|
1 |
|
00:00:04,910 --> 00:00:11,030 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุญุงุถุฑุฉ ุงูุฑุงุจุนุฉ ุจุนุฏ ุญุงูุฉ |
|
|
|
2 |
|
00:00:11,030 --> 00:00:19,410 |
|
ุงูุทูุงุฑุฆ ูู ู
ุงุฏุฉ ุฃู ู
ุณุงู ุชุญููู ุฑูุงุถู 2 ุฃู ุชุญููู |
|
|
|
3 |
|
00:00:19,410 --> 00:00:23,970 |
|
ุญูููู 2 ูุทูุจุฉ ูุทุงูุจุงุช ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ูููุฉ |
|
|
|
4 |
|
00:00:23,970 --> 00:00:30,110 |
|
ุงูุนููู
ูุณู
ุงูุฑูุงุถูุงุช ููู ุงูู
ุญุงุถุฑุฉ ุฑูู
14 ูู ุงูู
ุงุฏุฉ |
|
|
|
5 |
|
00:00:30,110 --> 00:00:35,970 |
|
ุฃู ูู ุงูู
ุณุงู ุนููุงู ุงูู
ุญุงุถุฑุฉ ุงูููู
ุงููู ูู |
|
|
|
6 |
|
00:00:35,970 --> 00:00:43,260 |
|
fundamental theorem of calculus ุจุดูููุง ุดู ุชูุงุถู |
|
|
|
7 |
|
00:00:43,260 --> 00:00:50,640 |
|
ุงูุชูุงู
ู ูุดู ุชูุงู
ู ุงูุชูุงุถู roughly ูุจุฏุฃ ุงููู ูู ูู |
|
|
|
8 |
|
00:00:50,640 --> 00:00:54,960 |
|
ุงููุธุฑูุฉ ุงูุฃููู ุฃู ุงูุฌุฒุก ุงูุฃูู ู
ู ุงููุธุฑูุฉ ุงููู ูู |
|
|
|
9 |
|
00:00:54,960 --> 00:00:58,760 |
|
the first form of the fundamental theorem of calculus |
|
|
|
10 |
|
00:00:58,760 --> 00:01:04,870 |
|
ุงููู ูู ุงูุฌุฒุก ุงูุฃูู ุจุชููู ู
ุง ููู: let f from a ุฅูู b |
|
|
|
11 |
|
00:01:04,870 --> 00:01:08,430 |
|
ูุนูุฏ R be an integrable function on a ุฅูู b ูุนูู |
|
|
|
12 |
|
00:01:08,430 --> 00:01:12,070 |
|
ูุฑุถูุง ุฃู ุงูู function f ุนุจุงุฑุฉ ุนู ุฏุงูุฉ ูุงุจูุฉ |
|
|
|
13 |
|
00:01:12,070 --> 00:01:17,190 |
|
ููุชูุงู
ู ุนูู ุงููุชุฑุฉ ุงูู
ุบููุฉ a ุฅูู b and let F capital |
|
|
|
14 |
|
00:01:17,190 --> 00:01:22,190 |
|
ู
ู a ุฅูู b ูุนูุฏ R ุชุญูู ุงูุดุฑูุท ุงูุชุงููุฉ ุชุญูู ุฃูู ุดูุก |
|
|
|
15 |
|
00:01:22,190 --> 00:01:25,110 |
|
ุฃููุง ุชููู ุงูู F capital ูุฐู continuous ุนูู ุงููุชุฑุฉ |
|
|
|
16 |
|
00:01:25,110 --> 00:01:30,530 |
|
a ุฅูู b ุงูุดุฑุท ุงูุซุงูู f prime exists and f prime of x |
|
|
|
17 |
|
00:01:30,530 --> 00:01:34,130 |
|
ุจูุณุงูู ุงูู f small ุงููู ุจุฏุฃูุง ูููุง ุฏู ุงููุฑุถ ู
ููุง |
|
|
|
18 |
|
00:01:34,130 --> 00:01:39,880 |
|
integrable ููู x element in a ุฅูู b ุจูููู ุงูู |
|
|
|
19 |
|
00:01:39,880 --> 00:01:44,900 |
|
integration ู
ู A ุฅูู B ููู F ุจูุณุงูู F of B ูุงูุต F of A |
|
|
|
20 |
|
00:01:44,900 --> 00:01:50,400 |
|
ุฅุฐุง ุงูุขู ููุฃูู ุจููู ููุชุฑุถ ุฃูู ุงูู F small |
|
|
|
21 |
|
00:01:50,400 --> 00:01:56,100 |
|
integrable ูููุชุฑุถ F continuous ุนูู closed bounded |
|
|
|
22 |
|
00:01:56,100 --> 00:02:01,160 |
|
interval A ุฅูู B ู F ููุณูุง differentiable ุนูู ุงูู |
