุจู†ู‚ู„ ุนู„ูŠู‡ ุจุณุฃู„ ุงู„ุณุคุงู„ ู‡ู„ ุงู„ู€ H ู‡ุฐูŠ
147
00:16:31,710 --> 00:16:37,510
normal subgroup ู…ู† G ุฃู… ู„ุงุŸ ุฅู† ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช
148
00:16:37,510 --> 00:16:45,410
ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ
149
00:16:45,410 --> 00:16:47,170
ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง
150
00:16:47,170 --> 00:16:47,450
ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช
151
00:16:47,450 --> 00:16:47,470
ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช
152
00:16:47,470 --> 00:16:47,730
ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง
153
00:16:47,730 --> 00:16:48,330
ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช
154
00:16:48,330 --> 00:17:00,070
ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง ูƒุงู†ุช ุนุงู…ุฉ ุฅุฐุง
155
00:17:00,070 --> 00:17:08,110
ูƒุงู†ุช ุนุงู…ุฉ ู‚ุฏุงุด ุงู„ู€ order ู„ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ H ุฃูˆ
156
00:17:08,110 --> 00:17:14,690
ุฃูˆ ุฃุฑุจุนุฉ ุฃูˆ ุซู„ุงุซุฉ ูŠุนู†ูŠ ุงุซู†ูŠู† ุฃูˆ ุฃุฑุจุนุฉ ุฃูˆ ุซู„ุงุซุฉ
157
00:17:14,690 --> 00:17:20,970
ุนู†ุงุตุฑ ู„ูŠู„ูŠุชุด ู‡ูŠู‡ู… ู‚ุฏุงู…ูƒ ู‚ุฏุงุด ุงู„ู€ ุงุซู†ูŠู† ุฃูˆ ุฃุฑุจุนุฉ ุจุณ
158
00:17:20,970 --> 00:17:26,850
ุงุซู†ูŠู† ู…ุง ููŠุด ุบูŠุฑ ูˆุงุญุฏ ู…ุง ููŠุด ูˆุงุญุฏ ูŠุนู†ูŠ ูŠุจู‚ู‰ ุงู„ู€ order
159
00:17:26,850 --> 00:17:33,370
ุฅู„ุง ูˆุงุญุฏ ุฃูˆ ุงุซู†ูŠู† ุงู„ู€ least common multiple ู„ู…ูŠู†ุŸ ู„ู„ู€
160
00:17:33,370 --> 00:17:38,230
cycles ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุงู„ู€ order ูŠุง ุฅู…ุง ูˆุงุญุฏ ูŠุง ุฅู…ุง
161
00:17:38,230 --> 00:17:44,550
ุงุซู†ูŠู† ู„ุง ูŠุฒูŠุฏ ุนู† ุฐู„ูƒ ุทุจุนุง ู‡ุฐู‡ ู…ู…ูƒู† ุชุนู…ู„ ููŠู‡ุง
162
00:17:44,550 --> 00:17:47,250
composition ูˆู‡ุฐู‡ ู…ู…ูƒู† ุชุนู…ู„ ููŠู‡ุง composition ุฅู†
163
00:17:47,250 --> 00:17:51,650
ูƒุงู†ุช ุชู‚ุฏุฑ ุทุจุนุง ู‡ุฐู‡ ู…ุง ููŠุด ุฅู…ูƒุงู†ูŠุฉ ู‡ุฐู‡ ู…ุง ููŠุด ุฅู…ูƒุงู†ูŠุฉ
164
00:17:51,650 --> 00:17:56,190
ู‡ุฐู‡ ูƒู…ุงู† ู…ุง ููŠุด ุฅู…ูƒุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุคู„ุงุก ุงู„ู€ order is giant
165
00:17:56,190 --> 00:17:59,390
cycle ูŠุจู‚ู‰ ุงู„ู€ ุงุณูƒูˆู…ุฉ ุงู„ู…ุทู„ูˆุจุฉ ุงู„ู„ูŠ ุทูˆู„ ูƒู„ ูˆุงุญุฏุฉ
166
00:17:59,390 --> 00:18:02,030
ู…ู†ู‡ู… ุงู„ู€ ุงุณูƒูˆู…ุฉ ุงู„ู„ูŠ ุทูˆู„ ุงู„ุงุซู†ูŠู† ูˆุงู„ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ B2
167
00:18:02,630 --> 00:18:10,430
ูŠุจู‚ู‰ ู‡ุฏูˆู„ ูƒู…ุงู† ู‡ุฏูˆู„ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠ A4 ูˆุงู„ู„ูŠ ุงู„ู€
168
00:18:10,430 --> 00:18:16,410
order ุงู„ู„ูŠ ู„ู‡ู… ูŠุณุงูˆูŠ ุงุซู†ูŠู† ุตุญุŸ ูŠุนู†ูŠ ุฃู†ุช ู„ูˆ ุฑุญุช
169
00:18:16,410 --> 00:18:21,470
ู„ู„ุชูุตูŠู„ุงุช ุชุจุนุช A4 ููŠ ุตูุญุฉ 107 ู…ู† ุงู„ูƒุชุงุจ 107 ู…ู†
170
00:18:21,470 --> 00:18:28,330
ุงู„ูƒุชุงุจ ุญุท ู„ูƒ ูƒู„ ุนู†ุงุตุฑ ุงู„ู€ A4 ู„ู€ 12 ุตูู‡ู… ู„ูƒ ุตู ู‡ุฏูˆู„ ูู‚ุท
171
00:18:28,630 --> 00:18:33,710
ู‡ู… ุงู„ู„ูŠ ุงู„ู€ order ู„ู‡ู… ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฃูˆ ุงุซู†ูŠู† ุบูŠุฑ ู‡ูŠูƒ
172
00:18:33,710 --> 00:18:37,430
ู…ุง ุฌุงุจุด ู‡ุงูŠุจ ุงู„ุฃูˆุถุฉ ูˆู…ุนุธู…ู‡ุง ูƒู„ู‡ู… ุฌุงุจูˆุง ู…ุงุก ู‚ุฏุงู…ู‡ู…
173
00:18:37,430 --> 00:18:47,850
ูŠุจู‚ู‰ ุฃูˆู„ ุดุบู„ุฉ observe that observe that ู„ุงุญุธ ุฃู† ุงู„ู€
174
00:18:47,850 --> 00:18:53,610
elements of
175
00:18:53,610 --> 00:18:58,290
H are all
176
00:19:01,630 --> 00:19:14,830
ุงู„ุฃุดูŠุงุก ู…ู† A4 ุงู„ุชูŠ ู„ุฏูŠู‡ุง order 2 ุฃูˆ 1
177
00:19:18,250 --> 00:19:23,730
ูŠุจู‚ู‰ ุนู†ุงุตุฑ H ู‡ู…ุง ูƒู„ ุนู†ุงุตุฑ A4 ุงู„ู„ูŠ ุงู„ู€ order ู„ู‡ู…
178
00:19:23,730 --> 00:19:28,050
ูŠุณุงูˆูŠ ุฅู…ุง ุงุซู†ูŠู† ุฃูˆ ูˆุงุญุฏ ุทุจุนุง ุงู„ู€ order ุงู„ู„ูŠ ู‡ุฐู‡
179
00:19:28,050 --> 00:19:30,430
ุงุซู†ูŠู† ุงู„ู€ order ุงู„ู„ูŠ ู‡ุฐู‡ ุงุซู†ูŠู† ุงู„ู€ order ุงู„ู„ูŠ ู‡ุฐู‡
180
00:19:30,430 --> 00:19:35,990
ุงุซู†ูŠู† ุงู„ู€ order ุงู„ู„ูŠ ู‡ุฐู‡ ูˆุงุญุฏ ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฏูˆู„ ูƒู„ู‡ู…
181
00:19:35,990 --> 00:19:39,270
ุนู†ุงุตุฑ A4 ุจู„ุง ุงุณุชุซู†ุงุก
182
00:19:42,420 --> 00:19:50,300
ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ู„ุงุฒู… ุชูƒูˆู† ุนุงู…ุฉ ู„ุงุฒู… ุชูƒูˆู† ุนุงู…ุฉ
183
00:19:55,440 --> 00:19:58,680
ูˆ ุฃุซุจุช ุฃู† ุญุงุตู„ ุงู„ู€ element ุชุจุน ุงู„ู€ G ููŠ ุงู„ู€ element
184
00:19:58,680 --> 00:20:02,120
ุชุจุน ุงู„ู€ H ููŠ ู…ุนูƒูˆุณ ุงู„ู€ element ุชุจุน ุงู„ู€ G ุจุฏูŠ ูŠูƒูˆู†
185
00:20:02,120 --> 00:20:08,260
ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ H ู…ู…ุชุงุฒ ุฅุฐุง ูŠุจู‚ู‰ ุฃู†ุง ุจุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ุฎุฏ ู„ูŠ
186
00:20:08,260 --> 00:20:15,080
