|
1 |
|
00:00:04,940 --> 00:00:07,660 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุญู
ุฏ ููู ุฑุจ ุงูุนุงูู
ูู |
|
|
|
2 |
|
00:00:07,660 --> 00:00:10,500 |
|
ูุงูุตูุงุฉ ูุงูุณูุงู
ุนูู ุณูุฏูุง ู
ุญู
ุฏ ูุนูู ุขูู ูุตุญุจู |
|
|
|
3 |
|
00:00:10,500 --> 00:00:17,340 |
|
ุฃุฌู
ุนูู ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
23 ูู ู
ุณุงู ุชุญููู ุญูููุฉ |
|
|
|
4 |
|
00:00:17,340 --> 00:00:22,200 |
|
ููู ุทูุงุจ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ูุณู
ุงูุฑูุงุถูุงุช |
|
|
|
5 |
|
00:00:22,200 --> 00:00:27,900 |
|
ูููุฉ ุงูุนููู
ุงูู
ุญุงุถุฑุฉ ุงููู ูู ุงูููู
ูู ุนุจุงุฑุฉ ุนู |
|
|
|
6 |
|
00:00:27,900 --> 00:00:33,180 |
|
ุชูู
ูุฉ ู section ุชู
ุงููุฉ ุชูุงุชุฉ ุงูุฌุฒุก ุงูุซุงูู ู
ู .. ู
ู |
|
|
|
7 |
|
00:00:33,180 --> 00:00:36,580 |
|
.. ู
ู ูุฐุง .. ุงููู ูู ุงู chapter ุงูุฌุฒุก ุงูุฃูู ู
ู ูุฐุง |
|
|
|
8 |
|
00:00:36,580 --> 00:00:39,320 |
|
ุงู section ุงูุฌุฒุก ุงูุฃูู ุงุชุญุฏุซูุง ุนู ุงู exponential |
|
|
|
9 |
|
00:00:39,320 --> 00:00:44,670 |
|
function ูููู ุฃุซุจุชูุง ูุฌูุฏูุงูุงุฎุฏูุง ุฎูุงุตูุง ุงูุขู ุจุฏูุง |
|
|
|
10 |
|
00:00:44,670 --> 00:00:47,910 |
|
ูุญูู ุนู ุงูุฌุฒุก ุงูุชุงูู ู
ู ุงููู ูู ุงู section ุงููู ูู |
|
|
|
11 |
|
00:00:47,910 --> 00:00:51,050 |
|
ุงู logarithmic function ุงู logarithmic function |
|
|
|
12 |
|
00:00:51,050 --> 00:00:55,290 |
|
ุงููู ูู ูุดูู ููู ุจุฏูุง ูุซุจุช ูุฌูุฏูุง ูููู ุงููู ูู |
|
|
|
13 |
|
00:00:55,290 --> 00:01:00,410 |
|
ูุงุฎุฏ ุฎูุงุตูุง ุจููุณ ุงูุจูุงุก ุงููู ุฃู ูุจูุน ุงูุจูุงุก ุงููู |
|
|
|
14 |
|
00:01:00,410 --> 00:01:05,820 |
|
ุจููุงู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉุงูุงู ูู
ุง ุญูููุง ุนู ุงู |
|
|
|
15 |
|
00:01:05,820 --> 00:01:10,020 |
|
exponential function E ูุฌููุง ุงู ุงู exponential E |
|
|
|
16 |
|
00:01:10,020 --> 00:01:12,780 |
|
is strictly increasing differentiable function |
|
|
|
17 |
|
00:01:12,780 --> 00:01:18,160 |
|
with domain R and range ุงููู ูู Y ุฃูุจุฑ ู
ู 0 ูุนูู |
|
|
|
18 |
|
00:01:18,160 --> 00:01:22,480 |
|
ูู
ุง ุญูููุง ุนู ุงู E ุญูููุง ุนู ุงู E ู
ู R ุงููู ูู ุงู |
|
|
|
19 |
|
00:01:22,480 --> 00:01:26,600 |
|
exponential ูุนูุฏ ุงููุชุฑุฉ 0 ู ู
ุงูุง ููุงูุฉ ูุฐู ุงู |
|
|
|
20 |
|
00:01:26,600 --> 00:01:31,560 |
|
function ูู rangeูุง ู ูู domainูุง ู ูุงูุช strictly |
|
|
|
21 |
|
00:01:31,560 --> 00:01:35,700 |
|
increasingStrictly increasing ู
ุนูุงุชู ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
22 |
|
00:01:35,700 --> 00:01:40,020 |
|
ุนู 120 ูุนูู ุจู
ุนูู ุฃุฎุฑ ูู ุฅููุง ุงู function ูุฐู on |
|
|
|
23 |
|
00:01:40,020 --> 00:01:43,940 |
|
two ููุงูุช differentiable ุงูุขู ุงู function ุงููู ูู |
|
|
|
24 |
|
00:01:43,940 --> 00:01:46,840 |
|
ุงู exponential ุทุจุนุง ู
ุง ุฃูุชูุง ุนุงุฑููู ููู ุฑุณู
ุชูุง ูู |
|
|
|
25 |
|
00:01:46,840 --> 00:01:50,460 |
|
ุฌููุง ุฌุฑุจูุง ูุฑุณู
ูุง ูููุงูู ุงูุฑุณู
ุฉ ุงููู ูู ูุฐู ุงููู |
|
|
|
26 |
|
00:01:50,460 --> 00:01:56,180 |
|
ูู ุนุจุงุฑุฉ ุนู ุฑุณู
ุฉ ุงู exponentialุงูุงู ุงูุง ุจุฏู ุงุฌู |
|
|
|
27 |
|
00:01:56,180 --> 00:02:00,300 |
|
ุงููู ูู ู
ู ุฎูุงู ุงููู ูู ุงู function ุงู exponential |
|
|
|
28 |
|
00:02:00,300 --> 00:02:05,980 |
|
ุงุนุฑู ุงู inverse ููุง ูุงุณู
ูู ุงููู ูู logarithmic |
|
|
|
29 |
|
00:02:05,980 --> 00:02:10,860 |
|
function ุงู ุจุฏู ุงุณู
ูู ุงู logarithm ุงูุทุจูุนู ุงููู ูู |
|
|
|
30 |
|
00:02:10,860 --> 00:02:16,020 |
|
ุงู len functionู
ุดุฑูุน ุงูููุงู
ุงู ูุฅู ุงูู ุนุจุงุฑุฉ ุนู |
|
|
|
31 |
|
00:02:16,020 --> 00:02:19,240 |
|
function one to one ู one to Hana ุฅุฐุง ุตุงุฑ ุงู |
|
|
|
32 |
|
00:02:19,240 --> 00:02:23,580 |
|
inverse ููุง ู
ูุฌูุฏ ูุฅููุง strictly increasing ุฅุฐุง |
|
|
|
33 |
|
00:02:23,580 --> 00:02:29,560 |
|
ุตุงุฑ ุงู L ู
ู ุนูุฏ zero ู ู
ุงูุฉ ููุงูุฉ ูุนูุฏ ุงู R ูุงุฏู |
|
|
|
34 |
|
00:02:29,560 --> 00:02:34,100 |
|
ุงููู ููุงูู function ุงูุฌุฏูุฏุฉ ูู ุงููู ุจุฏู ุฃุณู
ููุง ุงูู |
|
|
|
35 |
|
00:02:34,100 --> 00:02:38,320 |
|
logarithmic function ููู ุฑุณู
ุชูุง ุงููู ุฃู
ุงู
ูุง ุงููู |
|
|
|
36 |
|
00:02:38,320 --> 00:02:42,460 |
|
ูู ุงู inverse ููุฐู ุงูุฏุงูุฉ ุงููู ุจุฏู ุฃุนุฑููุง ุงูุขู |
|
|
|
37 |
|
00:02:42,460 --> 00:02:47,000 |
|
ูุชุนุฑูู ุงูุขู ุตุงุฑ ุดุฑุนู ุจูุงุก ุนูู ูุฌูุฏ ุงู exponential |
|
|
|
38 |
|
00:02:47,000 --> 00:02:50,930 |
|
ุงููู ุจุฏู ุฃุนุฑูู ุงููู ูู ุงู inverse ุณุจุนุชูุงุงูุนู
ู |
|
|
|
39 |
|
00:02:50,930 --> 00:02:57,030 |
|
ุงูู
ุนุฑูู ููู E ูู |
|
|
|
40 |
|
00:02:57,030 --> 00:03:02,850 |
|
ุงูู Logarithm ุฃู ุงูู Nature Logarithm ุงููู ูู It |
|
|
|
41 |
|
00:03:02,850 --> 00:03:07,870 |
|
will be denoted by L or by Lin ุงูุฃูุชุฑ ุดููุนุง ุทุจุนุง |
|
|
|
42 |
|
00:03:07,870 --> 00:03:11,810 |
|
ุงููู ูู ู
ูู ุงูู Lin ูุฃู ุจู
ุง ุฃู ุงูู E ู L ุงููุฑุณ |
|
|
|
43 |
|
00:03:11,810 --> 00:03:17,110 |
|
ูุจุนุถ ุฅุฐุง ุฃููุฏ ุงูู E composite L composite E of X |
|
|
|
44 |
|
00:03:17,110 --> 00:03:22,920 |
|
ููุณุงูู ุงูู Xููู ุงูู x ู ุงููู ู
ูุฌูุฏุฉ ูู ุงูู R ูุฃู |
|
|
|
45 |
|
00:03:22,920 --> 00:03:26,540 |
|
ุงูู E ุจุชุดุชุบู ุนูู ูู ุงูุฅูุณุงุช ุงููู ูู ุงูู R ูุฃู |
|
|
|
46 |
|
00:03:26,540 --> 00:03:30,740 |
|
ุจููู
ุง E composite L of Y E composite L of Y ุงูู L |
|
|
|
47 |
|
00:03:30,740 --> 00:03:34,660 |
|
ุจุชุดุชุบู .. ุจุชุดุชุบู ู
ูู ุนูู ู
ูู ุจุณ ุนูู ุงูู positive E |
|
|
|
48 |
|
00:03:34,660 --> 00:03:38,240 |
|
composite L of Y ุจูุณุงูู ููู Y element in R ู Y |
|
|
|
49 |
|
00:03:38,240 --> 00:03:44,900 |
|
ุฃุดู
ููุง ุฃูุจุฑ ู
