abdullah's picture
Add files using upload-large-folder tool
6d205e9 verified
raw
history blame
40.7 kB
1
00:00:04,910 --> 00:00:09,510
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฎุงู…ุณุฉ ููŠ
2
00:00:09,510 --> 00:00:15,630
ู…ุณุงู‚ ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ู„ุทู„ุจุฉ ูƒู„ูŠุฉ ุงู„ุนู„ูˆู… ุชุฎุตุต
3
00:00:15,630 --> 00:00:22,110
ุฑูŠุงุถูŠุงุช ููŠ ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุจุบุฒุฉ ุงู„ู…ุญุงุถุฑุฉ
4
00:00:22,110 --> 00:00:26,550
ุงู„ูŠูˆู… ู‡ูŠ ุฌุฒุฆูŠู†ุŒ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
5
00:00:26,550 --> 00:00:31,350
Discussion ู„ู€ 6.1 ุงู„ู„ูŠ ู‡ูˆ ู…ู†ุงู‚ุดุฉ ู„ู…ูˆุถูˆุน ุงู„ู„ูŠ ู‡ูˆ
6
00:00:31,350 --> 00:00:37,410
Derivative ุฃูˆ ุงู„ุงุดุชู‚ุงู‚. ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู‡ู†ูƒู…ู„ ุงู„ู„ูŠ ู‡ูˆ
7
00:00:37,410 --> 00:00:43,210
ุงู„ุญุฏูŠุซ ุนู† 6.2 ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Mean Value Theorem ุฃูˆ
8
00:00:43,210 --> 00:00:47,730
ู†ุธุฑูŠุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ู…ุชูˆุณุทุฉ. ู‡ู†ุงุฎุฐ ุจุนุถ ุงู„ุชุทุจูŠู‚ุงุช ู„ู†ุจุฏุฃ
9
00:00:47,730 --> 00:00:51,750
ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ุฃุณุฆู„ุฉ ุงู„ู„ูŠ ุงุญู†ุง ุทู„ุจู†ุงู‡ุง ู…ู†ูƒู…
10
00:00:51,750 --> 00:00:57,230
ุชุญู„ูˆู‡ุง ูƒูˆุงุฌุจ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃูˆ ุงู„ุชูŠ ู‚ุจู„ู‡ุง ูˆูƒุงู†ุช
11
00:00:57,230 --> 00:01:01,210
ุงู„ุฃุณุฆู„ุฉ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน ูˆุงู„ุณุคุงู„ ุงู„ุณุงุจุน
12
00:01:02,000 --> 00:01:07,420
ูˆุงู„ุณุคุงู„ ุงู„ุชุงุณุน ูˆุงู„ุณุคุงู„ ุงู„ุซุงู„ุซ ุนุดุฑ. ุจุงู„ู†ุณุจุฉ ู„ู„ุณุคุงู„
13
00:01:07,420 --> 00:01:13,600
ุงู„ุซุงู„ุซ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูŠ ุจุฑู‡ุงู† ู†ุธุฑูŠุฉ 6.1.3 A
14
00:01:13,600 --> 00:01:19,200
ูˆ B. ูˆู‡ุฐู‡ ุงู„ุจุฑุงู‡ูŠู† ุจุฑุงู‡ูŠู† ุณู‡ู„ุฉ ุงู„ู„ูŠ ูƒุงู†ุช ุงู„ู€ F
15
00:01:19,200 --> 00:01:22,960
DifferentiableุŒ ุงู„ู€ F Differentiable ูˆุงู„ู€ Alpha
16
00:01:22,960 --> 00:01:26,560
ุนุจุงุฑุฉ ุนู† Constant ุจูŠุนุทูŠู†ุง ุงู„ู€ Alpha F ุจุฑุถู‡ is
17
00:01:26,560 --> 00:01:30,200
Differentiable. ูˆู„ูˆ ูƒุงู†ุช ุงู„ู€ F ูˆุงู„ู€ G
18
00:01:30,200 --> 00:01:32,700
Differentiable ุจูŠุนุทูŠู†ุง ุงู„ู€ F ุฒุงุฆุฏ G is
19
00:01:32,700 --> 00:01:35,660
Differentiable. ูˆุงุญู†ุง ุจุฑู‡ู†ู†ุง ุญุงู„ุฉ ุงู„ุถุฑุจ ูˆุญุงู„ุฉ
20
00:01:35,660 --> 00:01:41,500
ุงู„ู‚ุณู…ุฉุŒ ูˆู‡ุฏูˆู„ ุญุงู„ุงุช ุชุนุชุจุฑ ุณู‡ู„ุฉ ู…ุจุงุดุฑุฉ ุนู„ู‰ ุงู„ุชุนุฑูŠู
21
00:01:41,500 --> 00:01:45,900
ู„ุฐู„ูƒ ู‡ู†ุจุฏุฃ ุฅู† ุดุงุก ุงู„ู„ู‡ ููŠ ุงู„ุญุฏูŠุซ ุฃูˆ ููŠ ุญู„ ุงู„ุฃุณุฆู„ุฉ
22
00:01:45,900 --> 00:01:52,540
ุนู„ู‰ ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน ุงู„ู„ูŠ ู‡ูˆ ุจู‚ูˆู„ ู„ูŠ ุนู†ุฏูŠ ู…ุนุทูŠู†ูŠ F
23
00:01:52,540 --> 00:02:01,760
ู…ู† R ู„ู€ R ุจูŠ defined by F of X ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ X
24
00:02:01,760 --> 00:02:06,420
ุชุฑุจูŠุน ุฅุฐุง ูƒุงู†ุช X Rational ูˆุจุณุงูˆูŠ ุตูุฑ ุฅุฐุง ูƒุงู†ุช X
25
00:02:06,420 --> 00:02:09,700
Irrational. ุงุซุจุช ุฅู† ุงู„ู€ F ุงู„ู€ Differential ุจุงู„ู‚ุฏุฑ X
26
00:02:09,700 --> 00:02:15,550
ุจุชุณุงูˆูŠ ุตูุฑ ุฃูˆ ุฌุฏ ุงู„ู„ูŠ ู‡ูŠ F prime of 0. ู„ุงุญุธ ุฃู† ุงู„ู€
27
00:02:15,550 --> 00:02:16,610
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
28
00:02:16,610 --> 00:02:17,090
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
29
00:02:17,090 --> 00:02:17,910
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
30
00:02:17,910 --> 00:02:20,450
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
31
00:02:20,450 --> 00:02:27,990
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
32
00:02:27,990 --> 00:02:28,350
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
33
00:02:28,350 --> 00:02:29,630
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
34
00:02:29,630 --> 00:02:29,690
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
35
00:02:29,690 --> 00:02:41,470
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
36
00:02:41,470 --> 00:02:52,150
Find this value. a proof ุงู„ุขู† ุนุดุงู† ู†ูˆุฌุฏ
37
00:02:52,150 --> 00:02:56,730
ุงู„ู„ูŠ ู‡ูŠ ู†ุซุจุช ุฃู† F prime of 0 ู…ูˆุฌูˆุฏุฉ. ุฎู„ู‘ูŠู†ูŠ ุฃู„ุงุญุธ
38
00:02:56,730 --> 00:03:00,950
ู…ุงู„ูŠ ุนู†ุฏ ุงู„ู€ function ุงู„ู„ูŠ ู‡ูŠ X ุชุฑุจูŠุน ู„ู…ุง X
39
00:03:00,950 --> 00:03:07,150
Rational ูˆ Zero ู„ู…ุง X is Irrational. ุงู„ุขู† ุจุฏู†ุง
40
00:03:07,150 --> 00:03:11,770
ู†ุชูˆู‚ุน ุฃูˆู„ ุดูŠุก ุงู„ู„ูŠ ู‡ูˆ ู„ุฃู†ู‡ ู‡ุชู„ุฒู…ู†ูŠ ุฌุงูŠ ุงู„ู„ูŠ ุจุนุฏูŠู†
41
00:03:11,770 --> 00:03:15,890
Find this value. ุจุฏู†ุง ู†ุชูˆู‚ุน ุงูŠุด ู‚ูŠู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
42
00:03:15,890 --> 00:03:20,950
Derivative ุนู†ุฏ ุงู„ุตูุฑ. ู„ุงุญุธ ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ .. ุงู„ู„ูŠ ..
