|
1 |
|
00:00:04,910 --> 00:00:09,510 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ุงูู
ุญุงุถุฑุฉ ุงูุฎุงู
ุณุฉ ูู |
|
|
|
2 |
|
00:00:09,510 --> 00:00:15,630 |
|
ู
ุณุงู ุชุญููู ุญูููู 2 ูุทูุจุฉ ูููุฉ ุงูุนููู
ุชุฎุตุต |
|
|
|
3 |
|
00:00:15,630 --> 00:00:22,110 |
|
ุฑูุงุถูุงุช ูู ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ุจุบุฒุฉ ุงูู
ุญุงุถุฑุฉ |
|
|
|
4 |
|
00:00:22,110 --> 00:00:26,550 |
|
ุงูููู
ูู ุฌุฒุฆููุ ุงูุฌุฒุก ุงูุฃูู ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
5 |
|
00:00:26,550 --> 00:00:31,350 |
|
Discussion ูู 6.1 ุงููู ูู ู
ูุงูุดุฉ ูู
ูุถูุน ุงููู ูู |
|
|
|
6 |
|
00:00:31,350 --> 00:00:37,410 |
|
Derivative ุฃู ุงูุงุดุชูุงู. ุงูุฌุฒุก ุงูุซุงูู ูููู
ู ุงููู ูู |
|
|
|
7 |
|
00:00:37,410 --> 00:00:43,210 |
|
ุงูุญุฏูุซ ุนู 6.2 ุงููู ูู ุงูู Mean Value Theorem ุฃู |
|
|
|
8 |
|
00:00:43,210 --> 00:00:47,730 |
|
ูุธุฑูุฉ ุงูููู
ุฉ ุงูู
ุชูุณุทุฉ. ููุงุฎุฐ ุจุนุถ ุงูุชุทุจููุงุช ููุจุฏุฃ |
|
|
|
9 |
|
00:00:47,730 --> 00:00:51,750 |
|
ุงูุขู ุงููู ูู ุจุงูุฃุณุฆูุฉ ุงููู ุงุญูุง ุทูุจูุงูุง ู
ููู
|
|
|
|
10 |
|
00:00:51,750 --> 00:00:57,230 |
|
ุชุญูููุง ููุงุฌุจ ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุฃู ุงูุชู ูุจููุง ููุงูุช |
|
|
|
11 |
|
00:00:57,230 --> 00:01:01,210 |
|
ุงูุฃุณุฆูุฉ ูู ุนุจุงุฑุฉ ุนู ุงูุณุคุงู ุงูุฑุงุจุน ูุงูุณุคุงู ุงูุณุงุจุน |
|
|
|
12 |
|
00:01:02,000 --> 00:01:07,420 |
|
ูุงูุณุคุงู ุงูุชุงุณุน ูุงูุณุคุงู ุงูุซุงูุซ ุนุดุฑ. ุจุงููุณุจุฉ ููุณุคุงู |
|
|
|
13 |
|
00:01:07,420 --> 00:01:13,600 |
|
ุงูุซุงูุซ ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ุจุฑูุงู ูุธุฑูุฉ 6.1.3 A |
|
|
|
14 |
|
00:01:13,600 --> 00:01:19,200 |
|
ู B. ููุฐู ุงูุจุฑุงููู ุจุฑุงููู ุณููุฉ ุงููู ูุงูุช ุงูู F |
|
|
|
15 |
|
00:01:19,200 --> 00:01:22,960 |
|
Differentiableุ ุงูู F Differentiable ูุงูู Alpha |
|
|
|
16 |
|
00:01:22,960 --> 00:01:26,560 |
|
ุนุจุงุฑุฉ ุนู Constant ุจูุนุทููุง ุงูู Alpha F ุจุฑุถู is |
|
|
|
17 |
|
00:01:26,560 --> 00:01:30,200 |
|
Differentiable. ููู ูุงูุช ุงูู F ูุงูู G |
|
|
|
18 |
|
00:01:30,200 --> 00:01:32,700 |
|
Differentiable ุจูุนุทููุง ุงูู F ุฒุงุฆุฏ G is |
|
|
|
19 |
|
00:01:32,700 --> 00:01:35,660 |
|
Differentiable. ูุงุญูุง ุจุฑูููุง ุญุงูุฉ ุงูุถุฑุจ ูุญุงูุฉ |
|
|
|
20 |
|
00:01:35,660 --> 00:01:41,500 |
|
ุงููุณู
ุฉุ ููุฏูู ุญุงูุงุช ุชุนุชุจุฑ ุณููุฉ ู
ุจุงุดุฑุฉ ุนูู ุงูุชุนุฑูู |
|
|
|
21 |
|
00:01:41,500 --> 00:01:45,900 |
|
ูุฐูู ููุจุฏุฃ ุฅู ุดุงุก ุงููู ูู ุงูุญุฏูุซ ุฃู ูู ุญู ุงูุฃุณุฆูุฉ |
|
|
|
22 |
|
00:01:45,900 --> 00:01:52,540 |
|
ุนูู ุงูุณุคุงู ุงูุฑุงุจุน ุงููู ูู ุจููู ูู ุนูุฏู ู
ุนุทููู F |
|
|
|
23 |
|
00:01:52,540 --> 00:02:01,760 |
|
ู
ู R ูู R ุจู defined by F of X ุจุณุงูู ุงููู ูู X |
|
|
|
24 |
|
00:02:01,760 --> 00:02:06,420 |
|
ุชุฑุจูุน ุฅุฐุง ูุงูุช X Rational ูุจุณุงูู ุตูุฑ ุฅุฐุง ูุงูุช X |
|
|
|
25 |
|
00:02:06,420 --> 00:02:09,700 |
|
Irrational. ุงุซุจุช ุฅู ุงูู F ุงูู Differential ุจุงููุฏุฑ X |
|
|
|
26 |
|
00:02:09,700 --> 00:02:15,550 |
|
ุจุชุณุงูู ุตูุฑ ุฃู ุฌุฏ ุงููู ูู F prime of 0. ูุงุญุธ ุฃู ุงูู |
|
|
|
27 |
|
00:02:15,550 --> 00:02:16,610 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
28 |
|
00:02:16,610 --> 00:02:17,090 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
29 |
|
00:02:17,090 --> 00:02:17,910 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
30 |
|
00:02:17,910 --> 00:02:20,450 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
31 |
|
00:02:20,450 --> 00:02:27,990 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
32 |
|
00:02:27,990 --> 00:02:28,350 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
33 |
|
00:02:28,350 --> 00:02:29,630 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
34 |
|
00:02:29,630 --> 00:02:29,690 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
35 |
|
00:02:29,690 --> 00:02:41,470 |
|
ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู ุงูู |
|
|
|
36 |
|
00:02:41,470 --> 00:02:52,150 |
|
Find this value. a proof ุงูุขู ุนุดุงู ููุฌุฏ |
|
|
|
37 |
|
00:02:52,150 --> 00:02:56,730 |
|
ุงููู ูู ูุซุจุช ุฃู F prime of 0 ู
ูุฌูุฏุฉ. ุฎููููู ุฃูุงุญุธ |
|
|
|
38 |
|
00:02:56,730 --> 00:03:00,950 |
|
ู
ุงูู ุนูุฏ ุงูู function ุงููู ูู X ุชุฑุจูุน ูู
ุง X |
|
|
|
39 |
|
00:03:00,950 --> 00:03:07,150 |
|
Rational ู Zero ูู
ุง X is Irrational. ุงูุขู ุจุฏูุง |
|
|
|
40 |
|
00:03:07,150 --> 00:03:11,770 |
|
ูุชููุน ุฃูู ุดูุก ุงููู ูู ูุฃูู ูุชูุฒู
ูู ุฌุงู ุงููู ุจุนุฏูู |
|
|
|
41 |
|
00:03:11,770 --> 00:03:15,890 |
|
Find this value. ุจุฏูุง ูุชููุน ุงูุด ููู
ุฉ ุงููู ูู ุงูู |
|
|
|
42 |
|
00:03:15,890 --> 00:03:20,950 |
|
Derivative ุนูุฏ ุงูุตูุฑ. ูุงุญุธ ุฃูู ุงููู ูู .. ุงููู .. |
|
|
|
43 |
|
00:03:20,950 --> 00:03:25,630 |
|
ุงููู ูู ุจุฏูุง ูููู ุฅูู ุงูู Derivative ู
ู
ูู ุชููู Zero |
|
|
|
44 |
|
00:03:25,630 --> 00:03:30,510 |
|
ููู ุฅู F of X ุตูุฑ. ุฃู ูู ุจุฏูุง ุชููู ูุงูู |
|
|
|
45 |
|
00:03:30,510 --> 00:03:36,560 |
|
Derivative ููุง ูู ูููุง ุฑููุง 2X ุจุฏู ูููู ุงููู ูู ูู |
|
|
|
46 |
|
00:03:36,560 --> 00:03:40,820 |
|
ุจุฏู ูููู ุงููู ุนูุฏ ุงูู Zero ุงููู ูู F prime ุจุฏู ูู |
|
|
|
47 |
|
00:03:40,820 --> 00:03:47,220 |
|
ุงูููุงูุฉ ุชุฑูุญ ูู ุงููู ููููู ุจุฑุถู ูุฑูุจุฉ ู
ู ุฅูู ูููู |
|
|
|
48 |
|
00:03:47,220 --> 00:03:52,580 |
|
ุฃู ูุฃูุฏ ุฅููุง ุตูุฑ ุนุดุงู ูู ูุงูุธู ุงูุบุงูุจ ุฅู F prime |