ู 0ุงูุงู connotations .. connotations |
|
|
|
50 |
|
00:03:44,900 --> 00:03:49,860 |
|
ุจูุงุก ุนููู ุงูู N ุงูู E of X ูุฃู ุงูู N ูู ุงูู L ูุงูู |
|
|
|
51 |
|
00:03:49,860 --> 00:03:53,880 |
|
E ูู ุงูู E ูุนูุฏู ุงูู E to the N ุงููู ูู ุจุณูุก ุงูู Y |
|
|
|
52 |
|
00:03:53,880 --> 00:03:57,780 |
|
ููู ุจุณูุก ุงูู X ุจูุงุก ุนูู ุฃู ุงููุงุญุฏุฉ inverse ููุชุงููุฉ |
|
|
|
53 |
|
00:04:01,010 --> 00:04:04,750 |
|
ุฃู ูู ูุงุญุฏุฉ inverse ููุงุฎุฑู ุงูู logarithm is a |
|
|
|
54 |
|
00:04:04,750 --> 00:04:08,630 |
|
strictly increasing function L with domain ุงููู ูู |
|
|
|
55 |
|
00:04:08,630 --> 00:04:12,150 |
|
ู
ูู ุงููู ูู ุงู domain ุงููู ุนูุฏู ุงููู ูู ุชุนุฑููุง ููู |
|
|
|
56 |
|
00:04:12,150 --> 00:04:16,210 |
|
ุฃุตูุง ุงูุงู ุงู derivative of L is given by L prime |
|
|
|
57 |
|
00:04:16,210 --> 00:04:19,750 |
|
of X ุงูุด ุจุชุณุงูู ูุงุญุฏุฉ ู X for X ุฃูุจุฑ ู
ู ุณูุฑ ุงูุงู |
|
|
|
58 |
|
00:04:19,750 --> 00:04:23,430 |
|
ุงู logarithm satisfy the functional equation ุชุญูู |
|
|
|
59 |
|
00:04:23,430 --> 00:04:27,010 |
|
ุงูู
ุนุงุฏูุฉ ุงูุฏุงููุฉ ุงูุชุงููุฉ ุงููู ูู L of X ูู Y ุจุณุงูู |
|
|
|
60 |
|
00:04:27,010 --> 00:04:31,000 |
|
L of X ุฒุงุฆุฏ LL of Y for X ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู |
|
|
|
61 |
|
00:04:31,000 --> 00:04:34,560 |
|
ุณูุฑ Y ุฃูุจุฑ |
|
|
|
62 |
|
00:04:34,560 --> 00:04:38,260 |
|
ู
ู ุณูุฑ |
|
|
|
63 |
|
00:04:38,260 --> 00:04:40,560 |
|
Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ |
|
|
|
64 |
|
00:04:40,560 --> 00:04:40,580 |
|
ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y |
|
|
|
65 |
|
00:04:40,580 --> 00:04:40,640 |
|
ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู |
|
|
|
66 |
|
00:04:40,640 --> 00:04:40,700 |
|
ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y |
|
|
|
67 |
|
00:04:40,700 --> 00:04:40,700 |
|
ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู |
|
|
|
68 |
|
00:04:40,700 --> 00:04:41,020 |
|
ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y |
|
|
|
69 |
|
00:04:41,020 --> 00:04:47,140 |
|
ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑ ู
ู ุณูุฑ Y ุฃูุจุฑL of |
|
|
|
70 |
|
00:04:47,140 --> 00:04:51,420 |
|
XR ุจูุณุงูู R ูL of X ูุฅู X ุฃูุจุฑ ู
ู 0 ูR ุงูู
ุชุฑ ูููู |
|
|
|
71 |
|
00:04:51,420 --> 00:04:54,840 |
|
ูููู ุงููู ูู ุฎูุงุต ุงูุชูุง ุจุชุนุฑูููู
ูุจู ููู ุจุณ ุงูุขู |
|
|
|
72 |
|
00:04:54,840 --> 00:04:58,440 |
|
ุจุฏูุง ูุจุฑูููู
ู ูุซุจุช ุตุญุชูู
limit L of X ูู
ุง X ุชุฑูุญ |
|
|
|
73 |
|
00:04:58,440 --> 00:05:01,740 |
|
ูู0 ู
ู ุงููู
ูู ุจุณุงูู ุณุงูุจ infinity and limit L of X |
|
|
|
74 |
|
00:05:01,740 --> 00:05:07,340 |
|
ูู
ุง X ุชุฑูุญ ูู
ุงู ุงูููุงูุฉ ุจุชุณุงูู ู
ุงู ุงูููุงูุฉ ุฎูููุง |
|
|
|
75 |
|
00:05:07,340 --> 00:05:14,840 |
|
ุงุญูุง ูุดูู ูุจุฑูู ุงููู ูู ุงููู ู
ุทููุจุงูุฃู ุงูู L is |
|
|
|
76 |
|
00:05:14,840 --> 00:05:17,560 |
|
strictly increasing with domain X element alone |
|
|
|
77 |
|
00:05:17,560 --> 00:05:20,880 |
|
and range R follows from the fact that E is |
|
|
|
78 |
|
00:05:20,880 --> 00:05:24,840 |
|
strictly increasing with domain R and range ุงููู |
|
|
|
79 |
|
00:05:24,840 --> 00:05:33,320 |
|
ูู ุงููู ุนูุฏู ุงูุงู ุนูุฏู ุงู L is strictly increasing |
|
|
|
80 |
|
00:05:33,320 --> 00:05:37,560 |
|
ุจูุงุก ุนูู ู
ูู ุนูู ุงู E ููุณูุง strictly increasing |
|
|
|
81 |
|
00:05:37,560 --> 00:05:48,560 |
|
ุงูุงู EComposite L E Composite L of Y ุงูุด ุจุชุณุงููุ Y |
|
|
|
82 |
|
00:05:48,560 --> 00:05:55,320 |
|
ููู Y ูY ุงูู
ูุฌูุฏุฉ ููู Y element in ุณูุฑ ูู
ูุง ููุงูุฉุ |
|
|
|
83 |
|
00:05:55,320 --> 00:06:00,780 |
|
ู
ุธุจูุทุ ุงูุงู ูุงุถููู ุงูุฌูุชูู ุงูุงู ุทุจุนุง ุงุญูุง ุจูุนุฑู |
|
|
|
84 |
|
00:06:00,780 --> 00:06:06,360 |
|
ุงูู ู
ู ุงูุงุตู ู
ุฏุงู
ุฉ ุงู E isุงููู ูู differentiable |
|
|
|
85 |
|
00:06:06,360 --> 00:06:10,480 |
|
ุฃููุฏ ุงููู ูู ุงู inverse ุฅููุง is differentiable by |
|
|
|
86 |
|
00:06:10,480 --> 00:06:14,680 |
|
theorem 6 9 ูุฏู ู
ุด ุนุงุฑู ุฅูุด ูู ุงููู ูู chapter 6 |
|
|
|
87 |
|
00:06:14,680 --> 00:06:18,200 |
|
ูุฏุงู
ุฉ ุงู function ุงููู ูู is differentiable ุงู |
|
|
|
88 |
|
00:06:18,200 --> 00:06:20,880 |
|
inverse ุฅููุง ุจุฑุถู is differentiable ูู ุญุงูุฉ ูุฌูุฏูุง |
|
|
|
89 |
|
00:06:20,880 --> 00:06:27,480 |
|
ุงูุขู E ูุงุถู ุงูุฌูุชูู ุจูุตูุฑ ุนูุฏู E prime of L of Y |
|
|
|
90 |
|
00:06:27,480 --> 00:06:36,600 |
|
ูL prime of Y ุจุณุงูู ุฅูุด ูุงุญุฏ ู
ุงุดู ุงูุญุงู ุงูุขููุงุถุญ |
|
|
|
91 |
|
00:06:36,600 --> 00:06:41,900 |
|
ุฃู ูุฐุง ุญุงุตู ุงูุถุฑุจ ุตุงุฑ ุฃูุจุฑ ู
ู ู
ูู strictly ู
ู 0 |
|
|
|
92 |
|
00:06:41,900 --> 00:06:47,920 |
|
ูุจู
ุง ุฃู ุงูู E is strictly increasing ุฃุซุจุชูุง E' of |
|
|
|
93 |
|
00:06:47,920 --> 00:06:53,420 |
|
L of Y is strictly ุฃูุจุฑ ู
ู 0 ุฅุฐุง ุจูุธููุง L' of Y is |
|
|
|
94 |
|
00:06:53,420 --> 00:06:57,180 |
|
strictly ุฃูุจุฑ ู
ู 0 ููู Y ููุง ุฅุฐุง ุตุงุฑุช ุงูู L is |
|
|
|
95 |
|
00:06:57,180 --> 00:07:02,740 |
|
strictly increasingุงูุงู ุทุจุนุง ุงู domain ู
ุฏุงู
ุงู ูุฐู |
|
|
|
96 |
|
00:07:02,740 --> 00:07:07,000 |
|
ุงู inverse ู ุงู E ุงู domain ุงููู ูู ุงู inverse ูู |
|
|
|
97 |
|
00:07:07,000 --> 00:07:11,380 |
|
range ุงู function ุงูุฃุตููุฉ ู ุจูุตูุฑ sub wave ูู |
|
|
|
98 |
|
00:07:11,380 --> 00:07:18,460 |
|
ุงููุฆุฑ ุงุฐุง ุงูุงู ุงุญูุง ุงุซุจุชูุง ุงู ุงู is strictly |
|
|
|
99 |
|
00:07:18,460 --> 00:07:23,530 |
|
increasingุงูุงู ู rangeูุง ุงููู ูู ุตุงุฑ domain ุงููู |
|
|
|