|
|
|
23 |
|
00:02:01,160 --> 00:02:05,260 |
|
open ุงููู ูู interval A ุฅูู B ุจุดุฑุท ุฃูู ุงูู F prime |
|
|
|
24 |
|
00:02:05,260 --> 00:02:07,940 |
|
ุงู derivative ููุง ุงูู F capital ุทุจุนูุง ุจูุณุงูู ุงูู F |
|
|
|
25 |
|
00:02:07,940 --> 00:02:13,240 |
|
small of X ูุจูุงุก ุนูู ูู ุงูู
ุนุทูุงุช ุงููู ุญูููุงูุง ุจูููู |
|
|
|
26 |
|
00:02:13,240 --> 00:02:17,120 |
|
ุงู integration ู
ู a ุฅูู b ูู f small ูู ุนุจุงุฑุฉ ุนู fb |
|
|
|
27 |
|
00:02:17,120 --> 00:02:21,760 |
|
ูุงูุต f of a ุฃู ุงุฎุชุตุงุฑูุง ููุณูู ูู ููุญูุธ ุงู integration |
|
|
|
28 |
|
00:02:21,760 --> 00:02:29,670 |
|
ู
ู a ุฅูู b ูู f prime of x dx ูู ุนุจุงุฑุฉ ุนู ููุฃูู |
|
|
|
29 |
|
00:02:29,670 --> 00:02:36,250 |
|
ุงูุชูุงู
ู ุจูุบ ุงูุชูุงุถู ุจูุตูุฑ ุงููู ูู f of b ูุงูุต f of |
|
|
|
30 |
|
00:02:36,250 --> 00:02:40,610 |
|
a ูุฐุง ูุถูุก mean ูุนูู ูุฐู ูุงุฏุฉ ุจุงุฎุชุตุงุฑ ููู ูุถูุก |
|
|
|
31 |
|
00:02:40,610 --> 00:02:44,710 |
|
mean ุฃู f prime of x ุชููู ู
ูุฌูุฏุฉ ุนูู ุงููุชุฑุฉ ู
ู a ุฅูู |
|
|
|
32 |
|
00:02:44,710 --> 00:02:51,370 |
|
b ูุฃูุถูุง ุจุชููู ุฃููุง integrable ููุณูุง integrable ู |
|
|
|
33 |
|
00:02:51,370 --> 00:02:56,110 |
|
ุชููู ุงู f ููุณูุง continuous ุนูู close ู
ู a ูุนูุฏ b |
|
|
|
34 |
|
00:02:56,390 --> 00:03:00,270 |
|
ูุฐู ูู ุงููุธุฑูุฉ ุฅุฐุง ุงููู ุจุฏูุง ูุซุจุชู ุงูุขู ุฃูู ููู
ุฉ |
|
|
|
35 |
|
00:03:00,270 --> 00:03:04,470 |
|
ุงู integration ูุฐุง ุจูุณุงูู ุงููู ูู ุงููู ุฃู
ุงู
ูุง ุงููู |
|
|
|
36 |
|
00:03:04,470 --> 00:03:09,590 |
|
ูู f of b ูุงูุต ู
ู ูุงูุต f of a ุฎูููุง ูุดูู ุฅูุด |
|
|
|
37 |
|
00:03:09,590 --> 00:03:15,030 |
|
ุงูุจุฑูุงู ูู ูุงูุญุงูุฉ ูุง ุฌู
ุงุนุฉ ุงูุขู ุงููู ูุงุถุญ ุฅูู ุฃูุง |
|
|
|
38 |
|
00:03:15,030 --> 00:03:18,530 |
|
ุจุฏู ุฃูุซุจุช ุฅูู ุงู integration ูู ุนุจุงุฑุฉ ุนู f of b |
|
|
|
39 |
|
00:03:18,530 --> 00:03:24,990 |
|
ูุงูุต f of a ุดูู ุฃูุง ููู ุจุฏู ุฃูุตูู ุงููู ูู ุงู |
|
|
|
40 |
|
00:03:24,990 --> 00:03:28,670 |
|
integration ูู
ูููุฉ ุงู b ูู f ุจูุณุงูู f of b ูุงูุต f |
|
|
|
41 |
|
00:03:28,670 --> 00:03:32,010 |
|
of a ุฃูุง ุจุนุฑู ุฃูู ุญุงุฌุฉ ูู ู
ุนุทููู ุงู f small ูุฐู |
|
|
|
42 |
|
00:03:32,010 --> 00:03:35,290 |
|
ุงููู ูู ุงู f prime ุงููู ูู ุงู f small ุณู
ูุชูุง ูุฐู |
|
|
|
43 |
|
00:03:35,290 --> 00:03:39,240 |
|
ู
ุนุทููู ุฅูุงูุง integrable ุฅุฐู ุจูุงุณุทุฉ |
|
|
|
44 |
|
00:03:39,240 --> 00:03:44,160 |
|
ุงููู ูู .. ุฅุฐุง ุจุชุชุฐูุฑูุง integrable criterion ููู |
