abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
42 kB
1
00:00:04,940 --> 00:00:07,660
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุญู…ุฏ ู„ู„ู‡ ุฑุจ ุงู„ุนุงู„ู…ูŠู†
2
00:00:07,660 --> 00:00:10,500
ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุณูŠุฏู†ุง ู…ุญู…ุฏ ูˆุนู„ู‰ ุขู„ู‡ ูˆุตุญุจู‡
3
00:00:10,500 --> 00:00:17,340
ุฃุฌู…ุนูŠู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 23 ููŠ ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ุฉ
4
00:00:17,340 --> 00:00:22,200
ู†ูŠู„ ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ู‚ุณู… ุงู„ุฑูŠุงุถูŠุงุช
5
00:00:22,200 --> 00:00:27,900
ูƒู„ูŠุฉ ุงู„ุนู„ูˆู…ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูŠูˆู… ู‡ูŠ ุนุจุงุฑุฉ ุนู†
6
00:00:27,900 --> 00:00:33,180
ุชูƒู…ู„ุฉ ู„ section ุชู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† .. ู…ู†
7
00:00:33,180 --> 00:00:36,580
.. ู…ู† ู‡ุฐุง .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ chapter ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ู‡ุฐุง
8
00:00:36,580 --> 00:00:39,320
ุงู„ section ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงุชุญุฏุซู†ุง ุนู† ุงู„ exponential
9
00:00:39,320 --> 00:00:44,670
function ูˆูƒูŠู ุฃุซุจุชู†ุง ูˆุฌูˆุฏู‡ุงูˆุงุฎุฏู†ุง ุฎูˆุงุตู‡ุง ุงู„ุขู† ุจุฏู†ุง
10
00:00:44,670 --> 00:00:47,910
ู†ุญูƒูŠ ุนู† ุงู„ุฌุฒุก ุงู„ุชุงู†ูŠ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ section ุงู„ู„ูŠ ู‡ูˆ
11
00:00:47,910 --> 00:00:51,050
ุงู„ logarithmic function ุงู„ logarithmic function
12
00:00:51,050 --> 00:00:55,290
ุงู„ู„ูŠ ู‡ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุซุจุช ูˆุฌูˆุฏู‡ุง ูˆูƒูŠู ุงู„ู„ูŠ ู‡ูˆ
13
00:00:55,290 --> 00:01:00,410
ู†ุงุฎุฏ ุฎูˆุงุตู‡ุง ุจู†ูุณ ุงู„ุจู†ุงุก ุงู„ู„ูŠ ุฃูˆ ู†ุจู†ุน ุงู„ุจู†ุงุก ุงู„ู„ูŠ
14
00:01:00,410 --> 00:01:05,820
ุจู†ู†ุงู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉุงู„ุงู† ู„ู…ุง ุญูƒูŠู†ุง ุนู† ุงู„
15
00:01:05,820 --> 00:01:10,020
exponential function E ู„ุฌูŠู†ุง ุงู† ุงู„ exponential E
16
00:01:10,020 --> 00:01:12,780
is strictly increasing differentiable function
17
00:01:12,780 --> 00:01:18,160
with domain R and range ุงู„ู„ูŠ ู‡ูˆ Y ุฃูƒุจุฑ ู…ู† 0 ูŠุนู†ูŠ
18
00:01:18,160 --> 00:01:22,480
ู„ู…ุง ุญูƒูŠู†ุง ุนู† ุงู„ E ุญูƒูŠู†ุง ุนู† ุงู„ E ู…ู† R ุงู„ู„ูŠ ู‡ูŠ ุงู„
19
00:01:22,480 --> 00:01:26,600
exponential ู„ุนู†ุฏ ุงู„ูุชุฑุฉ 0 ูˆ ู…ุงู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐู‡ ุงู„
20
00:01:26,600 --> 00:01:31,560
function ู‡ูŠ rangeู‡ุง ูˆ ู‡ูŠ domainู‡ุง ูˆ ูƒุงู†ุช strictly
21
00:01:31,560 --> 00:01:35,700
increasingStrictly increasing ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ
22
00:01:35,700 --> 00:01:40,020
ุนู† 120 ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ููŠ ุฅู„ู‡ุง ุงู„ function ู‡ุฐู‡ on
23
00:01:40,020 --> 00:01:43,940
two ูˆูƒุงู†ุช differentiable ุงู„ุขู† ุงู„ function ุงู„ู„ูŠ ู‡ูŠ
24
00:01:43,940 --> 00:01:46,840
ุงู„ exponential ุทุจุนุง ู…ุง ุฃู†ุชูˆุง ุนุงุฑููŠู† ูƒูŠู ุฑุณู…ุชู‡ุง ู„ูˆ
25
00:01:46,840 --> 00:01:50,460
ุฌูŠู†ุง ุฌุฑุจู†ุง ู†ุฑุณู…ู‡ุง ู‡ู†ู„ุงู‚ูŠ ุงู„ุฑุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ
26
00:01:50,460 --> 00:01:56,180
ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฑุณู…ุฉ ุงู„ exponentialุงู„ุงู† ุงู†ุง ุจุฏู‰ ุงุฌู‰
27
00:01:56,180 --> 00:02:00,300
ุงู„ู„ู‰ ู‡ูˆ ู…ู† ุฎู„ุงู„ ุงู„ู„ู‰ ู‡ูˆ ุงู„ function ุงู„ exponential
28
00:02:00,300 --> 00:02:05,980
ุงุนุฑู ุงู„ inverse ู„ู‡ุง ูˆุงุณู…ูŠู‡ ุงู„ู„ู‰ ู‡ูˆ logarithmic
29
00:02:05,980 --> 00:02:10,860
function ุงูˆ ุจุฏู‰ ุงุณู…ูŠู‡ ุงู„ logarithm ุงู„ุทุจูŠุนู‰ ุงู„ู„ู‰ ู‡ู‰
30
00:02:10,860 --> 00:02:16,020
ุงู„ len functionู…ุดุฑูˆุน ุงู„ูƒู„ุงู… ุงู‡ ู„ุฅู† ุงูŠู‡ ุนุจุงุฑุฉ ุนู†
31
00:02:16,020 --> 00:02:19,240
function one to one ูˆ one to Hana ุฅุฐุง ุตุงุฑ ุงู„
32
00:02:19,240 --> 00:02:23,580
inverse ู„ู‡ุง ู…ูˆุฌูˆุฏ ู„ุฅู†ู‡ุง strictly increasing ุฅุฐุง
33
00:02:23,580 --> 00:02:29,560
ุตุงุฑ ุงู„ L ู…ู† ุนู†ุฏ zero ูˆ ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ ู„ุนู†ุฏ ุงู„ R ู‡ุงุฏูŠ
34
00:02:29,560 --> 00:02:34,100
ุงู„ู„ูŠ ู‡ูŠุงู„ู€ function ุงู„ุฌุฏูŠุฏุฉ ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ู€
35
00:02:34,100 --> 00:02:38,320
logarithmic function ูˆู‡ูŠ ุฑุณู…ุชู‡ุง ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุงู„ู„ูŠ
36
00:02:38,320 --> 00:02:42,460
ู‡ูŠ ุงู„ inverse ู„ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุจุฏูŠ ุฃุนุฑูู‡ุง ุงู„ุขู†
37
00:02:42,460 --> 00:02:47,000
ูˆุชุนุฑูŠู ุงู„ุขู† ุตุงุฑ ุดุฑุนูŠ ุจู†ุงุก ุนู„ู‰ ูˆุฌูˆุฏ ุงู„ exponential
38
00:02:47,000 --> 00:02:50,930
ุงู„ู„ูŠ ุจุฏูŠ ุฃุนุฑูู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ inverse ุณุจุนุชู‡ุงุงู„ุนู…ู„
39
00:02:50,930 --> 00:02:57,030
ุงู„ู…ุนุฑููŠ ู„ู„ู€ E ู‡ูˆ
40
00:02:57,030 --> 00:03:02,850
ุงู„ู€ Logarithm ุฃูˆ ุงู„ู€ Nature Logarithm ุงู„ู„ูŠ ู‡ูŠ It
41
00:03:02,850 --> 00:03:07,870
will be denoted by L or by Lin ุงู„ุฃูƒุชุฑ ุดูŠูˆุนุง ุทุจุนุง
42
00:03:07,870 --> 00:03:11,810
ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู€ Lin ู„ุฃู† ุจู…ุง ุฃู† ุงู„ู€ E ูˆ L ุงู†ูุฑุณ
43
00:03:11,810 --> 00:03:17,110
ู„ุจุนุถ ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู€ E composite L composite E of X
44
00:03:17,110 --> 00:03:22,920
ู‡ูŠุณุงูˆูŠ ุงู„ู€ Xู„ูƒู„ ุงู„ู€ x ูˆ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R ู„ุฃู†
45
00:03:22,920 --> 00:03:26,540
ุงู„ู€ E ุจุชุดุชุบู„ ุนู„ู‰ ูƒู„ ุงู„ุฅูƒุณุงุช ุงู„ู„ูŠ ููŠ ุงู„ู€ R ู„ุฃู†
46
00:03:26,540 --> 00:03:30,740
ุจูŠู†ู…ุง E composite L of Y E composite L of Y ุงู„ู€ L
47
00:03:30,740 --> 00:03:34,660
ุจุชุดุชุบู„ .. ุจุชุดุชุบู„ ู…ูŠู† ุนู„ู‰ ู…ูŠู† ุจุณ ุนู„ู‰ ุงู„ู€ positive E
48
00:03:34,660 --> 00:03:38,240