43
00:03:20,950 --> 00:03:25,630
ุงู„ู„ูŠ ู„ูˆ ุจุฏู†ุง ู†ู‚ูˆู„ ุฅู†ู‡ ุงู„ู€ Derivative ู…ู…ูƒู† ุชูƒูˆู† Zero
44
00:03:25,630 --> 00:03:30,510
ูƒูˆู† ุฅู† F of X ุตูุฑ. ุฃูˆ ู„ูˆ ุจุฏู‡ุง ุชูƒูˆู† ูˆุงู„ู€
45
00:03:30,510 --> 00:03:36,560
Derivative ู‡ู†ุง ู„ูˆ ู‚ู„ู†ุง ุฑูู„ุง 2X ุจุฏูˆ ูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ
46
00:03:36,560 --> 00:03:40,820
ุจุฏูˆ ูŠูƒูˆู† ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€ Zero ุงู„ู„ูŠ ู‡ูŠ F prime ุจุฏูˆ ููŠ
47
00:03:40,820 --> 00:03:47,220
ุงู„ู†ู‡ุงูŠุฉ ุชุฑูˆุญ ู„ู€ ุงู„ู„ูŠ ู‡ูŠูƒูˆู† ุจุฑุถู‡ ู‚ุฑูŠุจุฉ ู…ู† ุฅู†ู‡ ู†ู‚ูˆู„
48
00:03:47,220 --> 00:03:52,580
ุฃูˆ ู†ุฃูƒุฏ ุฅู†ู‡ุง ุตูุฑ ุนุดุงู† ู‡ูŠ ูƒุงู„ุธู† ุงู„ุบุงู„ุจ ุฅู† F prime
49
00:03:52,580 --> 00:03:58,660
ู‡ุชูƒูˆู† ุงูŠุดุŸ ุตูุฑ. ู‡ุฐู‡ ู…ุฌุฑุฏ ุชููƒูŠุฑุงุช. ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุฅู†ู‡
50
00:03:58,660 --> 00:04:03,080
ูุนู„ู‹ุง ู‡ูŠ ุงู„ู€ Derivative ุจุชุณุงูˆูŠ 0. ูƒูŠู ุจุฏูŠ ุฃุซุจุชู‡ุงุŸ
51
00:04:03,080 --> 00:04:11,280
ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุฅู†ู‡ ุงู„ู€ Limit ู„ู€ F of X ู†ู‚ุต F of 0 ุนู„ู‰
52
00:04:11,280 --> 00:04:17,600
X minus 0 ู„ู…ุง X ุชุฑูˆุญ ู„ู€ 0 ุจุชุณุงูˆูŠ 0. ุจุฏูŠ ุฃุซุจุช ู„ูƒ
53
00:04:17,600 --> 00:04:24,240
ู‡ูŠู‡ุง. ุงู„ุขู† ูˆุงุถุญ ุฅู† X ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ุตูุฑ. X ุชู‚ูˆู„ ุฅู„ู‰ ุงู„ุตูุฑ
54
00:04:24,240 --> 00:04:29,200
ู‡ุชู…ุฑ ุจุงู„ู€ Rational ูˆุงู„ู€ Irrational ุนุดุงู† ู‡ูŠูƒ ุตุนุจ ุฅู† ุฃู†ุง
55
00:04:29,200 --> 00:04:32,600
ุฃุชุญุฏุซ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุฌุงุฏ ุงู„ู€ Derivative ู…ุจุงุดุฑุฉ ู…ู†
56
00:04:32,600 --> 00:04:36,130
ุงู„ุขู† ุฃูˆ ู…ู† ุงู„ู€ Two Branches ุงู„ู„ูŠ ุนู†ุฏูŠ. ู„ุง ุจู‚ุฏุฑ ุฃุฎุฏ ู…ู†
57
00:04:36,130 --> 00:04:40,030
ุงู„ูŠู…ูŠู† ูˆู„ุง ุฃุฎุฏ ู…ู† ุงู„ูŠุณุงุฑ ู„ุฅู†ู‡ ุนู†ุฏูŠ ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ู…ู†
58
00:04:40,030 --> 00:04:44,130
ุงู„ูŠุณุงุฑ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‚ุงุจู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃุนุฏุงุฏ ุงู„ู€
59
00:04:44,130 --> 00:04:48,110
Rational ู„ู„ู€ Rational. ูุนุดุงู†ูƒ ุฃุณู„ู… ุดูŠุก ุฅู†ู‡ ู†ุณุชุฎุฏู…
60
00:04:48,110 --> 00:04:52,650
ุงู„ุชุนุฑูŠู ููŠ ุฅุซุจุงุช ู‡ุฐุง. ูŠุนู†ูŠ ุงู„ุขู† ุจุฏูŠ ุฃุซุจุช ู‡ุฐุง ุงู„ูƒู„ุงู…
61
00:04:53,270 --> 00:04:58,090
ูƒูŠู ุจุฏูŠ ุฃุซุจุชู‡ุŸ ุจุฏูŠ ุฃุซุจุช ู…ุง ูŠุนู†ูŠ ุจุฏูŠ ุฃุตู„ ู„ูƒู„ ุฅุจุณู„ูˆู†
62
00:04:58,090 --> 00:05:03,190
ุฃูƒุจุฑ ู…ู† 0 ุจุฏู„ุงุฌ ุฏู„ุชุง ุฃูƒุจุฑ ู…ู† 0. ุจุฏู„ุงุฌูŠุฉ ุญุงุฌูŠู„ูƒ ุฏู„ุชุง
63
00:05:03,190 --> 00:05:08,350
ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ูŠูƒูˆู† ุงู„ู€ Absolute Value ู„ู€ F of X ู†ุงู‚ุต
64
00:05:08,350 --> 00:05:14,630
F of Zero ุนู„ู‰ X minus Zero ูŠูƒูˆู† ู†ุงู‚ุต Zero ุทุจุนุง
65
00:05:14,630 --> 00:05:19,790
Zero ู‡ุฐูŠ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†. ู‡ุฐุง ู…ุชู‰ุŸ Whenever
66
00:05:22,670 --> 00:05:28,470
x-0 ุฃูƒุจุฑ ู…ู† 0 ูˆุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุง. ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู‡
67
00:05:28,470 --> 00:05:33,150
ุฃุซุจุชู‡ ุฃูˆ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู‡ ุฃุซุจุชู‡. ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุฅุฐุง ุฎู„ู‘ูŠู†ุง
68
00:05:33,150 --> 00:05:36,530
ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏู‡ ุนุดุงู† ุฃุซุจุช ุฅู† ุงู„ู€ Limit ู‡ุฐุง
69
00:05:36,530 --> 00:05:43,110
ุจุณุงูˆูŠ 0. ู„ุงุญุธ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃูˆู„ ุดูŠุก ุงู„ู€ Absolute
70
00:05:43,110 --> 00:05:50,530
Value of F of X ู†ุงู‚ุต F of 0 ุนู„ู‰ X-0 ุงูŠุด ู‡ุชุณุงูˆูŠุŸ
71
00:05:51,590 --> 00:05:57,390
ู‡ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Absolute Value of F of X ุนู†ุฏูŠ ูŠุง X
72
00:05:57,390 --> 00:06:01,070
ุชุฑุจูŠุน ูŠู…ูŠู† ูŠุง ุตูุฑ. ุฎู„ู‘ูŠู†ู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ุฃูˆู„ ุดูŠุก. F of X
73
00:06:01,070 --> 00:06:06,010
ู†ุงู‚ุต F of Zero ุงู„ู„ูŠ ู‡ูˆ ุฌุฏุงุด ุจูŠุณุงูˆูŠ Zero ู„ุฅู†ู‡ F
74
00:06:06,010 --> 00:06:10,130
of Zero ุจูŠุณุงูˆูŠ Zero ู„ุฅู†ู‡ Zero Rational. ุนู„ู‰ ุฅุฐู† ู‡ุฐุง
75
00:06:10,130 --> 00:06:16,230
ุตูุฑ ุนู„ู‰ X ู†ุงู‚ุต ุตูุฑ ุงู„ู„ูŠ ู‡ูˆ X. Absolute Value ู‡ุฐุง
76
00:06:16,230 --> 00:06:22,790
ุงู„ู‚ูŠู…ุฉ ุงู„ุขู† ู„ุงุญุธ ุจุชุณุงูˆูŠ ูŠุง ุฅู…ุง ุงู„ู„ูŠ ู‡ูˆ X ุชุฑุจูŠุน ุนู„ู‰
77
00:06:22,790 --> 00:06:30,750
X Absolute Value ููŠ ุญุงู„ุฉ X is Rational ุฃูˆ ุจุชุณุงูˆูŠ
78
00:06:30,750 --> 00:06:37,450
ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ููŠ ุญุงู„ุฉ X ุดู…ุงู„ู‡ุง is Irrational. ู„ุฃู†
79
00:06:37,450 --> 00:06:42,030
ู‚ูŠู… F of X ูŠุง X ุชุฑุจูŠุน ูŠุง ุตูุฑ ุญุณุจ ุงู„ู„ูŠ ู‡ูˆ ูƒุชุจู†ุงู‡
80
00:06:42,030 --> 00:06:46,790
ุญุงู„ูŠู‹ุง. ุงู„ุขู† ู‡ุฐุง ุจุงู„ุธุจุท ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ Absolute
81
00:06:46,790 --> 00:06:57,590
Value ู„ู„ X if X is Rational Zero if X is
82
00:06:57,590 --> 00:07:03,950
Irrational. ุงู„ุขู† ุงู„ุตูˆุฑุฉ ูˆุถุญุช. ุฎู„ู‘ูŠู†ุง ู†ุณู…ูŠ ู‡ุฐุง ุงู„ู„ูŠ
83
00:07:03,950 --> 00:07:09,900
ู‡ูˆ ูˆุงุญุฏ. ุงู„ุขู† ุญุถุฑุช ุนุดุงู† ุฃุตู„ ู„ู„ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ุฃู†ุง ูƒุงุชุจู‡ุง
84
00:07:09,900 --> 00:07:13,800
ู‡ู†ุง ูˆุงุดูˆู ุงูŠุด ุงู„ู€ Delta ุงู„ู„ูŠ ุจุชุทู„ุน ุนู†ุฏูŠ. ุงู„ุขู† ุจุชุฏุนูŠ
85
00:07:13,800 --> 00:07:17,380
ู…ุงู„ูŠ For every Epsilon ุฃูƒุจุฑ ู…ู† ุตูุฑ ุฃู†ุง ุจู‚ูˆู„ There
86
00:07:17,380 --> 00:07:21,800
exists Delta ู‡ุชุณุงูˆูŠ ู…ู† ุงู„ู€ Epsilon. ู‡ุชุฌุฏ ุชุดูˆููˆุง ู„ูŠุด
87