|
|
|
45 |
|
00:03:44,160 --> 00:03:46,900 |
|
ุงููู ุจูุณุชุฎุฏู
ูุง ูุซูุฑ ุงุญูุง ูุฅููุง .. ูุนูู ุฎููููู ุฃููู |
|
|
|
46 |
|
00:03:46,900 --> 00:03:51,400 |
|
ุตูุบุฉ ู
ูู
ุฉ ูู ุฅุซุจุงุช ุงููุธุฑูุงุช ุงููู ูู ุจู
ุง ุฅูู f |
|
|
|
47 |
|
00:03:51,400 --> 00:03:56,380 |
|
integrable ุฅุฐู ููู Y ุฃูุจุฑ ู
ู 0 ููุฌุฏ there exists a |
|
|
|
48 |
|
00:03:56,380 --> 00:04:00,600 |
|
partition P ุงููู ูู X0 X1 ุนูุฏ X ู .. ุนูุฏ .. |
|
|
|
49 |
|
00:04:00,600 --> 00:04:03,280 |
|
partition ูู
ูู ุทุจุนูุง ูููุชุฑุฉ ุงููู ุฃูุชู
ุนุงุฑููููุง |
|
|
|
50 |
|
00:04:03,280 --> 00:04:06,800 |
|
ุงููู ุงุญูุง ุจูุดุชุบู ุนูููุง ุงููุชุฑุฉ ู
ู A ูุนูุฏ ู
ูู ูุนูุฏ B |
|
|
|
51 |
|
00:04:06,960 --> 00:04:12,920 |
|
There exists a partition P X0 X1 XN of A ุฅูู B such |
|
|
|
52 |
|
00:04:12,920 --> 00:04:20,280 |
|
that ุงู upper sum P F'-the lower sum P F' ุฃุตุบุฑ ู
ู ุฅุจุณููู F' ู
ู |
|
|
|
53 |
|
00:04:20,280 --> 00:04:24,000 |
|
ููุง ู
ู ูู ูุง ุฌู
ุงุนุฉุ ูู ุงูู F ูุฃููุง ู
ูุชุฑุถูู ุงูู F |
|
|
|
54 |
|
00:04:24,000 --> 00:04:29,940 |
|
small ุฃู ุงูู F' is integrable ุฅุฐุง ุจูุงุณุทุฉ ุงูู integrable |
|
|
|
55 |
|
00:04:29,940 --> 00:04:34,760 |
|
criterion ุญุตููุง ุนูู ูุงุญุฏ ุงููู ุนูุฏู |
|
|
|
56 |
|
00:04:34,760 --> 00:04:40,880 |
|
ุฅูุญุงุญ ุฃุญูู ุนููุง ุงูุขู ุฃู ุฃุณุชุฎุฏู
ูุง ูููุตูู ููุฏูู ุทูุจ |
|
|
|
57 |
|
00:04:40,880 --> 00:04:44,040 |
|
because ุทุจุนูุง F prime ุงููู ูู same ุฒู ู
ุง ูููุง F of |
|
|
|
58 |
|
00:04:44,040 --> 00:04:48,820 |
|
X is integrable on A ุฅูู B ุงูุขู ูู ุดุบูุฉ ุซุงููุฉ ุงุญูุง |
|
|
|
59 |
|
00:04:48,820 --> 00:04:55,880 |
|
ุจุฏุฃูุง ุงูุขู ูุณุชุฎุฏู
ุงููู ูู ุฃู
ุฑ ุขุฎุฑ ุฎูููุง ููุชุจ ุงูุขู |
|
|
|
60 |
|
00:04:55,880 --> 00:05:00,920 |
|
ุฃูู ุดุบูุฉ ุญุตููุง ุนูููุง ุนุดุงู ุชุนุฑู ุฃูู ุฃูุง ุฑุงูุญ ุงููู ูู |
|
|
|
61 |
|
00:05:00,920 --> 00:05:06,550 |
|
ูููุง F is integrable ุงูู F ุงูุชู ุจูุณู
ู F' integrable ุฃูุด |
|
|
|
62 |
|
00:05:06,550 --> 00:05:12,270 |
|
ุฃุนุทุชูุง ูุง ุฌู
ุงุนุฉุ ุฃุนุทุชูุง ุฃู ููุงู partition P ููุงู P |
|
|
|
63 |
|
00:05:12,270 --> 00:05:15,830 |
|
ุทุจุนูุง for every epsilon ุฃูุจุฑ ู
ู ุตูุฑ ููุงู partition P |
|
|
|
64 |
|
00:05:15,830 --> 00:05:23,390 |
|
such that U, P ู F ุงููู ูู ุงูู F' ุทุจุนูุง ุงูู F ูู
ูู |
|
|
|
65 |
|
00:05:23,390 --> 00:05:29,530 |
|
ุงูู F' ูุงูุต ุงูู L, P ู F ูู ุฃุตุบุฑ ู
ู Y ููุฐุง ุณู
ููุงูุง |
|
|
|
66 |
|
00:05:29,530 --> 00:05:34,710 |
|