composite L of Y ุจูŠุณุงูˆูŠ ู„ูƒู„ Y element in R ูˆ Y
49
00:03:38,240 --> 00:03:44,900
ุฃุดู…ู„ู‡ุง ุฃูƒุจุฑ ู…ู† 0ุงู„ุงู† connotations .. connotations
50
00:03:44,900 --> 00:03:49,860
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ N ุงู„ู€ E of X ู„ุฃู† ุงู„ู€ N ู‡ูŠ ุงู„ู€ L ูˆุงู„ู€
51
00:03:49,860 --> 00:03:53,880
E ู‡ูŠ ุงู„ู€ E ูˆุนู†ุฏูŠ ุงู„ู€ E to the N ุงู„ู„ูŠ ู‡ูˆ ุจุณูˆุก ุงู„ู€ Y
52
00:03:53,880 --> 00:03:57,780
ูˆู‡ูˆ ุจุณูˆุก ุงู„ู€ X ุจู†ุงุก ุนู„ู‰ ุฃู† ุงู„ูˆุงุญุฏุฉ inverse ู„ู„ุชุงู†ูŠุฉ
53
00:04:01,010 --> 00:04:04,750
ุฃูˆ ูƒู„ ูˆุงุญุฏุฉ inverse ู„ู„ุงุฎุฑู‰ ุงู„ู€ logarithm is a
54
00:04:04,750 --> 00:04:08,630
strictly increasing function L with domain ุงู„ู„ูŠ ู‡ูˆ
55
00:04:08,630 --> 00:04:12,150
ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ domain ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูู†ุง ู‡ูŠูƒ
56
00:04:12,150 --> 00:04:16,210
ุฃุตู„ุง ุงู„ุงู† ุงู„ derivative of L is given by L prime
57
00:04:16,210 --> 00:04:19,750
of X ุงูŠุด ุจุชุณุงูˆูŠ ูˆุงุญุฏุฉ ู„ X for X ุฃูƒุจุฑ ู…ู† ุณูุฑ ุงู„ุงู†
58
00:04:19,750 --> 00:04:23,430
ุงู„ logarithm satisfy the functional equation ุชุญู‚ู‚
59
00:04:23,430 --> 00:04:27,010
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฏุงู„ูŠุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ L of X ููŠ Y ุจุณุงูˆูŠ
60
00:04:27,010 --> 00:04:31,000
L of X ุฒุงุฆุฏ LL of Y for X ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู†
61
00:04:31,000 --> 00:04:34,560
ุณูุฑ Y ุฃูƒุจุฑ
62
00:04:34,560 --> 00:04:38,260
ู…ู† ุณูุฑ
63
00:04:38,260 --> 00:04:40,560
Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ
64
00:04:40,560 --> 00:04:40,580
ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y
65
00:04:40,580 --> 00:04:40,640
ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู†
66
00:04:40,640 --> 00:04:40,700
ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y
67
00:04:40,700 --> 00:04:40,700
ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู†
68
00:04:40,700 --> 00:04:41,020
ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y
69
00:04:41,020 --> 00:04:47,140
ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑ ู…ู† ุณูุฑ Y ุฃูƒุจุฑL of
70
00:04:47,140 --> 00:04:51,420
XR ุจูŠุณุงูˆูŠ R ู„L of X ู„ุฅู† X ุฃูƒุจุฑ ู…ู† 0 ูˆR ุงู„ู…ุชุฑ ูƒูŠูˆู‡
71
00:04:51,420 --> 00:04:54,840
ูƒู„ู‡ู† ุงู„ู„ูŠ ู‡ูŠ ุฎูˆุงุต ุงู†ุชูˆุง ุจุชุนุฑููˆู‡ู… ู‚ุจู„ ู‡ูŠูƒ ุจุณ ุงู„ุขู†
72
00:04:54,840 --> 00:04:58,440
ุจุฏู†ุง ู†ุจุฑู‡ู†ู‡ู… ูˆ ู†ุซุจุช ุตุญุชู‡ู… limit L of X ู„ู…ุง X ุชุฑูˆุญ
73
00:04:58,440 --> 00:05:01,740
ู„ู€0 ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ ุณุงู„ุจ infinity and limit L of X
74
00:05:01,740 --> 00:05:07,340
ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุงู„ ุงู„ู†ู‡ุงูŠุฉ ุจุชุณุงูˆูŠ ู…ุงู„ ุงู„ู†ู‡ุงูŠุฉ ุฎู„ูŠู†ุง
75
00:05:07,340 --> 00:05:14,840
ุงุญู†ุง ู†ุดูˆู ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู…ุทู„ูˆุจุงู„ุฃู† ุงู„ู€ L is
76
00:05:14,840 --> 00:05:17,560
strictly increasing with domain X element alone
77
00:05:17,560 --> 00:05:20,880
and range R follows from the fact that E is
78
00:05:20,880 --> 00:05:24,840
strictly increasing with domain R and range ุงู„ู„ูŠ
79
00:05:24,840 --> 00:05:33,320
ู‡ูˆ ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ุงู† ุนู†ุฏูŠ ุงู„ L is strictly increasing
80
00:05:33,320 --> 00:05:37,560
ุจู†ุงุก ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ E ู†ูุณู‡ุง strictly increasing
81
00:05:37,560 --> 00:05:48,560
ุงู„ุงู† EComposite L E Composite L of Y ุงูŠุด ุจุชุณุงูˆูŠุŸ Y
82
00:05:48,560 --> 00:05:55,320
ู„ูƒู„ Y ูˆY ุงู„ู…ูˆุฌูˆุฏุฉ ู„ูƒู„ Y element in ุณูุฑ ูˆู…ู„ุง ู†ู‡ุงูŠุฉุŒ
83
00:05:55,320 --> 00:06:00,780
ู…ุธุจูˆุทุŸ ุงู„ุงู† ูุงุถู„ูˆู„ ุงู„ุฌู‡ุชูŠู† ุงู„ุงู† ุทุจุนุง ุงุญู†ุง ุจู†ุนุฑู
84
00:06:00,780 --> 00:06:06,360
ุงู†ู‡ ู…ู† ุงู„ุงุตู„ ู…ุฏุงู…ุฉ ุงู„ E isุงู„ู„ูŠ ู‡ูˆ differentiable
85
00:06:06,360 --> 00:06:10,480
ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inverse ุฅู„ู‡ุง is differentiable by
86
00:06:10,480 --> 00:06:14,680
theorem 6 9 ูƒุฏู‡ ู…ุด ุนุงุฑู ุฅูŠุด ููŠ ุงู„ู„ูŠ ู‡ูˆ chapter 6
87
00:06:14,680 --> 00:06:18,200
ู‚ุฏุงู…ุฉ ุงู„ function ุงู„ู„ูŠ ู‡ูŠ is differentiable ุงู„
88
00:06:18,200 --> 00:06:20,880
inverse ุฅู„ู‡ุง ุจุฑุถู‡ is differentiable ููŠ ุญุงู„ุฉ ูˆุฌูˆุฏู‡ุง
89
00:06:20,880 --> 00:06:27,480
ุงู„ุขู† E ูุงุถู„ ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ E prime of L of Y
90
00:06:27,480 --> 00:06:36,600
ูL prime of Y ุจุณุงูˆูŠ ุฅูŠุด ูˆุงุญุฏ ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู†ูˆุงุถุญ
91
00:06:36,600 --> 00:06:41,900
ุฃู† ู‡ุฐุง ุญุงุตู„ ุงู„ุถุฑุจ ุตุงุฑ ุฃูƒุจุฑ ู…ู† ู…ูŠู† strictly ู…ู† 0
92
00:06:41,900 --> 00:06:47,920
ูˆุจู…ุง ุฃู† ุงู„ู€ E is strictly increasing ุฃุซุจุชู†ุง E' of
93
00:06:47,920 --> 00:06:53,420
L of Y is strictly ุฃูƒุจุฑ ู…ู† 0 ุฅุฐุง ุจูŠุธู„ู‡ุง L' of Y is
94
00:06:53,420 --> 00:06:57,180
strictly ุฃูƒุจุฑ ู…ู† 0 ู„ูƒู„ Y ู‡ู†ุง ุฅุฐุง ุตุงุฑุช ุงู„ู€ L is
95
00:06:57,180 --> 00:07:02,740
strictly increasingุงู„ุงู† ุทุจุนุง ุงู„ domain ู…ุฏุงู… ุงู† ู‡ุฐู‡
96
00:07:02,740 --> 00:07:07,000
ุงู„ inverse ู„ ุงู„ E ุงู„ domain ุงู„ู„ูŠ ู‡ูˆ ุงู„ inverse ู‡ูˆ
97
00:07:07,000 --> 00:07:11,380
range ุงู„ function ุงู„ุฃุตู„ูŠุฉ ูˆ ุจูŠุตูŠุฑ sub wave ููŠ
98
00:07:11,380 --> 00:07:18,460
ุงู„ูุฆุฑ ุงุฐุง ุงู„ุงู† ุงุญู†ุง ุงุซุจุชู†ุง ุงู† ุงู„ is strictly
99
00:07:18,460 --> 00:07:23,530
increasingุงู„ุงู† ูˆ rangeู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุตุงุฑ domain ุงู„ู„ูŠ
100
00:07:23,530 --> 00:07:28,310
ู‡ูˆ ุงูˆ range ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ู‡ุฐูŠ ุงู„ู„ูŠ ุตุงุฑ domainู‡ุง