00:07:21,800 --> 00:07:26,980
There exists Delta ุจุณุงูˆูŠ Epsilon Such that if X
88
00:07:26,980 --> 00:07:35,210
minus 0 ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู† Delta Then ู‡ุฐุง ู…ุนู†ุงุชู‡
89
00:07:35,210 --> 00:07:37,870
ุงูŠุดุŸ ุฅู† ุฅุจุณู„ ูŠูˆุช ููŠู‡ุง ุงู„ู€ X ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุฃุตุบุฑ ู…ู†
90
00:07:37,870 --> 00:07:41,870
ู…ูŠู†ุŸ ู…ู† ุฏู„ุชุง. ุฅุฐุง ุงุฎุชุฑุช ุฏู„ุชุง ุงูŠุด ุจุชุณุงูˆูŠ ูˆู‡ูŠ ุงู„ู„ูŠ
91
00:07:41,870 --> 00:07:47,850
ู‡ุชุฎู„ุต ู…ู† ุงู„ู…ูˆุถูˆุน Then ุงู„ู„ูŠ ู‡ูˆ F of X ู†ู‚ุต F of Zero
92
00:07:47,850 --> 00:07:50,970
ุนู„ู‰
93
00:07:50,970 --> 00:07:57,790
X minus Zero ู‡ูˆ ุทุจุนู‹ุง ู†ู‚ุต ุงู„ุตูุฑ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ุง ุงู„ู€
94
00:07:57,790 --> 00:08:01,520
Derivative ุงู„ู…ุชูˆู‚ุน ุนู„ูŠุง ู‡ุฐู‡ ุจุงู„ุธุจุท ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ู‡ูˆ
95
00:08:01,520 --> 00:08:05,920
ุงู„ู„ูŠ ููˆู‚ ุทู„ุน ุงูŠุด ุนู†ุฏูŠุŸ ู‡ุฐุง ุจุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฅุฐุง
96
00:08:05,920 --> 00:08:09,760
ูƒุงู†ุช X Rational ูˆ 0 ุฅุฐุง ูƒุงู†ุช X Irrational ูŠุนู†ูŠ
97
00:08:09,760 --> 00:08:15,400
ุจู…ุนู†ู‰ ุขุฎุฑ ุจุณุงูˆูŠ Absolute Value ู„ู€ X if X is
98
00:08:15,400 --> 00:08:23,530
Rational ูˆ 0 if X is Irrational. In both cases ุงู„ู„ูŠ
99
00:08:23,530 --> 00:08:27,590
ู‡ูŠ ุฅุฐุง ูƒุงู† ุจุณุงูˆูŠ Absolute Value ู„ู„ู€ X ู‡ูŠูƒูˆู† ุฃุตุบุฑ
100
00:08:27,590 --> 00:08:31,250
ู…ู† Delta ุงู„ู„ูŠ ุฃู†ุง ุงุฎุชุฑุชู‡ุง ุดู…ุงู„ู‡ุง Epsilon ู‡ูŠูƒูˆู†
101
00:08:31,250 --> 00:08:34,570
ุฃุตุบุฑ ู…ู† Epsilon. ูˆุฃูŠุถุง ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉ ู„ุฅู† ุงู„ู€ Epsilon
102
00:08:34,570 --> 00:08:38,850
ุฏุงุฆู…ุง ุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† 0. ุฅุฐุง ุงู„ู„ูŠ ุญุตู„ุชู‡ ุฅู†ู‡ ู„ูƒู„
103
00:08:38,850 --> 00:08:42,490
Epsilon ุฃูƒุจุฑ ู…ู† 0 ุงู„ู„ูŠ ุฌูŠุช Delta ู„ู…ุง ูŠูƒูˆู† ู‡ุฐุง ุฃุตุบุฑ
104
00:08:42,490 --> 00:08:47,130
ู…ู† Delta ุจูŠุนุทูŠู†ูŠ ู‡ุฐุง ุฃุตุบุฑ ู…ู† Epsilon. ูˆู‡ุฐุง ูŠุนู†ูŠ
105
00:08:47,130 --> 00:08:54,370
Hence Limit ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ F of X ู†ุงู‚ุต F of 0
106
00:08:54,370 --> 00:09:01,690
ุนู„ู‰ X minus 0 ู„ู…ุง X ุชุฑูˆุญ ู„ู„ุตูุฑ ุจุณุงูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ
107
00:09:01,690 --> 00:09:12,870
ุงู„ุตูุฑ. ูˆู‡ุฐุง ู‡ูˆ ุชุนุฑูŠู ู…ู† ุงู„ู€ F prime ุนู†ุฏ 0 That is F
108
00:09:12,870 --> 00:09:18,740
prime at 0 ุจุณุงูˆูŠุฉ 0. ูˆููŠ ู†ูุณ ุงู„ูˆุงุฌุจ ุทุจุนู‹ุง ุฃุซุจุชู†ุง ุงู„ู€
109
00:09:18,740 --> 00:09:25,960
Existence ู„ู„ู€ F prime ุนู†ุฏ ุงู„ู€ Zero. ุฃูŠ ุณุคุงู„ุŸ ุทูŠุจ
110
00:09:25,960 --> 00:09:30,840
ู†ูŠุฌูŠ ุงู„ุขู† ู†ุดูˆู ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ. ุฎู„ูŠู†ุง ู†ู‚ูˆู„ ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน
111
00:09:30,840 --> 00:09:44,220
ู†ูŠุฌูŠ ู„ุณุคุงู„ 7 ุงู„ุขู†.
112
00:09:44,220 --> 00:09:48,100
ุณุคุงู„ 7 ุงูŠุด ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ุŸ ุณุคุงู„ 7 ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ ุณุคุงู„
113
00:09:48,100 --> 00:09:52,420
7 ู…ุงู„ูŠ ุนู†ุฏูŠ
114
00:09:52,420 --> 00:09:55,740
Suppose
115
00:09:55,740 --> 00:09:59,320
that F ู…ู† R ู„ู€ R is Differentiable at C. ูŠุนู†ูŠ ู†ูุชุฑุถ
116
00:09:59,320 --> 00:10:04,520
ุฃู†ู‡ F ู‚ุงุจู„ ู„ู„ุงุดุชู‚ุงู‚ ุนู†ุฏ C. ูˆู†ูุชุฑุถ ุฅู† F of C ู‚ูŠู…ุฉ ุงู„ู€
117
00:10:04,520 --> 00:10:07,920
Function ุนู†ุฏ C ุจุณุงูˆูŠุฉ 0. ู„ุฃู† ุจู‚ูˆู„ ู„ุดู‡ุฏุงุช ุงู„ู€ Absolute
118
00:10:07,920 --> 00:10:10,960
Value ู„ู„ F of X ุงู„ู„ูŠ ู‡ูŠ ู†ุณู…ูŠู‡ุง G of X is
119
00:10:10,960 --> 00:10:14,080
Differentiable at C If and only if F
120
00:10:14,080 --> 00:10:21,740
prime of C ุจุชุณุงูˆูŠ 0. ุฅุฐุง ู†ุงุฎุฏ ู„ูƒ F ู…ู† R ู„ุนู†ุฏ R ูˆ
121
00:10:21,740 --> 00:10:30,810
ุฌุงูŠู„ูƒ ุฅู† F prime ุนู†ุฏ C Exist ู…ุนุทูŠูƒ ุฅูŠุงู‡ุง ุฃูˆ ูˆู…ุนุทูŠูƒ
122
00:10:30,810 --> 00:10:37,390
ุงู„ู„ูŠ ู‡ูˆ F of C ุจุชุณุงูˆูŠ ุตูุฑ ูˆุจู‚ูˆู„ ู„ูŠ Prove that ุฃู†ู‡
123
00:10:37,390 --> 00:10:42,370
G of X ุจุณุงูˆูŠ ุงู„ู€ Absolute Value ู„ู„ู€ F of X is
124
00:10:42,370 --> 00:10:49,810
Differentiable at C If and only if F prime ุนู†ุฏ ุงู„ู€
125
00:10:49,810 --> 00:10:57,880
C ุงูŠุด ุจุชุณุงูˆูŠุŸ ุจุชุณุงูˆูŠ ุตูุฑุŒ ู…ุธุจูˆุทุŸ ุทูŠุจ ุดูˆู. ุงู„ุขู† ุฎู„ูŠู†ุง
126
00:10:57,880 --> 00:11:03,380
ุงูุชุฑุถ ุฃูˆู„ ุดูŠุก ุฅู† F prime ุนู†ุฏ C ุงูŠุด ุจุชุณุงูˆูŠุŸ ุตูุฑ. ู†ู‚ูˆู„
127
00:11:03,380 --> 00:11:09,320
Suppose proof. Suppose
128
00:11:09,320 --> 00:11:15,580
Suppose
129
00:11:15,580 --> 00:11:23,120
that F prime at C ุจุชุณุงูˆูŠ ุตูุฑ. ุงูŠุด ู‡ุฐุง ุจูŠุนู†ูŠุŸ ุฅู† Then
130
00:11:23,120 --> 00:11:25,940
Limit
131
00:11:27,220 --> 00:11:36,680
F of X ู†ุงู‚ุต F of C ุนู„ู‰ X minus C ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ C
132
00:11:36,680 --> 00:11:40,240
ุงู„ู„ูŠ ู‡ูˆ ุจูŠุณุงูˆูŠ ุตูุฑ ู„ุฃู† ู‡ุฐุง ุชุนุฑูŠู ู…ูŠู†ุŸ F ุจุฑุงูŠู†
133
00:11:40,240 --> 00:11:46,000
ุจูŠุณุงูˆู‰ ุตูุฑ. ูˆ F of C ุงูŠุด ู…ุนุทูŠู†ูŠ ุฅูŠุงู‡ุŸ ุจูŠุณุงูˆูŠ ุตูุฑ ู„ุฃู†
134
00:11:46,000 --> 00:11:53,260
ุจูŠุณุงูˆู‰ Limit F of X ุนู„ู‰ X minus C ู„ู…ุง X ุชุฑูˆุญ ู„ู…ูŠู†ุŸ
135
00:11:53,260 --> 00:11:58,730
ู„ู„ู€ C. ู…ุฏุงู…ุฉ ุงู„ู€ Limit ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ุงู„ู€ Limit ู…ู†
136
00:11:58,730 --> 00:12:02,270
ุงู„ูŠู…ูŠู† ูˆุงู„ู€ Limit ู…ู† ุงู„ูŠุณุงุฑ ุฃูŠุด ุจุฑุถู‡ ู…ุงู„ู‡ุงุŸ ู…ูˆุฌูˆุฏุฉ
137
00:12:02,270 --> 00:12:06,710
ู…ุงุดูŠ ุงู„ุญุงู„. ุฃู†ุง ุงู„ุขู† ุบุฑุถูŠ ุฅู† ุฃูˆ ุฃุซุจุช ุฅู† G of X ุจุณุจุจ
138
00:12:06,710 --> 00:12:09,190