Alpha ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ A4 ูˆ ุงู„ู€ Alpha does not belong
187
00:20:15,080 --> 00:20:21,940
to H ุจุฏูŠ ุฃุฎุฐู‡ุง ู…ู† ูˆูŠู†ุŸ ู…ู† ุฎุงุฑุฌ ุงู„ู€ H ูˆ ุงู„ู€ Beta
188
00:20:21,940 --> 00:20:29,210
ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸ ููŠ H ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฐุช Alpha ู…ูˆุฌูˆุฏุฉ ููŠ A4 ูˆ
189
00:20:29,210 --> 00:20:34,710
ุฎุงุฑุฌ H ูˆุฃุฎุฐุช ุงู„ู€ Beta ู…ูˆุฌูˆุฏุฉ ููŠ H ู…ูˆุฌูˆุฏุฉ ููŠ ุงูŠู†ุŸ
190
00:20:34,710 --> 00:20:43,380
ู…ูˆุฌูˆุฏุฉ ููŠ H ู…ูˆุฌูˆุฏุฉ ููŠ H ูˆู„ุง ู„ุงุŸ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ู„ู‡ ุฅู†
191
00:20:43,380 --> 00:20:47,120
ูƒุงู† ุงู„ู€ Alpha Beta Alpha ูŠุชุดูŠู„ ูƒู„ ุชุฑุจูŠุน ูŠุนุทุงู†ูŠ ุงู„ู€
192
00:20:47,120 --> 00:20:52,640
identity ุฅุฐุง ุงู„ู€ order ูŠุณุงูˆูŠ ุงุซู†ูŠู† ุฅุฐุง ู‡ุชูƒูˆู† ูˆุงุญุฏ ู…ู†
193
00:20:52,640 --> 00:20:58,440
ู‡ุฏูˆู„ ูŠุจู‚ู‰ ุจุชูƒูˆู† one ุจุชูƒูˆู† ูุงุฆุฏุฉ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ order
194
00:20:58,440 --> 00:21:04,110
ู„ุง ุจูŠู‚ุฏุฑุด ุซุงู†ูŠุฉ ู„ุฃู†ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ H ู„ุฃู†ู‡ ููŠ H ูƒู„ ูˆุงุญุฏ
195
00:21:04,110 --> 00:21:09,110
ุงู„ู€ order ู„ู‡ ูŠุณุงูˆูŠ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุขุฎุฐ ู„ู‡ ุงู„ุขู†
196
00:21:09,110 --> 00:21:15,430
Alpha Beta Alpha Inverse ู„ูƒู„ ุชุฑุจูŠุน ู‡ูŠ Alpha Beta
197
00:21:15,430 --> 00:21:21,440
Alpha Inverse Alpha Beta Alpha Inverse ู‡ุฐุง ุงู„ุชุฑุจูŠุน
198
00:21:21,440 --> 00:21:26,520
ุชุจุนู‡ุง ุงู„ุขู† ู…ู† ุฎุงุตูŠุฉ ุงู„ู€ associativity ู‡ุฐู‡ Alpha
199
00:21:26,520 --> 00:21:33,520
Beta ููŠ Alpha Inverse Alpha ููŠ Beta Alpha Inverse
200
00:21:33,520 --> 00:21:38,060
ุฎุงุตูŠุฉ ุงู„ู€ associativity ุฏู…ุฌุช ุงุซู†ูŠู† ู‡ุฏูˆู„ ู…ุงู„ู‡ู… ู…ุน
201
00:21:38,060 --> 00:21:41,640
ุจุนุถ ุทุจ ู‡ุฐุง ุงู„ุนู†ุตุฑ ููŠ ุงู„ู…ุนูƒุณ ู‡ูˆ ู…ุด ุจูŠุนุทูŠู†ุง ุงู„ู€
202
00:21:41,640 --> 00:21:47,180
identity ูŠุจู‚ู‰ ุจุฑูˆุญ ู…ุน ุงู„ุณู„ุงู…ุฉ ูŠุจู‚ู‰ ุจุตูŠุฑ Alpha Beta
203
00:21:47,180 --> 00:21:53,500
ุชุฑุจูŠุน Alpha Inverse ุจูŠุชุง ุชุฑุจูŠุน ุฃุจุฌุฏุงุด ู„ุฃู†ู‡ุง ู…ูˆุฌูˆุฏุฉ
204
00:21:53,500 --> 00:22:00,540
ูˆูŠู†ุŸ ููŠ H ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ Alpha ุงู„ู€
205
00:22:00,540 --> 00:22:07,780
identity ููŠ ุงู„ู€ Alpha Inverse ุงู„ุณุจุจ because ุฅู† ุงู„ู€
206
00:22:07,780 --> 00:22:14,060
order ู„ู€ Beta ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ุงุซู†ูŠู† ู‡ุฐุง
207
00:22:14,060 --> 00:22:18,020
ุงู„ุจุฑู†ุงู…ุฌ ุณูŠุนุทูŠู†ุง ุงู„ู€ Alpha Alpha Inverse ุงู„ู„ูŠ ู‡ูˆ
208
00:22:18,020 --> 00:22:21,000
ุงู„ู€ Main ุงู„ู€ Identity ุงุญู†ุง ุญุทูŠู†ุงู‡ุง ุจูˆุงุญุฏ ูˆู„ุง
209
00:22:21,000 --> 00:22:25,880
ู†ุบูŠุฑู‡ุง ูŠุจู‚ู‰ ุนุฏู„ู‡ุง ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุจุฑู†ุงู…ุฌ ุณูŠุนุทูŠู†ุง
210
00:22:25,880 --> 00:22:30,710
ุงู„ู€ Main ุงู„ู„ูŠ ู‡ูˆ ุจูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง
211
00:22:30,710 --> 00:22:36,170
ุณูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ order ู„ู€ Alpha Beta Alpha Inverse ู‡ูˆ
212
00:22:36,170 --> 00:22:43,370
ุงุซู†ูŠู† ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ Alpha Beta Alpha Inverse
213
00:22:43,370 --> 00:22:46,910
ู…ูˆุฌูˆุฏุฉ ููŠ normal subgroup
214
00:22:59,830 --> 00:23:06,380
ู‡ุฐุง ุงู„ุญู„ ุงู„ู„ูŠ ุญู„ูŠู†ุงู‡ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู†ู…ุฑุง a ุงู„ู…ุทู„ูˆุจ
215
00:23:06,380 --> 00:23:12,220
ุงู„ุซุงู†ูŠ ู†ู…ุฑุง b ุจูŠู‚ูˆู„ ู„ูŠ ููŠ ู†ู…ุฑุง b ุงุซุจุช ู„ูŠ ุฃู† ุงู„ู€
216
00:23:12,220 --> 00:23:17,120
factor group ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ is a cyclic group
217
00:23:17,120 --> 00:23:25,220
ุจูŠู‚ูˆู„ ู„ูƒ ุฎูŠุต ุชุนุงู„ ู†ุดูˆู ู‚ุฏุงุด ุงู„ู€ order ู„ู„ู€ A for modulo
218
00:23:25,220 --> 00:23:32,140
H ุงู„ู„ูŠ ุจู‚ูˆู„ ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู„ู€ A4
219
00:23:32,140 --> 00:23:37,480
ุนู„ู‰ ุงู„ู€ order ู„ู„ู€ H ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงุซู†ุง ุนุดุฑ ุนู„ู‰ ุฃุฑุจุนุฉ
220
00:23:37,480 --> 00:23:42,380
ูŠุณุงูˆูŠ ูƒุฏู‡ุดุŸ ุซู„ุงุซุฉ
221
00:23:42,380 --> 00:23:52,590
is prime ู†ุฑุฌุน ู„ู…ูŠู†ุŸ ู†ุฑุฌุน ู„ุฃุฎุฐู†ุง ู†ุธุฑูŠุฉ ู…ุดู‡ูˆุฑุฉ ู‚ู„ู†ุง ููŠ
222
00:23:52,590 --> 00:23:57,050
ุงู„ุฌุจุฑ ู†ุธุฑูŠุฉ ุงู„ู€ grunge ูˆ ุงู„ู€ crawlers ุงู„ู„ูŠ ุนู„ูŠู‡ุง ุงู„ู€
223
00:23:57,050 --> 00:24:01,870
crawlers ุฑู‚ู…ุชู‡ู… ูƒุงู† ุจูŠู‚ูˆู„ ู„ูŠ ุฅุฐุง ูƒุงู† ุงู„ู€ order ู„ู„ู€
224
00:24:01,870 --> 00:24:06,550
group ุฃูˆ ู„ู„ู€ sub group ุงู„ู€ prime number ูŠุจู‚ู‰ ู‡ูŠ...