101
00:07:28,310 --> 00:07:32,990
domain ุงู„ L ูˆ ู‡ุฐูŠ ุตุงุฑุช ุงู„ู„ูŠ ู‡ูˆ range ุงู„ L ุฒูŠ ู…ุง
102
00:07:32,990 --> 00:07:37,330
ู‚ู„ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงูˆ ุนู†ุฏูŠ ุงู„ุงู† ุจุฏู†ุง ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ
103
00:07:37,330 --> 00:07:42,070
ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู†ุธุฑูŠุฉ ุฎู„ูŠู†ูŠ ู†ูƒุชุจ ู‡ู†ุง ุนุดุงู† ู†ุชุฐูƒุฑ
104
00:07:42,070 --> 00:07:48,430
ุงูŠุด ุงู„ู„ูŠ ุจุฏู†ุง ู†ุซุจุชู‡ ุงู„ุงู† ุจุฏู†ุง ู†ุซุจุช ุงูŠู† ุฃุซุจุชู†ุง
105
00:07:48,430 --> 00:07:54,230
ุงู„ุฃูˆู„ู‰ุงู„ู„ูŠ ูู‰ ุงู„ู†ุต ุจุชู‚ู„ู‘ู‰ prime of X ุงู„ู„ู‰ ู†ูƒุชุจู‡ู†
106
00:07:54,230 --> 00:07:59,330
ุงู„ู„ู‰ ุจุฏู†ุง ู†ุซุจุชู‡ู† ุนุดุงู† ู†ุชุฐูƒุฑู‡ู†
107
00:07:59,330 --> 00:08:12,240
ู‚ู„ู‘ู‰ prime I ุงูˆ VIII ู‚ู„ู‘ู‰ primeof X ุจุณูˆุฉ ูˆุงุญุฏุฉ ู„ X
108
00:08:12,240 --> 00:08:19,680
ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ L of XY ุจุณูˆุฉ L X ุฒุงุฆุฏ L Y ุทุจุนุง ุงู„ Y
109
00:08:19,680 --> 00:08:25,780
ู‡ู†ุงูƒ ุงู„ L of ูˆุงุญุฏ ุจุณูˆุฉ ุณูุฑ L of E ุจุณูˆุฉ ูˆุงุญุฏ ูƒู„ู‡ู…
110
00:08:25,780 --> 00:08:34,440
ุจุณูŠุทุงุชL prime L of X to the R ุณูˆู‰ R L of X ูˆ Limit
111
00:08:34,440 --> 00:08:39,720
L of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ Zero ู…ู† ุงู„ูŠู…ูŠู† ุณูˆู‰ ุณุงู„ุจ ู„ู…ุง
112
00:08:39,720 --> 00:08:45,140
ู„ู†ู‡ุงูŠุฉ ูˆ Limit ู„L of X ู„ู…ุง X ุชุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ
113
00:08:45,140 --> 00:08:48,520
ุณูˆู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ุฎู„ู‘ูŠู†ูŠ ุฃุดูˆู ุฃู† ุฏูˆู„ ุนู„ู‰ ุงู„ุณุฑูŠุน ูุงู†ูˆุง
114
00:08:48,520 --> 00:08:53,640
ูƒู„ู‡ุง ุดุบู„ุงุช ูŠุนู†ูŠ ุจุฃุนุชู‚ุฏ ุฃู†ู‡ ุณู‡ู„ ุฃู†ูƒ ู†ุซุจุชู‡ุง
115
00:08:55,730 --> 00:09:02,210
ุนู†ุฏูŠ ู„ุฃู† ุฒูŠ ู…ุง ุนู…ู„ุช ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ูุถู„ุช ู‡ุฐู‡
116
00:09:02,210 --> 00:09:07,290
ุชูุงุถู„ู‡ E composite L of X ู„ู…ุง ุนู…ู„ุชู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ
117
00:09:07,290 --> 00:09:14,250
ุงู„ู„ูŠ ู‡ูŠ ูƒุงู†ุช ุนู†ุฏูŠ ู‡ูŠู† ุฃุนู…ู„ E composite L of X ุงู„ูƒู„
118
00:09:14,250 --> 00:09:19,370
ุงู„ู„ูŠ ู‡ูŠ ุจุณุงูˆูŠ ุงู„ X ูุงุถู„ ู‡ุฐุง ูŠุตูŠุฑ E prime
119
00:09:26,060 --> 00:09:29,100
ุจู†ุณุจุฉ ู„ู€ x ุฃู‚ู„ ุงู„ู€ prime of x
120
00:09:34,780 --> 00:09:40,160
ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€ E prime of L of X ุฅุฐุง ุงู„ู€ E
121
00:09:40,160 --> 00:09:44,300
ุงู„ู‚ู„ูŠ ุจุฑุงูŠู… of X ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ E prime composite
122
00:09:44,300 --> 00:09:48,340
L of X ูˆุงู„ู€ E prime ู‡ูŠ ู†ูุณ ุงู„ู€ E ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅุฐุง
123
00:09:48,340 --> 00:09:51,140
ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ E composite L of X ุฅู„ู‰ ุงู„ E
124
00:09:51,140 --> 00:09:54,640
composite L of X ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅูŠุด ุจุชุณุงูˆูŠ ุจุณุงูˆูŠ X
125
00:09:54,640 --> 00:09:57,660
ูุจุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ X ูุงู„ู‚ู„ูŠ ุจุฑุงูŠู… ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ X
126
00:09:57,660 --> 00:10:02,910
ู„ูƒู„ X ููŠ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ูุชุฑุฉ Zeroูˆ 1 ู†ูŠุฌูŠ ุงู„ุขู† ู†ุดูˆู
127
00:10:02,910 --> 00:10:06,710
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฎู„ู‘ูŠู†ุง ู†ุซุจุช
128
00:10:06,710 --> 00:10:12,690
ุงู„ู„ูŠ ู‡ูˆ L of X ููŠ Y ุจุณูˆุง L of X ุฒุงุฆุฏ ู…ูŠู† ุฒุงุฆุฏ L of
129
00:10:12,690 --> 00:10:17,270
Y ุจุฑุถู‡ ุงู„ุฅุซุจุงุช ุณู‡ู„ ูˆุงู†ุชุจู‡ูˆุง ู…ุนุงูŠุง ูˆุณู‡ู„ุณ ุนู†ุฏู‰ ุงู„ุขู†
130
00:10:24,240 --> 00:10:27,240
F X ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ Y
131
00:10:27,240 --> 00:10:27,740
ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ Y ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ
132
00:10:27,740 --> 00:10:27,900
ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†
133
00:10:27,900 --> 00:10:28,100
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†
134
00:10:28,100 --> 00:10:28,700
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†
135
00:10:28,700 --> 00:10:28,920
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†
136
00:10:28,920 --> 00:10:32,100
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู†
137
00:10:32,100 --> 00:10:43,400
ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X ุฃูƒุจุฑ ู…ู† ุตูุฑ F X
138
00:10:43,400 --> 00:10:51,850
ุฃูƒุจุฑ ู…ู† ุตูุฑ F Xู„ุฃู† ุงู„ู€ E ูˆุงู„ู€ L ุงู†ูุฑุณุฉ ุจุนุถ ุงู„ุงู† ู…ู†
139
00:10:51,850 --> 00:10:55,130
ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ู€ exponential ุจุฏู†ุง ู†ุตู„ ู„ู…ู†ุŸ ู„ู„
140
00:10:55,130 --> 00:11:00,970
logarithmic ุฅุฐุง ุฃุถุฑุจ ู„ X ููŠ Y ุจูŠุทู„ุน ุนู†ุฏ X ููŠ Y
141
00:11:00,970 --> 00:11:05,190
ุจุชุณุงูˆูŠ E of U ููŠ E of V E of U ููŠ E of V ุฅูŠุด
142
00:11:05,190 --> 00:11:10,010
ุจุชุณุงูˆูŠุŸ E of U ุฒุงุฆุฏ V ุฃุซุจุชู†ุงู‡ุง ุฅุฐุง ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู…
143
00:11:10,970 --> 00:11:15,270
ุฎูุฏ ุงู„ู€ L ู„ู„ุฌู‡ุชูŠู† ู„ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inverse ู„ุจุนุถ
144
00:11:15,270 --> 00:11:20,450
ุจูŠุตูŠุฑ ุนู†ุฏูŠ L of X ููŠ Y ุจุณุงูˆูŠ L of E of U ุฒุงุฆุฏ V
145
00:11:20,450 --> 00:11:24,410
ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ุจุชุณุงูˆูŠ U ุฒุงุฆุฏ V U ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† L
146
00:11:24,410 --> 00:11:30,750
of X ูˆ V ุนุจุงุฑุฉ ุนู† L of Y ุฅุฐุง ุฃุซุจุชุช L of X ุฒุงุฆุฏ X
147
00:11:30,750 --> 00:11:39,370
ููŠ Y ุจุณุงูˆูŠ L of X ุฒุงุฆุฏ L of Yุงู„ุงู† ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ู‰ E
148
00:11:39,370 --> 00:11:47,050