ุฅูุดุ ุณู
ููุงูุง 1 ูุฃู ู
ู ุฌูุฉ ุฃุฎุฑู ูุง ุฌู
ุงุนุฉ ุจุฏู ุฃุณุชุบู |
|
|
|
67 |
|
00:05:34,710 --> 00:05:37,810 |
|
ุงููู ูู ุงููู ู
ุนุทููู ุฅูุงู ุฃู ุงูู F capital ุจุชููู continuous |
|
|
|
68 |
|
00:05:37,810 --> 00:05:41,490 |
|
ุฃูุง ุงูุขู ุฒู ู
ุง ูููุง ุฌุฒูุฃูุง ุงููู ูู ุงููุชุฑุฉ A ุฅูู B |
|
|
|
69 |
|
00:05:41,490 --> 00:05:52,230 |
|
ุฅูู ุงููู ูู X0 X1 X2 ูุชุฑุฉ ูู
ูุฐุฌูุฉ Xk-1 ูุนูุฏ Xk ูุนูุฏ |
|
|
|
70 |
|
00:05:52,230 --> 00:05:56,010 |
|
ู
ูู ูุนูุฏ Xn ุงููู ูู ู
ูู ุงูู B ูุฐุง ุงู partition |
|
|
|
71 |
|
00:05:56,010 --> 00:05:59,930 |
|
ุงููู ุฌุจุชู ุฃูุง ุงูุขู ุฃูุง ุจุนุฑู ุฃู ุงูู F capital |
|
|
|
72 |
|
00:05:59,930 --> 00:06:03,330 |
|
continuous ุนูู ุงูู closed interval ูููุง ู
ู A ูุนูุฏ B |
|
|
|
73 |
|
00:06:03,330 --> 00:06:06,870 |
|
ุฅุฐุง ุงูุฃููุฏ continuous ุนูู ูู sub interval ู
ูุฌูุฏุฉ |
|
|
|
74 |
|
00:06:06,870 --> 00:06:12,540 |
|
ูุนูู ุตุงุฑุช ุงููู ุนูุฏู ุงูู F capital continuous on a |
|
|
|
75 |
|
00:06:12,540 --> 00:06:18,560 |
|
ุงูุชู ูู xk-1 ูุนูุฏ xk ูุฐู ูู ุงูู sub interval ุงููู |
|
|
|
76 |
|
00:06:18,560 --> 00:06:24,080 |
|
ุงู function f continuous ุนูููุง ูุฅุญูุง ู
ูุชุฑุถูู ุฃูุถูุง |
|
|
|
77 |
|
00:06:24,080 --> 00:06:29,220 |
|
ุฃู ุงูู f prime exist ุนูู ุงูู open interval ูููุง ุฅุฐุง |
|
|
|
78 |
|
00:06:29,220 --> 00:06:33,860 |
|
ุฃููุฏ ุงูู f is differentiable ูุฃู f' exist ุนูู ุงูู |
|
|
|
79 |
|
00:06:33,860 --> 00:06:37,360 |
|
open interval ู
ู a ูุนูุฏ b ุฅุฐุง ุฃููุฏ f is |
|
|
|
80 |
|
00:06:37,360 --> 00:06:41,980 |
|
differentiable ุนูู ุงููุชุฑุฉ xk minus ูุงุญุฏ ูุนูุฏ ู
ูู |
|
|
|
81 |
|
00:06:41,980 --> 00:06:45,140 |
|
ูุนูุฏ ุงูู xk ูุนูู ูุง ุฌู
ุงุนุฉ ุดุฑูุท ุงูู mean value |
|
|
|
82 |
|
00:06:45,140 --> 00:06:50,020 |
|
theorem ู
ุญููุฉ ุฅุฐุง ุฃููุฏ there exist there exist ุจู
ุง |
|
|
|
83 |
|
00:06:50,020 --> 00:06:54,540 |
|
ุฅูู ุงููู ูู ุดุฑูุท ุงูู mean value ู
ุญููุฉ ุฅุฐุง there |
|
|
|
84 |
|
00:06:54,540 --> 00:06:59,620 |
|
exist ุจุณู
ููุง ุงููู ูู bk ุฃู tk there exist tk ูู |
|
|
|
85 |
|
00:06:59,620 --> 00:07:06,440 |
|
ุงููุชุฑุฉ xk minus ูุงุญุฏ ุนูุฏ ุงูู xk such that ุงููู ูู F |
|
|
|
86 |
|
00:07:06,440 --> 00:07:11,520 |
|
ูู ุงูุฏุงูุฉ ุงููู ุจุทุจู ุนูููุง ุงูู mean value theorem ูุง |
|
|
|
87 |
|
00:07:11,520 --> 00:07:19,320 |
|
ุฌู
ุงุนุฉ F of xk ูุงูุต F of xk minus ูุงุญุฏ ุงููู ูู |
|
|
|
88 |
|
00:07:19,320 --> 00:07:24,560 |
|