|
|
|
49 |
|
00:03:52,580 --> 00:03:58,660 |
|
ูุชููู ุงูุดุ ุตูุฑ. ูุฐู ู
ุฌุฑุฏ ุชูููุฑุงุช. ุงูุขู ุจุฏู ุฃุซุจุช ูู ุฅูู |
|
|
|
50 |
|
00:03:58,660 --> 00:04:03,080 |
|
ูุนููุง ูู ุงูู Derivative ุจุชุณุงูู 0. ููู ุจุฏู ุฃุซุจุชูุงุ |
|
|
|
51 |
|
00:04:03,080 --> 00:04:11,280 |
|
ุจุฏู ุฃุซุจุช ูู ุฅูู ุงูู Limit ูู F of X ููุต F of 0 ุนูู |
|
|
|
52 |
|
00:04:11,280 --> 00:04:17,600 |
|
X minus 0 ูู
ุง X ุชุฑูุญ ูู 0 ุจุชุณุงูู 0. ุจุฏู ุฃุซุจุช ูู |
|
|
|
53 |
|
00:04:17,600 --> 00:04:24,240 |
|
ูููุง. ุงูุขู ูุงุถุญ ุฅู X ุชููู ุฅูู ุงูุตูุฑ. X ุชููู ุฅูู ุงูุตูุฑ |
|
|
|
54 |
|
00:04:24,240 --> 00:04:29,200 |
|
ูุชู
ุฑ ุจุงูู Rational ูุงูู Irrational ุนุดุงู ููู ุตุนุจ ุฅู ุฃูุง |
|
|
|
55 |
|
00:04:29,200 --> 00:04:32,600 |
|
ุฃุชุญุฏุซ ุนู ุงููู ูู ุฅูุฌุงุฏ ุงูู Derivative ู
ุจุงุดุฑุฉ ู
ู |
|
|
|
56 |
|
00:04:32,600 --> 00:04:36,130 |
|
ุงูุขู ุฃู ู
ู ุงูู Two Branches ุงููู ุนูุฏู. ูุง ุจูุฏุฑ ุฃุฎุฏ ู
ู |
|
|
|
57 |
|
00:04:36,130 --> 00:04:40,030 |
|
ุงููู
ูู ููุง ุฃุฎุฏ ู
ู ุงููุณุงุฑ ูุฅูู ุนูุฏู ู
ู ุงููู
ูู ุฃู ู
ู |
|
|
|
58 |
|
00:04:40,030 --> 00:04:44,130 |
|
ุงููุณุงุฑ ููููู ุนูุฏู ุงููู ูู ูุงุจููุง ุงููู ูู ุงูุฃุนุฏุงุฏ ุงูู |
|
|
|
59 |
|
00:04:44,130 --> 00:04:48,110 |
|
Rational ููู Rational. ูุนุดุงูู ุฃุณูู
ุดูุก ุฅูู ูุณุชุฎุฏู
|
|
|
|
60 |
|
00:04:48,110 --> 00:04:52,650 |
|
ุงูุชุนุฑูู ูู ุฅุซุจุงุช ูุฐุง. ูุนูู ุงูุขู ุจุฏู ุฃุซุจุช ูุฐุง ุงูููุงู
|
|
|
|
61 |
|
00:04:53,270 --> 00:04:58,090 |
|
ููู ุจุฏู ุฃุซุจุชูุ ุจุฏู ุฃุซุจุช ู
ุง ูุนูู ุจุฏู ุฃุตู ููู ุฅุจุณููู |
|
|
|
62 |
|
00:04:58,090 --> 00:05:03,190 |
|
ุฃูุจุฑ ู
ู 0 ุจุฏูุงุฌ ุฏูุชุง ุฃูุจุฑ ู
ู 0. ุจุฏูุงุฌูุฉ ุญุงุฌููู ุฏูุชุง |
|
|
|
63 |
|
00:05:03,190 --> 00:05:08,350 |
|
ุจุญูุซ ุฃูู ูู
ุง ูููู ุงูู Absolute Value ูู F of X ูุงูุต |
|
|
|
64 |
|
00:05:08,350 --> 00:05:14,630 |
|
F of Zero ุนูู X minus Zero ูููู ูุงูุต Zero ุทุจุนุง |
|
|
|
65 |
|
00:05:14,630 --> 00:05:19,790 |
|
Zero ูุฐู ุฃุตุบุฑ ู
ู ุฅุจุณููู. ูุฐุง ู
ุชูุ Whenever |
|
|
|
66 |
|
00:05:22,670 --> 00:05:28,470 |
|
x-0 ุฃูุจุฑ ู
ู 0 ูุฃุตุบุฑ ู
ู ู
ููุ ู
ู ุฏูุชุง. ูุฐุง ุงููู ุจุฏู |
|
|
|
67 |
|
00:05:28,470 --> 00:05:33,150 |
|
ุฃุซุจุชู ุฃู ูุฐุง ุงููู ุจุฏู ุฃุซุจุชู. ุฎููููุง ูุดูู ุฅุฐุง ุฎููููุง |
|
|
|
68 |
|
00:05:33,150 --> 00:05:36,530 |
|
ูุดูู ููู ุจุฏูุง ููุฌุฏู ุนุดุงู ุฃุซุจุช ุฅู ุงูู Limit ูุฐุง |
|
|
|
69 |
|
00:05:36,530 --> 00:05:43,110 |
|
ุจุณุงูู 0. ูุงุญุธ ุงูููู
ุฉ ุงููู ุนูุฏู ุฃูู ุดูุก ุงูู Absolute |
|
|
|
70 |
|
00:05:43,110 --> 00:05:50,530 |
|
Value of F of X ูุงูุต F of 0 ุนูู X-0 ุงูุด ูุชุณุงููุ |
|
|
|
71 |
|
00:05:51,590 --> 00:05:57,390 |
|
ูุชุณุงูู ุงููู ูู ุงูู Absolute Value of F of X ุนูุฏู ูุง X |
|
|
|
72 |
|
00:05:57,390 --> 00:06:01,070 |
|
ุชุฑุจูุน ูู
ูู ูุง ุตูุฑ. ุฎูููููุง ุฒู ู
ุง ูู ุฃูู ุดูุก. F of X |
|
|
|
73 |
|
00:06:01,070 --> 00:06:06,010 |
|
ูุงูุต F of Zero ุงููู ูู ุฌุฏุงุด ุจูุณุงูู Zero ูุฅูู F |
|
|
|
74 |
|
00:06:06,010 --> 00:06:10,130 |
|
of Zero ุจูุณุงูู Zero ูุฅูู Zero Rational. ุนูู ุฅุฐู ูุฐุง |
|
|
|
75 |
|
00:06:10,130 --> 00:06:16,230 |
|
ุตูุฑ ุนูู X ูุงูุต ุตูุฑ ุงููู ูู X. Absolute Value ูุฐุง |
|
|
|
76 |
|
00:06:16,230 --> 00:06:22,790 |
|
ุงูููู
ุฉ ุงูุขู ูุงุญุธ ุจุชุณุงูู ูุง ุฅู
ุง ุงููู ูู X ุชุฑุจูุน ุนูู |
|
|
|
77 |
|
00:06:22,790 --> 00:06:30,750 |
|
X Absolute Value ูู ุญุงูุฉ X is Rational ุฃู ุจุชุณุงูู |
|
|
|
78 |
|
00:06:30,750 --> 00:06:37,450 |
|
ุงููู ูู ุตูุฑ ูู ุญุงูุฉ X ุดู
ุงููุง is Irrational. ูุฃู |
|
|
|
79 |
|
00:06:37,450 --> 00:06:42,030 |
|
ููู
F of X ูุง X ุชุฑุจูุน ูุง ุตูุฑ ุญุณุจ ุงููู ูู ูุชุจูุงู |
|
|
|
80 |
|
00:06:42,030 --> 00:06:46,790 |
|
ุญุงูููุง. ุงูุขู ูุฐุง ุจุงูุธุจุท ูู ุนุจุงุฑุฉ ุนู ุงูู Absolute |
|
|
|
81 |
|
00:06:46,790 --> 00:06:57,590 |
|
Value ูู X if X is Rational Zero if X is |
|
|
|
82 |
|
00:06:57,590 --> 00:07:03,950 |
|
Irrational. ุงูุขู ุงูุตูุฑุฉ ูุถุญุช. ุฎููููุง ูุณู
ู ูุฐุง ุงููู |
|
|
|
83 |
|
00:07:03,950 --> 00:07:09,900 |
|
ูู ูุงุญุฏ. ุงูุขู ุญุถุฑุช ุนุดุงู ุฃุตู ููููุงูุฉ ุงููู ุฃูุง ูุงุชุจูุง |
|
|
|
84 |
|
00:07:09,900 --> 00:07:13,800 |
|
ููุง ูุงุดูู ุงูุด ุงูู Delta ุงููู ุจุชุทูุน ุนูุฏู. ุงูุขู ุจุชุฏุนู |
|
|
|
85 |
|
00:07:13,800 --> 00:07:17,380 |
|
ู
ุงูู For every Epsilon ุฃูุจุฑ ู
ู ุตูุฑ ุฃูุง ุจููู There |
|
|
|
86 |
|
00:07:17,380 --> 00:07:21,800 |
|
exists Delta ูุชุณุงูู ู
ู ุงูู Epsilon. ูุชุฌุฏ ุชุดูููุง ููุด |
|
|
|
87 |
|
00:07:21,800 --> 00:07:26,980 |
|
There exists Delta ุจุณุงูู Epsilon Such that if X |
|
|
|
88 |
|
00:07:26,980 --> 00:07:35,210 |
|
minus 0 ุฃูุจุฑ ู
ู ุตูุฑ ูุฃุตุบุฑ ู
ู Delta Then ูุฐุง ู
ุนูุงุชู |
|
|
|
89 |
|
00:07:35,210 --> 00:07:37,870 |
|
ุงูุดุ ุฅู ุฅุจุณู ููุช ูููุง ุงูู X ุฃูุจุฑ ู
ู ุตูุฑ ูุฃุตุบุฑ ู
ู |
|
|
|
90 |
|
00:07:37,870 --> 00:07:41,870 |
|
ู
ููุ ู
ู ุฏูุชุง. ุฅุฐุง ุงุฎุชุฑุช ุฏูุชุง ุงูุด ุจุชุณุงูู ููู ุงููู |
|
|
|
91 |
|
00:07:41,870 --> 00:07:47,850 |
|
ูุชุฎูุต ู
ู ุงูู
ูุถูุน Then ุงููู ูู F of X ููุต F of Zero |
|
|
|
92 |
|
00:07:47,850 --> 00:07:50,970 |
|
ุนูู |
|
|
|
93 |
|
00:07:50,970 --> 00:07:57,790 |
|
X minus Zero ูู ุทุจุนูุง ููุต ุงูุตูุฑ ุงููู ูููุง ุนููุง ุงูู |
|
|
|
94 |
|
00:07:57,790 --> 00:08:01,520 |
|
Derivative ุงูู
ุชููุน ุนููุง ูุฐู ุจุงูุธุจุท ุงููู ููู ูุฐุง ูู |
|
|
|
95 |