100 |
|
00:07:23,530 --> 00:07:28,310 |
|
ูู ุงู range ุงููู ูู ุงู .. ูุฐู ุงููู ุตุงุฑ domainูุง |
|
|
|
101 |
|
00:07:28,310 --> 00:07:32,990 |
|
domain ุงู L ู ูุฐู ุตุงุฑุช ุงููู ูู range ุงู L ุฒู ู
ุง |
|
|
|
102 |
|
00:07:32,990 --> 00:07:37,330 |
|
ูููุง ูุจู ุจุดููุฉ ุงู ุนูุฏู ุงูุงู ุจุฏูุง ูุซุจุช ุงููู ูู |
|
|
|
103 |
|
00:07:37,330 --> 00:07:42,070 |
|
ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงููุธุฑูุฉ ุฎูููู ููุชุจ ููุง ุนุดุงู ูุชุฐูุฑ |
|
|
|
104 |
|
00:07:42,070 --> 00:07:48,430 |
|
ุงูุด ุงููู ุจุฏูุง ูุซุจุชู ุงูุงู ุจุฏูุง ูุซุจุช ุงูู ุฃุซุจุชูุง |
|
|
|
105 |
|
00:07:48,430 --> 00:07:54,230 |
|
ุงูุฃูููุงููู ูู ุงููุต ุจุชูููู prime of X ุงููู ููุชุจูู |
|
|
|
106 |
|
00:07:54,230 --> 00:07:59,330 |
|
ุงููู ุจุฏูุง ูุซุจุชูู ุนุดุงู ูุชุฐูุฑูู |
|
|
|
107 |
|
00:07:59,330 --> 00:08:12,240 |
|
ูููู prime I ุงู VIII ูููู primeof X ุจุณูุฉ ูุงุญุฏุฉ ู X |
|
|
|
108 |
|
00:08:12,240 --> 00:08:19,680 |
|
ุงุชููู ุงููู ูู L of XY ุจุณูุฉ L X ุฒุงุฆุฏ L Y ุทุจุนุง ุงู Y |
|
|
|
109 |
|
00:08:19,680 --> 00:08:25,780 |
|
ููุงู ุงู L of ูุงุญุฏ ุจุณูุฉ ุณูุฑ L of E ุจุณูุฉ ูุงุญุฏ ูููู
|
|
|
|
110 |
|
00:08:25,780 --> 00:08:34,440 |
|
ุจุณูุทุงุชL prime L of X to the R ุณูู R L of X ู Limit |
|
|
|
111 |
|
00:08:34,440 --> 00:08:39,720 |
|
L of X ูู
ุง X ุชุฑูุญ ุฅูู Zero ู
ู ุงููู
ูู ุณูู ุณุงูุจ ูู
ุง |
|
|
|
112 |
|
00:08:39,720 --> 00:08:45,140 |
|
ูููุงูุฉ ู Limit ูL of X ูู
ุง X ุชุฑูุญ ุฅูู ู
ุง ูููุงูุฉ |
|
|
|
113 |
|
00:08:45,140 --> 00:08:48,520 |
|
ุณูู ู
ุง ูููุงูุฉ ุฎููููู ุฃุดูู ุฃู ุฏูู ุนูู ุงูุณุฑูุน ูุงููุง |
|
|
|
114 |
|
00:08:48,520 --> 00:08:53,640 |
|
ูููุง ุดุบูุงุช ูุนูู ุจุฃุนุชูุฏ ุฃูู ุณูู ุฃูู ูุซุจุชูุง |
|
|
|
115 |
|
00:08:55,730 --> 00:09:02,210 |
|
ุนูุฏู ูุฃู ุฒู ู
ุง ุนู
ูุช ูุจู ุจุดููุฉ ุงููู ูู ูู
ุง ูุถูุช ูุฐู |
|
|
|
116 |
|
00:09:02,210 --> 00:09:07,290 |
|
ุชูุงุถูู E composite L of X ูู
ุง ุนู
ูุชูุง ูุจู ุจุดููุฉ |
|
|
|
117 |
|
00:09:07,290 --> 00:09:14,250 |
|
ุงููู ูู ูุงูุช ุนูุฏู ููู ุฃุนู
ู E composite L of X ุงููู |
|
|
|
118 |
|
00:09:14,250 --> 00:09:19,370 |
|
ุงููู ูู ุจุณุงูู ุงู X ูุงุถู ูุฐุง ูุตูุฑ E prime |
|
|
|
119 |
|
00:09:26,060 --> 00:09:29,100 |
|
ุจูุณุจุฉ ูู x ุฃูู ุงูู prime of x |
|
|
|
120 |
|
00:09:34,780 --> 00:09:40,160 |
|
ุงููู ูู ูุงุญุฏ ุนูู ุงูู E prime of L of X ุฅุฐุง ุงูู E |
|
|
|
121 |
|
00:09:40,160 --> 00:09:44,300 |
|
ุงูููู ุจุฑุงูู
of X ุจูุณุงูู ูุงุญุฏ ุนูู E prime composite |
|
|
|
122 |
|
00:09:44,300 --> 00:09:48,340 |
|
L of X ูุงูู E prime ูู ููุณ ุงูู E ุฒู ู
ุง ูููุง ุฅุฐุง |
|
|
|
123 |
|
00:09:48,340 --> 00:09:51,140 |
|
ุจูุตูุฑ ูุงุญุฏ ุนูู E composite L of X ุฅูู ุงู E |
|
|
|
124 |
|
00:09:51,140 --> 00:09:54,640 |
|
composite L of X ุฒู ู
ุง ูููุง ุฅูุด ุจุชุณุงูู ุจุณุงูู X |
|
|
|
125 |
|
00:09:54,640 --> 00:09:57,660 |
|
ูุจุณุงูู ูุงุญุฏ ุนูู X ูุงูููู ุจุฑุงูู
ุจูุณุงูู ูุงุญุฏ ุนูู X |
|
|
|
126 |
|
00:09:57,660 --> 00:10:02,910 |
|
ููู X ูู ุงูู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ Zeroู 1 ููุฌู ุงูุขู ูุดูู |
|
|
|
127 |
|
00:10:02,910 --> 00:10:06,710 |
|
ุงููู ูู ุงููู ุจุนุฏูุง ุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุง ุฎููููุง ูุซุจุช |
|
|
|
128 |
|
00:10:06,710 --> 00:10:12,690 |
|
ุงููู ูู L of X ูู Y ุจุณูุง L of X ุฒุงุฆุฏ ู
ูู ุฒุงุฆุฏ L of |
|
|
|
129 |
|
00:10:12,690 --> 00:10:17,270 |
|
Y ุจุฑุถู ุงูุฅุซุจุงุช ุณูู ูุงูุชุจููุง ู
ุนุงูุง ูุณููุณ ุนูุฏู ุงูุขู |
|
|
|
130 |
|
00:10:24,240 --> 00:10:27,240 |
|
F X ุฃูุจุฑ ู
ู ุตูุฑ Y ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ Y |
|
|
|
131 |
|
00:10:27,240 --> 00:10:27,740 |
|
ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ Y ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ |
|
|
|
132 |
|
00:10:27,740 --> 00:10:27,900 |
|
ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู |
|
|
|
133 |
|
00:10:27,900 --> 00:10:28,100 |
|
ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู |
|
|
|
134 |
|
00:10:28,100 --> 00:10:28,700 |
|
ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู |
|
|
|
135 |
|
00:10:28,700 --> 00:10:28,920 |
|
ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู |
|
|
|
136 |
|
00:10:28,920 --> 00:10:32,100 |
|
ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู |
|
|
|
137 |
|
00:10:32,100 --> 00:10:43,400 |
|
ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X ุฃูุจุฑ ู
ู ุตูุฑ F X |
|
|
|
138 |
|
00:10:43,400 --> 00:10:51,850 |
|
ุฃูุจุฑ ู
ู ุตูุฑ F Xูุฃู ุงูู E ูุงูู L ุงููุฑุณุฉ ุจุนุถ ุงูุงู ู
ู |
|
|
|
139 |
|
00:10:51,850 --> 00:10:55,130 |
|
ุงูุฎุงุตูุฉ ุชุจุน ุงูู exponential ุจุฏูุง ูุตู ูู
ูุ ูู |
|
|
|
140 |
|
00:10:55,130 --> 00:11:00,970 |
|
logarithmic ุฅุฐุง ุฃุถุฑุจ ู X ูู Y ุจูุทูุน ุนูุฏ X ูู Y |
|
|
|
141 |
|
00:11:00,970 --> 00:11:05,190 |
|
ุจุชุณุงูู E of U ูู E of V E of U ูู E of V ุฅูุด |
|
|
|
142 |
|
00:11:05,190 --> 00:11:10,010 |
|
ุจุชุณุงููุ E of U ุฒุงุฆุฏ V ุฃุซุจุชูุงูุง ุฅุฐุง ู
ู ูุฐุง ุงูููุงู
|
|
|
|
143 |
|
00:11:10,970 --> 00:11:15,270 |
|
ุฎูุฏ ุงูู L ููุฌูุชูู ูุฅูู ุงููู ูู ุงู inverse ูุจุนุถ |
|
|
|
144 |
|
00:11:15,270 --> 00:11:20,450 |
|
ุจูุตูุฑ ุนูุฏู L of X ูู Y ุจุณุงูู L of E of U ุฒุงุฆุฏ V |
|
|
|
145 |
|
00:11:20,450 --> 00:11:24,410 |
|
ุงููู ูู ุฅูุด ุจุชุณุงูู U ุฒุงุฆุฏ V U ุงููู ูู ุนุจุงุฑุฉ ุนู L |
|
|
|
146 |
|
00:11:24,410 --> 00:11:30,750 |
|
of X ู V ุนุจุงุฑุฉ ุนู L of Y ุฅุฐุง ุฃุซุจุชุช L of X ุฒุงุฆุฏ X |
|
|
|
147 |
|
00:11:30,750 --> 00:11:39,370 |
|