225
00:24:06,550 --> 00:24:16,750
ู‡ูŠ cyclic group ูŠุจู‚ู‰ by her previous corollary
226
00:24:19,010 --> 00:24:26,770
ุงู„ู„ูŠ ู‡ูŠ ุงุซู†ูŠู† ุนู„ู‰ ู†ุธุฑูŠุฉ Lagrange we have ุฅู† ุงู„ู€ A4
227
00:24:26,770 --> 00:24:35,790
modulo H is cyclic ุทูŠุจ
228
00:24:35,790 --> 00:24:45,560
ุญุงุจุจ ุฃุชุนุฑู ุนู„ู‰ ุดูƒู„ ุงู„ุนู†ุงุตุฑ check that ุชุฃูƒุฏ ู„ูŠ ุฃู† ุงู„ู€
229
00:24:45,560 --> 00:24:53,820
A4 modulo H ุนู†ุงุตุฑู‡ุง ุงู„ู„ูŠ ู‡ู… ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู€ H
230
00:24:53,820 --> 00:25:03,560
ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ููŠ H ูˆุงุญุฏ ุซู„ุงุซุฉ ุงุซู†ูŠู† ููŠ H ูƒูŠู
231
00:25:03,560 --> 00:25:12,180
ุจุฏูŠ ุฃุนุฑูู‡ุงุŸ ูŠุจู‚ู‰ ุจุฏูŠ ุฃู…ุณูƒ ุงู„ุนู†ุงุตุฑ ู…ู† ุฎุงุฑุฌ H ู„ุฃู† ุฃูŠ
232
00:25:12,180 --> 00:25:15,660
ุนู†ุตุฑ ู…ุง ู†ุดุชุบู„ู‡ ููŠ H ุจุฏู‡ ุชุทู„ุน ู†ูุณ ุงู„ู€ H ุฅุฐุง ูƒุชุฑูˆุญ
233
00:25:15,660 --> 00:25:22,100
ุฃุฌูŠุจ ู„ู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุถุงูŠู„ุฉ ููŠ A4 ุตูุญุฉ 107 ูˆุชุถุฑุจู‡ู… ูˆูŠู†
234
00:25:22,100 --> 00:25:26,800
ุชุถุฑุจ ู…ู† ููŠ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏูƒ ุฏุงุฆู…ุง ูˆุงุจุฏุง ุญูŠุทู„ุน
235
00:25:26,800 --> 00:25:33,870
ูˆุงุญุฏ ู…ู† ุงู„ุซู„ุงุซุฉ ุฏูˆู„ ุฅุฐุง ู„ุงุฒู… ุฃุฌูŠุจู‡ุง ู„ูƒ ูƒุฃูŠ ุญุงุฌุฉ
236
00:25:33,870 --> 00:25:42,110
ุจุชู„ุฒู… ูƒุฌุฏูˆู„ ุจูŠุฌูŠุจูˆู‡ุง ู„ูƒ ุฃู†ุง ุจุฏูŠูƒ ุชุจู‚ู‰ ูุงู‡ู… ูˆู„ูŠุณ
237
00:25:42,110 --> 00:25:47,870
ุญุงูุธ ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ู€ A for module H ุงู„ู„ูŠ ุนู†ุงุตุฑู‡ุง H
238
00:25:47,870 --> 00:25:53,690
ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ H ูˆุงุญุฏ ุซู„ุงุซุฉ ุงุซู†ูŠู† H ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ
239
00:25:53,690 --> 00:25:57,230
ู‚ุฏุงุด ุงู„ู€ order ู„ู‡ุฐู‡ ุงู„ู€ element
240
00:26:05,570 --> 00:26:17,390
ุฃุฑุจุนุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ ุณุชุฉ
241
00:26:17,390 --> 00:26:21,630
ุณุชุฉ
242
00:26:23,010 --> 00:26:27,830
ูŠุง ูˆุงุญุฏ ูŠุง ุซู„ุงุซุฉ ูˆุบูŠุฑ ู‡ูŠูƒ ู…ุง ููŠุด ููŠุด ุจุงู„ู…ุฑุฉ ูˆุงุญุฏ ู‡ูŠ
243
00:26:27,830 --> 00:26:31,830
ูŠุจู‚ู‰ ุบุตุจ ุนู†ูŠ ูˆุนู†ูƒ ุงู„ู€ order ุฅู„ู‰ ูŠุณุงูˆูŠ ุซู„ุงุซุฉ ุงู„ุญูŠู†
244
00:26:31,830 --> 00:26:35,750
ู‡ุฐู‡ ู„ู… ุชุฌุฏ ุทูˆู„ู‡ุง ุซู„ุงุซุฉ ุงู„ู…ู‡ูˆุถ ู„ู…ุง ุชู‚ูˆู„ ุชุฑุจูŠุน ุชุจุฏุฃ
245
00:26:35,750 --> 00:26:39,610
ุชุฑุจูŠุน ู‡ุฐู‡ ูˆู‡ุฐู‡ ุซุงุจุชุฉ ุชู‚ูˆู„ ุชูƒุนูŠุฏ ุงู„ูƒุนุจ ู‡ุฐู‡ ูˆู‡ุฐู‡
246
00:26:39,610 --> 00:26:43,870
ุซุงุจุชุฉ ู‡ุฐู‡ ุทูˆู„ู‡ุง ูŠุณุงูˆูŠ ุซู„ุงุซุฉ ูŠุนู†ูŠ ุงู„ู€ order ุฅู„ู‰ ูŠุณุงูˆูŠ
247
00:26:43,870 --> 00:26:48,070
ุซู„ุงุซุฉ ูŠุจู‚ู‰ ุงู„ู€ order ู„ูƒู„ ูˆุงุญุฏ ู…ู† ู‡ุฐูˆู„ ุซู„ุงุซุฉ ูŠุจู‚ู‰ ูƒู„
248
00:26:48,070 --> 00:26:53,990
ูˆุงุญุฏ ุนุจุงุฑุฉ ุนู† generator ู„ู…ู†ุŸ ู„ู„ู€ group ุงู„ู„ูŠ ุนู†ุฏู†ุง
249
00:26:53,990 --> 00:27:03,170
ูŠุนู†ูŠ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ clearly ูƒู…ุงู† ุฅู†ู‡ ุงู„ูˆุงุญุฏ ุงุซู†ูŠู†
250
00:27:03,170 --> 00:27:14,650
ุซู„ุงุซุฉ each and clearly ุฅู†ู‡ each of ู‡ู€ of ุงู„ูˆุงุญุฏ
251
00:27:14,650 --> 00:27:24,930
ุงุชู†ูŠู† ุชู„ุงุชุฉ ููŠ H ูˆูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ููŠ H is a
252
00:27:24,930 --> 00:27:36,580
generator for ุงู„ู€ a4 modulo H ูˆุงู„ุณุจุจ because ุฅู† ุงู„ู€
253
00:27:36,580 --> 00:27:44,760
order ู„ู„ูˆุงุญุฏ ุงุชู†ูŠู† ุซู„ุงุซุฉ ููŠ H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ order
254
00:27:44,760 --> 00:27:51,780
ู„ู„ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ููŠ H ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ ุชู„ุงุชุฉ ูŠุจู‚ู‰
255
00:27:51,780 --> 00:27:55,580
ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ุนุจุงุฑุฉ ุนู† generator
256
00:27:59,280 --> 00:28:04,300
ุทุจ ุฎู„ู‘ูŠู†ูŠ ุฃุณุฃู„ ูƒู„ ูˆุงุญุฏ ู…ุนูƒูˆุณ ู„ู†ูุณู‡ ูˆุงู„ู„ู‡ ูˆุงุญุฏ
257
00:28:04,300 --> 00:28:10,640
ููŠู‡ู… ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ุจู…ุนู†ู‰ ู‡ู„ ุงู„ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ูˆ
258
00:28:10,640 --> 00:28:15,620
ุงู„ูˆุงุญุฏ ุชู„ุงุชุฉ ุงุชู†ูŠู† ู…ุนูƒูˆุณ ู„ู†ูุณู‡ ูƒู„ ูˆุงุญุฏ ูˆุงู„ู„ู‡