|
00:08:01,520 --> 00:08:05,920 |
|
ุงููู ููู ุทูุน ุงูุด ุนูุฏูุ ูุฐุง ุจุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ุฅุฐุง |
|
|
|
96 |
|
00:08:05,920 --> 00:08:09,760 |
|
ูุงูุช X Rational ู 0 ุฅุฐุง ูุงูุช X Irrational ูุนูู |
|
|
|
97 |
|
00:08:09,760 --> 00:08:15,400 |
|
ุจู
ุนูู ุขุฎุฑ ุจุณุงูู Absolute Value ูู X if X is |
|
|
|
98 |
|
00:08:15,400 --> 00:08:23,530 |
|
Rational ู 0 if X is Irrational. In both cases ุงููู |
|
|
|
99 |
|
00:08:23,530 --> 00:08:27,590 |
|
ูู ุฅุฐุง ูุงู ุจุณุงูู Absolute Value ููู X ููููู ุฃุตุบุฑ |
|
|
|
100 |
|
00:08:27,590 --> 00:08:31,250 |
|
ู
ู Delta ุงููู ุฃูุง ุงุฎุชุฑุชูุง ุดู
ุงููุง Epsilon ููููู |
|
|
|
101 |
|
00:08:31,250 --> 00:08:34,570 |
|
ุฃุตุบุฑ ู
ู Epsilon. ูุฃูุถุง ูุฐู ู
ุชุญููุฉ ูุฅู ุงูู Epsilon |
|
|
|
102 |
|
00:08:34,570 --> 00:08:38,850 |
|
ุฏุงุฆู
ุง ุดู
ุงููุง ุฃูุจุฑ ู
ู 0. ุฅุฐุง ุงููู ุญุตูุชู ุฅูู ููู |
|
|
|
103 |
|
00:08:38,850 --> 00:08:42,490 |
|
Epsilon ุฃูุจุฑ ู
ู 0 ุงููู ุฌูุช Delta ูู
ุง ูููู ูุฐุง ุฃุตุบุฑ |
|
|
|
104 |
|
00:08:42,490 --> 00:08:47,130 |
|
ู
ู Delta ุจูุนุทููู ูุฐุง ุฃุตุบุฑ ู
ู Epsilon. ููุฐุง ูุนูู |
|
|
|
105 |
|
00:08:47,130 --> 00:08:54,370 |
|
Hence Limit ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู F of X ูุงูุต F of 0 |
|
|
|
106 |
|
00:08:54,370 --> 00:09:01,690 |
|
ุนูู X minus 0 ูู
ุง X ุชุฑูุญ ููุตูุฑ ุจุณุงููุฉ ุงููู ูู |
|
|
|
107 |
|
00:09:01,690 --> 00:09:12,870 |
|
ุงูุตูุฑ. ููุฐุง ูู ุชุนุฑูู ู
ู ุงูู F prime ุนูุฏ 0 That is F |
|
|
|
108 |
|
00:09:12,870 --> 00:09:18,740 |
|
prime at 0 ุจุณุงููุฉ 0. ููู ููุณ ุงููุงุฌุจ ุทุจุนูุง ุฃุซุจุชูุง ุงูู |
|
|
|
109 |
|
00:09:18,740 --> 00:09:25,960 |
|
Existence ููู F prime ุนูุฏ ุงูู Zero. ุฃู ุณุคุงูุ ุทูุจ |
|
|
|
110 |
|
00:09:25,960 --> 00:09:30,840 |
|
ููุฌู ุงูุขู ูุดูู ุงูุณุคุงู ุงูุซุงูู. ุฎูููุง ูููู ุงูุณุคุงู ุงูุฑุงุจุน |
|
|
|
111 |
|
00:09:30,840 --> 00:09:44,220 |
|
ููุฌู ูุณุคุงู 7 ุงูุขู. |
|
|
|
112 |
|
00:09:44,220 --> 00:09:48,100 |
|
ุณุคุงู 7 ุงูุด ุงููู ุจูููููุ ุณุคุงู 7 ุงููู ุจููููู ุณุคุงู |
|
|
|
113 |
|
00:09:48,100 --> 00:09:52,420 |
|
7 ู
ุงูู ุนูุฏู |
|
|
|
114 |
|
00:09:52,420 --> 00:09:55,740 |
|
Suppose |
|
|
|
115 |
|
00:09:55,740 --> 00:09:59,320 |
|
that F ู
ู R ูู R is Differentiable at C. ูุนูู ููุชุฑุถ |
|
|
|
116 |
|
00:09:59,320 --> 00:10:04,520 |
|
ุฃูู F ูุงุจู ููุงุดุชูุงู ุนูุฏ C. ูููุชุฑุถ ุฅู F of C ููู
ุฉ ุงูู |
|
|
|
117 |
|
00:10:04,520 --> 00:10:07,920 |
|
Function ุนูุฏ C ุจุณุงููุฉ 0. ูุฃู ุจููู ูุดูุฏุงุช ุงูู Absolute |
|
|
|
118 |
|
00:10:07,920 --> 00:10:10,960 |
|
Value ูู F of X ุงููู ูู ูุณู
ููุง G of X is |
|
|
|
119 |
|
00:10:10,960 --> 00:10:14,080 |
|
Differentiable at C If and only if F |
|
|
|
120 |
|
00:10:14,080 --> 00:10:21,740 |
|
prime of C ุจุชุณุงูู 0. ุฅุฐุง ูุงุฎุฏ ูู F ู
ู R ูุนูุฏ R ู |
|
|
|
121 |
|
00:10:21,740 --> 00:10:30,810 |
|
ุฌุงููู ุฅู F prime ุนูุฏ C Exist ู
ุนุทูู ุฅูุงูุง ุฃู ูู
ุนุทูู |
|
|
|
122 |
|
00:10:30,810 --> 00:10:37,390 |
|
ุงููู ูู F of C ุจุชุณุงูู ุตูุฑ ูุจููู ูู Prove that ุฃูู |
|
|
|
123 |
|
00:10:37,390 --> 00:10:42,370 |
|
G of X ุจุณุงูู ุงูู Absolute Value ููู F of X is |
|
|
|
124 |
|
00:10:42,370 --> 00:10:49,810 |
|
Differentiable at C If and only if F prime ุนูุฏ ุงูู |
|
|
|
125 |
|
00:10:49,810 --> 00:10:57,880 |
|
C ุงูุด ุจุชุณุงููุ ุจุชุณุงูู ุตูุฑุ ู
ุธุจูุทุ ุทูุจ ุดูู. ุงูุขู ุฎูููุง |
|
|
|
126 |
|
00:10:57,880 --> 00:11:03,380 |
|
ุงูุชุฑุถ ุฃูู ุดูุก ุฅู F prime ุนูุฏ C ุงูุด ุจุชุณุงููุ ุตูุฑ. ูููู |
|
|
|
127 |
|
00:11:03,380 --> 00:11:09,320 |
|
Suppose proof. Suppose |
|
|
|
128 |
|
00:11:09,320 --> 00:11:15,580 |
|
Suppose |
|
|
|
129 |
|
00:11:15,580 --> 00:11:23,120 |
|
that F prime at C ุจุชุณุงูู ุตูุฑ. ุงูุด ูุฐุง ุจูุนููุ ุฅู Then |
|
|
|
130 |
|
00:11:23,120 --> 00:11:25,940 |
|
Limit |
|
|
|
131 |
|
00:11:27,220 --> 00:11:36,680 |
|
F of X ูุงูุต F of C ุนูู X minus C ูู
ุง X ุชุฑูุญ ููู C |
|
|
|
132 |
|
00:11:36,680 --> 00:11:40,240 |
|
ุงููู ูู ุจูุณุงูู ุตูุฑ ูุฃู ูุฐุง ุชุนุฑูู ู
ููุ F ุจุฑุงูู |
|
|
|
133 |
|
00:11:40,240 --> 00:11:46,000 |
|
ุจูุณุงูู ุตูุฑ. ู F of C ุงูุด ู
ุนุทููู ุฅูุงูุ ุจูุณุงูู ุตูุฑ ูุฃู |
|
|
|
134 |
|
00:11:46,000 --> 00:11:53,260 |
|
ุจูุณุงูู Limit F of X ุนูู X minus C ูู
ุง X ุชุฑูุญ ูู
ููุ |
|
|
|
135 |
|
00:11:53,260 --> 00:11:58,730 |
|
ููู C. ู
ุฏุงู
ุฉ ุงูู Limit ูุฐู ู
ูุฌูุฏุฉ ุฅุฐุง ุงูู Limit ู
ู |
|
|
|
136 |
|
00:11:58,730 --> 00:12:02,270 |
|
ุงููู
ูู ูุงูู Limit ู
ู ุงููุณุงุฑ ุฃูุด ุจุฑุถู ู
ุงููุงุ ู
ูุฌูุฏุฉ |
|
|
|
137 |
|
00:12:02,270 --> 00:12:06,710 |
|
ู
ุงุดู ุงูุญุงู. ุฃูุง ุงูุขู ุบุฑุถู ุฅู ุฃู ุฃุซุจุช ุฅู G of X ุจุณุจุจ |
|
|
|
138 |
|
00:12:06,710 --> 00:12:09,190 |
|
Absolute Value of F of X ุฃูุด ู
ุงููุงุ Is |
|
|
|
139 |
|
00:12:09,190 --> 00:12:14,110 |
|
Differentiable at C. ู
ุงุดู. ุงูุขู ุงูุด ุงููู ุจุฏู ุฃุซุจุชู |
|
|
|
140 |
|
00:12:14,110 --> 00:12:22,370 |
|
ุจู
ุนูู ุขุฎุฑ ุจุฏู ุฃุซุจุช ูู ุฅูู Limit ุงูู G of X ูุงูุต G of C |
|
|
|
141 |
|
00:12:22,370 --> 00:12:29,430 |
|
C ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C exist ุจุดูุก ุฅุฐุง |
|
|
|
142 |
|
00:12:29,430 --> 00:12:31,930 |
|
ุฃุซุจุชูุง ู
ุนูุงุชู ุฃุซุจุชุชูุง ุฅู ุงูู G is differentiable |
|
|
|
143 |
|
00:12:31,930 --> 00:12:36,970 |
|
at C ุฃู ุจู