ูู Y ุจุณุงูู L of X ุฒุงุฆุฏ L of Yุงูุงู ุนูุฏู ุงููู ูู E |
|
|
|
148 |
|
00:11:39,370 --> 00:11:47,050 |
|
of Zero ุจูุณุงูู ูุงุญุฏ ุฎุฏูู ุงู L ุงูุฌูุชูู ุจูุตูุฑ ZL of |
|
|
|
149 |
|
00:11:47,050 --> 00:11:53,010 |
|
E of Zero ุจูุณุงูู L of ูุงุญุฏ ุงู L of E of Zero ูุฏู |
|
|
|
150 |
|
00:11:53,010 --> 00:11:59,450 |
|
inverse ุงูุชุงููุฉ ุจูุณุงูู Zero ููุณ ุงูุงุดูุงูู L of E of |
|
|
|
151 |
|
00:11:59,450 --> 00:12:07,270 |
|
1 ุจูุณุงูู L of Eุ ู
ุธุจูุทุ ุงูู L of E of 1 ุจูุณุงูู 1ุ |
|
|
|
152 |
|
00:12:07,270 --> 00:12:12,230 |
|
ุจูุตูุฑ L of E ุจูุณุงูู 1 ุจูุตูุฑ ุฃุซุจุชูุง L of E ุจูุณุงูู 1 |
|
|
|
153 |
|
00:12:12,230 --> 00:12:19,730 |
|
ู L of 1 ุจูุณุงูู 0 ููุฐุง ุงูููุงู
ููุงู
ุณููุ ุทูุจ ุจูุตูุฑ |
|
|
|
154 |
|
00:12:19,730 --> 00:12:23,710 |
|
ุนูุงูุฉ ุฃูู ุณูู ุงููู ุจูุญูููุ ุงูุขู |
|
|
|
155 |
|
00:12:27,210 --> 00:12:32,730 |
|
ูุฃุชู ูุซุจุช ุงููู ูู ุงููู ูู L of X to the R ุจุณุงูุฉ |
|
|
|
156 |
|
00:12:32,730 --> 00:12:37,010 |
|
Zero ุจุณุงูุฉ R ูู L of X ูุฐู ุจุฑุถู ุจูุงุด By |
|
|
|
157 |
|
00:12:37,010 --> 00:12:41,910 |
|
Mathematical Induction ุนู
ููุงูุง ูุจู ูููุฉ ุจุงููู ูู |
|
|
|
158 |
|
00:12:41,910 --> 00:12:47,330 |
|
ุงู section ุงููู ุฌุงุจูู ุฃู ุงููู ูู ุงู exponential |
|
|
|
159 |
|
00:12:47,330 --> 00:12:52,830 |
|
ุนูู ุงูุณุฑูุน ูุดูู ุงูุชูุงุตูู ูุฅูู ุงูุชูุงุตูู ู
ุนุงุฏุฉ |
|
|
|
160 |
|
00:13:07,050 --> 00:13:11,430 |
|
ุงูุชูุงุตูู ูุชูุงุฌููุง ู
ุนุงุฏุฉ ูุฎูููู ุจุณุฑุนุฉ ูู
ุฑ ุนูููุง |
|
|
|
161 |
|
00:13:11,430 --> 00:13:17,730 |
|
ุนูุฏู we show by induction L of X ุจุณูุง L L of X ุฒู |
|
|
|
162 |
|
00:13:17,730 --> 00:13:21,850 |
|
ู
ุง ูููุง ุนุดุงู ูุซุจุชูุง ูุฐู ุฃุซุจุชูุง ุงููู ูุจู ุจุดููุฉ L of |
|
|
|
163 |
|
00:13:21,850 --> 00:13:27,190 |
|
X ุนุงุฑูุด ุงูุฑุฒูู
ุฃุตูุง ุฃูุตู ููุง ูุฃ ููู ุจุฏู ุฃูุตู ูู |
|
|
|
164 |
|
00:13:27,190 --> 00:13:32,790 |
|
ุฃูุชูุง ุนูุฏู ูู ุงุชูุฌูุง ุฃู ููุตู ููุง ูุฃ L of X ูู Y |
|
|
|
165 |
|
00:13:32,790 --> 00:13:39,580 |
|
ุจุณูุง L of X ูู L of Yof x was n ุจุณุงูู n ูู L of x |
|
|
|
166 |
|
00:13:39,580 --> 00:13:44,060 |
|
ุทุจุนุง for n ุจุชุณุงูู ูุงุญุฏ ุงููู ูู a trivial ููุชุฑุถ |
|
|
|
167 |
|
00:13:44,060 --> 00:13:48,180 |
|
ุฃููุง ุตุญูุญุฉ ู L ู n ุจุชุณุงูู k ุจูุตูุฑ L of x was k |
|
|
|
168 |
|
00:13:48,180 --> 00:13:53,080 |
|
ุจุณุงูู k L of x ุงูุขู ุจุฏูุง ูุญุณุจ ู L of x was k ุฒุงุฆุฏ |
|
|
|
169 |
|
00:13:53,080 --> 00:13:59,480 |
|
ูุงุญุฏ ุงููู ูู ุจุณุงูู L of x was k ูู xูุฐู ุงูู L ููุง |
|
|
|
170 |
|
00:13:59,480 --> 00:14:04,760 |
|
ุญุณุจ ุงููู ูู ุงูุฎุงุตูุฉ ูุฐู ุจุณูุก L ุงูุฃููู X plus K ูู |
|
|
|
171 |
|
00:14:04,760 --> 00:14:09,860 |
|
L ุงูุชุงูู L of X ุงููู ูู ู
ูุชุฑุถ ุฅููุง ุตุญูุญุฉ ุนูู K ุฏู |
|
|
|
172 |
|
00:14:09,860 --> 00:14:19,600 |
|
ุจุณูุก K ูู L of X ุขุณู ุฒุงุฆุฏ ูุฐู ุจุณูุก K L of Xูุฃููุง |
|
|
|
173 |
|
00:14:19,600 --> 00:14:26,400 |
|
ุตุญูุญุฉ ูู K ุฒุงุฆุฏ L of X ููุณุงูู K ุฒุงุฆุฏ ูุงุญุฏ ูู L of |
|
|
|
174 |
|
00:14:26,400 --> 00:14:31,520 |
|
X ุฅุฐุง ุตุงุฑุช ูุฐู ุตุญูุญุฉ ุงููู ูู L ู K ุฒุงุฆุฏ ูุงุญุฏ ุฅุฐุง |
|
|
|
175 |
|
00:14:31,520 --> 00:14:36,760 |
|
ุตุงุฑุช ุตุญูุญุฉ ููู ู
ู ููู N element in N ุญุณุจ ุงููู ูู |
|
|
|
176 |
|
00:14:36,760 --> 00:14:43,080 |
|
ุงู induction ุงููู ุจูุญูู ููู ุฅุฐุง ุงูุฃู ุฃุซุจุชูุง ุฃู L |
|
|
|
177 |
|
00:14:43,080 --> 00:14:49,710 |
|
of X ูู N ูL of X ููู ุงููู ูู ุนูุฏูุงูุงู by VI ุงููู |
|
|
|
178 |
|
00:14:49,710 --> 00:14:53,530 |
|
ูู ุฒู .. ู
ุดุงุจู ููู ุญูููุงูุง ูุจู ุจุดููุฉ ุจุงูุธุจุท ูู ุญุฏ |
|
|
|
179 |
|
00:14:53,530 --> 00:14:58,890 |
|
ุงู exponential ุจุณ ุฎูููู ู
ุด ูุดููุฉ ุจุชุนูุฏู ุงูุงู ุดูู L |
|
|
|
180 |
|
00:14:58,890 --> 00:15:03,680 |
|
of XM minus M ุฃูุด ุจุชุณุงููุ L of ูุงุญุฏุงููู ูู ูุฃู ูุฐุง |
|
|
|
181 |
|
00:15:03,680 --> 00:15:05,860 |
|
X ูู ุงูุณูุฑ ุงููู ูู L of ูุงุญุฏ L of ูุงุญุฏ ู
ุด ููููุง |
|
|
|
182 |
|
00:15:05,860 --> 00:15:11,040 |
|
ุนููุง ุณูุฑ ูู ูุณูู L of XM ูู XM minus ูุงุญุฏ ุงู |
|
|
|
183 |
|
00:15:11,040 --> 00:15:16,300 |
|
logarithmic ุจุทูุญ ุงูุฌู
ุน L of XM ุฒุงุฆุฏ L of X minus M |
|
|
|
184 |
|
00:15:16,300 --> 00:15:21,920 |
|
ูุฃู ูุฐู ุฃุซุจุชูุงูุง ุนุจุงุฑุฉ ุนู M L of X ุฒุงุฆุฏL of X |
|
|
|
185 |
|
00:15:21,920 --> 00:15:27,500 |
|
minus M ุตุงุฑ ุนูุฏู ุงูุงู M ูู L of X ุฒุงุฆุฏ L of X |
|
|
|
186 |
|
00:15:27,500 --> 00:15:32,040 |
|
minus M ุจุณูุง ุณูุฑ ุงูุฌูู ูุฐุง ุนูู ุงูุฌูุฉ ุงูุซุงููุฉ ุจุทูุน |
|
|
|
187 |
|
00:15:32,040 --> 00:15:35,760 |
|
L of X minus M ุงููู ูุนุฏุช ูุญุงููุง ุจุณูุง ูุงูุต M ูู L |
|
|
|
188 |
|
00:15:35,760 --> 00:15:41,720 |
|
of X ุงุฐุง ุตุงุฑ ุนูุฏู ุงูุงู ููู M ุณูุงุก ู
ูุฌุจุฉ ุงู ุณุงูุจุฉ |
|
|
|
189 |
|
00:15:41,720 --> 00:15:48,940 |
|
ุจุทูุน ุนูุฏู ุงููู ูู L of X ูุต Mุจุณุงูุฉ M ูู L of X |
|
|
|
190 |
|
00:15:48,940 --> 00:15:53,860 |
|
ุณูุงุก ูุงูุช ูุฌุจุฉ ุฃู ุณุงูุจุฉ ููุฌู ุงูุขู ู
ููุง ุจุฏูุง ูุงุฎุฏ |
|
|
|
191 |
|
00:15:53,860 --> 00:15:57,360 |
|
ูู
ูู ูุฃ ุงููู ูู ุงู R ูุงู therefore for any M |
|
|
|
192 |
|
00:15:57,360 --> 00:16:02,800 |
|
element in Z ู N element in Nุนูุฏู ุงุญุณุจูู ุงูุงู L of |
|
|
|
193 |
|
00:16:02,800 --> 00:16:07,020 |
|
X ุฃุณ M ุนูู N ุจุณ ุถุฑุจูููุง ูู N ุจุนุฏ ุฅุฐูู Y ุณุงูู ุงููู |
|
|
|
194 |
|
00:16:07,020 --> 00:16:12,460 |
|
ูู L of X ุฃุณ M ุนูู N ููู ู
ุง ูู ุฃุณ N ูุฅูู ุตุญูุญุฉ ูุฐู |
|
|
|
195 |
|
00:16:12,460 --> 00:16:18,080 |
|
ูู N ุงููู ูู ูู N ูุงุชูุฌูุง ุนูููุง ุงูุงู ูุฐู ุจุชุณุงูู |