259
00:28:15,620 --> 00:28:19,820
ุงุชู†ูŠู† ู…ุนูƒูˆุณุฉ ู„ุจุนุถ ุชุนุงู„ูˆุง ุงุถุฑุจู‡ู… ููŠ ุจุนุถ ุงู„ูˆุงุญุฏ
260
00:28:19,820 --> 00:28:24,800
ุจูŠุฑูˆุญ ู„ูˆูŠู†ุŸ ูˆุงู„ุชู„ุงุชุฉ ุจูŠุฑูˆุญ ู„ู…ูŠู†ุŸ ุตู ุนู„ู‰ ุดุฌุฑ ุงู„ู€
261
00:28:24,800 --> 00:28:28,850
identity ุงู„ูˆุงุญุฏ ุฑุงุญ ุนู„ู‰ ุงู„ูˆุงุญุฏ ุจู†ู…ุณูƒ ุงู„ุชู„ุงุชุฉ ุจุชุฑูˆุญ
262
00:28:28,850 --> 00:28:34,190
ู„ู…ูŠู†ุŸ ู„ุงุชู†ูŠู† ูˆุงู„ุงุชู†ูŠู† ุจุชุฑูˆุญ ุตู ุนู„ู‰ ุดุฌุฑ ุงู„ู€ identity
263
00:28:34,190 --> 00:28:37,950
ุงู„ุงุชู†ูŠู† ุจูŠุฑูˆุญ ู„ู„ูˆุงุญุฏ ูˆุงู„ูˆุงุญุฏ ุจูŠุฑูˆุญ ู„ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ู€
264
00:28:37,950 --> 00:28:43,630
identity ูŠุจู‚ู‰ ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ู…ุนูƒูˆุณ ู„ู„ุขุฎุฑ ูˆู„ูŠุณ ู…ุนูƒูˆุณ
265
00:28:43,630 --> 00:28:51,040
ู„ู†ูุณู‡ ุฅุฐุง ุงู„ู€ element ู‡ุฐุง ููŠ ุญุฏ ุฐุงุชู‡ ู‡ูˆ ู…ุนูƒูˆุณ ู„ู…ู†ุŸ
266
00:28:51,040 --> 00:28:57,480
ู„ู‡ุฐุง ุงู„ู€ element ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุงู„ู€ element ู‡ุฐุง ูƒู„ู‡
267
00:28:57,480 --> 00:29:03,160
ู‡ูˆ ู…ุนูƒูˆุณ ู„ู‡ุฐุง ุงู„ู€ element ููŠ ุงู„ู€ factor group ู„ุฃู† ู„ูˆ
268
00:29:03,160 --> 00:29:12,730
ุถุฑุจุชู‡ู… ููŠ ุจุนุถู‡ู… ุณุฃุญุตู„ ุนู„ู‰ ุงู„ู€ identity not that ุงู†
269
00:29:12,730 --> 00:29:22,690
ุงู„ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ each is the inverse of ุงู„ูˆุงุญุฏ
270
00:29:22,690 --> 00:29:24,870
ุชู„ุงุชุฉ ุงุชู†ูŠู† each because
271
00:29:28,030 --> 00:29:33,110
ู„ูˆ ุถุฑุจุช ููŠ ุจุนุถ ุจุฏูŠ ุฃุทูŠู† ู…ูŠู† ุงู„ู€ identity element ููŠ
272
00:29:33,110 --> 00:29:39,630
H ููŠ 1 3 2 H ุญุณุจ ุงู„ุชุนุฑูŠู ุนู„ู‰ ุงู„ู€ factor group ุงู„ู€
273
00:29:39,630 --> 00:29:44,090
operation ู‚ูˆู„ู†ุง ุจู†ุถุฑุจ ุงู„ู€ two elements ููŠ ุจุนุถ ูŠุจู‚ู‰
274
00:29:44,090 --> 00:29:54,540
123 132 ููŠ H ูˆูŠุณุงูˆูŠ ู†ู…ุณูƒ ุงู„ุฃูˆู„ ู…ุฑุฉ ุชุงู†ูŠุฉ ุงู„ูˆุงุญุฏ
275
00:29:54,540 --> 00:30:00,420
ุตูˆุฑุชู‡ ุชู„ุงุชุฉ ูˆุงู„ุชู„ุงุชุฉ ุตูˆุฑุชู‡ุง ูˆุงุญุฏ ูŠุจู‚ู‰ ู…ุง ุนู†ุฏูŠุด ุฅู„ุง
276
00:30:00,420 --> 00:30:05,780
ุงู„ูˆุงุญุฏ ู†ู…ุณูƒ ุงู„ู„ูŠ ุจุนุฏู‡ ุงุชู†ูŠู† ุงุชู†ูŠู† ุตูˆุฑุชู‡ ูˆุงุญุฏ
277
00:30:05,780 --> 00:30:11,540
ูˆุงู„ูˆุงุญุฏ ุตูˆุฑุชู‡ ุงุชู†ูŠู† ูŠุจู‚ู‰ ุฌุงูู„ุฉ ู†ู…ุณูƒ ุงู„ุชู„ุงุชุฉ ุชู„ุงุชุฉ
278
00:30:11,540 --> 00:30:16,930
ุตูˆุฑุชู‡ุง ุงุชู†ูŠู† ูˆุงุชู†ูŠู† ุตูˆุฑุชู‡ุง ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุฌุงูู„ุฉ ูˆู‡ุฐุง
279
00:30:16,930 --> 00:30:22,850
ุงู„ู€ main ุงู„ู€ H ุงู„ู„ูŠ ุจุชุนุทูŠูƒ ุงู„ู€ H itself ู„ุฃู† ู‡ุฐุง
280
00:30:22,850 --> 00:30:28,890
ูƒู„ู‡ ุจุงู„ู€ identity element ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูุนู„ุง ู‡ุฐุง
281
00:30:28,890 --> 00:30:33,470
ุงู„ู€ element ู‡ูˆ ู…ุนูƒูˆุณ ู„ู…ูŠู†ุŸ ู…ุนูƒูˆุณ ู„ู„ู€ element ุงู„ู„ูŠ
282
00:30:33,470 --> 00:30:34,550
ุนู†ุฏู†ุง ู‡ุฐุง
283
00:30:52,470 --> 00:31:00,730
ูŠุจู‚ู‰ ู‡ุฐุง ูƒุงู† ู…ุซุงู„ ุฃุฑุจุนุฉ ู…ุซุงู„
284
00:31:00,730 --> 00:31:01,470
ุฎู…ุณุฉ
285
00:31:06,680 --> 00:31:14,420
ุจู‚ูˆู„ ู„ูŠ U 32 ุจุชุณุงูˆูŠ U 32 ุงู„ู„ูŠ ุนู†ุงุตุฑู‡ุง
286
00:31:14,420 --> 00:31:22,540
ุทุจุนุง ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ูˆุชู„ุงุชุฉ ูˆุฎู…ุณุฉ ูˆุณุจุนุฉ ูˆุชู…ุงู†ูŠุฉ
287
00:31:22,540 --> 00:31:39,910
ุชุณุนุฉ ุนุดุฑ ุงุญุฏุงุด ุชู„ุชุงุด ุงุฑุจุนุชุงุด ุฎู…ุณุชุงุด 15 16 17 19 20
288
00:31:39,910 --> 00:32:00,830
21 20 23 ุจุนุฏ 23 24 25 27 28 29 31 ู…ุง ููŠุด ุบูŠุฑู‡ุง ุทูŠุจ
289
00:32:00,830 --> 00:32:06,930
ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ ุฅู† ุงู„ู€ order ู„ู„ูŠูˆ ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† ุจุฏู‡
290
00:32:06,930 --> 00:32:12,030
ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ ุณุชุฉ ุณุจุนุฉ ุชู…ุงู†ูŠุฉ
291
00:32:12,030 --> 00:32:15,550
ุชุณุนุฉ ุนุดุฑ ุงุญุฏุงุดุฑ ุงุชู†ุงุดุฑ ุชู„ุงุชุงุดุฑ ุงุฑุจุนุงุดุฑ ุฎู…ุณุงุดุฑ
292
00:32:15,550 --> 00:32:20,730
ุณุชุงุดุฑ ุนู†ุตุฑ ููŠ ุงู„ู€ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุจุฏู†ุง ู†ุฑูˆุญ
293
00:32:20,730 --> 00:32:26,980
ู†ุงุฎุฏ sub group ู…ู†ู‡ุง let ุงู„ู€ H ู‡ูŠ ุงู„ู€ subgroup
294