ุนูู ุขุฎุฑ ุจุงูุฏุซุจุช limit ููู absolute value |
|
|
|
144 |
|
00:12:36,970 --> 00:12:42,660 |
|
ููู F of X ูุงูุต ุงูู g of x ูุงูุต ุงูู absolute value of f |
|
|
|
145 |
|
00:12:42,660 --> 00:12:48,960 |
|
of c ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุจุชุฑูุญ ููู C exist ุจุฏู ุฃุดูู |
|
|
|
146 |
|
00:12:48,960 --> 00:12:53,240 |
|
ูุฏุง ูุณู exist ููุง ูุฃ ูุนูู ุจุฏู ุฃุซุจุช ุงููู ูู limit |
|
|
|
147 |
|
00:12:53,240 --> 00:12:58,900 |
|
absolute value of f of x ุนูู ุงูู X ูุงูุต C as X ุจุชุฑูุญ |
|
|
|
148 |
|
00:12:58,900 --> 00:13:07,520 |
|
ููู C ุฃุดู
ุงูู exist ู
ุงุดู ุงูุญุงู ุทูุจ ุงูุขู ูุงุถุญ |
|
|
|
149 |
|
00:13:08,360 --> 00:13:13,000 |
|
ุนูุฏู ู
ู ุงููู ููู ุงูู limit ููู F of X ุนูู ุงูู X ูุงูุต C |
|
|
|
150 |
|
00:13:13,000 --> 00:13:19,160 |
|
as X ุจุชุฑูุญ ููู C ุฅูู ุฅูุด ุจูุณุงูู ุจูุณุงูู ุตูุฑุ ู
ุธุจูุทุ |
|
|
|
151 |
|
00:13:19,160 --> 00:13:27,160 |
|
ุฅุฐุง ููููู ุนูุฏู limit ุงููู ูู limit absolute value |
|
|
|
152 |
|
00:13:27,160 --> 00:13:33,400 |
|
ููู limit ุฎูููู ุฃูุชุจูุง ุจุณ ูู ุทุฑููุฉ ุฃุฎุฑู ุงูุตูุฑ ูุฐุง |
|
|
|
153 |
|
00:13:33,400 --> 00:13:43,200 |
|
ุงููู ุจุฏุฃุชุจุชู ุงู ุฅูู exist ุนูุฏู ุงูู absolute value ู |
|
|
|
154 |
|
00:13:43,200 --> 00:13:52,020 |
|
limit f of x ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ุงููู ูู |
|
|
|
155 |
|
00:13:52,020 --> 00:13:58,020 |
|
ู
ู ุงููู
ูู ูู
ู ุงููุณุงุฑ existุ ู
ุธุจูุทุ ูุงุถุญุฉ ููุณุงูู |
|
|
|
156 |
|
00:13:58,020 --> 00:14:05,160 |
|
ุงููู ูู limit absolute value ููู F of X ุนูู ุงูู X ูุงูุต |
|
|
|
157 |
|
00:14:05,160 --> 00:14:12,420 |
|
C as X ุจุชุฑูุญ ูู
ููุ ููู C ุจุดูุก |
|
|
|
158 |
|
00:14:12,420 --> 00:14:16,820 |
|
ุงูุญุงู ุงูุขู ู
ู ุงููู
ูู ูู
ู ุงููุณุงุฑ ููู ููููู ู
ูุฌูุฏ |
|
|
|
159 |
|
00:14:16,820 --> 00:14:20,480 |
|
ุจูุงุก ุนูู ูุฐุง ุฅูู ู
ูุฌูุฏ ุฎููููู ุฃุฎุฏ ู
ู ุงููู
ูู ูููุง |
|
|
|
160 |
|
00:14:20,480 --> 00:14:25,860 |
|
ู
ู ุงููู
ูู ูุจุตูุฑ ูุฐุง ุนุจุงุฑุฉ ุนู limit absolute value |
|
|
|
161 |
|
00:14:25,860 --> 00:14:32,140 |
|
ูู F of X ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุจุชุฑูุญ ูู C ู
ู ูููุ ู
ู |
|
|
|
162 |
|
00:14:32,140 --> 00:14:38,330 |
|
ุงููู
ูู ูุนูู ูุฐุง ุงูู
ูุฏุงุฑุตุงุฑ ู
ูุฌูุฏ ูุฅูุด ุจูุณุงูู ุจูุณุงูู |
|
|
|
163 |
|
00:14:38,330 --> 00:14:42,350 |
|
ุตูุฑ ูุฐุง ุฎูููู ูุฅูู ูุฐุง ุงููู ุจุฏูุง ูุตููู ูุฃู limit |
|
|
|
164 |
|
00:14:42,350 --> 00:14:47,310 |
|
ุตุงุฑ ุนูุฏู ู
ุนูู ุขุฎุฑ limit absolute value of f of x |
|
|
|
165 |
|
00:14:47,310 --> 00:14:53,850 |
|
ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ู
ู ุงููู
ูู ุจูุณุงูู ุตูุฑ |
|
|
|
166 |
|
00:14:53,850 --> 00:14:58,360 |
|
existูุงุญุธูุง ูุงุนุฏ ุฑุงูุญ ูุฃุซุจุช ุฃู ูุฐุง exist ุฏู ุฎุฏ ุงูุขู |
|
|
|
167 |
|
00:14:58,360 --> 00:15:03,520 |
|
ู
ู ูููุ ู
ู ุงููุณุงุฑ ุฎุฏ ูุฃู ุฃุญุณุจ similarly ุนูุฏู ุตูุฑ |
|
|
|
168 |
|
00:15:03,520 --> 00:15:08,840 |
|
ุจูุณุงูู absolute value of limit f of x ุนูู ุงูู X ูุงูุต C |
|
|
|
169 |
|
00:15:08,840 --> 00:15:15,100 |
|
ูู
ุง ุงูู X ุชุฑูุญ ูู C ู
ู ูููุ ู
ู ุงููุณุงุฑ ููุณุงูู ุนุจุงุฑุฉ ุนู |
|
|
|
170 |
|
00:15:15,100 --> 00:15:19,960 |
|
limit absolute value of f of x ุนูู absolute value |
|
|
|
171 |
|
00:15:19,960 --> 00:15:25,900 |
|
of X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ูู C ู
ู ูููุ ู
ู ุงููุณุงุฑ ูุฐู |
|
|
|
172 |
|
00:15:25,900 --> 00:15:34,580 |
|
ููุณูุง ุจูุณุงูู limit ุฃู ุจูุณุงูู ุณุงูุจ limit f of x |
|
|
|
173 |
|
00:15:34,580 --> 00:15:42,270 |
|
absolute value ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ู
ู |
|
|
|
174 |
|
00:15:42,270 --> 00:15:47,030 |
|
ุงููุณุงุฑุ ููุดุ ูุฃู X ุฃุตุบุฑ ู
ู Cุ ุฅุฐุง X ูุงูุต C ุณุงูุจุฉ |
|
|
|
175 |
|
00:15:47,030 --> 00:15:50,230 |
|
ุฅุฐุง ุงูู absolute value ุณุงูุจ ุฅูููุง ูุงุฎุฏุช ุงูุณุงูุจ ุจุฑุง |
|
|
|
176 |
|
00:15:50,230 --> 00:15:54,990 |
|
ูุฐุง ุงูุขู ุงูู
ุฎุถุฑ ุจูุณุงูู ุตูุฑุ ุฅุฐุง ูุฐุง ูุญุงูู ุจุฑุถู ุฅูุด |
|
|
|
177 |
|
00:15:54,990 --> 00:16:01,270 |
|
ู
ุงููุ ุตูุฑุ ุฅุฐุง limit absolute value ููู F of X ุนูู |
|
|
|
178 |
|
00:16:01,270 --> 00:16:04,870 |
|
X ูุงูุต Cุ ูู
ุง X ุชุฑูุญ ููู C ู
ู ุงููุณุงุฑุ ุจุฑุถู ุฅูุด |
|
|
|
179 |
|
00:16:04,870 --> 00:16:10,450 |
|
ุจูุณุงููุ ุจูุณุงูู ุตูุฑุ ูุงุญุธ ุฅู ุงูู limit ู
ู ุงููู
ูู ูุงูู |
|
|
|
180 |
|
00:16:10,450 --> 00:16:15,890 |
|
limit ู
ู ุงููุณุงุฑ ู
ูุฌูุฏ ูุจุณุงูู 0 ู
ุชุณุงูููู ูุนูู ุงูุขู |
|
|
|
181 |
|
00:16:15,890 --> 00:16:23,130 |
|
ุงูู limit ูุฐุง ุตุงุฑ ุฅูุด ุจูุณุงูู ุจูุณุงูู 0 ุฅุฐุง ุงูุขู ูุฐุง |
|
|
|
182 |
|
00:16:23,130 --> 00:16:29,870 |
|
ุงูุขู ุจููููู ููู ุชุญุช ูุฐุง ูุจููู hence ุงููู ูู ุงูู G |
|
|
|
183 |
|
00:16:29,870 --> 00:16:38,310 |
|
prime of C ุจูุณุงูู limit of g of x ููุต g of c ุนูู ุงูู X |
|
|
|
184 |
|
00:16:38,310 --> 00:16:46,870 |
|
ูุงูุต C as X โ C ุจูุณุงูู ุญุณุจ ุงููู ุนูุฏู ู
ู ููุง ูู
ู |
|
|
|
185 |
|
00:16:46,870 --> 00:16:55,310 |
|
ููุง ูู
ู ููุง ููุณุงูู ุตูุฑ ุงูุขู conversely ุจุชูุชุฑุถ |
|
|
|
186 |
|
00:16:55,310 --> 00:16:58,090 |
|
ุทุจุนุงู ุฅู ุงูู conversely ููููู ุงูุฎุทูุงุช ูุซูุฑ ู
ุดุงุจูุฉ |
|
|
|
187 |
|
00:16:58,090 --> 00:17:03,350 |
|
ููู ููุง ูุนูู ูุซูุฑ ุงููู ุงุณุชุฎุฏู
ุชู ููุง ูุณุชุฎุฏู
ู ูู |
|
|
|
188 |
|
00:17:03,350 --> 00:17:03,930 |
|