Absolute Value of F of X ุฃูŠุด ู…ุงู„ู‡ุงุŸ Is
139
00:12:09,190 --> 00:12:14,110
Differentiable at C. ู…ุงุดูŠ. ุงู„ุขู† ุงูŠุด ุงู„ู„ูŠ ุจุฏูŠ ุฃุซุจุชู‡
140
00:12:14,110 --> 00:12:22,370
ุจู…ุนู†ู‰ ุขุฎุฑ ุจุฏูŠ ุฃุซุจุช ู„ูƒ ุฅู†ู‡ Limit ุงู„ู€ G of X ู†ุงู‚ุต G of C
141
00:12:22,370 --> 00:12:29,430
C ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C exist ุจุดูŠุก ุฅุฐุง
142
00:12:29,430 --> 00:12:31,930
ุฃุซุจุชูˆุง ู…ุนู†ุงุชู‡ ุฃุซุจุชุชูˆุง ุฅู† ุงู„ู€ G is differentiable
143
00:12:31,930 --> 00:12:36,970
at C ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุจุงู„ุฏุซุจุช limit ู„ู„ู€ absolute value
144
00:12:36,970 --> 00:12:42,660
ู„ู„ู€ F of X ู†ุงู‚ุต ุงู„ู€ g of x ู†ุงู‚ุต ุงู„ู€ absolute value of f
145
00:12:42,660 --> 00:12:48,960
of c ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุจุชุฑูˆุญ ู„ู„ู€ C exist ุจุฏูŠ ุฃุดูˆู
146
00:12:48,960 --> 00:12:53,240
ู‡ุฏุง ู„ุณู‡ exist ูˆู„ุง ู„ุฃ ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุงู„ู„ูŠ ู‡ูˆ limit
147
00:12:53,240 --> 00:12:58,900
absolute value of f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C as X ุจุชุฑูˆุญ
148
00:12:58,900 --> 00:13:07,520
ู„ู„ู€ C ุฃุดู…ุงู„ู‡ exist ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ุงู„ุขู† ูˆุงุถุญ
149
00:13:08,360 --> 00:13:13,000
ุนู†ุฏูŠ ู…ู† ุงู„ู„ูŠ ููˆู‚ ุงู„ู€ limit ู„ู„ู€ F of X ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C
150
00:13:13,000 --> 00:13:19,160
as X ุจุชุฑูˆุญ ู„ู„ู€ C ุฅู†ู‡ ุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ู…ุธุจูˆุทุŸ
151
00:13:19,160 --> 00:13:27,160
ุฅุฐุง ู‡ูŠูƒูˆู† ุนู†ุฏูŠ limit ุงู„ู„ูŠ ู‡ูˆ limit absolute value
152
00:13:27,160 --> 00:13:33,400
ู„ู„ู€ limit ุฎู„ูŠู†ูŠ ุฃูƒุชุจู‡ุง ุจุณ ููŠ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ุงู„ุตูุฑ ู‡ุฐุง
153
00:13:33,400 --> 00:13:43,200
ุงู„ู„ูŠ ุจุฏุฃุชุจุชู‡ ุงู‡ ุฅู†ู‡ exist ุนู†ุฏูŠ ุงู„ู€ absolute value ู„
154
00:13:43,200 --> 00:13:52,020
limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ุงู„ู„ูŠ ู‡ูˆ
155
00:13:52,020 --> 00:13:58,020
ู…ู† ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ existุŒ ู…ุธุจูˆุทุŸ ูˆุงุถุญุฉ ูˆูŠุณุงูˆูŠ
156
00:13:58,020 --> 00:14:05,160
ุงู„ู„ูŠ ู‡ูˆ limit absolute value ู„ู„ู€ F of X ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต
157
00:14:05,160 --> 00:14:12,420
C as X ุจุชุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ู€ C ุจุดูŠุก
158
00:14:12,420 --> 00:14:16,820
ุงู„ุญุงู„ ุงู„ุขู† ู…ู† ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ูƒู„ู‡ ู‡ูŠูƒูˆู† ู…ูˆุฌูˆุฏ
159
00:14:16,820 --> 00:14:20,480
ุจู†ุงุก ุนู„ู‰ ู‡ุฐุง ุฅู†ู‡ ู…ูˆุฌูˆุฏ ุฎู„ู‘ูŠู†ูŠ ุฃุฎุฏ ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ู†ุง
160
00:14:20,480 --> 00:14:25,860
ู…ู† ุงู„ูŠู…ูŠู† ูุจุตูŠุฑ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† limit absolute value
161
00:14:25,860 --> 00:14:32,140
ู„ู€ F of X ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุจุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู†
162
00:14:32,140 --> 00:14:38,330
ุงู„ูŠู…ูŠู† ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑุตุงุฑ ู…ูˆุฌูˆุฏ ูˆุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ
163
00:14:38,330 --> 00:14:42,350
ุตูุฑ ู‡ุฐุง ุฎู„ู‘ูŠู‡ ู„ุฅู†ู‡ ู‡ุฐุง ุงู„ู„ูŠ ุจุฏู†ุง ู†ุตู„ู‘ู‡ ู„ุฃู† limit
164
00:14:42,350 --> 00:14:47,310
ุตุงุฑ ุนู†ุฏูŠ ู…ุนู†ู‰ ุขุฎุฑ limit absolute value of f of x
165
00:14:47,310 --> 00:14:53,850
ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ ุตูุฑ
166
00:14:53,850 --> 00:14:58,360
existู„ุงุญุธูˆุง ู‚ุงุนุฏ ุฑุงูŠุญ ู„ุฃุซุจุช ุฃู† ู‡ุฐุง exist ุฏู‡ ุฎุฏ ุงู„ุขู†
167
00:14:58,360 --> 00:15:03,520
ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ุฎุฏ ู„ุฃู† ุฃุญุณุจ similarly ุนู†ุฏูŠ ุตูุฑ
168
00:15:03,520 --> 00:15:08,840
ุจูŠุณุงูˆูŠ absolute value of limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C
169
00:15:08,840 --> 00:15:15,100
ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ูˆูŠุณุงูˆูŠ ุนุจุงุฑุฉ ุนู†
170
00:15:15,100 --> 00:15:19,960
limit absolute value of f of x ุนู„ู‰ absolute value
171
00:15:19,960 --> 00:15:25,900
of X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ู‡ุฐู‡
172
00:15:25,900 --> 00:15:34,580
ู†ูุณู‡ุง ุจูŠุณุงูˆูŠ limit ุฃูˆ ุจูŠุณุงูˆูŠ ุณุงู„ุจ limit f of x
173
00:15:34,580 --> 00:15:42,270
absolute value ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู†
174
00:15:42,270 --> 00:15:47,030
ุงู„ูŠุณุงุฑุŒ ู„ูŠุดุŸ ู„ุฃู† X ุฃุตุบุฑ ู…ู† CุŒ ุฅุฐุง X ู†ุงู‚ุต C ุณุงู„ุจุฉ
175
00:15:47,030 --> 00:15:50,230
ุฅุฐุง ุงู„ู€ absolute value ุณุงู„ุจ ุฅู„ูŠู‡ุง ูˆุงุฎุฏุช ุงู„ุณุงู„ุจ ุจุฑุง
176
00:15:50,230 --> 00:15:54,990
ู‡ุฐุง ุงู„ุขู† ุงู„ู…ุฎุถุฑ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ุฅุฐุง ู‡ุฐุง ู„ุญุงู„ู‡ ุจุฑุถู‡ ุฅูŠุด
177
00:15:54,990 --> 00:16:01,270
ู…ุงู„ู‡ุŸ ุตูุฑุŒ ุฅุฐุง limit absolute value ู„ู„ู€ F of X ุนู„ู‰
178
00:16:01,270 --> 00:16:04,870
X ู†ุงู‚ุต CุŒ ู„ู…ุง X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ุงู„ูŠุณุงุฑุŒ ุจุฑุถู‡ ุฅูŠุด
179
00:16:04,870 --> 00:16:10,450
ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ุตูุฑุŒ ู„ุงุญุธ ุฅู† ุงู„ู€ limit ู…ู† ุงู„ูŠู…ูŠู† ูˆุงู„ู€
180
00:16:10,450 --> 00:16:15,890
limit ู…ู† ุงู„ูŠุณุงุฑ ู…ูˆุฌูˆุฏ ูˆุจุณุงูˆูŠ 0 ู…ุชุณุงูˆูŠูŠู† ูŠุนู†ูŠ ุงู„ุขู†
181
00:16:15,890 --> 00:16:23,130
ุงู„ู€ limit ู‡ุฐุง ุตุงุฑ ุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ 0 ุฅุฐุง ุงู„ุขู† ู‡ุฐุง
182
00:16:23,130 --> 00:16:29,870
ุงู„ุขู† ุจู†ู‚ูˆู„ู‡ ูƒู„ู‡ ุชุญุช ู‡ุฐุง ูˆุจู‚ูˆู„ hence ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ G