|
|
|
196 |
|
00:16:18,080 --> 00:16:21,520 |
|
ูุฐู ูุงุถุญุฉ ูุฅู ูุฐู ูู ุงู X ุชุจุนุชูุง ููุฐู ุงู N ุจุชุทูุน |
|
|
|
197 |
|
00:16:21,520 --> 00:16:27,410 |
|
ุจุฑุงุงูุงู ูุฐู ุงูุงู ู
ุน ุงูุงู ุจูุตูุฑ L of X plus M L of |
|
|
|
198 |
|
00:16:27,410 --> 00:16:30,870 |
|
X plus M ูุจู ุจุดููุฉ ุจูู ููููุง ุนููุง ุจูุณุงูู M L of X |
|
|
|
199 |
|
00:16:30,870 --> 00:16:34,270 |
|
ุณูุงุก ูุงูุช M positive ุฃู ุงููู ูู negative ุตุงุฑ ูุฐู |
|
|
|
200 |
|
00:16:34,270 --> 00:16:40,930 |
|
ุจุชุณุงูู ูุฐู ุฅุฐุง ุงูุฌูู ุงูุขูุงูุงู ูุฐู ุงู ุจูุตูุฑ ุนูุฏู L |
|
|
|
201 |
|
00:16:40,930 --> 00:16:44,910 |
|
of X of M ุนูู N ุจูุณูู M ุนูู N ูู L of X ุฅุฐุง ุตุงุฑ |
|
|
|
202 |
|
00:16:44,910 --> 00:16:49,490 |
|
ุนูุฏู ูุฃู rational number ุตุงุฑ ุนูุฏู L of X R ุจูุณูู R |
|
|
|
203 |
|
00:16:49,490 --> 00:16:55,670 |
|
L of X ููู R ุงููู ุจูุชู
ููู NQ ููุฌู ุงูุขู ูุฃ ุงููู ูู |
|
|
|
204 |
|
00:16:55,670 --> 00:16:57,230 |
|
ุงูุฌุฒุก ุงูุฃุฎูุฑ ู
ู ุงููุธุฑูุฉ |
|
|
|
205 |
|
00:17:08,180 --> 00:17:11,120 |
|
ุงูููุงู
ู
ุดุงุจู ููู ุญูููุงูุง ูุจู ุจุดููุฉ ูู ุงูุฅุซุจุงุช ุงููู |
|
|
|
206 |
|
00:17:11,120 --> 00:17:15,260 |
|
ูู ุงู limit ุชุจุน ุงู exponential ุนูุฏ 2 ุฃุตุบุฑ ู
ู E |
|
|
|
207 |
|
00:17:15,260 --> 00:17:19,380 |
|
ููููุง ููุด ุงูุงู ุงู E n ููุง ุจูุตูุฑ 2 ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ |
|
|
|
208 |
|
00:17:19,380 --> 00:17:19,920 |
|
ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ |
|
|
|
209 |
|
00:17:19,920 --> 00:17:21,140 |
|
ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ |
|
|
|
210 |
|
00:17:21,140 --> 00:17:22,840 |
|
ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ |
|
|
|
211 |
|
00:17:22,840 --> 00:17:23,240 |
|
ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ |
|
|
|
212 |
|
00:17:23,240 --> 00:17:26,700 |
|
ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ ู
ู E ุฃุตุบุฑ |
|
|
|
213 |
|
00:17:26,700 --> 00:17:30,620 |
|
ู
ู E ุฃุตุบ |
|
|
|
214 |
|
00:17:33,960 --> 00:17:39,580 |
|
ููู ุงููู ูู L of E N ุจุณูุก N and ุงููู ูู L of E |
|
|
|
215 |
|
00:17:39,580 --> 00:17:44,020 |
|
minus N ุจุณูุก ููุต N ุฎูููู ูู ุงูุฐุงูุฑ ูุฐูู ุงุฐุง for |
|
|
|
216 |
|
00:17:44,020 --> 00:17:47,480 |
|
every N element in R there exists X element in R |
|
|
|
217 |
|
00:17:47,480 --> 00:17:52,670 |
|
ุจุญูุซ ุงู X ุฃูุจุฑ ู
ู ู
ูู ู
ู Nููู N element in N ูู X |
|
|
|
218 |
|
00:17:52,670 --> 00:17:56,350 |
|
element in R ุฃููุฏ X ุฃูุจุฑ ู
ู ู
ูู ู
ู E N ูุฃูู ุฃุฎุณุฑุช |
|
|
|
219 |
|
00:17:56,350 --> 00:18:00,590 |
|
N ุจูู ุฅูุฏูุง ุญุณุจุช ุงู E N ุทูุน ุนูุฏ ุฑูู
ุฃุฎุฏุช ุงู X ุฃูุจุฑ |
|
|
|
220 |
|
00:18:00,590 --> 00:18:03,310 |
|
ู
ููุง ููุฏ ุจุงููู ุทูุจ ูุฃูู unbounded real numbers |
|
|
|
221 |
|
00:18:03,310 --> 00:18:06,710 |
|
then L ูู ูุฐู ุฃูุจุฑ ุฃู ู
ู L ูู ูุฐู ูุฃูู ุงู L |
|
|
|
222 |
|
00:18:06,710 --> 00:18:10,810 |
|
strictly increasing ุฅุฐุง ุตุงุฑ L ูู X ุฃูุจุฑ ู
ู ู
ูู ู
ู |
|
|
|
223 |
|
00:18:10,810 --> 00:18:16,130 |
|
ุงู NA ุฃููู E ุฃู ูุนูู ุฃูุจุฑ ู
ู ุงูุงู ูุฃู limit ูุฐู as |
|
|
|
224 |
|
00:18:16,130 --> 00:18:21,210 |
|
x goes to infinity ุงููู ูู ุจูููู ุฃูุจุฑ ุฃุณุงูู ุงููู |
|
|
|
225 |
|
00:18:21,210 --> 00:18:23,950 |
|
ูู limit ูุฐู as n goes to infinity ููุณุงูู infinity |
|
|
|
226 |
|
00:18:23,950 --> 00:18:27,550 |
|
ูุฃู ููู ูู
ุง ุงูุงู ุชุฑูุญ ูู
ุง ูููุงูุฉ ุฃููุฏ ุงู X ุจุชุฑูุญ |
|
|
|
227 |
|
00:18:27,550 --> 00:18:31,270 |
|
ูู
ูู ุฅูู ู
ุง ูููุงูุฉ ูุตุงุฑ ุนูุฏู ูุฐู ุจุชุฑูุญ ุฅูู ู
ุง |
|
|
|
228 |
|
00:18:31,270 --> 00:18:34,970 |
|
ูููุงูุฉ ุงูุขู ุตุงุฑ ุนูุฏู limit L of X ูู
ุง X ุชุฑูุญ ูู
ุง |
|
|
|
229 |
|
00:18:34,970 --> 00:18:41,040 |
|
ูููุงูุฉ ุจูุณุงูู ู
ุง ูููุงูุฉ similarlyุงูุงู ููู ููุต any |
|
|
|
230 |
|
00:18:41,040 --> 00:18:43,100 |
|
element in z positive ุจูุงูู x element in r |
|
|
|
231 |
|
00:18:43,100 --> 00:18:45,740 |
|
positive ุจุญูุซ ุงู x ุฃูุจุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู |
|
|
|
232 |
|
00:18:45,740 --> 00:18:46,340 |
|
ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู |
|
|
|
233 |
|
00:18:46,340 --> 00:18:47,840 |
|
ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู |
|
|
|
234 |
|
00:18:47,840 --> 00:18:51,500 |
|
ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู |
|
|
|
235 |
|
00:18:51,500 --> 00:18:57,960 |
|
ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู |
|
|
|
236 |
|
00:18:57,960 --> 00:19:02,520 |
|
ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู |
|
|
|
237 |
|
00:19:02,520 --> 00:19:09,620 |
|
ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุตุบุฑ ู
ู ุตูุฑ ู ุฃุทูุจ then L of X |
|
|
|
238 |
|
00:19:09,620 --> 00:19:13,660 |
|
ููููู ุฃุตุบุฑ ูุณุงูู ุงู E to the minus N ูุนูู L of X |
|
|
|
239 |
|
00:19:13,660 --> 00:19:17,800 |
|
ุงููู ูู ุฃุตุบุฑ ูุณุงูู ูุงูุต N ุฅุฐุง as N goes to |
|
|
|
240 |
|
00:19:17,800 --> 00:19:22,700 |
|
infinity as N goes to infinity ุงููู ูู ุงู E to the |
|
|
|
241 |
|
00:19:22,700 --> 00:19:26,540 |
|
minus N ุจูุฑูุญ ูู0 ู
ู ุงููู
ูู ุฅุฐุง ุงู X ุจุชุฑูุญ ูู0 ู
ู |
|
|
|
242 |
|
00:19:26,540 --> 00:19:30,820 |
|
ุงููู
ูู ุฅุฐุง ุนูุฏู ุงู X ุจุชุฑูุญ ูู 0 ู
ู ุงููู
ููุงููู ูู |
|
|
|
243 |
|
00:19:30,820 --> 00:19:34,580 |
|
ุฃุตุบุฑ ูู
ุง ุงูู limit L of X ุฃุตุบุฑ ู
ู limit E to the |
|
|
|
244 |
|
00:19:34,580 --> 00:19:37,900 |
|
minus N ูู
ุง ูุฐุง ูุฑูุญ ูู 0 ู
ู ุงููู
ูู ุฃู ุจู