of Zero ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฎุฏู„ู‰ ุงู„ L ุงู„ุฌู‡ุชูŠู† ุจูŠุตูŠุฑ ZL of
149
00:11:47,050 --> 00:11:53,010
E of Zero ุจูŠุณุงูˆูŠ L of ูˆุงุญุฏ ุงู„ L of E of Zero ู‡ุฏูƒ
150
00:11:53,010 --> 00:11:59,450
inverse ุงู„ุชุงู†ูŠุฉ ุจูŠุณุงูˆูŠ Zero ู†ูุณ ุงู„ุงุดูŠุงู„ู€ L of E of
151
00:11:59,450 --> 00:12:07,270
1 ุจูŠุณุงูˆูŠ L of EุŒ ู…ุธุจูˆุทุŸ ุงู„ู€ L of E of 1 ุจูŠุณุงูˆูŠ 1ุŒ
152
00:12:07,270 --> 00:12:12,230
ุจูŠุตูŠุฑ L of E ุจูŠุณุงูˆูŠ 1 ุจูŠุตูŠุฑ ุฃุซุจุชู†ุง L of E ุจูŠุณุงูˆูŠ 1
153
00:12:12,230 --> 00:12:19,730
ูˆ L of 1 ุจูŠุณุงูˆูŠ 0 ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ุงู… ุณู‡ู„ุŒ ุทูŠุจ ุจูŠุตูŠุฑ
154
00:12:19,730 --> 00:12:23,710
ุนู„ุงู‚ุฉ ุฃู†ู‡ ุณู‡ู„ ุงู„ู„ูŠ ุจู†ุญูƒูŠู‡ุŒ ุงู„ุขู†
155
00:12:27,210 --> 00:12:32,730
ู†ุฃุชูŠ ู†ุซุจุช ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ L of X to the R ุจุณุงูˆุฉ
156
00:12:32,730 --> 00:12:37,010
Zero ุจุณุงูˆุฉ R ููŠ L of X ู‡ุฐู‡ ุจุฑุถู‡ ุจู‚ุงุด By
157
00:12:37,010 --> 00:12:41,910
Mathematical Induction ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒุฉ ุจุงู„ู„ูŠ ู‡ูˆ
158
00:12:41,910 --> 00:12:47,330
ุงู„ section ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ exponential
159
00:12:47,330 --> 00:12:52,830
ุนู„ู‰ ุงู„ุณุฑูŠุน ู†ุดูˆู ุงู„ุชูุงุตูŠู„ ู„ุฅู†ู‡ ุงู„ุชูุงุตูŠู„ ู…ุนุงุฏุฉ
160
00:13:07,050 --> 00:13:11,430
ุงู„ุชูุงุตูŠู„ ู‡ุชู„ุงุฌูˆู‡ุง ู…ุนุงุฏุฉ ูุฎู„ูŠู†ูŠ ุจุณุฑุนุฉ ู†ู…ุฑ ุนู„ูŠู‡ุง
161
00:13:11,430 --> 00:13:17,730
ุนู†ุฏูŠ we show by induction L of X ุจุณูˆุง L L of X ุฒูŠ
162
00:13:17,730 --> 00:13:21,850
ู…ุง ู‚ู„ู†ุง ุนุดุงู† ู„ุซุจุชู‡ุง ู‡ุฐู‡ ุฃุซุจุชู†ุง ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ L of
163
00:13:21,850 --> 00:13:27,190
X ุนุงุฑูุด ุงู„ุฑุฒูˆู… ุฃุตู„ุง ุฃูุตู„ ูˆู„ุง ู„ุฃ ู„ูƒู† ุจุฏูŠ ุฃูุตู„ ู„ูˆ
164
00:13:27,190 --> 00:13:32,790
ุฃู†ุชูˆุง ุนู†ุฏู‰ ู„ูˆ ุงุชูุฌู†ุง ุฃู† ู†ูุตู„ ูˆู„ุง ู„ุฃ L of X ููŠ Y
165
00:13:32,790 --> 00:13:39,580
ุจุณูˆุง L of X ููŠ L of Yof x was n ุจุณุงูˆูŠ n ููŠ L of x
166
00:13:39,580 --> 00:13:44,060
ุทุจุนุง for n ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ a trivial ู†ูุชุฑุถ
167
00:13:44,060 --> 00:13:48,180
ุฃู†ู‡ุง ุตุญูŠุญุฉ ู„ L ู„ n ุจุชุณุงูˆูŠ k ุจูŠุตูŠุฑ L of x was k
168
00:13:48,180 --> 00:13:53,080
ุจุณุงูˆูŠ k L of x ุงู„ุขู† ุจุฏู†ุง ู†ุญุณุจ ู„ L of x was k ุฒุงุฆุฏ
169
00:13:53,080 --> 00:13:59,480
ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุจุณุงูˆูŠ L of x was k ููŠ xู‡ุฐู‡ ุงู„ู€ L ู„ู‡ุง
170
00:13:59,480 --> 00:14:04,760
ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุจุณูˆุก L ุงู„ุฃูˆู„ู‰ X plus K ููŠ
171
00:14:04,760 --> 00:14:09,860
L ุงู„ุชุงู†ูŠ L of X ุงู„ู„ูŠ ู‡ูˆ ู…ูุชุฑุถ ุฅู†ู‡ุง ุตุญูŠุญุฉ ุนู„ู‰ K ุฏู‡
172
00:14:09,860 --> 00:14:19,600
ุจุณูˆุก K ููŠ L of X ุขุณู ุฒุงุฆุฏ ู‡ุฐู‡ ุจุณูˆุก K L of Xู„ุฃู†ู‡ุง
173
00:14:19,600 --> 00:14:26,400
ุตุญูŠุญุฉ ู„ู€ K ุฒุงุฆุฏ L of X ูˆูŠุณุงูˆูŠ K ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ L of
174
00:14:26,400 --> 00:14:31,520
X ุฅุฐุง ุตุงุฑุช ู‡ุฐู‡ ุตุญูŠุญุฉ ุงู„ู„ูŠ ู‡ูŠ L ู„ K ุฒุงุฆุฏ ูˆุงุญุฏ ุฅุฐุง
175
00:14:31,520 --> 00:14:36,760
ุตุงุฑุช ุตุญูŠุญุฉ ู„ูƒู„ ู…ู† ู„ูƒู„ N element in N ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ
176
00:14:36,760 --> 00:14:43,080
ุงู„ induction ุงู„ู„ูŠ ุจู†ุญูƒูŠ ููŠู‡ ุฅุฐุง ุงู„ุฃู† ุฃุซุจุชู†ุง ุฃู† L
177
00:14:43,080 --> 00:14:49,710
of X ู‡ูˆ N ู„L of X ู„ูƒู„ ุงู„ู„ูŠ ู‡ูŠ ุนู†ุฏูŠุงู„ุงู† by VI ุงู„ู„ูŠ
178
00:14:49,710 --> 00:14:53,530
ู‡ูˆ ุฒูŠ .. ู…ุดุงุจู‡ ู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุจุงู„ุธุจุท ููŠ ุญุฏ
179
00:14:53,530 --> 00:14:58,890
ุงู„ exponential ุจุณ ุฎู„ูŠู†ูŠ ู…ุด ูˆุดูƒู„ุฉ ุจุชุนูŠุฏู‡ ุงู„ุงู† ุดูˆู L
180
00:14:58,890 --> 00:15:03,680
of XM minus M ุฃูŠุด ุจุชุณุงูˆูŠุŸ L of ูˆุงุญุฏุงู„ู„ูŠ ู‡ูŠ ู„ุฃู† ู‡ุฐุง
181
00:15:03,680 --> 00:15:05,860
X ู‡ูˆ ุงู„ุณูุฑ ุงู„ู„ูŠ ู‡ูŠ L of ูˆุงุญุฏ L of ูˆุงุญุฏ ู…ุด ู‚ูˆู„ู†ุง
182
00:15:05,860 --> 00:15:11,040
ุนู†ู‡ุง ุณูุฑ ู‡ูˆ ูŠุณูˆู‰ L of XM ููŠ XM minus ูˆุงุญุฏ ุงู„
183
00:15:11,040 --> 00:15:16,300
logarithmic ุจุทู„ุญ ุงู†ุฌู…ุน L of XM ุฒุงุฆุฏ L of X minus M
184
00:15:16,300 --> 00:15:21,920
ู„ุฃู† ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ุนุจุงุฑุฉ ุนู† M L of X ุฒุงุฆุฏL of X
185
00:15:21,920 --> 00:15:27,500
minus M ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† M ููŠ L of X ุฒุงุฆุฏ L of X
186
00:15:27,500 --> 00:15:32,040
minus M ุจุณูˆุง ุณูุฑ ุงู†ุฌู„ูŠ ู‡ุฐุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุจุทู„ุน
187
00:15:32,040 --> 00:15:35,760
L of X minus M ุงู„ู„ูŠ ู‚ุนุฏุช ู„ุญุงู„ู‡ุง ุจุณูˆุง ู†ุงู‚ุต M ููŠ L
188
00:15:35,760 --> 00:15:41,720
of X ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ุงู† ู„ูƒู„ M ุณูˆุงุก ู…ูˆุฌุจุฉ ุงูˆ ุณุงู„ุจุฉ
189
00:15:41,720 --> 00:15:48,940
ุจุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ L of X ู‚ุต Mุจุณุงูˆุฉ M ููŠ L of X
190
00:15:48,940 --> 00:15:53,860
ุณูˆุงุก ูƒุงู†ุช ูˆุฌุจุฉ ุฃูˆ ุณุงู„ุจุฉ ู†ูŠุฌูŠ ุงู„ุขู† ู…ู†ู‡ุง ุจุฏู†ุง ู†ุงุฎุฏ
191
00:15:53,860 --> 00:15:57,360
ู„ู…ูŠู† ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ ุงู„ R ู„ุงู† therefore for any M
192
00:15:57,360 --> 00:16:02,800
element in Z ูˆ N element in Nุนู†ุฏูŠ ุงุญุณุจู„ูŠ ุงู„ุงู† L of
193
00:16:02,800 --> 00:16:07,020
X ุฃุณ M ุนู„ู‰ N ุจุณ ุถุฑุจู„ูŠู‡ุง ููŠ N ุจุนุฏ ุฅุฐู†ูƒ Y ุณุงูˆูŠ ุงู„ู„ูŠ
194
00:16:07,020 --> 00:16:12,460
ู‡ูŠ L of X ุฃุณ M ุนู„ู‰ N ู„ูƒู„ ู…ุง ู„ู‡ ุฃุณ N ู„ุฅู†ู‡ ุตุญูŠุญุฉ ู‡ุฐู‡
195
00:16:12,460 --> 00:16:18,080
ู„ู„ N ุงู„ู„ูŠ ู‡ูŠ ููŠ N ูˆุงุชูุฌู†ุง ุนู„ูŠู‡ุง ุงู„ุงู† ู‡ุฐู‡ ุจุชุณุงูˆูŠ
196
00:16:18,080 --> 00:16:21,520