ุงููู ุจุนุฏูุง |
|
|
|
189 |
|
00:17:12,670 --> 00:17:17,790 |
|
Conversely suppose that |
|
|
|
190 |
|
00:17:17,790 --> 00:17:25,890 |
|
g of x ุณูุงุก absolute value ุฃู f of x ุงููู |
|
|
|
191 |
|
00:17:25,890 --> 00:17:33,550 |
|
ูู is differentiable at C ุจุฏุง ูุฌุฏูู ุงูุขู ุฃุซุจุชูู ุฅู |
|
|
|
192 |
|
00:17:33,550 --> 00:17:39,650 |
|
f prime of C ุฅูุด ู
ุง ููุง ุจุชุณุงูู ุตูุฑ ูุนูู ุจุฏุง ุฃุซุจุช |
|
|
|
193 |
|
00:17:39,650 --> 00:17:46,880 |
|
limit f of x ูุงูุต f of C ุงููู ูู ุตูุฑ ุนูู ุงูู X ูุงูุต C |
|
|
|
194 |
|
00:17:46,880 --> 00:17:51,160 |
|
ูู
ุง ุงูู X ุชุฑูุญ ููู C ุฅูุด ุจูุณุงูู ุจูุณุงูู ุตูุฑ ุจููู ุฎูุตุช |
|
|
|
195 |
|
00:17:51,160 --> 00:17:58,500 |
|
ุงูุขู issue ู
ุดุงุจู ุนูุฏ ุงูุขู limit |
|
|
|
196 |
|
00:17:58,500 --> 00:18:05,180 |
|
ูุฐุง exist ุนูุฏ ุงูู C ุฅุฐุง ุนูุฏู ุตุงุฑ ุงูู g prime of C exist |
|
|
|
197 |
|
00:18:05,180 --> 00:18:10,430 |
|
ููุณุงูู ุญุณุจ ุงูุญุฏูุซ ุงููู ููุง limit absolute value of |
|
|
|
198 |
|
00:18:10,430 --> 00:18:18,570 |
|
f of x ูุงูุต ุงูู absolute value of f of C ุตูุฑ ุนูู ุงูู X |
|
|
|
199 |
|
00:18:18,570 --> 00:18:26,310 |
|
ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ูู C ุฃุดู
ุงูู exist ู
ุนููุ ุทูุจ ุดูู |
|
|
|
200 |
|
00:18:26,310 --> 00:18:34,960 |
|
ุงูุขู ุนูุฏู ุฅุฐุง ุงุญุณุจ ูู limit f of x ุงููู ุญุณุจูุงูุง ูุจู |
|
|
|
201 |
|
00:18:34,960 --> 00:18:39,660 |
|
ุจุดููุฉ ุจููุณ ุงูุฃุณููุจ ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ูู C ู
ู |
|
|
|
202 |
|
00:18:39,660 --> 00:18:47,020 |
|
ูููุ ู
ู ุงููู
ูู ุจูุณุงูู limit ููู absolute value ูู f |
|
|
|
203 |
|
00:18:47,020 --> 00:18:53,780 |
|
of x ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ูู C ู
ู ุงููู
ูู ูุฃู ุงูู |
|
|
|
204 |
|
00:18:53,780 --> 00:19:01,840 |
|
X ุฃูุจุฑ ู
ู ุงูู C ูุงุถุญุฉ ุงูุขู ู
ู ุฌูุฉ ุฃุฎุฑู ุงุญุณุจ ูู ุงูู |
|
|
|
205 |
|
00:19:01,840 --> 00:19:08,060 |
|
absolute value ููู limit ููู F of X ุทุจุนุงู ูุฐุง ุฅูุด |
|
|
|
206 |
|
00:19:08,060 --> 00:19:15,620 |
|
ููุณุงูู ุจูุณุงูู g prime of Cุ ู
ุธุจูุทุ ุจูุณุงูู g prime of |
|
|
|
207 |
|
00:19:15,620 --> 00:19:23,290 |
|
Cุ ู
ูุฌูุฏุ limit f of x ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ูู C |
|
|
|
208 |
|
00:19:23,290 --> 00:19:28,570 |
|
ู
ู ูููุ ู
ู ุงููุณุงุฑ ุจูุณุงูู ุฒู ู
ุง ุนู
ููุง ูุจู ุดููุฉ ุณุงูุจ |
|
|
|
209 |
|
00:19:28,570 --> 00:19:33,530 |
|
limit absolute value of f of x ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X |
|
|
|
210 |
|
00:19:33,530 --> 00:19:41,050 |
|
ุชุฑูุญ ูู C ู
ู ูููุ ู
ู ุงููุณุงุฑ ุงูุขู ูุงุถุญ ุจู
ุง ุฃู ูุฐู |
|
|
|
211 |
|
00:19:41,050 --> 00:19:51,470 |
|
exist ุฅุฐุง ูุฐุง ุงูู
ูุฏุงุฑ ููุฐุง ุงูู
ูุฏุงุฑ ุฒู ุจุนุถ ุงูุขู ูุฐุง |
|
|
|
212 |
|
00:19:51,470 --> 00:19:56,590 |
|
ุจูุณุงูู ูุงูุต ูุฐุง ุฃู ุจู
ุนูู ุขุฎุฑ ูุดูู ุงููุงูุต ู
ู ููุง ูู |
|
|
|
213 |
|
00:19:56,590 --> 00:20:03,390 |
|
ุถุฑุจู ููุง ุตุงุฑ ุนูุฏู ุงูู
ูุฏุฑูู ูุฏููุฉ ุจู
ุง ุฅูู ู
ุชุณุงูููู |
|
|
|
214 |
|
00:20:03,390 --> 00:20:10,310 |
|
ูุฅู ุงูุงุชููู ุฅูุด ุจูุณุงููู ุงูู g prime of C ู
ุธุจูุท ุฅุฐุง |
|
|
|
215 |
|
00:20:10,310 --> 00:20:13,390 |
|
ุตุงุฑ ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ุจูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ุฅุฐุง ุตุงุฑ |
|
|
|
216 |
|
00:20:13,390 --> 00:20:20,940 |
|
ุนูุฏู ุงูู limit f of x ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C |
|
|
|
217 |
|
00:20:20,940 --> 00:20:29,560 |
|
ู
ู ุงููู
ูู absolute value ุจูุณุงูู ูุงูุต limit f of x |
|
|
|
218 |
|
00:20:29,560 --> 00:20:34,600 |
|
ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ู
ู ูููุ ู
ู ุงููุณุงุฑ |
|
|
|
219 |
|
00:20:34,600 --> 00:20:41,500 |
|
ูุงุถุญุฉุ ููู ุฃุตูุงู ุนูุฏู ูุฐุง |
|
|
|
220 |
|
00:20:43,370 --> 00:20:49,010 |
|
ุจูุณุงูู ุงููู ูู ุงูุงุชููู ุจูุณุงูู ููุณ ุงูููู
ุฉ ู
ุงุดู ุงูุญุงู |
|
|
|
221 |
|
00:20:49,010 --> 00:20:55,850 |
|
ุฅุฐุง ูุงุฒู
ุนูุฏู ู
ู ููุง g prime ู g prime ุงููู ูู |
|
|
|
222 |
|
00:20:55,850 --> 00:21:00,210 |
|
ุตุงุฑ ุจูุณุงูู ููุณ ุงูููู
ุฉ ุฅุฐุง ููุทูุน ุงูู g prime ุฅูุด |
|
|
|
223 |
|
00:21:00,210 --> 00:21:05,530 |
|
ู
ุงูู ุจูุณุงูู ุตูุฑ ุฅุฐุง ุตุงุฑ ุงูู
ูุฏุงุฑ ูุฐุง ููู ุฅูุด ุจุฏู ูุณุงูู |
|
|
|
224 |
|
00:21:05,530 --> 00:21:08,650 |
|
ุตูุฑ ููุฐุง ุจูุณุงูู ุตูุฑ ูุนูู ุงูู limit ู
ู ุงููู
ูู ูุงูู |
|
|
|
225 |
|
00:21:08,650 --> 00:21:12,070 |
|
limit ู
ู ุงููุณุงุฑ ู
ุชุณุงูููู ุฅุฐุง ุตุงุฑุช limit f of x ุนูู |
|
|
|
226 |
|
00:21:12,070 --> 00:21:23,310 |
|
X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ุจุฏูุง ุชุณุงูู ุตูุฑ ุฃู ุณุคุงูุ |
|
|
|
227 |
|
00:21:23,310 --> 00:21:31,130 |
|
ุฒู ู
ุง ุญูููุงุ ุงูุขู ุฅุญูุง ูููุง ุฅูู ูู ูุงูุช ุงูู D ุจุฏููุง D |
|
|
|
228 |
|
00:21:31,130 --> 00:21:34,600 |
|
ุจูุณุงูู f of x ุงูู differential ุจุงูุฃุฏ C ุฌุจูุง g prime |
|
|
|
229 |
|
00:21:34,600 --> 00:21:37,500 |
|
ููุชุจูุงูุง ุจุงูุตูุฑุฉ ุงููู ุฃู
ุงู
ูุง ุจุนุฏูู ุฃุฎุฏูุง ุงูู |
|
|
|
230 |
|
00:21:37,500 --> 00:21:40,120 |
|
absolute value ูู limit f of x ุนูู ุงูู X ูุงูุต C ูู
X |
|
|
|
231 |
|
00:21:40,120 --> 00:21:45,200 |
|
ุชุฑูุญ ูู C positive ุทูุนุช ุนูุฏู ุจูุณุงูู g prime of C ู |
|
|
|
232 |
|
00:21:45,200 --> 00:21:48,680 |
|
ุฃุฎุฏูุง ุงููู ูู ูุงูุต ูุฐู ุทูุนุช ุนูุฏู ุจุฑุถู g prime |