ุนูู ุฃุฎุฑ |
|
|
|
245 |
|
00:19:37,900 --> 00:19:41,680 |
|
ูู
ุง ุงูู N ุชุฑูุญ ูู
ูุฉ ูููุงูุฉ ู ูุฐุง ุจูุฑูุญ ูู
ููุ ูู |
|
|
|
246 |
|
00:19:41,680 --> 00:19:44,760 |
|
Infinity ุฅุฐุง limit L of X ูู
ุง X ุชุฑูุญ ูู
ูุฉ ูููุงูุฉ |
|
|
|
247 |
|
00:19:44,760 --> 00:19:50,920 |
|
ุจุณุงูู ุณุงูุจ Infinity ู ูู ุงูู
ุทููุจ hence limit L of |
|
|
|
248 |
|
00:19:50,920 --> 00:19:54,460 |
|
X ูู
ุง X ุชุฑูุญ ูู 0 ู
ู ุงููู
ูู ุจุณุงูู ุณุงูุจ Infinity |
|
|
|
249 |
|
00:19:54,460 --> 00:19:58,500 |
|
ุทูุจ |
|
|
|
250 |
|
00:20:12,260 --> 00:20:16,320 |
|
ุงูุงู ุณุงุฑุนูุง ุงูุงู ููุฏุฑ ุงู ุงููู ูู ูุญูู ุนู ุงู bar |
|
|
|
251 |
|
00:20:16,320 --> 00:20:20,080 |
|
functions ุจุฏูุง ูุนุฑู ุงู bar functions ุงููู ูู ุจูุงุก |
|
|
|
252 |
|
00:20:20,080 --> 00:20:25,060 |
|
ุนูู ุงููู ุญูููุงู ู ุงููู ูู ู
ูุถูุน ุงู bar functions |
|
|
|
253 |
|
00:20:25,060 --> 00:20:28,880 |
|
ูู ู
ุง ููู ุชูุฑูุจุง ูุนูู ุจูุนุชุจุฑู exercises ุงุญูุง ููู |
|
|
|
254 |
|
00:20:28,880 --> 00:20:32,520 |
|
ุฎูููุง ูุนุฑู ุงูุชุนุฑููุงุช ู ุงููุธุฑูุงุช ุจุชููู ุงููู ูู |
|
|
|
255 |
|
00:20:32,520 --> 00:20:35,900 |
|
ู
ุนุงูู
exercises ุจุณูุทุฉ ุจูุงุก ุนูู ุงูุชุนุฑูู ุงููู |
|
|
|
256 |
|
00:20:35,900 --> 00:20:40,720 |
|
ุจูุนุฑููุง ุงููู ููุงุฎุฏ ฮฑ ูููู
ูุชุงู R ู X ุฃูุจุฑ ู
ู 0The |
|
|
|
257 |
|
00:20:40,720 --> 00:20:43,320 |
|
number X to the Alpha is defined to be .. ุงูุขู ุจุฏู |
|
|
|
258 |
|
00:20:43,320 --> 00:20:46,940 |
|
ุฃุนุฑู ุญุงุฌุฉ ุงุณู
ูุง X to the Alpha X to the Alpha ุจุฏู |
|
|
|
259 |
|
00:20:46,940 --> 00:20:49,900 |
|
ุฃุนุฑููุง .. ุฅูุด ุจุฏู ุฃุนุฑููุงุ ุจุฅูุดู ุฃูุง ู
ุนุฑู ุนูุฏู ู
ู |
|
|
|
260 |
|
00:20:49,900 --> 00:20:54,440 |
|
ุงูุฃุตู ุงู exponential ู
ุนุฑูุฉ .. ุฎูุตูุง ู
ููุง ู ุงู len |
|
|
|
261 |
|
00:20:54,440 --> 00:20:59,000 |
|
ู
ุนุฑูุฉ .. ุฅุฐุง E to the Alpha ูู ูู ุงู X ูุฐู ุงูู
ูุฏุงุฑ |
|
|
|
262 |
|
00:20:59,000 --> 00:21:03,820 |
|
ููุฐุง ู
ุนุฑู ู ูุฐุง ู
ุนุฑู ุจุฏู ุฃุณู
ู X to the Min to the |
|
|
|
263 |
|
00:21:03,820 --> 00:21:07,400 |
|
Alpha ุงููู ูู ูู ุงููุงูุน ุนุจุงุฑุฉ ุนู Min E to the |
|
|
|
264 |
|
00:21:07,400 --> 00:21:12,040 |
|
AlphaL of X L of X ู
ุนุฑูุฉ ูุงูู E ู
ุนุฑูุฉ ุฅุฐุง ูู ูุฐู |
|
|
|
265 |
|
00:21:12,040 --> 00:21:16,000 |
|
ู
ุนุฑูุฉ ุจุชุณู
ููุง X to the main to the alpha ุงูุขู ุตุงุฑุช |
|
|
|
266 |
|
00:21:16,000 --> 00:21:19,540 |
|
ุนูุฏู ูุนูู ููู
ุฉ ุงูู X under this function ุงููู |
|
|
|
267 |
|
00:21:19,540 --> 00:21:23,120 |
|
ุนุฑูุชูุง ูุฌุฏูุฏุฉ ูุนูู ุฅุฐุง ุจุชุณู
ููุง ุฏู ุงู function ุงูู |
|
|
|
268 |
|
00:21:23,120 --> 00:21:28,240 |
|
R of X ุฅูุด ุนุฑูุชูุง ุฃูุง ุจุชุณุงูู X to the alphaุูุนูู |
|
|
|
269 |
|
00:21:28,240 --> 00:21:31,680 |
|
ูู ุงู X ุจุชุตูุฑ ูุดู
ู X to the Alpha ู X ุฃูุจุฑ ู
ู 0 |
|
|
|
270 |
|
00:21:31,680 --> 00:21:36,780 |
|
ูุฐู ุงู X to the Alpha ูู ุงููู ุจุฏู ุฃุณู
ููุง ุงู power |
|
|
|
271 |
|
00:21:36,780 --> 00:21:42,000 |
|
function ุจุฏู ุฃุณู
ููุง power function with exponent |
|
|
|
272 |
|
00:21:42,000 --> 00:21:47,540 |
|
mean Alpha ู ุงู X ูู ุฃุดู
ุงููุง ุงูู
ุชุบูุฑุฉ ุงููู ุฃูุจุฑ ู
ู |
|
|
|
273 |
|
00:21:47,540 --> 00:21:54,340 |
|
0 ุดูู ุงูุขู ูุดูู ุจุนุถ ุงูุฎูุงุต ุงููู ูู ูุฐู ุงููู ูู |
|
|
|
274 |
|
00:21:54,340 --> 00:21:56,460 |
|
ุงูุฏุงูุฉ ุทูุจ |
|
|
|
275 |
|
00:22:04,730 --> 00:22:08,690 |
|
ุงูุงู if x ุฃูุจุฑ ู
ู 0 and alpha ุจุณุงูุฉ m ุนูู n where |
|
|
|
276 |
|
00:22:08,690 --> 00:22:12,770 |
|
m element in z ู n element in n then we define x |
|
|
|
277 |
|
00:22:12,770 --> 00:22:17,790 |
|
to the alpha ุจุณุงูุฉ x to the m ุฃุณูุงุญุฏ ุนูู n in |
|
|
|
278 |
|
00:22:17,790 --> 00:22:23,110 |
|
section mean ุฎู
ุณุฉ ุณุชุฉ ูุชุนุฑููุงูุง ุฒู
ุงู ุงูู ูู ุญุงูุฉ |
|
|
|
279 |
|
00:22:23,110 --> 00:22:26,570 |
|
ุจุณ ุงููู ูู ุงู rational number ุนุฑููุง x to the m ุนูู |
|
|
|
280 |
|
00:22:26,570 --> 00:22:30,630 |
|
n ุจุณุงูุฉ x to the m ููู ุฃุณูุงุญุฏ ุนูู nู
ุงุดู ุงูุญุงู |
|
|
|
281 |
|
00:22:30,630 --> 00:22:34,510 |
|
..ุงูุงู ุจุฏูุง ูุดูู ูุฐุง ุงูุชุนุฑูู ู
ุทุงุจู ูุชุนุฑูููุง ุงูููู
|
|
|
|
282 |
|
00:22:34,510 --> 00:22:41,670 |
|
ููุง ูุฃ hence we have ูู ุงู X to the Alpha ูู ุงู X |
|
|
|
283 |
|
00:22:41,670 --> 00:22:45,370 |
|
to the Alpha ูู ุงู X to the Alpha ุจุณุงูู Alpha ูู |
|
|
|
284 |
|
00:22:45,370 --> 00:22:51,540 |
|
ุงู Xุนุฑููุงูุง ูุฐู ุทูุจ where X to the Alpha ุจูุณูุง E |
|
|
|
285 |
|
00:22:51,540 --> 00:22:56,260 |
|
to the Lin X to the Min to the Alpha ุงููู ูู ุจูุณูุง |
|
|
|
286 |
|
00:22:56,260 --> 00:23:01,020 |
|
E to the Alpha ูู Min ูู Lin ุงู X ููุงู
ููู ุณูู ุงู |
|
|
|
287 |
|
00:23:01,020 --> 00:23:05,740 |
|
X to the Alpha ูู ุงููู ุนุฑููุงูุง ุงููู ุนุจุงุฑุฉ ุนู E |
|
|
|
288 |
|
00:23:05,740 --> 00:23:10,570 |
|
ุจุชุตูุฑ to the Lin X to the Alphaูุฃูู ุงุณุชุจุฏูุช ุงูู x |
|
|
|
289 |
|
00:23:10,570 --> 00:23:15,090 |
|
to the alpha ุจููู
ุชูุง ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู |
|
|
|
290 |
|
00:23:15,090 --> 00:23:18,630 |
|
alpha ln x ุงููู ูู ุจุงูุณุงููุฉ e to the ln x to the |
|
|
|
291 |
|
00:23:18,630 --> 00:23:24,510 |
|
mean to the alpha ุฅุฐุง ุณูุงุก ุงุญูุง ุจุงูุชุนุฑูู ุงููู ูู |
|
|
|
292 |
|
00:23:24,510 --> 00:23:28,190 |
|
ุงุญูุง ูุฐุง ุจุงู exponent ุฃู ุจุงู ุงู function ุงููู |
|
|
|
293 |
|
00:23:28,190 --> 00:23:33,110 |
|
ุนุฑููุงูุง ุจุงูุดูู ูุฐุง ููุทูุน ุนูุฏู ุงููู ูู ุงูููู
ุชูู ููุณ |
|
|
|
294 |
|
00:23:33,110 --> 00:23:34,790 |
|