ู‡ุฐู‡ ูˆุงุถุญุฉ ู„ุฅู† ู‡ุฐู‡ ู‡ูŠ ุงู„ X ุชุจุนุชู†ุง ูˆู‡ุฐู‡ ุงู„ N ุจุชุทู„ุน
197
00:16:21,520 --> 00:16:27,410
ุจุฑุงุงู„ุงู† ู‡ุฐู‡ ุงู„ุงู† ู…ุน ุงู„ุงู† ุจูŠุตูŠุฑ L of X plus M L of
198
00:16:27,410 --> 00:16:30,870
X plus M ู‚ุจู„ ุจุดูˆูŠุฉ ุจู‚ู‰ ู‚ูˆู„ู†ุง ุนู†ู‡ุง ุจูŠุณุงูˆูŠ M L of X
199
00:16:30,870 --> 00:16:34,270
ุณูˆุงุก ูƒุงู†ุช M positive ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ negative ุตุงุฑ ู‡ุฐู‡
200
00:16:34,270 --> 00:16:40,930
ุจุชุณุงูˆูŠ ู‡ุฐู‡ ุฅุฐุง ุงู†ุฌู„ูŠ ุงู„ุขู†ุงู„ุงู† ู‡ุฐู‡ ุงู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ L
201
00:16:40,930 --> 00:16:44,910
of X of M ุนู„ู‰ N ุจูŠุณูˆูŠ M ุนู„ู‰ N ููŠ L of X ุฅุฐุง ุตุงุฑ
202
00:16:44,910 --> 00:16:49,490
ุนู†ุฏูŠ ู„ุฃูŠ rational number ุตุงุฑ ุนู†ุฏูŠ L of X R ุจูŠุณูˆูŠ R
203
00:16:49,490 --> 00:16:55,670
L of X ู„ูƒู„ R ุงู„ู„ูŠ ุจู†ุชู…ูŠูŠู† NQ ู†ูŠุฌูŠ ุงู„ุขู† ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ
204
00:16:55,670 --> 00:16:57,230
ุงู„ุฌุฒุก ุงู„ุฃุฎูŠุฑ ู…ู† ุงู„ู†ุธุฑูŠุฉ
205
00:17:08,180 --> 00:17:11,120
ุงู„ูƒู„ุงู… ู…ุดุงุจู‡ ู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ููŠ ุงู„ุฅุซุจุงุช ุงู„ู„ูŠ
206
00:17:11,120 --> 00:17:15,260
ู‡ูˆ ุงู„ limit ุชุจุน ุงู„ exponential ุนู†ุฏ 2 ุฃุตุบุฑ ู…ู† E
207
00:17:15,260 --> 00:17:19,380
ูˆู‚ู„ู†ุง ู„ูŠุด ุงู„ุงู† ุงู„ E n ู‡ู†ุง ุจูŠุตูŠุฑ 2 ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
208
00:17:19,380 --> 00:17:19,920
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
209
00:17:19,920 --> 00:17:21,140
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
210
00:17:21,140 --> 00:17:22,840
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
211
00:17:22,840 --> 00:17:23,240
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
212
00:17:23,240 --> 00:17:26,700
ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ ู…ู† E ุฃุตุบุฑ
213
00:17:26,700 --> 00:17:30,620
ู…ู† E ุฃุตุบ
214
00:17:33,960 --> 00:17:39,580
ู„ูƒู† ุงู„ู„ูŠ ู‡ูˆ L of E N ุจุณูˆุก N and ุงู„ู„ูŠ ู‡ูŠ L of E
215
00:17:39,580 --> 00:17:44,020
minus N ุจุณูˆุก ู†ู‚ุต N ุฎู„ูŠู†ูŠ ููŠ ุงู„ุฐุงูƒุฑ ู‡ุฐูˆู„ ุงุฐุง for
216
00:17:44,020 --> 00:17:47,480
every N element in R there exists X element in R
217
00:17:47,480 --> 00:17:52,670
ุจุญูŠุซ ุงู† X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† Nู„ูƒู„ N element in N ููŠ X
218
00:17:52,670 --> 00:17:56,350
element in R ุฃูƒูŠุฏ X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† E N ู„ุฃู†ู‡ ุฃุฎุณุฑุช
219
00:17:56,350 --> 00:18:00,590
N ุจูŠู† ุฅูŠุฏูŠุง ุญุณุจุช ุงู„ E N ุทู„ุน ุนู†ุฏ ุฑู‚ู… ุฃุฎุฏุช ุงู„ X ุฃูƒุจุฑ
220
00:18:00,590 --> 00:18:03,310
ู…ู†ู‡ุง ูƒูŠุฏ ุจุงู„ู„ู‡ ุทูŠุจ ู„ุฃู†ู‡ unbounded real numbers
221
00:18:03,310 --> 00:18:06,710
then L ููŠ ู‡ุฐู‡ ุฃูƒุจุฑ ุฃูˆ ู…ู† L ููŠ ู‡ุฐู‡ ู„ุฃู†ู‡ ุงู„ L
222
00:18:06,710 --> 00:18:10,810
strictly increasing ุฅุฐุง ุตุงุฑ L ููŠ X ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู†
223
00:18:10,810 --> 00:18:16,130
ุงู„ NA ุฃู„ูˆู E ุฃู† ูŠุนู†ูŠ ุฃูƒุจุฑ ู…ู† ุงู„ุงู† ู„ุฃู† limit ู‡ุฐู‡ as
224
00:18:16,130 --> 00:18:21,210
x goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุฃูƒุจุฑ ุฃุณุงูˆูŠ ุงู„ู„ูŠ
225
00:18:21,210 --> 00:18:23,950
ู‡ูŠ limit ู‡ุฐู‡ as n goes to infinity ูˆูŠุณุงูˆู‰ infinity
226
00:18:23,950 --> 00:18:27,550
ู„ุฃู† ู„ูƒู„ ู„ู…ุง ุงู„ุงู† ุชุฑูˆุญ ู„ู…ุง ู„ู†ู‡ุงูŠุฉ ุฃูƒูŠุฏ ุงู„ X ุจุชุฑูˆุญ
227
00:18:27,550 --> 00:18:31,270
ู„ู…ูŠู† ุฅู„ู‰ ู…ุง ู„ู†ู‡ุงูŠุฉ ูุตุงุฑ ุนู†ุฏูŠ ู‡ุฐู‡ ุจุชุฑูˆุญ ุฅู„ู‰ ู…ุง
228
00:18:31,270 --> 00:18:34,970
ู„ู†ู‡ุงูŠุฉ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ limit L of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ุง
229
00:18:34,970 --> 00:18:41,040
ู„ู†ู‡ุงูŠุฉ ุจูŠุณุงูˆูŠ ู…ุง ู„ู†ู‡ุงูŠุฉ similarlyุงู„ุงู† ู„ูƒู„ ู†ู‚ุต any
230
00:18:41,040 --> 00:18:43,100
element in z positive ุจู„ุงู‚ูŠ x element in r
231
00:18:43,100 --> 00:18:45,740
positive ุจุญูŠุซ ุงู† x ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ
232
00:18:45,740 --> 00:18:46,340
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู†
233
00:18:46,340 --> 00:18:47,840
ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ
234
00:18:47,840 --> 00:18:51,500
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู†
235
00:18:51,500 --> 00:18:57,960
ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ
236
00:18:57,960 --> 00:19:02,520
ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู†
237
00:19:02,520 --> 00:19:09,620
ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุตุบุฑ ู…ู† ุตูุฑ ูˆ ุฃุทูŠุจ then L of X
238
00:19:09,620 --> 00:19:13,660
ู‡ูŠูƒูˆู† ุฃุตุบุฑ ูŠุณุงูˆูŠ ุงู„ E to the minus N ูŠุนู†ูŠ L of X
239
00:19:13,660 --> 00:19:17,800
ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ูŠุณุงูˆูŠ ู†ุงู‚ุต N ุฅุฐุง as N goes to
240
00:19:17,800 --> 00:19:22,700
infinity as N goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุงู„ E to the
241
00:19:22,700 --> 00:19:26,540
minus N ุจูŠุฑูˆุญ ู„ู„0 ู…ู† ุงู„ูŠู…ูŠู† ุฅุฐุง ุงู„ X ุจุชุฑูˆุญ ู„ู„0 ู…ู†
242
00:19:26,540 --> 00:19:30,820
ุงู„ูŠู…ูŠู† ุฅุฐุง ุนู†ุฏูŠ ุงู„ X ุจุชุฑูˆุญ ู„ู„ 0 ู…ู† ุงู„ูŠู…ูŠู†ุงู„ู„ูŠ ู‡ูˆ
243
00:19:30,820 --> 00:19:34,580
ุฃุตุบุฑ ู„ู…ุง ุงู„ู€ limit L of X ุฃุตุบุฑ ู…ู† limit E to the
244
00:19:34,580 --> 00:19:37,900
minus N ู„ู…ุง ู‡ุฐุง ูŠุฑูˆุญ ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ุจู…ุนู†ู‰ ุฃุฎุฑ
245
00:19:37,900 --> 00:19:41,680
ู„ู…ุง ุงู„ู€ N ุชุฑูˆุญ ู„ู…ู‡ุฉ ู„ู†ู‡ุงูŠุฉ ูˆ ู‡ุฐุง ุจูŠุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู€
246
00:19:41,680 --> 00:19:44,760
Infinity ุฅุฐุง limit L of X ู„ู…ุง X ุชุฑูˆุญ ู„ู…ู‡ุฉ ู„ู†ู‡ุงูŠุฉ
247
00:19:44,760 --> 00:19:50,920