00:32:26,980 --> 00:32:32,420
generated by ุฎู…ุณุชุงุดุฑ ูˆุงู„ู„ูŠ ู…ุง ููŠุด ููŠู‡ุง ุฅู„ุง ุงู„ุนู†ุตุฑูŠู†
295
00:32:32,420 --> 00:32:41,000
ูˆุงุญุฏ ูˆุฎู…ุณุชุงุดุฑ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงู„ู€ H ู‡ุฐูŠ abelianุŸ ุงู„ู€
296
00:32:41,000 --> 00:32:46,150
H just a normal subgroup ู…ู† ุงู„ู€ U ุชู„ุงุชุฉุŸ ู†ุนู… ู„ุฃู†
297
00:32:46,150 --> 00:32:52,690
ู‡ุฐูŠูƒ ุงู„ู€ U ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† is abelian ูŠุจู‚ู‰ then ุงู„ู€
298
00:32:52,690 --> 00:32:59,110
H is a normal subgroup ู…ู† ุงู„ู€ U ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู†
299
00:32:59,110 --> 00:33:07,010
because ุงู„ุณุจุจ because ุฅู† U ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† is a
300
00:33:07,010 --> 00:33:11,990
abelian ู…ุนู†ุงุชู‡ ุจู‚ุฏุฑ ุฃูƒูˆู† ุงู„ู€ factor group ูŠุนู†ูŠ ุงู„ู€
301
00:33:11,990 --> 00:33:18,650
factor group exist ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠูƒ ุฅู† ุงู„ู€ U 32
302
00:33:18,650 --> 00:33:29,290
modulo H modulo H exist ู…ูˆุฌูˆุฏุฉ ุงู„ุณุคุงู„ ู‡ูˆ ุทุจ ุจู†ู‚ุฏุฑ
303
00:33:29,290 --> 00:33:34,730
ู†ุฌูŠุจ ุนู†ุงุตุฑู‡ุง ู‚ุจู„ ุงู„ุณุคุงู„ ูŠุจู‚ู‰ ุงู„ู€ order ู„ูŠู‡ 32
304
00:33:34,730 --> 00:33:42,390
modulo H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 16 ุนู„ู‰ ู‚ุฏุงุด ุนู„ู‰ 2 ูˆ
305
00:33:42,390 --> 00:33:48,630
ูŠุณุงูˆูŠ 8 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ group ู‡ุฐู‡ ููŠู‡ุง ุซู…ุงู†ูŠุฉ ุนู†ุงุตุฑ
306
00:33:48,630 --> 00:33:52,230
ุงุณู…ุน ุงู„ุณุคุงู„ ุงู„ู€ question is
307
00:33:58,580 --> 00:34:09,400
ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ is ุงู„ู€ G modulo H isomorphic ู„ู€ Z
308
00:34:09,400 --> 00:34:12,160
ุชู…ุงู†ูŠุฉ ูˆู„ุง Z
309
00:34:35,940 --> 00:34:43,120
ุทูŠุจ ู†ุฑุฌุน ู„ุณูˆุงู„ู†ุง ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ู„ูŠ ุงุญู†ุง ุฌู‡ ุฃุฎุฏู†ุง ุงู„ู€
310
00:34:43,120 --> 00:34:47,540
U32 ุฃุฎุฏู†ุง ุงู„ู€ subgroup generated by ุฎู…ุณุชุงุดุฑ ุงู„ู„ูŠ
311
00:34:47,540 --> 00:34:53,220
ููŠู‡ุงุด ุงู„ู„ูŠ ุบูŠุฑ ุนู†ุตุฑูŠู† ูˆุงุญุฏ ูˆุฎู…ุณุชุงุดุฑ ูˆุฎู…ุณุชุงุดุฑ ุชุฑุจูŠุน
312
00:34:53,220 --> 00:35:02,080
ู…ุชูŠู† ูˆุฎู…ุณุฉ ูˆุนุดุฑูŠู† ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ููŠ U32 ู„ุฃู†
313
00:35:02,080 --> 00:35:09,100
ุงู„ู€ 224 ู‡ูŠ ู…ุถุงุนูุงุช 32 ูŠุจู‚ู‰ ู…ุง ููŠุด ููŠู‡ุง ุฅู„ุง ุนู†ุตุฑูŠู†
314
00:35:09,100 --> 00:35:13,780
any subgroup ู…ู† ุงู„ู€ abelian group is normal ูŠุจู‚ู‰ ุงู„ู€
315
00:35:13,780 --> 00:35:18,000
subgroup ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง normal subgroup ู…ู† ุงู„ู€ U32
316
00:35:18,000 --> 00:35:23,420
ูŠุจู‚ู‰ ุงู„ู€ factor group exist ูˆููŠู‡ุง ุซู…ุงู†ูŠุฉ ุนู†ุงุตุฑ
317
00:35:23,730 --> 00:35:30,010
ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงู„ู€ G-modulation isomorphic ู„ู€ Z8 ูˆู„ุง ู„ู€
318
00:35:30,010 --> 00:35:35,050
Z4 external product ู…ุน Z2 ูˆู„ุง ู„ู€ Z2 external
319
00:35:35,050 --> 00:35:40,730
product ู…ุน Z2 external product ู…ุน Z2 ูƒุฐู„ูƒ ุฃู… ู„ุงุŸ
320
00:35:40,730 --> 00:35:46,920
ู‡ุฐู‡ ุชู…ุงู† ุนู†ุงุตุฑ ู‡ุฐู‡ ุชู…ุงู† ุนู†ุงุตุฑู‡ุฐู‡ ุชู…ุงู… ุนู†ุงุตุฑ ุชู…ุงู…
321
00:35:46,920 --> 00:35:52,680
ุงู„ุชู…ุงู… ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุดูˆู ู…ูŠู† ู†ุณุชุจุนุฏ ูˆู…ูŠู† ู†ุฎู„ูŠู‡ ู‚ุฏุงุด
322
00:35:52,680 --> 00:35:57,560
ุฃูƒุจุฑ order ู„ุฃูŠ element ู…ูˆุฌูˆุฏ ู‡ู†ุง ุชู…ุงู†ูŠุฉ ุชู…ุงู†ูŠุฉ
323
00:35:57,560 --> 00:36:03,960
ู‚ุฏุงุด ุฃูƒุจุฑ order ู„ุฃูŠ element ู‡ู†ุง ูƒุฏุงุด ุฃุฑุจุนุฉ ู…ุง ูŠุฒูŠุฏุด
324
00:36:03,960 --> 00:36:06,740
ุนู† ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ least common multiple ู„ู„ุฃุฑุจุนุฉ
325
00:36:06,740 --> 00:36:10,620
ูˆุงุชู†ูŠู† ุฃูˆ ู„ู„ุฃุฑุจุนุฉ ูˆุงู„ูˆุงุญุฏ ุณูŠุงู… ู‚ุฏุงุด ุงู„ู€ maximum
326
00:36:10,620 --> 00:36:14,510
order ู„ุฃูŠ element ู‡ู†ุง ุงุชู†ูŠู† ูŠุจู‚ู‰ ุฃูƒุจุฑ ูˆุงุญุฏ ู‡ู†ุงูƒ
327
00:36:14,510 --> 00:36:19,050
ุชู…ุงู†ูŠุฉ ุฃูƒุจุฑ ูˆุงุญุฏ ุงุชู†ูŠู† ูˆุฃูƒุจุฑ ูˆุงุญุฏ ู‡ู†ุง ุฃุฑุจุนุฉ ุทุจ
328
00:36:19,050 --> 00:36:24,590
ุงู„ุณุคุงู„ ู‡ูˆ ุงู„ู€ G modulo H ููŠู‡ุง ุซู…ุงู†ูŠุฉ ุนู†ุงุตุฑ ู„ูˆ ุฑูˆุญุช