ุงูููู
ุฉ ุทูุจ |
|
|
|
295 |
|
00:23:37,160 --> 00:23:42,300 |
|
ูุฌู ุงูุขู ูุจุนุถ ุงูุฎูุงุต ุงููู ูู ุชุจุนุช ุงู exponential |
|
|
|
296 |
|
00:23:42,300 --> 00:23:47,180 |
|
ุงู power function ู ุงูุฎูุงุต ููุชุฑูู ููู
ุฅูุงู ูุฃููุง |
|
|
|
297 |
|
00:23:47,180 --> 00:23:54,600 |
|
ู
ุจุงุดุฑุฉ ุนูู ุงูุชุนุฑูู ุชุจุนูุง ู
ุจุงุดุฑุฉ |
|
|
|
298 |
|
00:23:54,600 --> 00:24:01,100 |
|
ุนูู ุงููู ูู ุงูุชุนุฑูู ุงููู ุนูุฏูุง ู ููููู ูู ุนูุฏู |
|
|
|
299 |
|
00:24:01,100 --> 00:24:05,760 |
|
ุงูุขู ุงููุธุฑูุฉ ุงูุฃูููุงููู ูู 8 3 11 ูู ูุงูุช Alpha |
|
|
|
300 |
|
00:24:05,760 --> 00:24:11,340 |
|
element in R ู X ู Y ุงููู ูู ุชูุชู
ู ูููุชุฑุฉ Zero ู |
|
|
|
301 |
|
00:24:11,340 --> 00:24:16,500 |
|
ุชู
ุงููุฉ Zero ู ู
ุง ูููุงูุฉ ุขุณู then ู
ุนูุด ุนุดุงู ุฏู ุทูุนุช |
|
|
|
302 |
|
00:24:16,500 --> 00:24:20,450 |
|
ุงูููุฑุจุง ูุนุฏ ูููู ุงูููุฑุจุง ุฃูุงIf ฮฑ element in R ู X |
|
|
|
303 |
|
00:24:20,450 --> 00:24:26,350 |
|
Y belongs to 0 ฮฑ then 1 to the ฮฑ ุจุณูุก 1 ู X to the |
|
|
|
304 |
|
00:24:26,350 --> 00:24:30,270 |
|
ฮฑ ุฃูุจุฑ ู
ู 0 ู X Y to the ฮฑ ุจุณูุก X to the ฮฑ ู Y to |
|
|
|
305 |
|
00:24:30,270 --> 00:24:35,590 |
|
the ฮฑ ู X ุนูู Y to the ฮฑ ุจุณูุก X to the ฮฑ ุนูู Y to |
|
|
|
306 |
|
00:24:35,590 --> 00:24:39,370 |
|
the ฮฑ ูุฐู ุงููู ูู ุงููุธุฑูุฉ ุทุจุนุง ุงููู ูู ู
ุจุงุดุฑุฉ ุนูู |
|
|
|
307 |
|
00:24:39,370 --> 00:24:45,100 |
|
ุชุนุฑูููุง ุงููู ูู X to the ฮฑ ุจุณูุก Eof ฮฑ ูู X ูุนูู |
|
|
|
308 |
|
00:24:45,100 --> 00:24:49,800 |
|
ุจุฏู ุชูุฌู ุชุณุชุฎุฏู
ุชุนุฑููู ุงููู ูู ุงููู ุนุฑููุงู ูุนููู |
|
|
|
309 |
|
00:24:49,800 --> 00:24:53,480 |
|
ุงููู ูู ุจุชุจุฏุฃ ุชุดุชุบู ู ุชุจูู ุงููู ูู ุงููู ูู |
|
|
|
310 |
|
00:24:53,480 --> 00:24:57,680 |
|
ุงูููุงููู ุงููู ุจูุญูู ุนููุง ุงููู ูู ุชุนุฑูููุง ุงููู ูู X |
|
|
|
311 |
|
00:24:58,570 --> 00:25:05,210 |
|
to the alpha ุจุชุณุงูู E of alpha len ุงููู ูู L of X |
|
|
|
312 |
|
00:25:05,210 --> 00:25:10,650 |
|
ุฃู ุญุณุจ ุงู notation ุชุจุนุชูุง E to the alpha len ุงู X |
|
|
|
313 |
|
00:25:10,650 --> 00:25:15,710 |
|
ูุฐุง ุงูุขู ุงูุชุนุฑูู ุงููู ุนููู ุจุฏู ุงููู ูู ุชุจุฏุฃ ุงููู |
|
|
|
314 |
|
00:25:15,710 --> 00:25:23,290 |
|
ูู ุชุดุชุบู ุนูู ุงููู ูู ุงููุธุฑูุฉูุชุจุฑูููุง ุงููู ุนูุฏูุง |
|
|
|
315 |
|
00:25:23,290 --> 00:25:27,630 |
|
ูุธุฑูุฉ ุงูุฃููู ุงููู ุฐูุฑูุงูุง ูุจู ุจุดููุฉ ุงููู ูู ูุฐู |
|
|
|
316 |
|
00:25:27,630 --> 00:25:32,090 |
|
ุงููุธุฑูุฉ ุนูู ุงูุชุนุฑูู ู
ุจุงุดุฑุฉ ููุธุฑูุฉ ุชุงููุฉ ุฃูุถุง ุจุฑุถู |
|
|
|
317 |
|
00:25:32,090 --> 00:25:35,670 |
|
ู
ู ุงูุฎูุงุต ุฅุฐุง ูุงูุช Alpha ู Beta element ุฑ ู X ูู |
|
|
|
318 |
|
00:25:35,670 --> 00:25:40,640 |
|
ุงููุชุฑุฉ Zero ููุง ููุงูุฉ ุฅุฐุง Xุชู ุฏุง ุฃููุฉ ุฒูุงุฏุฉ ุจูุชุง |
|
|
|
319 |
|
00:25:40,640 --> 00:25:44,040 |
|
ุจุฑุถู ููุณ ุงูุงุดูุงุก ุทุจุนุง ูุชูุงูู ุงููู ูู ุงูุช ูู
ุง ุชูุฌู |
|
|
|
320 |
|
00:25:44,040 --> 00:25:48,320 |
|
ุชูุฑุฏ ูุฐู ูุชุตูุฑ ุชุณุชุฎุฏู
ุฎูุงุต ุงูู
ุนุฑูุฉ ุงููู ูู |
|
|
|
321 |
|
00:25:48,320 --> 00:25:52,360 |
|
ุจูุงุณุทุชูุง ู
ุนุฑูุฉ ูุชุณุชุฎุฏู
ุฎูุงุต ุงู X exponential ูุงูู |
|
|
|
322 |
|
00:25:52,360 --> 00:25:55,420 |
|
ุงููู ูุจูู ุจุดููุฉ ูุชูุงูู ุญุงูู ุจุชุตู X ุชู ุฏุง ุฃููุฉ |
|
|
|
323 |
|
00:25:55,420 --> 00:25:58,310 |
|
ุฒูุงุฏุฉ ุจูุชุง ุจุณูุก X ุชู ุฏุง ุฃููุฉ ูู X ุชู ุฏุง ุจูุชุงู ููุณ |
|
|
|
324 |
|
00:25:58,310 --> 00:26:05,170 |
|
ุงูุดูุก xยฒฮฑยฒฮฒ ุจูุณุงูู x ฮฑ beta ู ูุณุงูู xยฒฮฒยฒฮฑ ู ูุชูุฌู |
|
|
|
325 |
|
00:26:05,170 --> 00:26:08,830 |
|
.. ุงููู ูู ูููุง ููุงููู ุงุญูุง ุจูุนุฑููุง xยฒ-ฮฑ ุจูุณุงูู 1 |
|
|
|
326 |
|
00:26:08,830 --> 00:26:12,270 |
|
ุนูู xยฒฮฑ ู ููุณ ุงูุดูุก ุฅุฐุง ูุงูุช alpha ุฃุตุบุฑ ู
ู beta |
|
|
|
327 |
|
00:26:12,270 --> 00:26:17,770 |
|
ููููู xยฒฮฑ ุฃุตุบุฑ ู
ู xยฒฮฒ ูู
ุง ุงู x ุชููู ุฃูุจุฑ ู
ู 1 ู |
|
|
|
328 |
|
00:26:17,770 --> 00:26:22,130 |
|
ูุฐู ูููุง ุจุชููู x resources ู
ุนุงูู
ุงููู ูู ู
ุจุงุดุฑุฉ |
|
|
|
329 |
|
00:26:22,130 --> 00:26:31,830 |
|
ุนูู ูุฐู ุงูุชุนุฑููุงููุธุฑูุฉ ุงููู ุนูุฏูุง ุนูู ุงูุณุฑูุน let |
|
|
|
330 |
|
00:26:31,830 --> 00:26:35,010 |
|
alpha element in R then the function x ุจุงูุชุฑูุญ ููู |
|
|
|
331 |
|
00:26:35,010 --> 00:26:37,670 |
|
x alpha ู
ู 0 ู 1 to R is continuous and |
|
|
|
332 |
|
00:26:37,670 --> 00:26:41,210 |
|
differentiable and ุงููู ูู ุงู derivative ูู x to |
|
|
|
333 |
|
00:26:41,210 --> 00:26:43,630 |
|
the alpha ุจุณูุก alpha to the x to the alpha minus 1 |
|
|
|
334 |
|
00:26:43,630 --> 00:26:47,650 |
|
for x element in 0 ู 1 ุทุจูุนู ุฃุตูุง ูู composition |
|
|
|
335 |
|
00:26:47,650 --> 00:26:54,490 |
|
of two ูู ุนูุฏู function ูุฐู ุงููู ูู continuousูุฐุง |
|
|
|
336 |
|
00:26:54,490 --> 00:26:57,650 |
|
ูููุง ุนูู ุจุนุถ ุงูู E ูู
ุงู continuous ุฏู ุงููู ูุชุทูุน |
|
|
|
337 |
|
00:26:57,650 --> 00:26:59,850 |
|
ูุฐุง continuous ู ูุฐุง continuous ู ููุณ ุงูุงุดู ุงู |
|
|
|
338 |
|
00:26:59,850 --> 00:27:02,870 |
|
differentiability ุฅุฐุง ุฃููุฏ ุงููู ูู ุงู function |
|
|
|
339 |
|
00:27:02,870 --> 00:27:05,890 |
|
ุงููู ุนูุฏูุง X to the X to the Alpha ุญุณุจ ุชุนุฑูููุง is |
|
|
|
340 |
|
00:27:05,890 --> 00:27:09,410 |
|
continuous and differentiable ู ูู ุจุฏู ุชุณู
ู ุงููู |
|
|
|
341 |
|
00:27:09,410 --> 00:27:13,710 |
|
ูู ูุฐู ุงู derivative ู ุจุฏู ุชุจุฏุฃ ุชูุงุถู ุฏู ุงุชูุงุถู DX |
|
|
|
342 |
|
00:27:13,710 --> 00:27:17,050 |
|
Alpha ูุนูู ุจุฏู ุชุชูุงุถู ูุฐู ููู ุชุชูุงุถู ูุฐู ุงู |
|
|
|
343 |
|
00:27:17,050 --> 00:27:20,860 |