ุจุณุงูˆูŠ ุณุงู„ุจ Infinity ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ hence limit L of
248
00:19:50,920 --> 00:19:54,460
X ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ู…ู† ุงู„ูŠู…ูŠู† ุจุณุงูˆูŠ ุณุงู„ุจ Infinity
249
00:19:54,460 --> 00:19:58,500
ุทูŠุจ
250
00:20:12,260 --> 00:20:16,320
ุงู„ุงู† ุณุงุฑุนู†ุง ุงู„ุงู† ู†ู‚ุฏุฑ ุงู† ุงู„ู„ูŠ ู‡ูˆ ู†ุญูƒูŠ ุนู† ุงู„ bar
251
00:20:16,320 --> 00:20:20,080
functions ุจุฏู†ุง ู†ุนุฑู ุงู„ bar functions ุงู„ู„ูŠ ู‡ูŠ ุจู†ุงุก
252
00:20:20,080 --> 00:20:25,060
ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ูˆ ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุถูˆุน ุงู„ bar functions
253
00:20:25,060 --> 00:20:28,880
ูƒู„ ู…ุง ููŠู‡ ุชู‚ุฑูŠุจุง ูŠุนู†ูŠ ุจู†ุนุชุจุฑู‡ exercises ุงุญู†ุง ู„ูƒู†
254
00:20:28,880 --> 00:20:32,520
ุฎู„ูŠู†ุง ู†ุนุฑู ุงู„ุชุนุฑูŠูุงุช ูˆ ุงู„ู†ุธุฑูŠุงุช ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ
255
00:20:32,520 --> 00:20:35,900
ู…ุนุงูƒู… exercises ุจุณูŠุทุฉ ุจู†ุงุก ุนู„ู‰ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ
256
00:20:35,900 --> 00:20:40,720
ุจู†ุนุฑูู‡ุง ุงู„ู„ูŠ ู‡ู†ุงุฎุฏ ฮฑ ูŠู„ูŠู…ู†ุชุงู† R ูˆ X ุฃูƒุจุฑ ู…ู† 0The
257
00:20:40,720 --> 00:20:43,320
number X to the Alpha is defined to be .. ุงู„ุขู† ุจุฏูŠ
258
00:20:43,320 --> 00:20:46,940
ุฃุนุฑู ุญุงุฌุฉ ุงุณู…ู‡ุง X to the Alpha X to the Alpha ุจุฏูŠ
259
00:20:46,940 --> 00:20:49,900
ุฃุนุฑูู‡ุง .. ุฅูŠุด ุจุฏูŠ ุฃุนุฑูู‡ุงุŸ ุจุฅูŠุดูŠ ุฃู†ุง ู…ุนุฑู ุนู†ุฏูŠ ู…ู†
260
00:20:49,900 --> 00:20:54,440
ุงู„ุฃุตู„ ุงู„ exponential ู…ุนุฑูุฉ .. ุฎู„ุตู†ุง ู…ู†ู‡ุง ูˆ ุงู„ len
261
00:20:54,440 --> 00:20:59,000
ู…ุนุฑูุฉ .. ุฅุฐุง E to the Alpha ููŠ ู„ู† ุงู„ X ู‡ุฐู‡ ุงู„ู…ู‚ุฏุงุฑ
262
00:20:59,000 --> 00:21:03,820
ู„ู‡ุฐุง ู…ุนุฑู ูˆ ู‡ุฐุง ู…ุนุฑู ุจุฏูŠ ุฃุณู…ูŠ X to the Min to the
263
00:21:03,820 --> 00:21:07,400
Alpha ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ูˆุงู‚ุน ุนุจุงุฑุฉ ุนู† Min E to the
264
00:21:07,400 --> 00:21:12,040
AlphaL of X L of X ู…ุนุฑูุฉ ูˆุงู„ู€ E ู…ุนุฑูุฉ ุฅุฐุง ูƒู„ ู‡ุฐู‡
265
00:21:12,040 --> 00:21:16,000
ู…ุนุฑูุฉ ุจุชุณู…ูŠู‡ุง X to the main to the alpha ุงู„ุขู† ุตุงุฑุช
266
00:21:16,000 --> 00:21:19,540
ุนู†ุฏูŠ ูŠุนู†ูŠ ู‚ูŠู…ุฉ ุงู„ู€ X under this function ุงู„ู„ูŠ
267
00:21:19,540 --> 00:21:23,120
ุนุฑูุชู‡ุง ู„ุฌุฏูŠุฏุฉ ูŠุนู†ูŠ ุฅุฐุง ุจุชุณู…ูŠู‡ุง ุฏูŠ ุงู„ function ุงู„ู€
268
00:21:23,120 --> 00:21:28,240
R of X ุฅูŠุด ุนุฑูุชู‡ุง ุฃู†ุง ุจุชุณุงูˆูŠ X to the alphaุŸูŠุนู†ูŠ
269
00:21:28,240 --> 00:21:31,680
ูƒู„ ุงู„ X ุจุชุตูŠุฑ ูŠุดู…ู„ X to the Alpha ูˆ X ุฃูƒุจุฑ ู…ู† 0
270
00:21:31,680 --> 00:21:36,780
ู‡ุฐู‡ ุงู„ X to the Alpha ู‡ูŠ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณู…ูŠู‡ุง ุงู„ power
271
00:21:36,780 --> 00:21:42,000
function ุจุฏูŠ ุฃุณู…ูŠู‡ุง power function with exponent
272
00:21:42,000 --> 00:21:47,540
mean Alpha ูˆ ุงู„ X ู‡ูŠ ุฃุดู…ุงู„ู‡ุง ุงู„ู…ุชุบูŠุฑุฉ ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู†
273
00:21:47,540 --> 00:21:54,340
0 ุดูˆู ุงู„ุขู† ู†ุดูˆู ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
274
00:21:54,340 --> 00:21:56,460
ุงู„ุฏุงู„ุฉ ุทูŠุจ
275
00:22:04,730 --> 00:22:08,690
ุงู„ุงู† if x ุฃูƒุจุฑ ู…ู† 0 and alpha ุจุณุงูˆุฉ m ุนู„ู‰ n where
276
00:22:08,690 --> 00:22:12,770
m element in z ูˆ n element in n then we define x
277
00:22:12,770 --> 00:22:17,790
to the alpha ุจุณุงูˆุฉ x to the m ุฃุณูˆุงุญุฏ ุนู„ู‰ n in
278
00:22:17,790 --> 00:22:23,110
section mean ุฎู…ุณุฉ ุณุชุฉ ู‡ุชุนุฑูู†ุงู‡ุง ุฒู…ุงู† ุงู†ู‡ ููŠ ุญุงู„ุฉ
279
00:22:23,110 --> 00:22:26,570
ุจุณ ุงู„ู„ูŠ ู‡ูŠ ุงู„ rational number ุนุฑูู†ุง x to the m ุนู„ู‰
280
00:22:26,570 --> 00:22:30,630
n ุจุณุงูˆุฉ x to the m ู„ูƒู„ ุฃุณูˆุงุญุฏ ุนู„ู‰ nู…ุงุดูŠ ุงู„ุญุงู„
281
00:22:30,630 --> 00:22:34,510
..ุงู„ุงู† ุจุฏู†ุง ู†ุดูˆู ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุทุงุจู‚ ู„ุชุนุฑูŠูู†ุง ุงู„ูŠูˆู…
282
00:22:34,510 --> 00:22:41,670
ูˆู„ุง ู„ุฃ hence we have ู„ู† ุงู„ X to the Alpha ู„ู† ุงู„ X
283
00:22:41,670 --> 00:22:45,370
to the Alpha ู„ู† ุงู„ X to the Alpha ุจุณุงูˆูŠ Alpha ู„ู†
284
00:22:45,370 --> 00:22:51,540
ุงู„ Xุนุฑูู†ุงู‡ุง ู‡ุฐู‡ ุทูŠุจ where X to the Alpha ุจูŠุณูˆุง E
285
00:22:51,540 --> 00:22:56,260
to the Lin X to the Min to the Alpha ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณูˆุง
286
00:22:56,260 --> 00:23:01,020
E to the Alpha ููŠ Min ููŠ Lin ุงู„ X ูƒู„ุงู… ูƒู„ู‡ ุณู‡ู„ ุงู„
287
00:23:01,020 --> 00:23:05,740
X to the Alpha ู‡ูˆ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ุง ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† E
288
00:23:05,740 --> 00:23:10,570
ุจุชุตูŠุฑ to the Lin X to the Alphaู„ุฃู†ู‡ ุงุณุชุจุฏู„ุช ุงู„ู€ x
289
00:23:10,570 --> 00:23:15,090
to the alpha ุจู‚ูŠู…ุชู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ
290
00:23:15,090 --> 00:23:18,630
alpha ln x ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุณุงูˆูŠุฉ e to the ln x to the
291
00:23:18,630 --> 00:23:24,510
mean to the alpha ุฅุฐุง ุณูˆุงุก ุงุญู†ุง ุจุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ู‡ูˆ
292
00:23:24,510 --> 00:23:28,190
ุงุญู†ุง ู‡ุฐุง ุจุงู„ exponent ุฃูˆ ุจุงู„ ุงู„ function ุงู„ู„ูŠ
293
00:23:28,190 --> 00:23:33,110
ุนุฑูู†ุงู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ู‡ูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‚ูŠู…ุชูŠู† ู†ูุณ
294
00:23:33,110 --> 00:23:34,790
ุงู„ู‚ูŠู…ุฉ ุทูŠุจ
295
00:23:37,160 --> 00:23:42,300
ู†ุฌูŠ ุงู„ุขู† ู„ุจุนุถ ุงู„ุฎูˆุงุต ุงู„ู„ูŠ ู‡ูŠ ุชุจุนุช ุงู„ exponential
296
00:23:42,300 --> 00:23:47,180
ุงู„ power function ูˆ ุงู„ุฎูˆุงุต ู‡ู†ุชุฑูƒู‡ ู„ูƒู… ุฅูŠุงู‡ ู„ุฃู†ู‡ุง
297
00:23:47,180 --> 00:23:54,600
ู…ุจุงุดุฑุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู ุชุจุนู†ุง ู…ุจุงุดุฑุฉ