329
00:36:24,590 --> 00:36:29,770
ุนู†ุงุตุฑู‡ุง ูƒู„ู‡ู… lift ูƒูˆ ุณุชุฉ ู„ูˆ ุฑูˆุญุช ู„ู„ุฃูˆุฑ ุงู„ุณุจุน lift
330
00:36:29,770 --> 00:36:34,730
ูƒูˆ ุณุชุฉ ูˆู„ุฌูŠุชู‡ ูŠุณุงูˆูŠ ุชู…ุงู†ูŠุฉ ู…ุนู†ุงุชู‡ ู‡ุฐุง generator
331
00:36:34,730 --> 00:36:39,470
ูˆุจุงู„ุชุงู„ูŠ isomorphic ู„ู€ Z ุชู…ุงู†ูŠุฉ ู„ูƒู† ุฅุฐุง ู…ุง ู„ุฌูŠุชู‡ุด
332
00:36:39,470 --> 00:36:44,600
ููŠู‡ุง ูˆู„ุง generator ุฅุฐุง ู„ุง ูŠู…ูƒู† ุฃู† ุชูƒูˆู† isomorphic
333
00:36:44,600 --> 00:36:49,580
ู„ู…ุนู†ู‰ ู„ู€ Z ุชู…ุงู†ูŠุฉ ุจูŠุธู„ ุงุญุชู…ุงู„ ู‡ู†ุง ูŠุง ุฅู…ุง ู„ู€ Z
334
00:36:49,580 --> 00:36:52,440
ุฃุฑุจุนุฉ cross product ู…ุน Z ุงุชู†ูŠู† ุฃูˆ Z ุงุชู†ูŠู†
335
00:36:52,440 --> 00:36:55,700
cross product ู…ุน Z ุงุชู†ูŠู† cross product ู…ุน
336
00:36:55,700 --> 00:37:01,600
Z ุงุชู†ูŠู† ุงู„ุซุงู†ูŠุฉ ู„ุฐู„ูƒ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ ู‚ุฏุงู…ูƒ ูƒู„ู‡ุง
337
00:37:01,600 --> 00:37:07,260
ู†ุณุชุทูŠุน ุฃู† ู†ุญุตู„ ุนู„ู‰ left coset ุฃูˆู„ ูˆุงุญุฏุฉ ุชุจู‚ู‰ ุงู„ุฃูˆู„
338
00:37:07,260 --> 00:37:11,800
ูˆุงุญุฏ ุจุชุถุฑุจ ุงู„ุชู„ุงุชุฉ ููŠ K ููŠ H ู…ุด ู‡ุฐูŠ left coset
339
00:37:11,800 --> 00:37:18,600
ูƒุฐู„ูƒ ูŠุนู†ูŠ ุฃุญุฏ ุนู†ุงุตุฑ ู…ู† ุงู„ู€ group ุงู„ุขู† ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡
340
00:37:18,600 --> 00:37:26,880
ุชู„ุงุชุฉ H ู‡ุฐูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ U ุชู†ูŠู† ูˆุชู„ุงุชูŠู† modulo
341
00:37:26,880 --> 00:37:35,790
ุงู„ู„ูŠ ู‡ูˆ ู…ู† H ู„ูˆ ุฌูŠุช ุชู„ุงุชุฉ H ู‡ู„ ู‡ุฐู‡ ุชุณุงูˆูŠ H ุชุณู„ูุŸ
342
00:37:35,790 --> 00:37:40,950
ูŠุนู†ูŠ ู„ูˆ ุถุฑุจุช ู‡ู†ุง ููŠ ู…ู† ููŠ ุชู„ุงุชุฉ ุจุตูŠุฑ ุชู„ุงุชุฉ ูˆุชู„ุงุชุฉ
343
00:37:40,950 --> 00:37:45,470
ููŠ ุฎู…ุณุชุงุดุฑ ุจุฎู…ุณุฉ ูˆุฃุฑุจุนูŠู† ุดูŠุก ุงู„ู„ูŠ ุจูŠุจู‚ู‰ ุชู„ุชุงุด ู‡ู„
344
00:37:45,470 --> 00:37:52,790
ู‡ูŠ HุŸ ู„ุฃ ุงุชู†ูŠู† ู„ูˆ ุฌูŠุช ู‚ู„ุช ู„ูƒ ุชู„ุงุชุฉ H ู„ูƒู„ ุชุฑุจูŠุน
345
00:37:55,240 --> 00:37:59,440
ุขู‡ ูŠุนู†ูŠ ู„ูˆ ุทู„ุน ุงู„ู€ identity ุงุชู†ูŠู† ู‡ุฐูŠ ุจุชุฌุณู…
346
00:37:59,440 --> 00:38:03,620
ุงู„ุชู…ุงู†ูŠุฉ ูŠุนู†ูŠ ู…ู…ูƒู† ู…ุด ููŠ ู…ุดูƒู„ุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
347
00:38:03,620 --> 00:38:12,460
ูŠุณุงูˆูŠ ุชุณุนุฉ H ู‡ู„ ุชุณุนุฉ H ุชุณุงูˆูŠ H ุงุถุฑุจู‡ุง ุชุณุนุฉ ูˆู‡ุฐูŠ
348
00:38:12,460 --> 00:38:17,400
ุชุณุนุฉ ููŠ ุฎู…ุณุชุงุดุฑ ุฅุฐุง ู„ุง ูŠู…ูƒู† ุฃู† ุชุณุงูˆูŠ ู…ูŠู† H ุฃุฎุฏ ุชู„ุงุชุฉ
349
00:38:17,400 --> 00:38:24,320
H ุชูƒูŠุจ ู„ุฃ ู„ุฃู† ุงู„ุชู„ุงุชุฉ ู„ุง ุชู‚ุณู… ู…ูŠู† ุงู„ุชู…ุงู†ูŠุฉ ูŠุจู‚ู‰
350
00:38:24,320 --> 00:38:27,420
ููŠุด element ุงู„ู€ order ุฅู„ู‡ ูŠุณุงูˆูŠ ุงู„ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู…ุง
351
00:38:27,420 --> 00:38:36,620
ุชุบู„ุจุด ุญุงู„ูƒ ุฑูˆุญ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุชู„ุงุชุฉ H ุฃูุณ ุฃุฑุจุนุฉ ูŠุจู‚ู‰
352
00:38:36,620 --> 00:38:41,060
ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ู‚ุฏุงุด ุชุณุนุฉ ููŠ ุชุณุนุฉ ุจูˆุงุญุฏ ูˆุชู…ุงู†ูŠู† H
353
00:38:41,060 --> 00:38:45,400
ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุชู†ูŠู† ูˆุชู„ุงุชูŠู† ูˆุชู†ูŠู† ูˆุชู„ุงุชูŠู†
354
00:38:45,400 --> 00:38:49,840
ุฃุฑุจุนุฉ ูˆุณุชูˆู† ู…ู† ูˆุงุญุฏ ูˆุชู…ุงู†ูŠู† ุณุชุงุดุฑ ูˆูˆุงุญุฏ ูˆ
355
00:38:49,840 --> 00:38:57,580
ุณุจุนุชุงุดุฑ ูŠุจู‚ู‰ ู‡ุฐู‡ ุณุจุนุชุงุดุฑ H ู‡ู„ ุงู„ุณุจุนุชุงุดุฑ H ุจูŠุณุงูˆูŠ
356
00:38:57,580 --> 00:39:03,980
HุŸ ู„ุฃ ูŠุจู‚ู‰ ุณุนุฑ ุงู„ู€ order ู„ู‡ุฐุง ุงู„ู€ element ู„ุง ูŠู…ูƒู† ุฃู†
357
00:39:03,980 --> 00:39:08,800
ูŠูƒูˆู† ุฃุฑุจุนุฉ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ ุฎู…ุณุฉ ูˆุณุชุฉ ูˆุณุจุนุฉ ูŠุจู‚ู‰
358
00:39:08,800 --> 00:39:13,020
automatic ุงู„ู€ order ุฅู„ู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุชู…ุงู†ูŠุฉ ู„ุฃู† ุงู„ู€ order
359
00:39:13,020 --> 00:39:16,100
ู„ู„ู€ element ุงู„ู„ูŠ ุจูŠุฌุณู… ู„ู„ู€ order ุงู„ู„ูŠ ุฌู…ุฏู‡ ู…ุง ุชุญุตู„
360
00:39:16,100 --> 00:39:21,540
ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุฉ ุจู†ุณุชู†ุชุฌู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุฅู† ุงู„ู€
361
00:39:21,540 --> 00:39:27,480
order ู„ุชู„ุงุชุฉ H ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุชู…ุงู†ูŠุฉ because