ุจุชุณุงูู ุงููู ูู xk ูุงูุต xk minus ูุงุญุฏ ุทุจุนูุง ุงุญูุง |
|
|
|
89 |
|
00:07:24,560 --> 00:07:29,280 |
|
ุจููุณุจ ุนูููุง ุงููู ูู ุฅูุด ุจุชุณุงูู ุงููู ูู ุงูู F prime |
|
|
|
90 |
|
00:07:30,370 --> 00:07:35,630 |
|
of ุงูู tk ูุฐู ุงููู ูู ุงูู Mean Value Theorem |
|
|
|
91 |
|
00:07:35,630 --> 00:07:39,710 |
|
ูุชูุฌุชูุง ู
ุทุจู ุนูู ู
ูู ูุง ุฌู
ุงุนุฉ ุนูู ุงููุชุฑุฉ ุงููู ูู XK |
|
|
|
92 |
|
00:07:39,710 --> 00:07:43,770 |
|
minus ูุงุญุฏ ูุนูุฏ XK ุทุจุนูุง ูุฐุง ุงูููุงู
ููู K ูุฃูู ููู |
|
|
|
93 |
|
00:07:43,770 --> 00:07:48,170 |
|
ู
ูู ููู ุงูู sub intervals ุจุชุชุญูู ููุณ ุงูุดุฑูุท ุจูุงุก |
|
|
|
94 |
|
00:07:48,170 --> 00:07:55,010 |
|
ุนููู ุงุญูุง ุจูุนุฑู ูุจู ููู ุฎูููู ุฃุจุฏุฃ ุฃุดุชุบููุง ุนูุฏ ุงูู |
|
|
|
95 |
|
00:07:55,010 --> 00:08:04,450 |
|
Mk' ุฅุจุฑุงููู
ุงููู ูู ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู F ุงููู ูู |
|
|
|
96 |
|
00:08:04,450 --> 00:08:11,370 |
|
ุงูู F ุนูุฏู ุงูู mk' ุฅูุด ูุฐูุฑูู
ูููุง ุฅูุด ูู ุงูู mk' ุงูู |
|
|
|
97 |
|
00:08:11,370 --> 00:08:15,190 |
|
mk' ูู ู
ูุชูุจุฉ ูููุชุจูุง ูู
ุงู ู
ุฑุฉ ุงูู mk' ูู ู
ูู ุงูู |
|
|
|
98 |
|
00:08:15,190 --> 00:08:19,610 |
|
infimum ููู F' F of X X element of X K minus ูุงุญุฏ X |
|
|
|
99 |
|
00:08:19,610 --> 00:08:24,950 |
|
K ุงูู F' ู
ูู ูุฐู ุงูู F small ู
ุงุดู ุงูุญุงู ุทูุจ ุงูู F ุฃู |
|
|
|
100 |
|
00:08:24,950 --> 00:08:30,590 |
|
ุงูู mk' ูู ุนุจุงุฑุฉ ุนู ุงูู infimum ูู
ูู ููู F' ุนูู ุงูู |
|
|
|
101 |
|
00:08:30,590 --> 00:08:37,110 |
|
sub interval ูุฐู ุฅุฐุง ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู F of ุฃู |
|
|
|
102 |
|
00:08:37,110 --> 00:08:41,630 |
|
ู
ูุทูุน ู
ูุฌูุฏุฉ ูู ุงูู sub-interval ูุงูู Tk ูุฐู ู
ูุฌูุฏุฉ |
|
|
|
103 |
|
00:08:41,630 --> 00:08:46,410 |
|
ูู ูุฐุง ุงูู sub-interval ุฅุฐู ุฃููุฏ F of Tk |
|
|
|
104 |
|
00:08:46,410 --> 00:08:50,670 |
|
ุฃุตุบุฑ ู
ู ุงูู Mk' ูุฃู ุงูู Mk' ูู ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
105 |
|
00:08:50,670 --> 00:08:57,290 |
|
infimum ูููู
ุฉ ุงูุฏุงูุฉ F' of Tk ุนุงูู
ููุง ุนูู ุงููุชุฑุฉ |
|
|
|
106 |
|
00:08:57,290 --> 00:09:01,440 |
|
ุงููู ูู ุงูู sub-interval ุงููู ุจูุญูู ุนููุง ููู ูุฐู |
|
|
|
107 |
|
00:09:01,440 --> 00:09:06,040 |
|
ุฃููุฏ ุฃุตุบุฑ ุฃู ูุณุงูู ู
ู ุงูู Mk ุฅุจุฑุงููู
ู
ูู ุงูู Mk |
|
|
|
108 |
|
00:09:06,040 --> 00:09:11,060 |
|
ุฅุจุฑุงููู
ูุฐูุ ูู ุนุจุงุฑุฉ ุนู ุงูู Supremum ูู
ููุ ูููู
ุฉ |
|
|
|
109 |
|
00:09:11,060 --> 00:09:16,990 |
|