298
00:23:54,600 --> 00:24:01,100
ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ ู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ
299
00:24:01,100 --> 00:24:05,760
ุงู„ุขู† ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ุงู„ู„ูŠ ู‡ูŠ 8 3 11 ู„ูˆ ูƒุงู†ุช Alpha
300
00:24:05,760 --> 00:24:11,340
element in R ูˆ X ูˆ Y ุงู„ู„ูŠ ู‡ูˆ ุชู†ุชู…ูŠ ู„ู„ูุชุฑุฉ Zero ูˆ
301
00:24:11,340 --> 00:24:16,500
ุชู…ุงู†ูŠุฉ Zero ูˆ ู…ุง ู„ู†ู‡ุงูŠุฉ ุขุณู then ู…ุนู„ุด ุนุดุงู† ุฏู‡ ุทู„ุนุช
302
00:24:16,500 --> 00:24:20,450
ุงู„ูƒู‡ุฑุจุง ู‚ุนุฏ ู†ู‚ู„ู ุงู„ูƒู‡ุฑุจุง ุฃู†ุงIf ฮฑ element in R ูˆ X
303
00:24:20,450 --> 00:24:26,350
Y belongs to 0 ฮฑ then 1 to the ฮฑ ุจุณูˆุก 1 ูˆ X to the
304
00:24:26,350 --> 00:24:30,270
ฮฑ ุฃูƒุจุฑ ู…ู† 0 ูˆ X Y to the ฮฑ ุจุณูˆุก X to the ฮฑ ูˆ Y to
305
00:24:30,270 --> 00:24:35,590
the ฮฑ ูˆ X ุนู„ู‰ Y to the ฮฑ ุจุณูˆุก X to the ฮฑ ุนู„ู‰ Y to
306
00:24:35,590 --> 00:24:39,370
the ฮฑ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุทุจุนุง ุงู„ู„ูŠ ู‡ูŠ ู…ุจุงุดุฑุฉ ุนู„ู‰
307
00:24:39,370 --> 00:24:45,100
ุชุนุฑูŠูู†ุง ุงู„ู„ูŠ ู‡ูˆ X to the ฮฑ ุจุณูˆุก Eof ฮฑ ู„ู† X ูŠุนู†ูŠ
308
00:24:45,100 --> 00:24:49,800
ุจุฏูƒ ุชูŠุฌูŠ ุชุณุชุฎุฏู… ุชุนุฑูŠููƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุนุฑูู†ุงู‡ ูˆุนู„ูŠู‡
309
00:24:49,800 --> 00:24:53,480
ุงู„ู„ูŠ ู‡ูˆ ุจุชุจุฏุฃ ุชุดุชุบู„ ูˆ ุชุจู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ
310
00:24:53,480 --> 00:24:57,680
ุงู„ู‚ูˆุงู†ูŠู† ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุชุนุฑูŠูู†ุง ุงู„ู„ูŠ ู‡ูˆ X
311
00:24:58,570 --> 00:25:05,210
to the alpha ุจุชุณุงูˆูŠ E of alpha len ุงู„ู„ูŠ ู‡ูŠ L of X
312
00:25:05,210 --> 00:25:10,650
ุฃูˆ ุญุณุจ ุงู„ notation ุชุจุนุชู†ุง E to the alpha len ุงู„ X
313
00:25:10,650 --> 00:25:15,710
ู‡ุฐุง ุงู„ุขู† ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู„ูŠู‡ ุจุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ุชุจุฏุฃ ุงู„ู„ูŠ
314
00:25:15,710 --> 00:25:23,290
ู‡ูˆ ุชุดุชุบู„ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉูˆุชุจุฑู‡ู†ู‡ุง ุงู„ู„ูŠ ุนู†ุฏู†ุง
315
00:25:23,290 --> 00:25:27,630
ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ุฐูƒุฑู†ุงู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡
316
00:25:27,630 --> 00:25:32,090
ุงู„ู†ุธุฑูŠุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู ู…ุจุงุดุฑุฉ ูˆู†ุธุฑูŠุฉ ุชุงู†ูŠุฉ ุฃูŠุถุง ุจุฑุถู‡
317
00:25:32,090 --> 00:25:35,670
ู…ู† ุงู„ุฎูˆุงุต ุฅุฐุง ูƒุงู†ุช Alpha ูˆ Beta element ุฑ ูˆ X ููŠ
318
00:25:35,670 --> 00:25:40,640
ุงู„ูุชุฑุฉ Zero ูˆู„ุง ู†ู‡ุงูŠุฉ ุฅุฐุง Xุชูˆ ุฏุง ุฃู„ูุฉ ุฒูŠุงุฏุฉ ุจูŠุชุง
319
00:25:40,640 --> 00:25:44,040
ุจุฑุถู‡ ู†ูุณ ุงู„ุงุดูŠุงุก ุทุจุนุง ู‡ุชู„ุงู‚ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู†ุช ู„ู…ุง ุชูŠุฌูŠ
320
00:25:44,040 --> 00:25:48,320
ุชูุฑุฏ ู‡ุฐู‡ ู‡ุชุตูŠุฑ ุชุณุชุฎุฏู… ุฎูˆุงุต ุงู„ู…ุนุฑูุฉ ุงู„ู„ูŠ ู‡ูŠ
321
00:25:48,320 --> 00:25:52,360
ุจูˆุงุณุทุชู‡ุง ู…ุนุฑูุฉ ู‡ุชุณุชุฎุฏู… ุฎูˆุงุต ุงู„ X exponential ูˆุงู„ู†
322
00:25:52,360 --> 00:25:55,420
ุงู„ู„ูŠ ู‚ุจู„ู‡ ุจุดูˆูŠุฉ ู‡ุชู„ุงู‚ูŠ ุญุงู„ูƒ ุจุชุตู„ X ุชูˆ ุฏุง ุฃู„ูุฉ
323
00:25:55,420 --> 00:25:58,310
ุฒูŠุงุฏุฉ ุจูŠุชุง ุจุณูˆุก X ุชูˆ ุฏุง ุฃู„ูุฉ ููŠ X ุชูˆ ุฏุง ุจูŠุชุงูˆ ู†ูุณ
324
00:25:58,310 --> 00:26:05,170
ุงู„ุดูŠุก xยฒฮฑยฒฮฒ ุจูŠุณุงูˆูŠ x ฮฑ beta ูˆ ูŠุณุงูˆูŠ xยฒฮฒยฒฮฑ ูˆ ู‡ุชูŠุฌูŠ
325
00:26:05,170 --> 00:26:08,830
.. ุงู„ู„ูŠ ู‡ูŠ ูƒู„ู‡ุง ู‚ูˆุงู†ูŠู† ุงุญู†ุง ุจู†ุนุฑูู‡ุง xยฒ-ฮฑ ุจูŠุณุงูˆูŠ 1
326
00:26:08,830 --> 00:26:12,270
ุนู„ู‰ xยฒฮฑ ูˆ ู†ูุณ ุงู„ุดูŠุก ุฅุฐุง ูƒุงู†ุช alpha ุฃุตุบุฑ ู…ู† beta
327
00:26:12,270 --> 00:26:17,770
ู‡ูŠูƒูˆู† xยฒฮฑ ุฃุตุบุฑ ู…ู† xยฒฮฒ ู„ู…ุง ุงู† x ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† 1 ูˆ
328
00:26:17,770 --> 00:26:22,130
ู‡ุฐู‡ ูƒู„ู‡ุง ุจุชูƒูˆู† x resources ู…ุนุงูƒู… ุงู„ู„ูŠ ู‡ูŠ ู…ุจุงุดุฑุฉ
329
00:26:22,130 --> 00:26:31,830
ุนู„ู‰ ู‡ุฐู‡ ุงู„ุชุนุฑูŠูุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุนู„ู‰ ุงู„ุณุฑูŠุน let
330
00:26:31,830 --> 00:26:35,010
alpha element in R then the function x ุจุงู„ุชุฑูˆุญ ู„ู„ู€
331
00:26:35,010 --> 00:26:37,670
x alpha ู…ู† 0 ูˆ 1 to R is continuous and
332
00:26:37,670 --> 00:26:41,210
differentiable and ุงู„ู„ูŠ ู‡ูˆ ุงู„ derivative ู„ู„ x to
333
00:26:41,210 --> 00:26:43,630
the alpha ุจุณูˆุก alpha to the x to the alpha minus 1
334
00:26:43,630 --> 00:26:47,650
for x element in 0 ูˆ 1 ุทุจูŠุนูŠ ุฃุตู„ุง ู‡ูŠ composition
335
00:26:47,650 --> 00:26:54,490
of two ู‡ูŠ ุนู†ุฏู‰ function ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ continuousู‡ุฐุง
336
00:26:54,490 --> 00:26:57,650
ูƒู„ู‡ุง ุนู„ู‰ ุจุนุถ ุงู„ู€ E ูƒู…ุงู† continuous ุฏู‡ ุงู„ู„ูŠ ู‡ุชุทู„ุน
337
00:26:57,650 --> 00:26:59,850
ู‡ุฐุง continuous ูˆ ู‡ุฐุง continuous ูˆ ู†ูุณ ุงู„ุงุดูŠ ุงู„
338
00:26:59,850 --> 00:27:02,870
differentiability ุฅุฐุง ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function
339
00:27:02,870 --> 00:27:05,890
ุงู„ู„ูŠ ุนู†ุฏู†ุง X to the X to the Alpha ุญุณุจ ุชุนุฑูŠูู†ุง is
340
00:27:05,890 --> 00:27:09,410
continuous and differentiable ูˆ ู„ูˆ ุจุฏูƒ ุชุณู…ูŠ ุงู„ู„ูŠ
341
00:27:09,410 --> 00:27:13,710
ู‡ูˆ ู‡ุฐู‡ ุงู„ derivative ูˆ ุจุฏูƒ ุชุจุฏุฃ ุชูุงุถู„ ุฏูŠ ุงุชูุงุถู„ DX
342
00:27:13,710 --> 00:27:17,050
Alpha ูŠุนู†ูŠ ุจุฏูƒ ุชุชูุงุถู„ ู‡ุฐู‡ ูƒูŠู ุชุชูุงุถู„ ู‡ุฐู‡ ุงู„
343
00:27:17,050 --> 00:27:20,860
exponential ุงู„ู„ูŠ ู‡ูŠ E to the Alpha ู„ุฅู† ุงู„ Xูู‰
344
00:27:20,860 --> 00:27:25,580
ุงู„ุชูุงุถู„ ุงู„ู„ู‰ ู‡ูˆ ุงู„ู„ู‰ ุฌูˆุง ุงู„ู„ู‰ ู‡ูˆ Alpha ูู‰ ูˆุงุญุฏ ุนู„ู‰
345
00:27:25,580 --> 00:27:30,120
X ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ู„ู‰ ู‡ู‰ ุจู…ุนู†ู‰ ุขุฎุฑ ุจุตูŠุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ
346
00:27:30,120 --> 00:27:35,260
ุนุจุงุฑุฉ ุนู† E to the Alpha ู„ู† ุงู„ X ุงู„ู„ู‰ ู‡ู‰ ุนุจุงุฑุฉ ุนู†
347
00:27:35,260 --> 00:27:38,480
ุงู„ X to the Alpha ู†ูุณู‡ุง ูู‰ ุงู„ุชูุงุถู„ ู‡ุฐู‡ ุงู„ู„ู‰ ู‡ู‰
348
00:27:38,480 --> 00:27:43,080
Alpha ุนู„ู‰ X ุจูŠุณุงูˆู‰ Alpha ุฃุณ X ุงู„ู„ู‰ ู‡ู‰ ู‡ุฐู‡ ุจุชุทู„ุน
349
00:27:43,080 --> 00:27:46,680
ู†ุงู‚ุต ูˆุงุญุฏ Alpha ู…ุงู†ุณ ูˆุงุญุฏ for X element in zero
350
00:27:46,680 --> 00:27:53,250
ูˆู…ู„ุง ู†ู‡ุงูŠุฉุงู„ุงู† ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ุงู„ุฃุฎุฑู‰ ุงู„ู„ูŠ ุจูŠู‚ูˆู„ูƒ
351
00:27:53,250 --> 00:28:01,010
ุฅูŠุงู‡ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุจูŠู‚ูˆู„ุจู‚ูˆู„ ู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ ุฅุฐุง
352
00:28:01,010 --> 00:28:07,610
ูƒุงู†ุช Alpha ุฃูƒุจุฑ ู…ู† 0 ูุจุตูŠุฑ
353
00:28:07,610 --> 00:28:11,970
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ function ู…ู† X and X alpha is
354
00:28:11,970 --> 00:28:15,930
strictly increasing ุนู„ู‰ ูุชุฑุฉ 0 ูˆ ู…ู„ุง ู†ู‡ุงูŠุฉ ุทุจูŠุนูŠ
355
00:28:15,930 --> 00:28:19,890
ู„ู…ุง Alpha ุฃูƒุจุฑ ู…ู† 0 ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุงู† ุงู„ู…ู‚ุฏุฑ ู‡ุฐุง
356
00:28:19,890 --> 00:28:24,120
ุจุธู„ู‡ ู…ูˆุฌุจูˆ ู‡ุฐู‡ ุฃู„ู ุฃูƒุจุฑ ู…ู† ุณูุฑ ุจูŠูƒูˆู† ุจูŠุจุฏูˆ ุฃูƒุจุฑ ู…ู†
357
00:28:24,120 --> 00:28:27,180
ุณูุฑ ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ derivative ุฃูƒุจุฑ ู…ู†
358
00:28:27,180 --> 00:28:31,160
ุณูุฑ ุฅุฐุง ุตุงุฑุช ุนู†ุฏ ุงู„ุฏู„ุฉ strictly increasing ู„ูˆ ูƒุงู†ุช
359
00:28:31,160 --> 00:28:34,520
ุฃู„ู ุฃุตุบุฑ ู…ู† ุณูุฑ ู‡ุชุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนูƒุณ strictly
360
00:28:34,520 --> 00:28:38,420
decreasing ู„ุฅู†ู‡ ู‡ุชูƒูˆู† ู‡ุฐู‡ ุณุงู„ุจุฉ ูˆู‡ุฐู‡ ู…ุฏู„ุฉ ู…ูˆุฌุจุฉ
361
00:28:38,420 --> 00:28:42,180
ุจุชุธู„ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ูˆุฌุจุฉ ุฅุฐุง ุตุงุฑุช strictly decreasing
362
00:28:42,180 --> 00:28:45,360
ุนู†ุฏ ุฃู„ู ุจุชุณุงูˆูŠ ุณูุฑ ุจูŠูƒูˆู† ุงุญู†ุง ุงู„ derivative ู„ู„ูˆุงุญุฏ
363
00:28:45,360 --> 00:28:48,880
ุงู„ู„ูŠ ู‡ูˆ ุจูŠูƒูˆู† ุนุจุงุฑุฉ ุนู† constant function ุงู„ู„ูŠ ู‡ูˆ
364
00:28:48,880 --> 00:28:51,300
ููŠ ุญุงู„ุฉ ุงู„ุฃู„ู ุจุชุณุงูˆูŠ ุณูุฑ
365
00:28:53,910 --> 00:29:02,970
ุงู„ุงู† ู†ูŠุฌูŠ ุงู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ู‡ูŠูƒ ุจู†ูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ูˆุตู„ู†ุง
366
00:29:02,970 --> 00:29:09,190
ู„ุขุฎุฑ ุชุนุฑูŠู ุจุฏู‡ ูŠุนุฑู ุงู„ู„ูŠ ู‡ูˆ ุงู„ log function ู„ู„ุฃุณุงุณ
367
00:29:09,190 --> 00:29:13,090
a ุงุญู†ุง ุงู„ู„ูŠ ุนุฑูู†ุงู‡ ุงู„ len ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุฃุณุงุณ e ุจู…ุนู†ู‰
368
00:29:13,090 --> 00:29:16,530
ุขุฎุฑ ูƒูŠู ุจุฏู‡ ุงุนุฑูู‡ ุงู„ุขู† ุงุญู†ุง ู„ุณู‡ ู…ุงุนุฑูุด ุงู„ุฃุณุงุณุงุช
369
00:29:16,530 --> 00:29:19,930
ู‡ุฏุง ูƒุตู…ู†ุง ุงู„ len ูˆ ุงู„ exponential ุงู„ุงู† ุจุฏู†ุง ู†ุนุฑู
370
00:29:19,930 --> 00:29:25,920
ุงู„ู„ูŠ ู‡ูˆ ู†ุณู…ูŠ ุงู„ logุงู„ู„ุบุงุฑูŠุซู… ู„ู„ุฃุณุงุณ A ู†ูุชุฑุถ ุฃู† A
371
00:29:25,920 --> 00:29:28,860
ุฃูƒุจุฑ ู…ู† 0 ูˆ A ู„ุงุช ุณูˆู‰ 1 it is sometimes useful to
372
00:29:28,860 --> 00:29:34,820
define the function log ู„ู„ุฃุณุงุณ A ูƒู…ุงู„ูŠ ุงู„ุงู† log A
373
00:29:34,820 --> 00:29:39,560
of X ูƒุฏู‡ ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ ู„ู† ุงู„ X ุนู„ู‰ ู„ู† ุงู„ A ุญูŠุซ ุงู„ A
374
00:29:39,560 --> 00:29:43,940
ุนุฏุฏ ุซุงุจุช ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐู‡ ุงู„ุขู† ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ log
375
00:29:43,940 --> 00:29:49,540
ุงู„ุนุงู…ุฉ ู‡ูŠ ู†ูุณ ุงู„ exponential ุจุณ ู…ุถุฑูˆุจุฉ ููŠ ุซุงุจุชุงู„ุฃู†
376
00:29:49,540 --> 00:29:52,920
ุฅุฐุง ุงู„ู€ exponential ุงู„ุฃุตู„ูŠุฉ ุนู„ูŠู‡ุง ู‡ูˆ ู…ุนุฑู ุงู„ุงู†
377
00:29:52,920 --> 00:29:59,140
ุจู‚ูˆู„ูƒ ุฅู†ู‡ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง log ุฃูˆ ุงู„ logarithm
378
00:29:59,140 --> 00:30:04,620
ู„ู„ุฃุณุงุณ A ู„ูˆ ูƒุงู† ุงู„ุฃุณุงุณ E ู‡ุฐุง ุจุตูŠุฑ ู„ู† ุงู„ E ูˆุงุญุฏ
379
00:30:04,620 --> 00:30:09,320
ุจู†ุตูŠุฑ ู†ุฑุฌุน ู„ู† ุงู„ X ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุฅุฐุง ู„ูˆ
380
00:30:09,320 --> 00:30:14,000
ูƒุงู†ุช ุงู„ A ู‡ูŠ ุงู„ E ุจู†ุฑุฌุน ู„ู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ุฒูŠ
381
00:30:14,000 --> 00:30:17,060
ู…ุง ู‚ู„ู†ุง is called the logarithm of X to the base A
382
00:30:19,560 --> 00:30:23,400
Yields ุฏุง ุงู„ู€ logarithm ุงู„ุนุงุฏูŠ ุงู„ุงู† ุงู„ู„ูŠ ู…ุดู‡ูˆุฑ
383
00:30:23,400 --> 00:30:28,020
ุนู†ุฏู†ุง ู„ู„ุญุณุงุจุงุช ุงู„ู„ูŠ ู‡ูˆ ู„ู„ุฃุณุงุณ ุนุดุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุณู…ูŠ
384
00:30:28,020 --> 00:30:32,220
ุงู„ู„ูŠ ู‡ูˆ log to the base ุนุดุฑุฉ ุฃูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠ common
385
00:30:32,220 --> 00:30:36,720
logarithm ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณุชุฎุฏู…ู‡ ุนุงุฏุฉ ููŠ ุงู„ุญุณุงุจุงุช ูˆ
386
00:30:36,720 --> 00:30:41,620
ู‡ูŠูƒ ุจูƒูˆู† ุนู†ุฏู†ุง ุงุญู†ุง ุงู†ู‡ูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ section ุงู„ู„ูŠ
387
00:30:41,620 --> 00:30:46,180
ู‡ูˆ ุชู…ุงู†ูŠุฉ ุชู„ุงุชุฉ ูˆ ุจูƒูˆู† ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูŠุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
388
00:30:46,180 --> 00:30:52,240
ู…ู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุง ูŠุชุนู„ู‚ ุจุงู„ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„
389
00:30:52,240 --> 00:30:54,660
logarithmic function ูˆุงู„ power function ูˆุงู„
390
00:30:54,660 --> 00:31:00,040
logarithmic ู„ู„ุฃุณุงุณ ุงู„ู„ูŠ ู‡ูˆ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงูŠู‡ ูˆ ุฅู„ู‰
391
00:31:00,040 --> 00:31:00,640
ู„ู‚ุงุก