|
|
|
233 |
|
00:21:48,680 --> 00:21:53,920 |
|
ุงูุงุชููู ุงูู C ุฅุฐุง ุตุงุฑ ูุฐุง ุจูุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ูุงุญูุง |
|
|
|
234 |
|
00:21:53,920 --> 00:21:57,640 |
|
ุจูุนุฑู ูู ุงูุฃุตู ุฅู f prime of C exist ูุนูู |
|
|
|
235 |
|
00:21:57,640 --> 00:22:01,900 |
|
differentiable ูุนูู ุงูู limit ูุฐุง ุงููู ูู ู
ูุฌูุฏ ูู
ู |
|
|
|
236 |
|
00:22:01,900 --> 00:22:05,100 |
|
ุงููู
ูู ูู
ู ุงููุณุงุฑ ุฒู ุจุนุถ ูุนูู ูุนูู ูุฐุง ุจุฏู ูุณุงูู |
|
|
|
237 |
|
00:22:05,100 --> 00:22:07,500 |
|
ูุฐุง ู
ู ุงููู
ูู ููุฐุง ู
ู ุงููุณุงุฑ ูุนูู ูู ุงููุงูุน ูุฐุง |
|
|
|
238 |
|
00:22:07,500 --> 00:22:10,960 |
|
ุงููู ุฌูุง ูู ููุณู ุงููู ุฌูุง ุจูุณุงูู limit of f of x ูุนูู |
|
|
|
239 |
|
00:22:10,960 --> 00:22:15,780 |
|
ุจู
ุนูู ุขุฎุฑ absolute value ูู limit of f of x ุนูู ุงูู X |
|
|
|
240 |
|
00:22:15,780 --> 00:22:22,100 |
|
ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ูู ููุณู ุณุงูุจ limit ููู f of |
|
|
|
241 |
|
00:22:22,100 --> 00:22:27,400 |
|
x ุนูู ุงูู X ูุงูุต C ูู
ุง ุงูู X ุชุฑูุญ ููู C ู
ู ููู ู
ู |
|
|
|
242 |
|
00:22:27,400 --> 00:22:31,540 |
|
ุงููุณุงุฑ ูู ููุณู ููู C ู
ู ููู ุชุจุช ูุฐู ูุฃู ุงุญูุง ุจูููู |
|
|
|
243 |
|
00:22:31,540 --> 00:22:34,560 |
|
f prime of C exist ูุนูู ุงูู limit ูุฐุง ู
ูุฌูุฏ ูู
ู |
|
|
|
244 |
|
00:22:34,560 --> 00:22:37,360 |
|
ุงููู
ูู ูู
ู ุงููุณุงุฑ ุฒู ุจุนุถ ุฅุฐุง ุตุงุฑ ูุฐุง ุงูู
ูุฏุงุฑ ููุณ |
|
|
|
245 |
|
00:22:37,360 --> 00:22:41,200 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุฒู ู
ุง ูููุง ุฅุฐุง ุตุงุฑ ุนูุฏ ูุฐุง ุงูู
ูุฏุงุฑ ุจูุณุงูู |
|
|
|
246 |
|
00:22:41,200 --> 00:22:46,800 |
|
ุตูุฑ ูุฃู ุงูุงุชููู ุจูุณุงููุง ุจูุณุงูู ุตูุฑ ุฅุฐุง ุตุงุฑ ุนูุฏู limit f |
|
|
|
247 |
|
00:22:46,800 --> 00:22:50,880 |
|
of x ุนูู ุงูู X ูุงูุต C ุงููู ูู ุงูู absolute value as X |
|
|
|
248 |
|
00:22:50,880 --> 00:22:56,100 |
|
ุจุชุฑูุญ ููู C ุจูุณุงูู ุตูุฑ ูู
ู ุซู
ุงููู ุฌูุง ุจูุณุงูู ุตูุฑ ูู |
|
|
|
249 |
|
00:22:56,100 --> 00:22:58,740 |
|
ู
ูู ูู ุงููู ุฌูุง ูุฐุง ุงููู ููุง ุจุฏูุง ูุตูู ู
ู ุงูุฃูู |
|
|
|
250 |
|
00:22:58,740 --> 00:23:04,260 |
|
ุงููู ูู f prime of C ุจุชุณุงูู ุตูุฑ ููู ุงูู
ุทููุจ ูุฐุง |
|
|
|
251 |
|
00:23:04,260 --> 00:23:10,300 |
|
ุชูุถูุญ ุจุดูู ูุงู
ู ููู ุตุงุฑ ูู ุงููู ูู ุงูุงุชุฌุงู |
|
|
|
252 |
|
00:23:10,300 --> 00:23:16,200 |
|
ุงูุซุงูู ููุฌู ูุณุคุงู ุจุนุฏ ู
ุง ุฎูุตูุง ุงูุณุคุงู ุณุจุนุฉ ููุฌู |
|
|
|
253 |
|
00:23:16,200 --> 00:23:23,420 |
|
ูุณุคุงู ุชุณุนุฉ ุชุณุนุฉ ุฅูุด ุงููู ุจูููู ุชุณุนุฉ ูุดูู ุฅูุด ุณุคุงู |
|
|
|
254 |
|
00:23:23,420 --> 00:23:31,360 |
|
ุชุณุนุฉ ุจููู ููุญู ุณุคุงู ุชุณุนุฉ ุณุคุงู ุชุณุนุฉ ุจููู ููู |
|
|
|
255 |
|
00:23:31,360 --> 00:23:39,110 |
|
ุจุงุฎุชุตุงุฑ ุฅูู ูู ูุงู ุนูุฏู ุงูู function of ุนุจุงุฑุฉ ุนู ู
ู |
|
|
|
256 |
|
00:23:39,110 --> 00:23:43,130 |
|
R ูู R even function ุทุจุนุงู ุนุงุฑููู ุฅูุด ุงูู even ุงููู |
|
|
|
257 |
|
00:23:43,130 --> 00:23:49,130 |
|
ูู f ูุงูุต x ุจูุณุงูู f x ููู x ู
ูุฌูุฏุฉ ูู ุงูู R and |
|
|
|
258 |
|
00:23:49,130 --> 00:23:54,310 |
|
has a derivative at every point then f prime is an |
|
|
|
259 |
|
00:23:54,310 --> 00:23:58,190 |
|
odd function ูุนูู ุจูููู ูู ูู ูุงูุช ุจุงุฎุชุตุงุฑ ูุนูู ูู |
|
|
|
260 |
|
00:23:58,190 --> 00:24:01,730 |
|
ูุงูุช ุงูู f even ูุงูู derivative ู
ูุฌูุฏุฉ ุจุชููู ุงูู |
|
|
|
261 |
|
00:24:01,730 --> 00:24:07,010 |
|
derivative odd ููู ูุงูุช ุงูู derivative odd ุจุชููู |
|
|
|
262 |
|
00:24:07,010 --> 00:24:11,350 |
|
ุงูู function ุงูู f prime ุฅูู ุดู
ุงููุง is even ุงูุญู |
|
|
|
263 |
|
00:24:11,350 --> 00:24:16,970 |
|
ูุงุญุฏุฉ ู
ู ููุง ูุงูุชุงููุฉ similarly ุฒููุง ุงูุขู ูููุชุฑุถ f |
|
|
|
264 |
|
00:24:16,970 --> 00:24:29,890 |
|
ู
ู ุนูุฏ R ูุนูุฏ R be an odd differentiable function |
|
|
|
265 |
|
00:24:29,890 --> 00:24:34,970 |
|
ู
ุงุดู ุงูุญุงู show that |
|
|
|
266 |
|
00:24:36,040 --> 00:24:44,360 |
|
f' is even a proof ุจุฏูุง ูุซุจุช ุฅูู ูู ูุงูุช ุงูู f |
|
|
|
267 |
|
00:24:44,360 --> 00:24:49,940 |
|
ุงููู ูู odd function ุจุฏู ูููู ุนูุฏู ู |
|
|
|
268 |
|
00:24:49,940 --> 00:24:52,320 |
|
differentiable ุจุฏู ูููู ุนูุฏู derivative ุฅููุง ุฅูู |
|
|
|
269 |
|
00:24:52,320 --> 00:25:03,000 |
|
ุฅูุด even ูุฃู let C element in R be arbitrary and |
|
|
|
270 |
|
00:25:03,000 --> 00:25:04,180 |
|
fixed |
|
|
|
271 |
|
00:25:06,310 --> 00:25:15,930 |
|
ูุงุฎุฏ ุงูู R ูุงุฎุฏ ุงูู C ุฃู ุงููู ูู real number in |
|
|
|
272 |
|
00:25:15,930 --> 00:25:23,360 |
|
R ููู ูุญูู ุนู ุฃู ุดูุก ู
ุญุฏุฏ ุงูุขู f prime of C ุจุฏุฃ |
|
|
|
273 |
|
00:25:23,360 --> 00:25:29,060 |
|
ุฃุซุจุช ูู ุฅูู ูู ุจูุณุงูู f prime of ูุงูุต C ูุนูู f prime |
|
|
|
274 |
|
00:25:29,060 --> 00:25:34,920 |
|
is even ุฅุฐุง ุฎุฏ f prime ูุงูุต C ูุงุจุฏุฃ ุญุณุจ ููุงุตูู ูู |
|
|
|
275 |
|
00:25:34,920 --> 00:25:39,140 |
|
ุงูููุงูุฉ ุจูุณุงูู f prime of C ุฅุฐุง f prime is even ุจูุณุงูู |
|
|
|
276 |
|
00:25:39,140 --> 00:25:49,380 |
|
limit ุงููู ูู f of x ูุงูุต f of ูุงูุต C ุนูู x ูุงูุต |
|
|
|
277 |
|
00:25:50,570 --> 00:25:57,070 |
|
ุงููู ูู ูุงูุต C ูู
ุง ุงูู x ุชุฑูุญ ูู
ูู ูู ูุงูุต C ู
ุธุจูุท |
|
|
|
278 |
|
00:25:57,070 --> 00:26:05,550 |
|
ุทูุจ ูุจูุณุงูู limit ุงูู f ุฅูุด ู
ุนุทููุง ุฅูุงูุง ุนุจุงุฑุฉ ุนู odd |
|
|
|
279 |
|