ุงููู ูู ุงูุฏุงูุฉ ูุฐู ุนูู ุงููุชุฑุฉ ุงููู ุนูุฏูุง ู
ุงุดู ุงูุญุงู |
|
|
|
110 |
|
00:09:16,990 --> 00:09:23,110 |
|
ุฅุฐุง ูุฐู ุฏุงุฆู
ูุง ุตุญูุญุฉ ุทุจ ูู ุถุฑุจุช ุฌูุชู ูู ุงูุฃุทุฑุงู ูู |
|
|
|
111 |
|
00:09:23,110 --> 00:09:27,650 |
|
ุทูู ุงููุชุฑุฉ ุงููู ูู xk ูุงูุต xk minus ูุงุญุฏ ุทุจุนูุง |
|
|
|
112 |
|
00:09:27,650 --> 00:09:31,510 |
|
ุฃููุฏ ูุฐู xk ูุงูุต xk minus ูุงุญุฏ ูู
ูุฉ ู
ูุฌุจุฉ ุฅุฐุง ูู
ุง |
|
|
|
113 |
|
00:09:31,510 --> 00:09:35,010 |
|
ุฃุถุฑุจูุง ูู ุงูุฃุทุฑุงู ูููุง ุจุชุธููุง ุงูู inequality ุตุญูุญุฉ |
|
|
|
114 |
|
00:09:35,010 --> 00:09:40,610 |
|
ูุฒู ู
ุง ูู ูู xk ูุงูุต xk minus ูุงุญุฏ ูููุง ูู xk ูุงูุต |
|
|
|
115 |
|
00:09:40,610 --> 00:09:46,280 |
|
xk minus ูุงุญุฏ ู
ุธุจูุท ูุฐุง ุงูููุงู
ุฃููุฏ ุตุญ ุทูุจ ููู ูุฐุง |
|
|
|
116 |
|
00:09:46,280 --> 00:09:52,220 |
|
ุงูู
ูุฏุงุฑ ูู ูุฐุง ุฅุฐุง ุจุงุฌู ุจุญุท ูุฐู ููุง ู
ุนุงูุง ูุง ุฌู
ุงุนุฉ |
|
|
|
117 |
|
00:09:52,220 --> 00:09:57,000 |
|
ุจุญุท ูุฐู ูู ุงูู
ูุทูุฉ ูุฐู ุงูู
ูุงู ุงูููู
ุฉ ูุฐู ุงููู ูู |
|
|
|
118 |
|
00:09:57,000 --> 00:10:05,190 |
|
ูุฐู ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู F of xk ูุงูุต f of xk minus 1 |
|
|
|
119 |
|
00:10:05,190 --> 00:10:12,070 |
|
ุฃูุจุฑ ุฃู ูุณุงูู ุงูู Mk' ูู ุงูู xk ูุงูุต xk minus 1 |
|
|
|
120 |
|
00:10:12,070 --> 00:10:18,490 |
|
ููุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู Mk ูู ุงูู xk ูุงูุต xk minus |
|
|
|
121 |
|
00:10:18,490 --> 00:10:24,290 |
|
1 ุฅุฐุง ูุงุถุญ ุฅู ุฃูุง ุญุตูุช ุนูู ูุฐู ููุฐู ุตุญูุญุฉ ููู ู
ูู |
|
|
|
122 |
|
00:10:24,290 --> 00:10:28,150 |
|
ููู k ูุฅูู ุฃุฎุฏุช ุฃูุง ูุฐู ูุชุฑุฉ ุนุดูุงุฆูุฉ ูุนูู ูู k |
|
|
|
123 |
|
00:10:28,150 --> 00:10:33,790 |
|
ุจุชุณุงูู ุงููู ูู ูุงุญุฏ ูุฅุซููู ูุนูุฏ ู
ูู ูุนูุฏ n ุจูุงุก |
|
|
|
124 |
|
00:10:33,790 --> 00:10:38,250 |
|
ุนููู ุฃูุง ูุตูุช ุงูุขู ุฅูู ู
ุง ููู ูุตูุช ุฅูู ูุฐู |
|
|
|
125 |
|
00:10:38,250 --> 00:10:43,670 |
|
ุงููุชูุฌุฉ ุดุงูููู ูุง ุฌู
ุงุนุฉ ูุตูุช ุฅูู ูุฐู ุงููุชูุฌุฉ ุงููู |
|
|
|
126 |
|
00:10:43,670 --> 00:10:48,860 |
|
ุฃูุง ูุถุญุช ููู
ุฅูุงูุง ููู ุงุฌุช ุงูุขู ูุงูู mk prime ุฒู ู
ุง |
|
|
|
127 |
|
00:10:48,860 --> 00:10:55,280 |
|
ูููุง ุฅูุด ูู ูุงูู mk capital prime ูููุง ุงู
ุงู
ูู
ููุฌู |
|
|
|
128 |
|
00:10:55,280 --> 00:10:59,720 |
|
ุงูุขู ุฅูุด ุงููู ุจุฏู ูุญุตู ูู ุดูู ุงูู K ุฅูุด ุจุฏู ูุญุตู ุฃูุง |
|
|
|
129 |
|
00:10:59,720 --> 00:11:03,020 |
|
ุนู
ุงู ุจููู ุฅูู ุตุญูุญ ุนูู ูู K ุฅุฐุง ูู ุฃุฎุฏุช ุงูู |
|
|