|
exponential ุงููู ูู E to the Alpha ูุฅู ุงู Xูู |
|
|
|
344 |
|
00:27:20,860 --> 00:27:25,580 |
|
ุงูุชูุงุถู ุงููู ูู ุงููู ุฌูุง ุงููู ูู Alpha ูู ูุงุญุฏ ุนูู |
|
|
|
345 |
|
00:27:25,580 --> 00:27:30,120 |
|
X ู
ุงุดู ุงูุญุงู ุงููู ูู ุจู
ุนูู ุขุฎุฑ ุจุตูุฑ ุนูุฏู ุงููู ูู |
|
|
|
346 |
|
00:27:30,120 --> 00:27:35,260 |
|
ุนุจุงุฑุฉ ุนู E to the Alpha ูู ุงู X ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
347 |
|
00:27:35,260 --> 00:27:38,480 |
|
ุงู X to the Alpha ููุณูุง ูู ุงูุชูุงุถู ูุฐู ุงููู ูู |
|
|
|
348 |
|
00:27:38,480 --> 00:27:43,080 |
|
Alpha ุนูู X ุจูุณุงูู Alpha ุฃุณ X ุงููู ูู ูุฐู ุจุชุทูุน |
|
|
|
349 |
|
00:27:43,080 --> 00:27:46,680 |
|
ูุงูุต ูุงุญุฏ Alpha ู
ุงูุณ ูุงุญุฏ for X element in zero |
|
|
|
350 |
|
00:27:46,680 --> 00:27:53,250 |
|
ูู
ูุง ููุงูุฉุงูุงู ุจุนุถ ุงูู
ูุงุญุธุงุช ุงูุฃุฎุฑู ุงููู ุจููููู |
|
|
|
351 |
|
00:27:53,250 --> 00:28:01,010 |
|
ุฅูุงูุง ุนูู ูุฐู ุงูุฏุงูุฉ ุจููููุจููู ูู ุงููู ูู ุนูุฏู ุฅุฐุง |
|
|
|
352 |
|
00:28:01,010 --> 00:28:07,610 |
|
ูุงูุช Alpha ุฃูุจุฑ ู
ู 0 ูุจุตูุฑ |
|
|
|
353 |
|
00:28:07,610 --> 00:28:11,970 |
|
ุนูุฏู ุงููู ูู ุงู function ู
ู X and X alpha is |
|
|
|
354 |
|
00:28:11,970 --> 00:28:15,930 |
|
strictly increasing ุนูู ูุชุฑุฉ 0 ู ู
ูุง ููุงูุฉ ุทุจูุนู |
|
|
|
355 |
|
00:28:15,930 --> 00:28:19,890 |
|
ูู
ุง Alpha ุฃูุจุฑ ู
ู 0 ููุตูุฑ ุนูุฏู ุงูุงู ุงูู
ูุฏุฑ ูุฐุง |
|
|
|
356 |
|
00:28:19,890 --> 00:28:24,120 |
|
ุจุธูู ู
ูุฌุจู ูุฐู ุฃูู ุฃูุจุฑ ู
ู ุณูุฑ ุจูููู ุจูุจุฏู ุฃูุจุฑ ู
ู |
|
|
|
357 |
|
00:28:24,120 --> 00:28:27,180 |
|
ุณูุฑ ุฅุฐุง ุตุงุฑุช ุนูุฏู ุงููู ูู ุงู derivative ุฃูุจุฑ ู
ู |
|
|
|
358 |
|
00:28:27,180 --> 00:28:31,160 |
|
ุณูุฑ ุฅุฐุง ุตุงุฑุช ุนูุฏ ุงูุฏูุฉ strictly increasing ูู ูุงูุช |
|
|
|
359 |
|
00:28:31,160 --> 00:28:34,520 |
|
ุฃูู ุฃุตุบุฑ ู
ู ุณูุฑ ูุชุตูุฑ ุงููู ูู ุงูุนูุณ strictly |
|
|
|
360 |
|
00:28:34,520 --> 00:28:38,420 |
|
decreasing ูุฅูู ูุชููู ูุฐู ุณุงูุจุฉ ููุฐู ู
ุฏูุฉ ู
ูุฌุจุฉ |
|
|
|
361 |
|
00:28:38,420 --> 00:28:42,180 |
|
ุจุชุธู ูุฐู ูููุง ู
ูุฌุจุฉ ุฅุฐุง ุตุงุฑุช strictly decreasing |
|
|
|
362 |
|
00:28:42,180 --> 00:28:45,360 |
|
ุนูุฏ ุฃูู ุจุชุณุงูู ุณูุฑ ุจูููู ุงุญูุง ุงู derivative ูููุงุญุฏ |
|
|
|
363 |
|
00:28:45,360 --> 00:28:48,880 |
|
ุงููู ูู ุจูููู ุนุจุงุฑุฉ ุนู constant function ุงููู ูู |
|
|
|
364 |
|
00:28:48,880 --> 00:28:51,300 |
|
ูู ุญุงูุฉ ุงูุฃูู ุจุชุณุงูู ุณูุฑ |
|
|
|
365 |
|
00:28:53,910 --> 00:29:02,970 |
|
ุงูุงู ููุฌู ุงูู ุงููู ูู ููู ุจูููู ุงููู ูู ูุตููุง |
|
|
|
366 |
|
00:29:02,970 --> 00:29:09,190 |
|
ูุขุฎุฑ ุชุนุฑูู ุจุฏู ูุนุฑู ุงููู ูู ุงู log function ููุฃุณุงุณ |
|
|
|
367 |
|
00:29:09,190 --> 00:29:13,090 |
|
a ุงุญูุง ุงููู ุนุฑููุงู ุงู len ุงููู ูู ููุฃุณุงุณ e ุจู
ุนูู |
|
|
|
368 |
|
00:29:13,090 --> 00:29:16,530 |
|
ุขุฎุฑ ููู ุจุฏู ุงุนุฑูู ุงูุขู ุงุญูุง ูุณู ู
ุงุนุฑูุด ุงูุฃุณุงุณุงุช |
|
|
|
369 |
|
00:29:16,530 --> 00:29:19,930 |
|
ูุฏุง ูุตู
ูุง ุงู len ู ุงู exponential ุงูุงู ุจุฏูุง ูุนุฑู |
|
|
|
370 |
|
00:29:19,930 --> 00:29:25,920 |
|
ุงููู ูู ูุณู
ู ุงู logุงููุบุงุฑูุซู
ููุฃุณุงุณ A ููุชุฑุถ ุฃู A |
|
|
|
371 |
|
00:29:25,920 --> 00:29:28,860 |
|
ุฃูุจุฑ ู
ู 0 ู A ูุงุช ุณูู 1 it is sometimes useful to |
|
|
|
372 |
|
00:29:28,860 --> 00:29:34,820 |
|
define the function log ููุฃุณุงุณ A ูู
ุงูู ุงูุงู log A |
|
|
|
373 |
|
00:29:34,820 --> 00:29:39,560 |
|
of X ูุฏู ุงููู ุจูุณุงูู ูู ุงู X ุนูู ูู ุงู A ุญูุซ ุงู A |
|
|
|
374 |
|
00:29:39,560 --> 00:29:43,940 |
|
ุนุฏุฏ ุซุงุจุช ู
ุงุดู ุงูุญุงู ูุฐู ุงูุขู ุตุงุฑุช ุงููู ูู ุงู log |
|
|
|
375 |
|
00:29:43,940 --> 00:29:49,540 |
|
ุงูุนุงู
ุฉ ูู ููุณ ุงู exponential ุจุณ ู
ุถุฑูุจุฉ ูู ุซุงุจุชุงูุฃู |
|
|
|
376 |
|
00:29:49,540 --> 00:29:52,920 |
|
ุฅุฐุง ุงูู exponential ุงูุฃุตููุฉ ุนูููุง ูู ู
ุนุฑู ุงูุงู |
|
|
|
377 |
|
00:29:52,920 --> 00:29:59,140 |
|
ุจูููู ุฅูู ุงููู ูู ูุฐู ุจูุณู
ููุง log ุฃู ุงู logarithm |
|
|
|
378 |
|
00:29:59,140 --> 00:30:04,620 |
|
ููุฃุณุงุณ A ูู ูุงู ุงูุฃุณุงุณ E ูุฐุง ุจุตูุฑ ูู ุงู E ูุงุญุฏ |
|
|
|
379 |
|
00:30:04,620 --> 00:30:09,320 |
|
ุจูุตูุฑ ูุฑุฌุน ูู ุงู X ุงููู ูู ุงูุฏุงูุฉ ุงูุฃุตููุฉ ุฅุฐุง ูู |
|
|
|
380 |
|
00:30:09,320 --> 00:30:14,000 |
|
ูุงูุช ุงู A ูู ุงู E ุจูุฑุฌุน ููุฏุงูุฉ ุงูุฃุตููุฉ ุงููู ูู ุฒู |
|
|
|
381 |
|
00:30:14,000 --> 00:30:17,060 |
|
ู
ุง ูููุง is called the logarithm of X to the base A |
|
|
|
382 |
|
00:30:19,560 --> 00:30:23,400 |
|
Yields ุฏุง ุงูู logarithm ุงูุนุงุฏู ุงูุงู ุงููู ู
ุดููุฑ |
|
|
|
383 |
|
00:30:23,400 --> 00:30:28,020 |
|
ุนูุฏูุง ููุญุณุงุจุงุช ุงููู ูู ููุฃุณุงุณ ุนุดุฑุฉ ุงููู ูู ุจูุณู
ู |
|
|
|
384 |
|
00:30:28,020 --> 00:30:32,220 |
|
ุงููู ูู log to the base ุนุดุฑุฉ ุฃู ุงููู ุจูุณู
ู common |
|
|
|
385 |
|
00:30:32,220 --> 00:30:36,720 |
|
logarithm ุงููู ูู ุงููู ุจูุณุชุฎุฏู
ู ุนุงุฏุฉ ูู ุงูุญุณุงุจุงุช ู |
|
|
|
386 |
|
00:30:36,720 --> 00:30:41,620 |
|
ููู ุจููู ุนูุฏูุง ุงุญูุง ุงููููุง ุงููู ูู ุงู section ุงููู |
|
|
|
387 |
|
00:30:41,620 --> 00:30:46,180 |
|
ูู ุชู
ุงููุฉ ุชูุงุชุฉ ู ุจููู ุฎูุตูุง ุงููู ููุงูุฌุฒุก ุงูุซุงูู |
|
|
|
388 |
|
00:30:46,180 --> 00:30:52,240 |
|
ู
ู ุงูู
ุญุงุถุฑุฉ ุงููู ูู ู
ุง ูุชุนูู ุจุงู .. ุงููู ูู ุงู |
|
|
|
389 |
|
00:30:52,240 --> 00:30:54,660 |
|
logarithmic function ูุงู power function ูุงู |
|
|
|
390 |
|
00:30:54,660 --> 00:31:00,040 |
|
logarithmic ููุฃุณุงุณ ุงููู ูู ุฒู ู
ุง ูููุง ุงูู ู ุฅูู |
|
|
|
391 |
|
00:31:00,040 --> 00:31:00,640 |
|
ููุงุก |
|
|
|
|