00:26:05,550 --> 00:26:12,250 |
|
ุฅูุด ูุนูู odd ูุนูู f of ูุงูุต x ุจูุณุงูู ูุงูุต f of x |
|
|
|
280 |
|
00:26:12,250 --> 00:26:16,590 |
|
ู
ุธุจูุท ูุฐู ุงููู ูู ุฅูุด ู
ุง ููุง odd function ุงููู ูู |
|
|
|
281 |
|
00:26:16,590 --> 00:26:28,550 |
|
ุจูุณุงูู limit F of x ุงููู ูู ูุงูุต f of ูุงูุต x |
|
|
|
282 |
|
00:26:28,550 --> 00:26:34,150 |
|
ูุงุถุญ ุฃูุ |
|
|
|
283 |
|
00:26:34,150 --> 00:26:37,150 |
|
f of ูุงูุต x ุจูุณุงูู ูุงูุต f of x ูุนูู f of x ุจูุณุงูู |
|
|
|
284 |
|
00:26:37,150 --> 00:26:41,230 |
|
ูุงูุต f of ูุงูุต x ูุงูุฌุฏ ุชุนุฑููุง ููุด ุนู
ูุช ููู ูุฃู |
|
|
|
285 |
|
00:26:41,230 --> 00:26:48,570 |
|
ูุงูุต f of ูุงูุต c ุงูุขู f is odd ู
ุธุจูุท ุจูุตูุฑ ุฒุงุฆุฏ f |
|
|
|
286 |
|
00:26:48,570 --> 00:26:49,330 |
|
of c |
|
|
|
287 |
|
00:26:52,220 --> 00:26:58,060 |
|
ุนูู ุฎุฏ ุงูุขู ูุงูุต ู
ู ููุง ุนุงู
ู ู
ุดุชุฑู ุจูุตูุฑ ุนุจุงุฑุฉ ุนู |
|
|
|
288 |
|
00:26:58,060 --> 00:27:08,220 |
|
ูุงูุต x ุงูุขู ูุงูุต ุงู c ูู
ุง x ุชุฑูุญ ูู
ูู ูุณุงูุจ ุงู c |
|
|
|
289 |
|
00:27:08,220 --> 00:27:14,040 |
|
ุงู x ุจุชุฑูุญ ูุณุงูุจ ุงู c ุฅุฐุง ู ููุท ุฅุฐุง ุณุงูุจ ุงู x |
|
|
|
290 |
|
00:27:14,040 --> 00:27:22,160 |
|
ุจุชุฑูุญ ูู
ูู ุฅูู ุงู c ุงูุขู ุฎุฏ ูู y ุจูุณุงูู ุณุงูุจ ุงู x |
|
|
|
291 |
|
00:27:22,160 --> 00:27:29,240 |
|
ูุงุณุชุจุฏู ุนุดุงู ููุถุญ ูู ุฅูุงู ุจูุณุงูู limit ุงูุขู ุฎุฏ ุงูุขู |
|
|
|
292 |
|
00:27:29,240 --> 00:27:38,320 |
|
ุนูุฏู f ุญูู
ุง ูุงู ููุต x ุณู
ูููุง ุงู y limit ูุงูุต F of y |
|
|
|
293 |
|
00:27:38,320 --> 00:27:49,390 |
|
ุฒุงุฆุฏ f of c ุนูู ุงููู ูู y ุจุชุฑูุญ ุฅูู ุงู c ูููุง y |
|
|
|
294 |
|
00:27:49,390 --> 00:27:57,430 |
|
ูุงูุต ุงู c ูููุง ูู ุนูุฏู ุงูุด ุจุฑุถู ูุงูุต ุจุฑุง ูุฃู ุฎุฏ ู
ู |
|
|
|
295 |
|
00:27:57,430 --> 00:28:01,670 |
|
ููุง ูุงูุต ุนุงู
ู ู
ุดุชุฑู ุฃู ุถูุนู ู
ุน ุงููุงูุต ุงููู ููุง |
|
|
|
296 |
|
00:28:01,670 --> 00:28:11,160 |
|
ู
ุง ูุงุถุญ ุฃู ุจูุตูุฑ ุนูุฏู y ุจูุณุงูู limit f of y ูุงูุต f of c |
|
|
|
297 |
|
00:28:11,160 --> 00:28:16,800 |
|
ุนูู y ูุงูุต c ูู
ุง y ุชุฑูุญ ูู c ููุฐุง ุนุจุงุฑุฉ ุนู f |
|
|
|
298 |
|
00:28:16,800 --> 00:28:22,440 |
|
prime ูู
ูู ูู c ุจุฏุฃูุง ุจ f prime ูุงูุต c ูุงูุชูููุง ุจ f |
|
|
|
299 |
|
00:28:22,440 --> 00:28:31,520 |
|
prime ูู c ูุฐุง therefore f prime is even whenever |
|
|
|
300 |
|
00:28:31,520 --> 00:28:37,160 |
|
f is odd and f is differentiable |
|
|
|
301 |
|
00:28:40,710 --> 00:28:56,810 |
|
ุงูุณุคุงู ุงูุฃุฎูุฑ ุงูุณุคุงู 13 ุงูุณุคุงู |
|
|
|
302 |
|
00:28:56,810 --> 00:29:03,990 |
|
13 ูู ูู
ุง ููู ุงูุด |
|
|
|
303 |
|
00:29:03,990 --> 00:29:09,200 |
|
ุงููู ุจููู ุงูุณุคุงู 13 ุณุคุงู 13 ุจูููู ุฅุฐุง ูุงูุช f ู
ู R |
|
|
|
304 |
|
00:29:09,200 --> 00:29:12,380 |
|
ูู R is differentiable at c element in R show that |
|
|
|
305 |
|
00:29:12,380 --> 00:29:16,840 |
|
f prime of c ูุณุงูู limit N ูู f of c ุฒุงุฆุฏ 1 ุนูู N ูุงูุต |
|
|
|
306 |
|
00:29:16,840 --> 00:29:20,620 |
|
f of c as N goes to infinity ูุนูู ูู ูุงูุช f |
|
|
|
307 |
|
00:29:20,620 --> 00:29:24,900 |
|
differentiable ุนูุฏ ุงูู c element in R ุจููุฏุฑ ููุชุจ |
|
|
|
308 |
|
00:29:24,900 --> 00:29:27,920 |
|
ุงู derivative ุงููู ูู f prime of c ุนูู ุตูุฑุฉ limit |
|
|
|
309 |
|
00:29:27,920 --> 00:29:32,320 |
|
N f of c ุฒุงุฆุฏ 1 ุนูู N ูุงูุต f of c as N goes to |
|
|
|
310 |
|
00:29:32,320 --> 00:29:38,120 |
|
infinity ููู ุจูููู ูู by example show that the |
|
|
|
311 |
|
00:29:38,120 --> 00:29:44,000 |
|
existence of this limit this limit need not ุงููู |
|
|
|
312 |
|
00:29:44,000 --> 00:29:52,300 |
|
ูู imply the existence of the derivative ููุฌู |
|
|
|
313 |
|
00:29:52,300 --> 00:30:03,960 |
|
ุงูุขู ููุฌุฒุก ุงูุฃูู ุนูุฏู f ู
ู R ูู R ู f prime of c |
|
|
|
314 |
|
00:30:03,960 --> 00:30:12,120 |
|
exist ูุฃูู ูููู ูู prove that f prime of c can be |
|
|
|
315 |
|
00:30:12,120 --> 00:30:20,760 |
|
written as limit N ูู f of c ุฒุงุฆุฏ 1 ุนูู N ูุงูุต f |
|
|
|
316 |
|
00:30:20,760 --> 00:30:26,180 |
|
of c as N goes to infinity ูุฐุง ุงูุฌุฒุก ุงูุฃูู ุงูุฌุฒุก |
|
|
|
317 |
|
00:30:26,180 --> 00:30:32,400 |
|
ุงูุซุงูู ุญูุฌู ุงูุขู ูููู prove ููุฌุฒุก ุงูุฃูู ูุจู ู
ุง ูููู |
|
|
|
318 |
|
00:30:32,400 --> 00:30:37,700 |
|
ุงูู proof ูุฐูุฑูู
ุจุณ ุจูุธุฑูุฉ ุณุงุจูุฉ ูู ุงูู real ูุงุญุฏ |
|
|
|
319 |
|
00:30:37,700 --> 00:30:43,840 |
|
ุฅูู ูู ุนูุฏู limit f of x ูู
ุง x ุชุฑูุญ ูู c ูู ูุงูุช |
|
|
|
320 |
|
00:30:43,840 --> 00:30:52,780 |
|
ุจุชุณุงูู l ุจููู ุนูุฏู ุฃู sequence xโ ุจุชุฑูุญ ููู c ูุงุฒู
|
|
|
|
321 |
|
00:30:52,780 --> 00:30:59,020 |
|
ูุชุญูู ููุง limit f of xโ as n goes to infinity |
|
|
|
322 |
|
00:30:59,020 --> 00:31:05,530 |
|
ุจูุณุงูู ุจุฑุถู ุงูู ููุง ูุชุญุฏุซ ุจุงูุญุฏูุซุ ุจุงุณุชุจุฏุงุก ุงูุญุฏูุซ |
|
|
|
323 |
|
00:31:05,530 --> 00:31:08,670 |
|
ุนู ุงูู limit ุงูุนุงุฏูุฉ ููู function S x ุจุชุฑูุญ ููู c |
|
|
|
324 |
|
00:31:08,670 --> 00:31:13,470 |
|
ุฅูู limit ูู
ูู ููู sequence ุฃู limit ููู sequences |
|
|
|
325 |
|
00:31:13,470 --> 00:31:17,290 |
|
ุงูุขู ุจูุณุชุฎูุต ูุฐู ุงููู ูู ุงูู
ุนููู
ุฉ ูู ุฅุซุจุงุช ุงููู |
|
|
|
326 |
|
00:31:17,290 --> 00:31:22,630 |
|
ุจุฏูุง ุฅูุงู ุนูุฏ ุงูุขู since f prime of c exist ุจู
ุง ุฃูู |
|
|
|
327 |
|
00:31:22,630 --> 00:31:29,250 |
|
ุงู derivative ุนูุฏ c ู
ูุฌูุฏุฉ ุฅุฐุง ุฃููุฏ ุนูุฏู ุตุงุฑ f |