|
130 |
|
00:11:03,020 --> 00:11:05,900 |
|
summation ููุง ูุฃุฎุฏุช ุงูู summation ููุง ูุฃุฎุฏุช ุงูู |
|
|
|
131 |
|
00:11:05,900 --> 00:11:10,440 |
|
summation ููุง ุจุธู ุงููู ูู ุงูู inequality ุตุญูุญุฉ ุฎุฏ |
|
|
|
132 |
|
00:11:10,440 --> 00:11:16,050 |
|
ุงูุขู ุงูู summation ุนูู ุงููุชุฑุฉ ุงูู summation ุนูู |
|
|
|
133 |
|
00:11:16,050 --> 00:11:19,530 |
|
ุงูู inequality ุงููู ุญูููุง ุนููุง ูููุง ุจูุตูุฑ ุงูู |
|
|
|
134 |
|
00:11:19,530 --> 00:11:23,630 |
|
summation ููู M K prime ูู X K X K minus ูุงุญุฏ K ู
ู |
|
|
|
135 |
|
00:11:23,630 --> 00:11:26,630 |
|
ุนูุฏ ูุงุญุฏ ูุนูุฏ M ูููุง ููููู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู |
|
|
|
136 |
|
00:11:26,630 --> 00:11:31,090 |
|
summation ููู F of X K ูุงูุต F of X K minus ูุงุญุฏ |
|
|
|
137 |
|
00:11:31,090 --> 00:11:36,190 |
|
ุงููู ูู ุงุญูุง ููุง ุญุตููุงูุง ููุง ููุฐู ุงูู summation |
|
|
|
138 |
|
00:11:36,190 --> 00:11:39,490 |
|
ุนูููุง ููุฐู ุงูู summation ุนูููุง ูู ุงูู summation ูุฐุง |
|
|
|
139 |
|
00:11:39,850 --> 00:11:43,210 |
|
ุทูุจ ูุง ุฌู
ุงุนุฉ ุฃููุฏ ุฃูุชู
ูุงูุฑูู ูุฐุง ุงูู summation ูู |
|
|
|
140 |
|
00:11:43,210 --> 00:11:47,770 |
|
ุนุจุงุฑุฉ ุนู ู
ูู ูุง ุฌู
ุงุนุฉ ูู ุนุจุงุฑุฉ ุนู ุงูู lower sum ููู |
|
|
|
141 |
|
00:11:47,770 --> 00:11:52,370 |
|
partition ุจู ุนูู ู
ูู ุนูู ุงูุฏุงูุฉ ุงููู ุจูุนู
ู ุนูููุง |
|
|
|
142 |
|
00:11:52,370 --> 00:11:56,330 |
|
ุงููู ูู ุงูู F' ุงููู ุงุดุชุบููุง ุนูููุง ุงููู ุฃุฎุฏูุง ุงูู F' |
|
|
|
143 |
|
00:11:57,150 --> 00:12:01,270 |
|
ุงูู MK' ูู ุงูู infimum ููู F' ุนูู ุงูู sub interval |
|
|
|
144 |
|
00:12:02,160 --> 00:12:07,220 |
|
ูุงูุขู ูุฐู ูุดุจู ูุง ุฌู
ุงุนุฉ ูู ุงูู upper sum ูุนูู ุจู
ุนูู |
|
|
|
145 |
|
00:12:07,220 --> 00:12:12,960 |
|
ุขุฎุฑ ุตุงุฑ ุนูุฏู ุงูุขู ุงูู
ูุฏุงุฑ ูุฐุง ูู ุงูู
ูุฏุงุฑ ูุฐุง ุงููู |
|
|
|
146 |
|
00:12:12,960 --> 00:12:17,680 |
|
ู
ุญุงุท ุจุงูุฃุฒุฑู ูุฐุง ุงูู
ูุฏุงุฑ ู ุจุงูุฃุญู
ุฑ ุตุงุฑ ุจูู ุงููู ูู |
|
|
|
147 |
|
00:12:17,680 --> 00:12:22,120 |
|
ุงูู lower sum ู ุจูู ุงูู upper sum ููู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
148 |
|
00:12:22,120 --> 00:12:25,860 |
|
ุงูุตู
ูุตู ุงููู ุงุญูุง ุนู
ููุงู ูุจู ุฐูู ูุชูุฑ ูู ูุฑุถูุงู |
|
|
|
149 |
|
00:12:25,860 --> 00:12:33,860 |
|
ููููู ุนุจุงุฑุฉ ุนู F of X ูุงุญุฏ ูุงูุต F of X ุตูุฑ ุฒุงุฆุฏ F |
|
|
|
150 |
|
00:12:33,860 --> 00:12:40,360 |
|
of X 2 ูุงูุต F of X 1 ุฒุงุฆุฏ F of X 3 ูุงูุต F of X 2 |
|
|
|
151 |
|