183
00:16:29,870 --> 00:16:38,310
prime of C ุจูŠุณุงูˆูŠ limit of g of x ู†ู‚ุต g of c ุนู„ู‰ ุงู„ู€ X
184
00:16:38,310 --> 00:16:46,870
ู†ุงู‚ุต C as X โ†’ C ุจูŠุณุงูˆูŠ ุญุณุจ ุงู„ู„ูŠ ุนู†ุฏูŠ ู…ู† ู‡ู†ุง ูˆู…ู†
185
00:16:46,870 --> 00:16:55,310
ู‡ู†ุง ูˆู…ู† ู‡ู†ุง ู‡ูŠุณุงูˆูŠ ุตูุฑ ุงู„ุขู† conversely ุจุชูุชุฑุถ
186
00:16:55,310 --> 00:16:58,090
ุทุจุนุงู‹ ุฅู† ุงู„ู€ conversely ู‡ูŠูƒูˆู† ุงู„ุฎุทูˆุงุช ูƒุซูŠุฑ ู…ุดุงุจู‡ุฉ
187
00:16:58,090 --> 00:17:03,350
ู„ู„ูŠ ู‡ู†ุง ูŠุนู†ูŠ ูƒุซูŠุฑ ุงู„ู„ูŠ ุงุณุชุฎุฏู…ุชู‡ ู‡ู†ุง ู‡ุณุชุฎุฏู…ู‡ ููŠ
188
00:17:03,350 --> 00:17:03,930
ุงู„ู„ูŠ ุจุนุฏู‡ุง
189
00:17:12,670 --> 00:17:17,790
Conversely suppose that
190
00:17:17,790 --> 00:17:25,890
g of x ุณูˆุงุก absolute value ุฃูˆ f of x ุงู„ู„ูŠ
191
00:17:25,890 --> 00:17:33,550
ู‡ูˆ is differentiable at C ุจุฏุง ูˆุฌุฏู„ูƒ ุงู„ุขู† ุฃุซุจุชู„ูƒ ุฅู†
192
00:17:33,550 --> 00:17:39,650
f prime of C ุฅูŠุด ู…ุง ู„ู‡ุง ุจุชุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุจุฏุง ุฃุซุจุช
193
00:17:39,650 --> 00:17:46,880
limit f of x ู†ุงู‚ุต f of C ุงู„ู„ูŠ ู‡ูŠ ุตูุฑ ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C
194
00:17:46,880 --> 00:17:51,160
ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ุฅูŠุด ุจูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ ุตูุฑ ุจูƒูˆู† ุฎู„ุตุช
195
00:17:51,160 --> 00:17:58,500
ุงู„ุขู† issue ู…ุดุงุจู‡ ุนู†ุฏ ุงู„ุขู† limit
196
00:17:58,500 --> 00:18:05,180
ู‡ุฐุง exist ุนู†ุฏ ุงู„ู€ C ุฅุฐุง ุนู†ุฏูŠ ุตุงุฑ ุงู„ู€ g prime of C exist
197
00:18:05,180 --> 00:18:10,430
ูˆูŠุณุงูˆูŠ ุญุณุจ ุงู„ุญุฏูŠุซ ุงู„ู„ูŠ ู‡ู†ุง limit absolute value of
198
00:18:10,430 --> 00:18:18,570
f of x ู†ุงู‚ุต ุงู„ู€ absolute value of f of C ุตูุฑ ุนู„ู‰ ุงู„ู€ X
199
00:18:18,570 --> 00:18:26,310
ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ุฃุดู…ุงู„ู‡ exist ู…ุนูŠู‘ุŸ ุทูŠุจ ุดูˆู
200
00:18:26,310 --> 00:18:34,960
ุงู„ุขู† ุนู†ุฏูŠ ุฅุฐุง ุงุญุณุจ ู„ูŠ limit f of x ุงู„ู„ูŠ ุญุณุจู†ุงู‡ุง ู‚ุจู„
201
00:18:34,960 --> 00:18:39,660
ุจุดูˆูŠุฉ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู†
202
00:18:39,660 --> 00:18:47,020
ูˆูŠู†ุŸ ู…ู† ุงู„ูŠู…ูŠู† ุจูŠุณุงูˆูŠ limit ู„ู„ู€ absolute value ู„ู€ f
203
00:18:47,020 --> 00:18:53,780
of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C ู…ู† ุงู„ูŠู…ูŠู† ู„ุฃู† ุงู„ู€
204
00:18:53,780 --> 00:19:01,840
X ุฃูƒุจุฑ ู…ู† ุงู„ู€ C ูˆุงุถุญุฉ ุงู„ุขู† ู…ู† ุฌู‡ุฉ ุฃุฎุฑู‰ ุงุญุณุจ ู„ูŠ ุงู„ู€
205
00:19:01,840 --> 00:19:08,060
absolute value ู„ู„ู€ limit ู„ู„ู€ F of X ุทุจุนุงู‹ ู‡ุฐุง ุฅูŠุด
206
00:19:08,060 --> 00:19:15,620
ู‡ูŠุณุงูˆูŠ ุจูŠุณุงูˆูŠ g prime of CุŒ ู…ุธุจูˆุทุŸ ุจูŠุณุงูˆูŠ g prime of
207
00:19:15,620 --> 00:19:23,290
CุŒ ู…ูˆุฌูˆุฏุŒ limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู€ C
208
00:19:23,290 --> 00:19:28,570
ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ุจูŠุณุงูˆูŠ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ุณุงู„ุจ
209
00:19:28,570 --> 00:19:33,530
limit absolute value of f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X
210
00:19:33,530 --> 00:19:41,050
ุชุฑูˆุญ ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ ุงู„ุขู† ูˆุงุถุญ ุจู…ุง ุฃู† ู‡ุฐู‡
211
00:19:41,050 --> 00:19:51,470
exist ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒูŠ ุจุนุถ ุงู„ุขู† ู‡ุฐุง
212
00:19:51,470 --> 00:19:56,590
ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ู‡ุฐุง ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ู†ุดูŠู„ ุงู„ู†ุงู‚ุต ู…ู† ู‡ู†ุง ูˆู†
213
00:19:56,590 --> 00:20:03,390
ุถุฑุจู‡ ู‡ู†ุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ู…ู‚ุฏุฑูŠู† ู‡ุฏูˆู„ุฉ ุจู…ุง ุฅู†ู‡ ู…ุชุณุงูˆูŠูŠู†
214
00:20:03,390 --> 00:20:10,310
ู„ุฅู† ุงู„ุงุชู†ูŠู† ุฅูŠุด ุจูŠุณุงูˆูŠู† ุงู„ู€ g prime of C ู…ุธุจูˆุท ุฅุฐุง
215
00:20:10,310 --> 00:20:13,390
ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฅุฐุง ุตุงุฑ
216
00:20:13,390 --> 00:20:20,940
ุนู†ุฏูŠ ุงู„ู€ limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C
217
00:20:20,940 --> 00:20:29,560
ู…ู† ุงู„ูŠู…ูŠู† absolute value ุจูŠุณุงูˆูŠ ู†ุงู‚ุต limit f of x
218
00:20:29,560 --> 00:20:34,600
ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ูŠุณุงุฑ
219
00:20:34,600 --> 00:20:41,500
ูˆุงุถุญุฉุŸ ู„ูƒู† ุฃุตู„ุงู‹ ุนู†ุฏูŠ ู‡ุฐุง
220
00:20:43,370 --> 00:20:49,010
ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุชู†ูŠู† ุจูŠุณุงูˆูŠ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ู…ุงุดูŠ ุงู„ุญุงู„
221
00:20:49,010 --> 00:20:55,850
ุฅุฐุง ู„ุงุฒู… ุนู†ุฏูŠ ู…ู† ู‡ู†ุง g prime ูˆ g prime ุงู„ู„ูŠ ู‡ูˆ
222
00:20:55,850 --> 00:21:00,210
ุตุงุฑ ุจูŠุณุงูˆูŠ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ุฅุฐุง ู‡ูŠุทู„ุน ุงู„ู€ g prime ุฅูŠุด
223
00:21:00,210 --> 00:21:05,530
ู…ุงู„ู‡ ุจูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุตุงุฑ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ูƒู„ู‡ ุฅูŠุด ุจุฏู‡ ูŠุณุงูˆูŠ
224
00:21:05,530 --> 00:21:08,650
ุตูุฑ ูˆู‡ุฐุง ุจูŠุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ ุงู„ู€ limit ู…ู† ุงู„ูŠู…ูŠู† ูˆุงู„ู€
225
00:21:08,650 --> 00:21:12,070
limit ู…ู† ุงู„ูŠุณุงุฑ ู…ุชุณุงูˆูŠูŠู† ุฅุฐุง ุตุงุฑุช limit f of x ุนู„ู‰
226
00:21:12,070 --> 00:21:23,310
X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ุจุฏู‡ุง ุชุณุงูˆูŠ ุตูุฑ ุฃูŠ ุณุคุงู„ุŸ
227
00:21:23,310 --> 00:21:31,130
ุฒูŠ ู…ุง ุญูƒูŠู†ุงุŒ ุงู„ุขู† ุฅุญู†ุง ู‚ู„ู†ุง ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ D ุจุฏูŠู†ุง D
228
00:21:31,130 --> 00:21:34,600
ุจูŠุณุงูˆูŠ f of x ุงู„ู€ differential ุจุงู„ุฃุฏ C ุฌุจู†ุง g prime
229
00:21:34,600 --> 00:21:37,500