362
00:39:30,700 --> 00:39:36,000
the order of
363
00:39:36,000 --> 00:39:46,880
the element divide the order of the group
364
00:39:51,730 --> 00:39:55,870
ู„ุฃู† ุงู„ู€ order ู„ู„ู€ element ุจูŠุฌุณู… ุงู„ู€ order ู„ู„ู€ group
365
00:39:55,870 --> 00:40:02,370
ูŠุจู‚ู‰ ู„ุง ูŠู…ูƒู† ุฃู† ุฃู†ุง ุฃุฌุฏ ุงู„ู€ order ุฎู…ุณุฉ ูˆู„ุง ุณุชุฉ ูˆู„ุง
366
00:40:02,370 --> 00:40:07,230
ุณุจุนุฉ ุฅุฐุง ุงู„ู€ order ูŠุณุงูˆูŠ ูƒู…ุงู† ุชู…ุงู†ูŠุฉ ู…ุนู†ุงุชู‡ ู‡ุฐุง ุงู„ู€
367
00:40:07,230 --> 00:40:17,290
element ู…ุงู„ู‡ generator ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ ุซู„ุงุซุฉ H is a
368
00:40:17,290 --> 00:40:19,150
generator
369
00:40:20,550 --> 00:40:29,770
Four ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุงู„ู€ U ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† modulo H ู…ุฏุงู…
370
00:40:29,770 --> 00:40:36,150
generator ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุงู„ู‡ุง Cyclic ูŠุจู‚ู‰ ู‡ุฐุง ูŠุนุทูŠู†ุง ุฅู†
371
00:40:36,150 --> 00:40:45,570
U ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† U ุงุชู†ูŠู† ูˆุชู„ุงุชูŠู† modulo 11 is
372
00:40:45,570 --> 00:40:51,500
cyclic Madame Cyclic ูŠุจู‚ู‰ ู‡ู„ ูŠู…ูƒู† ุฃู† ุชูƒูˆู†
373
00:40:51,500 --> 00:40:56,460
isomorphic ู„ู‡ุฐู‡ ู„ุฃู† ู‡ุฐุง ุฃูƒุจุฑ order ู„ู‡ุง ูŠุณุงูˆูŠ ุงุชู†ูŠู†
374
00:40:56,460 --> 00:41:02,160
isomorphic ู„ู‡ุฐู‡ ู„ุฃ ู„ุฃู† ุฃูƒุจุฑ order ุนู†ู‡ุง ู…ูŠู† ูŠุณุงูˆูŠ
375
00:41:02,160 --> 00:41:08,980
ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ U ุชู†ูŠู† ูˆุชู„ุงุชูŠ ู…ูˆุฏูŠู„ ุฃุญุฏุงุดุฑ
376
00:41:08,980 --> 00:41:12,780
isomorphic ู„ู€ Z8 because
377
00:41:16,450 --> 00:41:31,430
Z4 external like product ู…ุน Z2 has
378
00:41:31,430 --> 00:41:34,490
no element
379
00:41:36,400 --> 00:41:43,400
of order ู…ุงููŠุด ูˆู„ุง ุนู†ุตุฑ ูŠุจู‚ู‰ ู‡ุฐูŠ ุตุงุฑุช
380
00:41:43,400 --> 00:41:51,220
isomorphic ู„ู€ ู…ูŠู†ุŸ ู„ู€ .. ู„ู€ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐูŠ ุงู„ุขู†
381
00:41:51,220 --> 00:41:56,900
ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู†ุธุฑูŠุฉ ุทุจุนุง ุฃุฎุฏุช ุฃู…ุซู„ุฉ ู„ุง ุจุฃุณ ุจู‡ุง ูƒุซูŠุฑุฉ
382
00:41:56,900 --> 00:42:01,700
ุนู„ู‰ ุงู„ู€ normal ูˆ ุนู„ู‰ ุงู„ู€ factor group ุจู†ูŠุฌูŠ ู„ุฃูˆู„
383
00:42:01,700 --> 00:42:08,430
ู†ุธุฑูŠุฉ ููŠ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุจุชู‚ูˆู„ ุงู„ู€ Center ุชุจุน ุงู„ู€
384
00:42:08,430 --> 00:42:16,690
Group G of
385
00:42:16,690 --> 00:42:22,430
a
386
00:42:22,430 --> 00:42:30,570
group G if ุงู„ู€ G modulo Center ุจุชุจุน ุงู„ู€ G is
387
00:42:30,570 --> 00:42:36,820
cyclic then ุงู„ู€ G is abelian
388
00:43:06,770 --> 00:43:07,570
ุฎู„ู‘ูŠ ุจุฑูƒุฉ
389
00:43:10,260 --> 00:43:14,500
ุนู†ุฏู†ุง Z of G ุงู„ู€ Center ุชุจุน ู„ู€ Group G ูˆุจู†ุนุฑู ุงู„ู€
390
00:43:14,500 --> 00:43:18,780
Center ุงู„ู„ูŠ ุจูŠุฌู…ุน ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ูƒู…ูŠูˆุณ ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ
391
00:43:18,780 --> 00:43:23,120
G ุจุงู„ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช ุงู„ู€ G modulo Z Cyclic
392
00:43:23,120 --> 00:43:29,000
ูŠุจู‚ู‰ ุจู†ุซุจุช ู„ู‡ ุฅู†ู‡ G ุงู„ุฃุตู„ูŠุฉ is Abelian ูŠุจู‚ู‰
393
00:43:29,000 --> 00:43:35,800
ุงู„ู…ุนุทูŠุงุช ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃ assume that ุฅู† ุงู„ู€ G modulo Z
394
00:43:35,800 --> 00:43:43,120
of G is Cyclic ู…ุง ุฏุงู… Cyclic ูŠุจู‚ู‰ ุฅูŠู‡ ุงูŠุดุŸู„ู‡ุง
395
00:43:43,120 --> 00:43:54,560
generator ู…ุง ุฏุงู… Cyclic ูŠุจู‚ู‰ ุงู„ู€G ููŠ ุงู„ู€Z of G ุจู€A
396
00:43:54,560 --> 00:43:56,160
generator
397
00:43:57,710 --> 00:44:03,690
ูŠูุชุฑุถ ุงู† ู‡ุฐุง generator ุงู„ู‡ ูŠุนู†ูŠ ุฃูŠ element ููŠู‡ุง
398
00:44:03,690 --> 00:44:11,230
ูŠูƒูˆู† ู‡ุฐุง ุงู„ element ู…ุฑููˆุน ู„ู…ูŠู†ุŸ ู„ุฃุณ ู…ุญุฏุฏุฉ ูŠุจู‚ู‰ then
399
00:44:11,230 --> 00:44:18,190
ุงู„ู€ g modulo center ุจุชุจุน ุงู„ู€ g ู‡ูŠ sub group ุฃูˆ ุงู„
400
00:44:18,190 --> 00:44:23,850
group generated by g ููŠ ุงู„ู€ z of g ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
401
00:44:23,850 --> 00:44:30,950