|
|
|
328 |
|
00:31:29,250 --> 00:31:37,010 |
|
prime of c ุจุณูููุฉ f of x ุฃู ุงููู ูู ุงูู x ุนูุฏ c |
|
|
|
329 |
|
00:31:38,080 --> 00:31:46,140 |
|
ุฒุงุฆุฏ h ูุงูุต f of c ุนูู h as h goes to mean to zero |
|
|
|
330 |
|
00:31:46,140 --> 00:31:49,860 |
|
ุงููู ูู ุงูุชุนุฑูู ุงูุชุนุฑูู ุงู derivative ุฃู ุงูุดูู |
|
|
|
331 |
|
00:31:49,860 --> 00:31:52,980 |
|
ุงูุขุฎุฑ ููุชุนุฑูู ุงู derivative f of c ุฒุงุฆุฏ ุงู |
|
|
|
332 |
|
00:31:52,980 --> 00:31:55,560 |
|
increment ูุงูุต f of c ุนูู ุงู increment as ุงู |
|
|
|
333 |
|
00:31:55,560 --> 00:32:01,600 |
|
increment goes to mean to zero ู
ุงุดู ุงูุญู ุงู l ุจู
ุง |
|
|
|
334 |
|
00:32:01,600 --> 00:32:07,480 |
|
ุฃูู ุงููู ูู ุงู 1 ุนูู N sequence ุจุชุฑูุญ ููุตูุฑ ููุฐุง |
|
|
|
335 |
|
00:32:07,480 --> 00:32:11,440 |
|
ุงูู limit exist ูุฃู ุญุณุจ ุงููุธุฑูุฉ ุงููู ุญููุชูุง ูุจู |
|
|
|
336 |
|
00:32:11,440 --> 00:32:21,100 |
|
ุจุดููุฉ ุจููู ุนูุฏู ูุฃู butูุฐุง then f prime of c can |
|
|
|
337 |
|
00:32:21,100 --> 00:32:26,580 |
|
be ุงููู ูู ุฅุนุงุฏุฉ ุงููู ูู rewritten as a limit of a |
|
|
|
338 |
|
00:32:26,580 --> 00:32:36,800 |
|
sequence f of ุงููู ูู limit limit f of c ุฒุงุฆุฏ but |
|
|
|
339 |
|
00:32:36,800 --> 00:32:40,000 |
|
ุงูู h ุงููู ูู ุชุฑูุญ ููุตูุฑ ุตุงุฑุช mean ุงู sequence |
|
|
|
340 |
|
00:32:40,000 --> 00:32:46,380 |
|
ูุงุญุฏุฉ ุนูู N ุชุฑูุญ ููุตูุฑ ูุงุญุฏุฉ ุนูู N ูุงูุต f of c ุนูู |
|
|
|
341 |
|
00:32:46,380 --> 00:32:52,640 |
|
ูุงุญุฏุฉ ุนูู N as N goes to infinity ู
ุฏุงู
ุช ุงู sequence |
|
|
|
342 |
|
00:32:52,640 --> 00:32:57,100 |
|
ูุงุญุฏุฉ ุนูู N ุจุชุฑูุญ ููุตูุฑ ุตุงุฑุช ุงู f of ูุงุญุฏุฉ ุนูู N ุงููู |
|
|
|
343 |
|
00:32:57,100 --> 00:33:00,900 |
|
ูู ุนุจุงุฑุฉ ุนู f of c ุฒุงุฆุฏ ูุงุญุฏุฉ ุนูู N ูุฃู ุงูู c ุนุจุงุฑุฉ |
|
|
|
344 |
|
00:33:00,900 --> 00:33:07,740 |
|
ุนู ุฅูุงุด ูุงูุชุฉ ูุงุถุญ ุฃูุ ุงูุขู ูุฐุง ุจูุณุงูู ุงููู ูู |
|
|
|
345 |
|
00:33:07,740 --> 00:33:14,600 |
|
limit ุงูุขู as n goes to infinity ุงููู ูู ุฃููุฏ ุงููู |
|
|
|
346 |
|
00:33:14,600 --> 00:33:21,920 |
|
ูู ุจูุตูุฑ ุนูุฏู f n ูู ุงูุฌูุณ f of c ุฒุงุฆุฏ 1 ุนูู n |
|
|
|
347 |
|
00:33:21,920 --> 00:33:28,260 |
|
ูุงูุต f of c ุงููู ูู as n goes to infinity ูู ูุฐุง |
|
|
|
348 |
|
00:33:28,260 --> 00:33:35,150 |
|
ุตุงุฑ f prime of c ููู ุงูู
ุทููุจ ุงูุขู conversely the |
|
|
|
349 |
|
00:33:35,150 --> 00:33:37,890 |
|
converse need not to be true in general ููู ุจูููู |
|
|
|
350 |
|
00:33:37,890 --> 00:33:45,390 |
|
ููู ูุนูู ุจูููู ูู if if ุจูููู ูู ุฃู ุงููู ุจูููู if f |
|
|
|
351 |
|
00:33:45,390 --> 00:33:53,670 |
|
ุจุฑุง ุงููู ูู limit f of c ุฒุงุฆุฏ 1 ุนูู n ูุงูุต f of c |
|
|
|
352 |
|
00:33:53,670 --> 00:34:01,610 |
|
ุงููู ู
ุถุฑูุจ ูู n as n goes to infinity exist if ูุฏู |
|
|
|
353 |
|
00:34:02,500 --> 00:34:12,640 |
|
then f prime at c need not be exist ุฃุตูุง ู
ุด ุฃูู |
|
|
|
354 |
|
00:34:12,640 --> 00:34:16,180 |
|
ูููู ุจูุณุงูู ูุฐุง ุฃู ูุง need not to be ุงุดู
ู exist |
|
|
|
355 |
|
00:34:16,180 --> 00:34:19,640 |
|
ูุฃู ูู ูุงู exist ุนูู ุทูู ุจูุณุงูู ุงู
ุง need not to be |
|
|
|
356 |
|
00:34:19,640 --> 00:34:28,200 |
|
exist ูู
ุง ุฃุฎุฐ ู
ุซุงู ุฌุงูู consider consider consider |
|
|
|
357 |
|
00:34:28,200 --> 00:34:37,000 |
|
f of x ุจูุณุงูู ุงู absolute value ูู x ูุฎุฏ ุนูุฏ ุงู c ุงูุด |
|
|
|
358 |
|
00:34:37,000 --> 00:34:46,440 |
|
ุจุชุณุงูู ุตูุฑ ูุงุถุญ f prime of 0 does not exist ูุฃููุง |
|
|
|
359 |
|
00:34:46,440 --> 00:34:48,780 |
|
ุนุจุงุฑุฉ ุนู corner pointุ ุฃูุชู ุนุงุฑููู ุงุญูุง ุงููู ูู |
|
|
|
360 |
|
00:34:48,780 --> 00:34:52,480 |
|
ุงู f prime ุนูุฏ ุงู zero ูู absolute value does not |
|
|
|
361 |
|
00:34:52,480 --> 00:34:59,740 |
|
exist ููู ูุฐู ู
ุชุญููุฉุ ููุดุ but limit |
|
|
|
362 |
|
00:35:01,280 --> 00:35:10,900 |
|
N ูู f of 0 ุฒุงุฆุฏ 1 ุนูู N ูุงูุต f of 0 as N goes to |
|
|
|
363 |
|
00:35:10,900 --> 00:35:18,840 |
|
infinity ุจูุณุงูู limit N f of 0 ุฒุงุฆุฏ 1 ุนูู N ูุนูู f |
|
|
|
364 |
|
00:35:18,840 --> 00:35:23,560 |
|
of 1 ุนูู N f of x ุจูุณุงูู absolute value x ู 1 ุนูู N |
|
|
|
365 |
|
00:35:23,560 --> 00:35:28,960 |
|
ู
ุธุจูุท ุฃู as N goes to infinity ุทุจุนุง ุงูู N ุจุชุฑูุญ |
|
|
|
366 |
|
00:35:29,220 --> 00:35:35,100 |
|
ูุตูุฑ ุนุจุงุฑุฉ ุนู ash ูุงุญุฏ ุฅุฐุง ูุนูุง ุฌุจูุง ู
ุซุงู ุฃู ุงู |
|
|
|
367 |
|
00:35:35,100 --> 00:35:39,720 |
|
limit ูุฐู ุชููู exist ู ูุณุงูู ูุงุญุฏ but ุงู f prime ุนูุฏ |
|
|
|
368 |
|
00:35:39,720 --> 00:35:42,640 |
|
ูุฐุง ุงูููุทุฉ c ุงููู ูู 00 ูู ูุฐู ุงูุญุงูุฉ does not |
|
|
|
369 |
|
00:35:42,640 --> 00:35:47,320 |
|
exist ุจูููู ููู ุงุญูุง ุงูุชูููุง ู
ู ุงูุฌุฒุก ุงูุฃูู ู
ู |
|
|
|
370 |
|
00:35:47,320 --> 00:35:54,870 |
|
ุงูู
ุญุงุถุฑุฉ ุงูุฎุงู
ุณุฉ ุงููู ูู discussion ูุฃู ู
ูุงูุดุฉ ู |
|
|
|
371 |
|
00:35:54,870 --> 00:35:59,910 |
|
section 6-1 ุงููู ูู the derivative ูุงูุขู ุณููู
ู |
|
|
|
372 |
|
00:35:59,910 --> 00:36:05,690 |
|
ุงูุญุฏูุซ ูู ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงูู
ุญุงุถุฑุฉ ุงููู ูู ุนู ุงููู |
|
|
|
373 |
|
00:36:05,690 --> 00:36:09,250 |
|
ูู the mean value theorem ุฃู ุงููู ูู ููู
ู |
|
|
|
374 |
|
00:36:09,250 --> 00:36:11,910 |
|
applications ุนูู mean value theorem ููุงุฎุฏ ุงููู ูู |
|
|
|
375 |
|
00:36:11,910 --> 00:36:12,030 |
|
ุงู |
|
|