ูˆูƒุชุจู†ุงู‡ุง ุจุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุจุนุฏูŠู† ุฃุฎุฏู†ุง ุงู„ู€
230
00:21:37,500 --> 00:21:40,120
absolute value ู„ู€ limit f of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู… X
231
00:21:40,120 --> 00:21:45,200
ุชุฑูˆุญ ู„ู€ C positive ุทู„ุนุช ุนู†ุฏูŠ ุจูŠุณุงูˆูŠ g prime of C ูˆ
232
00:21:45,200 --> 00:21:48,680
ุฃุฎุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต ู‡ุฐู‡ ุทู„ุนุช ุนู†ุฏูŠ ุจุฑุถู‡ g prime
233
00:21:48,680 --> 00:21:53,920
ุงู„ุงุชู†ูŠู† ุงู„ู€ C ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุจูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆุงุญู†ุง
234
00:21:53,920 --> 00:21:57,640
ุจู†ุนุฑู ููŠ ุงู„ุฃุตู„ ุฅู† f prime of C exist ูŠุนู†ูŠ
235
00:21:57,640 --> 00:22:01,900
differentiable ูŠุนู†ูŠ ุงู„ู€ limit ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุฌูˆุฏ ูˆู…ู†
236
00:22:01,900 --> 00:22:05,100
ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ุฒูŠ ุจุนุถ ูŠุนู†ูŠ ูŠุนู†ูŠ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ
237
00:22:05,100 --> 00:22:07,500
ู‡ุฐุง ู…ู† ุงู„ูŠู…ูŠู† ูˆู‡ุฐุง ู…ู† ุงู„ูŠุณุงุฑ ูŠุนู†ูŠ ููŠ ุงู„ูˆุงู‚ุน ู‡ุฐุง
238
00:22:07,500 --> 00:22:10,960
ุงู„ู„ูŠ ุฌูˆุง ู‡ูˆ ู†ูุณู‡ ุงู„ู„ูŠ ุฌูˆุง ุจูŠุณุงูˆูŠ limit of f of x ูŠุนู†ูŠ
239
00:22:10,960 --> 00:22:15,780
ุจู…ุนู†ู‰ ุขุฎุฑ absolute value ู„ู€ limit of f of x ุนู„ู‰ ุงู„ู€ X
240
00:22:15,780 --> 00:22:22,100
ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู‡ูˆ ู†ูุณู‡ ุณุงู„ุจ limit ู„ู„ู€ f of
241
00:22:22,100 --> 00:22:27,400
x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ X ุชุฑูˆุญ ู„ู„ู€ C ู…ู† ูˆูŠู† ู…ู†
242
00:22:27,400 --> 00:22:31,540
ุงู„ูŠุณุงุฑ ู‡ูˆ ู†ูุณู‡ ู„ู„ู€ C ู…ู† ูˆูŠู† ุชุจุช ู‡ุฐู‡ ู„ุฃู† ุงุญู†ุง ุจู†ู‚ูˆู„
243
00:22:31,540 --> 00:22:34,560
f prime of C exist ูŠุนู†ูŠ ุงู„ู€ limit ู‡ุฐุง ู…ูˆุฌูˆุฏ ูˆู…ู†
244
00:22:34,560 --> 00:22:37,360
ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ุฒูŠ ุจุนุถ ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ูุณ
245
00:22:37,360 --> 00:22:41,200
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅุฐุง ุตุงุฑ ุนู†ุฏ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจูŠุณุงูˆูŠ
246
00:22:41,200 --> 00:22:46,800
ุตูุฑ ู„ุฃู† ุงู„ุงุชู†ูŠู† ุจูŠุณุงูˆูŠุง ุจูŠุณุงูˆูŠ ุตูุฑ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ limit f
247
00:22:46,800 --> 00:22:50,880
of x ุนู„ู‰ ุงู„ู€ X ู†ุงู‚ุต C ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ absolute value as X
248
00:22:50,880 --> 00:22:56,100
ุจุชุฑูˆุญ ู„ู„ู€ C ุจูŠุณุงูˆูŠ ุตูุฑ ูˆู…ู† ุซู… ุงู„ู„ูŠ ุฌูˆุง ุจูŠุณุงูˆูŠ ุตูุฑ ู‡ูˆ
249
00:22:56,100 --> 00:22:58,740
ู…ูŠู† ู‡ูˆ ุงู„ู„ูŠ ุฌูˆุง ู‡ุฐุง ุงู„ู„ูŠ ูƒู†ุง ุจุฏู†ุง ู†ุตู„ู‡ ู…ู† ุงู„ุฃูˆู„
250
00:22:58,740 --> 00:23:04,260
ุงู„ู„ูŠ ู‡ูˆ f prime of C ุจุชุณุงูˆูŠ ุตูุฑ ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู‡ุฐุง
251
00:23:04,260 --> 00:23:10,300
ุชูˆุถูŠุญ ุจุดูƒู„ ูƒุงู…ู„ ู„ู„ูŠ ุตุงุฑ ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุชุฌุงู‡
252
00:23:10,300 --> 00:23:16,200
ุงู„ุซุงู†ูŠ ู†ูŠุฌูŠ ู„ุณุคุงู„ ุจุนุฏ ู…ุง ุฎู„ุตู†ุง ุงู„ุณุคุงู„ ุณุจุนุฉ ู†ูŠุฌูŠ
253
00:23:16,200 --> 00:23:23,420
ู„ุณุคุงู„ ุชุณุนุฉ ุชุณุนุฉ ุฅูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุชุณุนุฉ ู†ุดูˆู ุฅูŠุด ุณุคุงู„
254
00:23:23,420 --> 00:23:31,360
ุชุณุนุฉ ุจู‚ูˆู„ ูˆู†ุญู„ ุณุคุงู„ ุชุณุนุฉ ุณุคุงู„ ุชุณุนุฉ ุจู‚ูˆู„ ู„ูŠู‡
255
00:23:31,360 --> 00:23:39,110
ุจุงุฎุชุตุงุฑ ุฅู†ู‡ ู„ูˆ ูƒุงู† ุนู†ุฏู‡ ุงู„ู€ function of ุนุจุงุฑุฉ ุนู† ู…ู†
256
00:23:39,110 --> 00:23:43,130
R ู„ู€ R even function ุทุจุนุงู‹ ุนุงุฑููŠู† ุฅูŠุด ุงู„ู€ even ุงู„ู„ูŠ
257
00:23:43,130 --> 00:23:49,130
ู‡ูˆ f ู†ุงู‚ุต x ุจูŠุณุงูˆูŠ f x ู„ูƒู„ x ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ R and
258
00:23:49,130 --> 00:23:54,310
has a derivative at every point then f prime is an
259
00:23:54,310 --> 00:23:58,190
odd function ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ ู„ูˆ ูƒุงู†ุช ุจุงุฎุชุตุงุฑ ูŠุนู†ูŠ ู„ูˆ
260
00:23:58,190 --> 00:24:01,730
ูƒุงู†ุช ุงู„ู€ f even ูˆุงู„ู€ derivative ู…ูˆุฌูˆุฏุฉ ุจุชูƒูˆู† ุงู„ู€
261
00:24:01,730 --> 00:24:07,010
derivative odd ูˆู„ูˆ ูƒุงู†ุช ุงู„ู€ derivative odd ุจุชูƒูˆู†
262
00:24:07,010 --> 00:24:11,350
ุงู„ู€ function ุงู„ู€ f prime ุฅูŠู‡ ุดู…ุงู„ู‡ุง is even ุงู†ุญู„
263
00:24:11,350 --> 00:24:16,970
ูˆุงุญุฏุฉ ู…ู† ู‡ู†ุง ูˆุงู„ุชุงู†ูŠุฉ similarly ุฒูŠู‡ุง ุงู„ุขู† ู„ู†ูุชุฑุถ f
264
00:24:16,970 --> 00:24:29,890
ู…ู† ุนู†ุฏ R ู„ุนู†ุฏ R be an odd differentiable function
265
00:24:29,890 --> 00:24:34,970
ู…ุงุดูŠ ุงู„ุญุงู„ show that
266
00:24:36,040 --> 00:24:44,360
f' is even a proof ุจุฏู†ุง ู†ุซุจุช ุฅู†ู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ f
267
00:24:44,360 --> 00:24:49,940
ุงู„ู„ูŠ ู‡ูŠ odd function ุจุฏูˆ ูŠูƒูˆู† ุนู†ุฏู‡ ูˆ
268
00:24:49,940 --> 00:24:52,320
differentiable ุจุฏูˆ ูŠูƒูˆู† ุนู†ุฏู‡ derivative ุฅู„ู‡ุง ุฅูŠู‡
269
00:24:52,320 --> 00:25:03,000
ุฅูŠุด even ู„ุฃู† let C element in R be arbitrary and
270
00:25:03,000 --> 00:25:04,180
fixed
271
00:25:06,310 --> 00:25:15,930
ู†ุงุฎุฏ ุงู„ู€ R ู†ุงุฎุฏ ุงู„ู€ C ุฃูŠ ุงู„ู„ูŠ ู‡ูˆ real number in
272
00:25:15,930 --> 00:25:23,360
R ู„ูƒู† ู†ุญูƒูŠ ุนู† ุฃูŠ ุดูŠุก ู…ุญุฏุฏ ุงู„ุขู† f prime of C ุจุฏุฃ
273
00:25:23,360 --> 00:25:29,060
ุฃุซุจุช ู„ูƒ ุฅู†ู‡ ู‡ูˆ ุจูŠุณุงูˆูŠ f prime of ู†ุงู‚ุต C ูŠุนู†ูŠ f prime
274
00:25:29,060 --> 00:25:34,920
is even ุฅุฐุง ุฎุฏ f prime ู†ุงู‚ุต C ูˆุงุจุฏุฃ ุญุณุจ ูˆูˆุงุตู„ูƒ ููŠ
275
00:25:34,920 --> 00:25:39,140
ุงู„ู†ู‡ุงูŠุฉ ุจูŠุณุงูˆูŠ f prime of C ุฅุฐุง f prime is even ุจูŠุณุงูˆูŠ