ุนู†ุฏู†ุง ุงู„ุขู† ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ let ุงู„ู€ a ูˆ ุงู„ู€ b ู…ูˆุฌูˆุฏุฉ ููŠ g
402
00:44:30,950 --> 00:44:37,430
ุฅุฐุง ู‚ุฏุฑุช ุฃุซุจุช ู„ู‡ ุฅู† ุงู„ู€ a ููŠ b ู‡ูŠ ุงู„ู€ b ููŠ a ุจุชู…ุง
403
00:44:37,430 --> 00:44:44,990
ุงู„ู…ุทู„ูˆุจ ุชู…ุงู…ุŸ ุฅุฐุง ุญุงุฌุฉ ุฃู‚ูˆู„ู‡ ุงู„ุขู† ุงู„ู€ a ู…ูˆุฌูˆุฏุฉ ููŠ
404
00:44:44,990 --> 00:44:50,630
ุงู„ู€ a ููŠ ุงู„ู€ center ุจุชุจุน ุงู„ู€ g ุตุญ ูˆู„ุง ู„ุงุŸ ุงู„ู€ element
405
00:44:50,630 --> 00:44:57,550
A ู…ูˆุฌูˆุฏ ููŠ ุฃูŠ lift-go set ุทุจ ู‡ุฐุง ุงู„ู€ element ู…ูˆุฌูˆุฏ
406
00:44:57,550 --> 00:45:04,750
ููŠ ุงู„ู€ group ู‡ุฐู‡ ูˆู„ุง ู„ุงุŸ ุฅูŠู‡ ููŠ ุงู„ู€ centerุŸ ู…ูˆุฌูˆุฏ
407
00:45:04,750 --> 00:45:08,690
ู‡ู†ุง ูˆู„ุง ู„ุงุŸ ุตุญุŸ ู…ุงู„ูƒู‡ ุจู„ุนุชู‡
408
00:45:16,880 --> 00:45:28,400
ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู…
409
00:45:28,400 --> 00:45:29,320
ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู…
410
00:45:29,320 --> 00:45:29,380
ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰ ู…ูŠู… ูŠุจู‚ู‰
411
00:45:29,380 --> 00:45:35,820
ู…ูŠู… ูŠุจู‚ู‰ ูˆุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ GI ููŠ ุงู„ู€ center ุงู„ู„ูŠ
412
00:45:35,820 --> 00:45:45,210
ุชุจุน ุงู„ู€ G for some I ุจุงู„ู…ุซู„ ุงู„ู€ B ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ B ููŠ
413
00:45:45,210 --> 00:45:50,450
ุงู„ู€ Center ุจุชุงุจุน ุงู„ู€ G ูˆ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ G ููŠ
414
00:45:50,450 --> 00:45:57,570
ุงู„ู€ Center ุจุชุงุจุน ุงู„ู€ G ู…ุฑููˆุน ู„ุฃูุณ J ูˆู‡ุฐุง GG ู„ู„ู€
415
00:45:57,570 --> 00:46:05,970
Center ุจุชุงุจุน ุงู„ู€ Group G for some J ุงู„ุขู† ุฎุฏู„ูŠ AB
416
00:46:08,110 --> 00:46:15,830
ูŠุจู‚ู‰ ุงู„ู€ a,b ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ a,b ู‡ุฐู‡ a ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูŠุจู‚ู‰
417
00:46:15,830 --> 00:46:21,990
ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ู…ุฏุงู… ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุฅู† ุงู„ู€ a
418
00:46:21,990 --> 00:46:31,550
ุชุณุงูˆูŠ g,i,x for some x ูˆู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ ุฅู† b ุชุณุงูˆูŠ
419
00:46:31,550 --> 00:46:42,650
g,j,y for some y ูˆุงุฑุณู… Y ูŠุจู‚ู‰ ุงู„ู€ A ุจูŠ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„
420
00:46:42,650 --> 00:46:49,630
A ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ main ุงู„ู„ูŠ ู‡ูŠ GIX ูˆุงู„ู€ B ุงู„ู„ูŠ ู‡ูŠ
421
00:46:49,630 --> 00:46:52,070
GJY
422
00:46:54,390 --> 00:46:59,310
ุงู„ุฅูƒุณ ูˆุงู„ูˆุงูŠ ูˆุงู„ุฅูƒุณ ูˆุงู„ูˆุงูŠ ูˆุงู„ุฅูƒุณ ูˆุงู„ูˆุงูŠ ูŠุง ุณูŠุฏูŠ
423
00:46:59,310 --> 00:47:03,910
ุงู„ู„ูŠ ู‡ู… ููŠ ุงู„ู€ center ุฅุฐุง ุจู‚ุฏุฑ ุฃุจุฏู„ ุฒูŠ ู…ุง ุจุฏูŠ ุชู…ุงู…
424
00:47:03,910 --> 00:47:12,040
ูŠุจู‚ู‰ ู‡ุฐุง ุจุชู‚ุฏุฑ ุชู‚ูˆู„ูŠ GI ุฌูŠ ุฌูŠ ููŠ ุงู„ู€ X Y ุจุฏู„ุช
425
00:47:12,040 --> 00:47:17,700
ุงู„ุชู†ุชูŠู† ู‡ุฐูˆู„ ู…ุน ุจุนุถ ู„ุฅู† X ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ center ุทูŠุจ
426
00:47:17,700 --> 00:47:26,200
ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃุจุฏู„ ูƒู…ุงู† ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุฌูŠ ุฌูŠ ููŠ ุฌูŠ I ูˆู‡ุฐู‡ Y
427
00:47:26,200 --> 00:47:26,860
ููŠ X
428
00:47:30,120 --> 00:47:34,100
ุงู„ุขู† ุจุฏูŠ ุฃุจุฏู„ ู‡ุฏูˆู„ ู…ุน ุจุนุถ ู„ุฅู† ุงู„ู€ X ูˆ ุงู„ู€ Y ููŠ ุงู„
429
00:47:34,100 --> 00:47:37,980
center ูŠุจุฏู„ูˆุง ู…ุน ุจุนุถ ุฏูˆุฑูŠ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจุฏูˆ
430
00:47:37,980 --> 00:47:51,200
ูŠุณุงูˆูŠ GJ ูˆ ู‡ู†ุง Y ูˆ ู‡ู†ุง GIX ู‡ุฐุง B ูˆู‡ุฐุง A ูŠุจู‚ู‰ G
431
00:47:51,200 --> 00:47:54,180
Abelian ูŠุจู‚ู‰ ู‡ู†ุง Das
432
00:48:02,290 --> 00:48:10,990
ูŠุจู‚ู‰ ู…ู† ุงู„ุงู†ูุฉ ุณุงุนุฏุง ุงู‡
433
00:48:10,990 --> 00:48:15,070
ุทุจุนุง
434
00:48:15,070 --> 00:48:23,230
ู‡ุงูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูŠุจู‚ู‰ ุชุณุงูˆูŠ GI ููŠ element ู…ู† ุงู„
435
00:48:23,230 --> 00:48:28,890
center ุงู„ู€ X ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ center ูˆุงู„ู€ Y ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„
436
00:48:28,890 --> 00:48:30,590
center ูƒุฐู„ูƒ