276
00:25:39,140 --> 00:25:49,380
limit ุงู„ู„ูŠ ู‡ูŠ f of x ู†ุงู‚ุต f of ู†ุงู‚ุต C ุนู„ู‰ x ู†ุงู‚ุต
277
00:25:50,570 --> 00:25:57,070
ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต C ู„ู…ุง ุงู„ู€ x ุชุฑูˆุญ ู„ู…ูŠู† ู„ู€ ู†ุงู‚ุต C ู…ุธุจูˆุท
278
00:25:57,070 --> 00:26:05,550
ุทูŠุจ ูˆุจูŠุณุงูˆูŠ limit ุงู„ู€ f ุฅูŠุด ู…ุนุทูŠู†ุง ุฅูŠุงู‡ุง ุนุจุงุฑุฉ ุนู† odd
279
00:26:05,550 --> 00:26:12,250
ุฅูŠุด ูŠุนู†ูŠ odd ูŠุนู†ูŠ f of ู†ุงู‚ุต x ุจูŠุณุงูˆูŠ ู†ุงู‚ุต f of x
280
00:26:12,250 --> 00:26:16,590
ู…ุธุจูˆุท ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุฅูŠุด ู…ุง ู„ู‡ุง odd function ุงู„ู„ูŠ ู‡ูˆ
281
00:26:16,590 --> 00:26:28,550
ุจูŠุณุงูˆูŠ limit F of x ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต f of ู†ุงู‚ุต x
282
00:26:28,550 --> 00:26:34,150
ูˆุงุถุญ ุฃู‡ุŸ
283
00:26:34,150 --> 00:26:37,150
f of ู†ุงู‚ุต x ุจูŠุณุงูˆูŠ ู†ุงู‚ุต f of x ูŠุนู†ูŠ f of x ุจูŠุณุงูˆูŠ
284
00:26:37,150 --> 00:26:41,230
ู†ุงู‚ุต f of ู†ุงู‚ุต x ูุงู„ุฌุฏ ุชุนุฑููˆุง ู„ูŠุด ุนู…ู„ุช ู‡ูŠูƒ ู„ุฃู†
285
00:26:41,230 --> 00:26:48,570
ู†ุงู‚ุต f of ู†ุงู‚ุต c ุงู„ุขู† f is odd ู…ุธุจูˆุท ุจูŠุตูŠุฑ ุฒุงุฆุฏ f
286
00:26:48,570 --> 00:26:49,330
of c
287
00:26:52,220 --> 00:26:58,060
ุนู„ู‰ ุฎุฏ ุงู„ุขู† ู†ุงู‚ุต ู…ู† ู‡ู†ุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู†
288
00:26:58,060 --> 00:27:08,220
ู†ุงู‚ุต x ุงู„ุขู† ู†ุงู‚ุต ุงู„ c ู„ู…ุง x ุชุฑูˆุญ ู„ู…ูŠู† ู„ุณุงู„ุจ ุงู„ c
289
00:27:08,220 --> 00:27:14,040
ุงู„ x ุจุชุฑูˆุญ ู„ุณุงู„ุจ ุงู„ c ุฅุฐุง ูˆ ูู‚ุท ุฅุฐุง ุณุงู„ุจ ุงู„ x
290
00:27:14,040 --> 00:27:22,160
ุจุชุฑูˆุญ ู„ู…ูŠู† ุฅู„ู‰ ุงู„ c ุงู„ุขู† ุฎุฏ ู„ูŠ y ุจูŠุณุงูˆูŠ ุณุงู„ุจ ุงู„ x
291
00:27:22,160 --> 00:27:29,240
ูˆุงุณุชุจุฏู„ ุนุดุงู† ู†ูˆุถุญ ู„ูƒ ุฅูŠุงู‡ ุจูŠุณุงูˆูŠ limit ุงู„ุขู† ุฎุฏ ุงู„ุขู†
292
00:27:29,240 --> 00:27:38,320
ุนู†ุฏูŠ f ุญูƒู…ุง ูƒุงู† ู†ู‚ุต x ุณู…ู‘ูŠู†ุง ุงู„ y limit ู†ุงู‚ุต F of y
293
00:27:38,320 --> 00:27:49,390
ุฒุงุฆุฏ f of c ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ y ุจุชุฑูˆุญ ุฅู„ู‰ ุงู„ c ูˆู‡ู†ุง y
294
00:27:49,390 --> 00:27:57,430
ู†ุงู‚ุต ุงู„ c ูˆู‡ู†ุง ููŠ ุนู†ุฏูŠ ุงูŠุด ุจุฑุถู‡ ู†ุงู‚ุต ุจุฑุง ู„ุฃู† ุฎุฏ ู…ู†
295
00:27:57,430 --> 00:28:01,670
ู‡ู†ุง ู†ุงู‚ุต ุนุงู…ู„ ู…ุดุชุฑูƒ ุฃูˆ ุถูŠุนู‡ ู…ุน ุงู„ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ู†ุง
296
00:28:01,670 --> 00:28:11,160
ู…ุง ูˆุงุถุญ ุฃู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ y ุจูŠุณุงูˆูŠ limit f of y ู†ุงู‚ุต f of c
297
00:28:11,160 --> 00:28:16,800
ุนู„ู‰ y ู†ุงู‚ุต c ู„ู…ุง y ุชุฑูˆุญ ู„ู„ c ูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† f
298
00:28:16,800 --> 00:28:22,440
prime ู„ู…ูŠู† ู„ู„ c ุจุฏุฃู†ุง ุจ f prime ู†ุงู‚ุต c ูˆุงู†ุชู‡ูŠู†ุง ุจ f
299
00:28:22,440 --> 00:28:31,520
prime ู„ู„ c ู„ุฐุง therefore f prime is even whenever
300
00:28:31,520 --> 00:28:37,160
f is odd and f is differentiable
301
00:28:40,710 --> 00:28:56,810
ุงู„ุณุคุงู„ ุงู„ุฃุฎูŠุฑ ุงู„ุณุคุงู„ 13 ุงู„ุณุคุงู„
302
00:28:56,810 --> 00:29:03,990
13 ู‡ูˆ ูƒู…ุง ูŠู„ูŠ ุงูŠุด
303
00:29:03,990 --> 00:29:09,200
ุงู„ู„ูŠ ุจู‚ูˆู„ ุงู„ุณุคุงู„ 13 ุณุคุงู„ 13 ุจูŠู‚ูˆู„ ุฅุฐุง ูƒุงู†ุช f ู…ู† R
304
00:29:09,200 --> 00:29:12,380
ู„ู€ R is differentiable at c element in R show that
305
00:29:12,380 --> 00:29:16,840
f prime of c ูŠุณุงูˆูŠ limit N ููŠ f of c ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต
306
00:29:16,840 --> 00:29:20,620
f of c as N goes to infinity ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช f
307
00:29:20,620 --> 00:29:24,900
differentiable ุนู†ุฏ ุงู„ู€ c element in R ุจู†ู‚ุฏุฑ ู†ูƒุชุจ
308
00:29:24,900 --> 00:29:27,920
ุงู„ derivative ุงู„ู„ูŠ ู‡ูŠ f prime of c ุนู„ู‰ ุตูˆุฑุฉ limit
309
00:29:27,920 --> 00:29:32,320
N f of c ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต f of c as N goes to
310
00:29:32,320 --> 00:29:38,120
infinity ู„ูƒู† ุจูŠู‚ูˆู„ ู„ูŠ by example show that the
311
00:29:38,120 --> 00:29:44,000
existence of this limit this limit need not ุงู„ู„ูŠ
312
00:29:44,000 --> 00:29:52,300
ู‡ูˆ imply the existence of the derivative ู†ูŠุฌูŠ
313
00:29:52,300 --> 00:30:03,960
ุงู„ุขู† ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ุนู†ุฏูŠ f ู…ู† R ู„ู€ R ูˆ f prime of c
314
00:30:03,960 --> 00:30:12,120
exist ู„ุฃู†ู‡ ูŠู‚ูˆู„ ู„ูŠ prove that f prime of c can be
315
00:30:12,120 --> 00:30:20,760
written as limit N ููŠ f of c ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต f
316
00:30:20,760 --> 00:30:26,180
of c as N goes to infinity ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ุฌุฒุก
317
00:30:26,180 --> 00:30:32,400
ุงู„ุซุงู†ูŠ ุญู†ุฌูŠ ุงู„ุขู† ู†ู‚ูˆู„ prove ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ู‚ุจู„ ู…ุง ู†ู‚ูˆู„
318
00:30:32,400 --> 00:30:37,700
ุงู„ู€ proof ู†ุฐูƒุฑูƒู… ุจุณ ุจู†ุธุฑูŠุฉ ุณุงุจู‚ุฉ ููŠ ุงู„ู€ real ูˆุงุญุฏ
319
00:30:37,700 --> 00:30:43,840
ุฅู†ู‡ ู„ูˆ ุนู†ุฏูŠ limit f of x ู„ู…ุง x ุชุฑูˆุญ ู„ู„ c ู„ูˆ ูƒุงู†ุช
320
00:30:43,840 --> 00:30:52,780
ุจุชุณุงูˆูŠ l ุจูƒูˆู† ุนู†ุฏูŠ ุฃูŠ sequence xโ‚™ ุจุชุฑูˆุญ ู„ู„ู€ c ู„ุงุฒู…
321
00:30:52,780 --> 00:30:59,020
ูŠุชุญู‚ู‚ ู„ู‡ุง limit f of xโ‚™ as n goes to infinity
322
00:30:59,020 --> 00:31:05,530
ุจูŠุณุงูˆูŠ ุจุฑุถู‡ ุงู„ู€ ูƒู†ุง ู†ุชุญุฏุซ ุจุงู„ุญุฏูŠุซุŒ ุจุงุณุชุจุฏุงุก ุงู„ุญุฏูŠุซ
323
00:31:05,530 --> 00:31:08,670
ุนู† ุงู„ู€ limit ุงู„ุนุงุฏูŠุฉ ู„ู„ู€ function S x ุจุชุฑูˆุญ ู„ู„ู€ c
324
00:31:08,670 --> 00:31:13,470
ุฅู„ู‰ limit ู„ู…ูŠู† ู„ู„ู€ sequence ุฃูˆ limit ู„ู„ู€ sequences
325
00:31:13,470 --> 00:31:17,290
ุงู„ุขู† ุจู†ุณุชุฎู„ุต ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนู„ูˆู…ุฉ ููŠ ุฅุซุจุงุช ุงู„ู„ูŠ
326
00:31:17,290 --> 00:31:22,630
ุจุฏู†ุง ุฅูŠุงู‡ ุนู†ุฏ ุงู„ุขู† since f prime of c exist ุจู…ุง ุฃู†ู‡
327
00:31:22,630 --> 00:31:29,250
ุงู„ derivative ุนู†ุฏ c ู…ูˆุฌูˆุฏุฉ ุฅุฐุง ุฃูƒูŠุฏ ุนู†ุฏูŠ ุตุงุฑ f
328
00:31:29,250 --> 00:31:37,010
prime of c ุจุณู‡ูˆู„ุฉ f of x ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ x ุนู†ุฏ c
329
00:31:38,080 --> 00:31:46,140
ุฒุงุฆุฏ h ู†ุงู‚ุต f of c ุนู„ู‰ h as h goes to mean to zero
330
00:31:46,140 --> 00:31:49,860
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุนุฑูŠู ุงู„ุชุนุฑูŠู ุงู„ derivative ุฃูˆ ุงู„ุดูƒู„
331
00:31:49,860 --> 00:31:52,980
ุงู„ุขุฎุฑ ู„ู„ุชุนุฑูŠู ุงู„ derivative f of c ุฒุงุฆุฏ ุงู„
332
00:31:52,980 --> 00:31:55,560
increment ู†ุงู‚ุต f of c ุนู„ู‰ ุงู„ increment as ุงู„
333
00:31:55,560 --> 00:32:01,600
increment goes to mean to zero ู…ุงุดูŠ ุงู„ุญู„ ุงู„ l ุจู…ุง
334
00:32:01,600 --> 00:32:07,480
ุฃู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ 1 ุนู„ู‰ N sequence ุจุชุฑูˆุญ ู„ู„ุตูุฑ ูˆู‡ุฐุง
335
00:32:07,480 --> 00:32:11,440
ุงู„ู€ limit exist ู„ุฃู† ุญุณุจ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุญูƒูŠุชู‡ุง ู‚ุจู„
336
00:32:11,440 --> 00:32:21,100
ุจุดูˆูŠุฉ ุจูƒูˆู† ุนู†ุฏูŠ ู„ุฃู† butูƒุฐุง then f prime of c can
337
00:32:21,100 --> 00:32:26,580
be ุงู„ู„ูŠ ู‡ูˆ ุฅุนุงุฏุฉ ุงู„ู„ูŠ ู‡ูŠ rewritten as a limit of a
338
00:32:26,580 --> 00:32:36,800
sequence f of ุงู„ู„ูŠ ู‡ูˆ limit limit f of c ุฒุงุฆุฏ but
339
00:32:36,800 --> 00:32:40,000
ุงู„ู€ h ุงู„ู„ูŠ ู‡ูŠ ุชุฑูˆุญ ู„ู„ุตูุฑ ุตุงุฑุช mean ุงู„ sequence
340
00:32:40,000 --> 00:32:46,380
ูˆุงุญุฏุฉ ุนู„ู‰ N ุชุฑูˆุญ ู„ู„ุตูุฑ ูˆุงุญุฏุฉ ุนู„ู‰ N ู†ุงู‚ุต f of c ุนู„ู‰
341
00:32:46,380 --> 00:32:52,640
ูˆุงุญุฏุฉ ุนู„ู‰ N as N goes to infinity ู…ุฏุงู…ุช ุงู„ sequence
342
00:32:52,640 --> 00:32:57,100
ูˆุงุญุฏุฉ ุนู„ู‰ N ุจุชุฑูˆุญ ู„ู„ุตูุฑ ุตุงุฑุช ุงู„ f of ูˆุงุญุฏุฉ ุนู„ู‰ N ุงู„ู„ูŠ
343
00:32:57,100 --> 00:33:00,900
ู‡ูŠ ุนุจุงุฑุฉ ุนู† f of c ุฒุงุฆุฏ ูˆุงุญุฏุฉ ุนู„ู‰ N ู„ุฃู† ุงู„ู€ c ุนุจุงุฑุฉ
344
00:33:00,900 --> 00:33:07,740
ุนู† ุฅูŠุงุด ูุงู„ุชุฉ ูˆุงุถุญ ุฃู‡ุŸ ุงู„ุขู† ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
345
00:33:07,740 --> 00:33:14,600
limit ุงู„ุขู† as n goes to infinity ุงู„ู„ูŠ ู‡ูˆ ุฃูƒูŠุฏ ุงู„ู„ูŠ
346
00:33:14,600 --> 00:33:21,920
ู‡ูˆ ุจูŠุตูŠุฑ ุนู†ุฏูŠ f n ููŠ ุงู„ุฌูˆุณ f of c ุฒุงุฆุฏ 1 ุนู„ู‰ n
347
00:33:21,920 --> 00:33:28,260
ู†ุงู‚ุต f of c ุงู„ู„ูŠ ู‡ูˆ as n goes to infinity ู‡ูˆ ู‡ุฐุง
348
00:33:28,260 --> 00:33:35,150
ุตุงุฑ f prime of c ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุงู„ุขู† conversely the
349
00:33:35,150 --> 00:33:37,890
converse need not to be true in general ู‡ูŠูƒ ุจูŠู‚ูˆู„
350
00:33:37,890 --> 00:33:45,390
ู„ูŠู‡ ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ if if ุจูŠู‚ูˆู„ ู„ูŠ ุฃูˆ ุงู„ู„ูŠ ุจูŠู‚ูˆู„ if f
351
00:33:45,390 --> 00:33:53,670
ุจุฑุง ุงู„ู„ูŠ ู‡ูˆ limit f of c ุฒุงุฆุฏ 1 ุนู„ู‰ n ู†ุงู‚ุต f of c
352
00:33:53,670 --> 00:34:01,610
ุงู„ูƒู„ ู…ุถุฑูˆุจ ููŠ n as n goes to infinity exist if ูƒุฏู‡
353
00:34:02,500 --> 00:34:12,640
then f prime at c need not be exist ุฃุตู„ุง ู…ุด ุฃู†ู‡
354
00:34:12,640 --> 00:34:16,180
ูŠูƒูˆู† ุจูŠุณุงูˆูŠ ู‡ุฐุง ุฃูˆ ู„ุง need not to be ุงุดู…ู„ exist
355
00:34:16,180 --> 00:34:19,640
ู„ุฃู† ู„ูˆ ูƒุงู† exist ุนู„ู‰ ุทูˆู„ ุจูŠุณุงูˆูŠ ุงู…ุง need not to be
356
00:34:19,640 --> 00:34:28,200
exist ูˆู…ุง ุฃุฎุฐ ู…ุซุงู„ ุฌุงู„ูŠ consider consider consider
357
00:34:28,200 --> 00:34:37,000
f of x ุจูŠุณุงูˆูŠ ุงู„ absolute value ู„ู„ x ูˆุฎุฏ ุนู†ุฏ ุงู„ c ุงูŠุด
358
00:34:37,000 --> 00:34:46,440
ุจุชุณุงูˆูŠ ุตูุฑ ูˆุงุถุญ f prime of 0 does not exist ู„ุฃู†ู‡ุง
359
00:34:46,440 --> 00:34:48,780
ุนุจุงุฑุฉ ุนู† corner pointุŒ ุฃู†ุชูˆ ุนุงุฑููŠู† ุงุญู†ุง ุงู„ู„ูŠ ู‡ูˆ
360
00:34:48,780 --> 00:34:52,480
ุงู„ f prime ุนู†ุฏ ุงู„ zero ู„ู„ absolute value does not
361
00:34:52,480 --> 00:34:59,740
exist ู„ูƒู† ู‡ุฐู‡ ู…ุชุญู‚ู‚ุฉุŒ ู„ูŠุดุŸ but limit
362
00:35:01,280 --> 00:35:10,900
N ููŠ f of 0 ุฒุงุฆุฏ 1 ุนู„ู‰ N ู†ุงู‚ุต f of 0 as N goes to
363
00:35:10,900 --> 00:35:18,840
infinity ุจูŠุณุงูˆูŠ limit N f of 0 ุฒุงุฆุฏ 1 ุนู„ู‰ N ูŠุนู†ูŠ f
364
00:35:18,840 --> 00:35:23,560
of 1 ุนู„ู‰ N f of x ุจูŠุณุงูˆูŠ absolute value x ู 1 ุนู„ู‰ N
365
00:35:23,560 --> 00:35:28,960
ู…ุธุจูˆุท ุฃู‡ as N goes to infinity ุทุจุนุง ุงู„ู€ N ุจุชุฑูˆุญ
366
00:35:29,220 --> 00:35:35,100
ูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† ash ูˆุงุญุฏ ุฅุฐุง ูุนู„ุง ุฌุจู†ุง ู…ุซุงู„ ุฃู† ุงู„
367
00:35:35,100 --> 00:35:39,720
limit ู‡ุฐู‡ ุชูƒูˆู† exist ูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ but ุงู„ f prime ุนู†ุฏ
368
00:35:39,720 --> 00:35:42,640
ู‡ุฐุง ุงู„ู†ู‚ุทุฉ c ุงู„ู„ูŠ ู‡ูŠ 00 ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ does not
369
00:35:42,640 --> 00:35:47,320
exist ุจูŠูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู†
370
00:35:47,320 --> 00:35:54,870
ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฎุงู…ุณุฉ ุงู„ู„ูŠ ู‡ูˆ discussion ู„ุฃูˆ ู…ู†ุงู‚ุดุฉ ู„
371
00:35:54,870 --> 00:35:59,910
section 6-1 ุงู„ู„ูŠ ู‡ูˆ the derivative ูˆุงู„ุขู† ุณู†ูƒู…ู„
372
00:35:59,910 --> 00:36:05,690
ุงู„ุญุฏูŠุซ ููŠ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ุนู† ุงู„ู„ูŠ
373
00:36:05,690 --> 00:36:09,250
ู‡ูˆ the mean value theorem ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ ู†ูƒู…ู„
374
00:36:09,250 --> 00:36:11,910
applications ุนู„ู‰ mean value theorem ูˆู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ
375
00:36:11,910 --> 00:36:12,030
ุงู„