00:12:40,360 --> 00:12:45,460 |
|
ุฒุงุฆุฏ ูู
ุง ุฃุตู ูุขุฎุฑ ุดูุก F of X N ูุงูุต F of X N ูุงูุต |
|
|
|
152 |
|
00:12:45,460 --> 00:12:50,520 |
|
1 ูู ูุฐุง ุจูุฑูุญ ู ุจูุธู ุนูุฏู ูู ูุฐุง ุจูุฑูุญ ู ุจูุธู ุนูุฏู |
|
|
|
153 |
|
00:12:50,520 --> 00:12:54,860 |
|
ุจุณ F of X N ูุงูุต F of X ุตูุฑ ูู |
|
|
|
154 |
|
00:12:54,860 --> 00:13:00,340 |
|
term ุจู cancel ุงููู ูุจูู ู ูุณุงูู F of X N ุงููู ูู |
|
|
|
155 |
|
00:13:00,340 --> 00:13:07,420 |
|
ู
ููุ F of B F of X ุตูุฑ ุงููู ูู ู
ููุ F of A ุฅุฐุง ุตุงุฑ |
|
|
|
156 |
|
00:13:07,420 --> 00:13:10,920 |
|
ุนูุฏู ุงูุขู ุงูู Summation ูุฐุง ุงููู ูู ุจูุณุงูู F of B |
|
|
|
157 |
|
00:13:10,920 --> 00:13:16,440 |
|
ูุงูุต ู
ููุ ูุงูุต F of A ูุนูู ุจู
ุนูู ุขุฎุฑ ุจูุดูู ูุฐุง ู |
|
|
|
158 |
|
00:13:16,440 --> 00:13:20,580 |
|
ุจูุญุท ู
ูุงูู ููู
ุชู ุงููู ูู F of B ูุงูุต F of A ุจูุตูุฑ F |
|
|
|
159 |
|
00:13:20,580 --> 00:13:25,320 |
|
of B minus F of A ุจูู ุงููู ูู L of B ู ุงูู F' ู ุจูู |
|
|
|
160 |
|
00:13:25,320 --> 00:13:34,230 |
|
ุงูุฃุฎุฑู ุงูู U of B ู ุงูู F' ุทูุจ ุงุทูุน ุนูู ููู ุดููุฉ ุฎูููู |
|
|
|
161 |
|
00:13:34,230 --> 00:13:39,830 |
|
ุฃูุถุญ ูู ูุฐู ุงูููุทุฉ ุงููู ูุชูุตููู ููู ุจุฏู ุฅูุงู ุฃูุง ุฅูุด |
|
|
|
162 |
|
00:13:39,830 --> 00:13:44,170 |
|
ุจุฏู ุฃุซุจุช ุฃูุง ุจุฏู ุฃุซุจุช ุฃู ุงู integration ุฎูููู ุจุณ |
|
|
|
163 |
|
00:13:44,170 --> 00:13:51,710 |
|
ุฃุดูู ูุฐุง ุจุนุฏ ุฅุฐููู
ุฃูุง |
|
|
|
164 |
|
00:13:51,710 --> 00:13:58,260 |
|
ุจุฏู ุฃุซุจุช ุฃู ุงู integration ููู F prime of x dx ุฃู |
|
|
|
165 |
|
00:13:58,260 --> 00:14:06,320 |
|
ุงูู F of X DX ุจูุณุงูู F of B ูุงูุต F of A ู
ู A ูุนูุฏ |
|
|
|
166 |
|
00:14:06,320 --> 00:14:12,870 |
|
ู
ููุ ูุนูุฏ Bุ ููุงุ ุจุฏู ุฃุณูู ุดูู ุงูุขู ููู ุฃูุง ูู |
|
|
|
167 |
|
00:14:12,870 --> 00:14:17,590 |
|
ุงููุงูุน ุจุชูุตููู
ูุฐุง ูุงูุต ูุฐุง ุจูููู ุฃูุจุฑ ุฃู ูุณุงูู ุตูุฑ |
|
|
|
168 |
|
00:14:17,590 --> 00:14:20,990 |
|
ู ุฃุตุบุฑ ู
ู epsilon ูุฃู ุฃุตุบุฑ ูุณุงูู epsilon ููู |
|
|
|
169 |
|
00:14:20,990 --> 00:14:24,110 |
|
epsilon ูู ุงูุฏููุง ู ู
ู ุซู
ููุณุงูู ุตูุฑ ูุนูู ูุชุญุฏุซ |
|
|
|
170 |
|
00:14:24,110 --> 00:14:29,090 |
|
ู
ูู ุงูู
ุณุงูุงุฉ ุงููู ู
ุง ููู
ุด ุนูููุง ูู ุงูุขู ูุฌู ูู ุชูุตูู |
|
|
|
171 |
|
00:14:29,090 --> 00:14:39,060 |
|
ุงุชูููุง ุงุญูุง ุฃูู ุงุญูุง ุญุตููุง ุนูู ุงููู ูู ุงูู F of B โ |
|
|
|
172 |
|
00:14:39,060 --> 00:14:44,520 |
|
F of A ุจูู ุงูู U ู ุจูู ุงูู L ููู ุงุญูุง ุจูููู ุงูู F |
|
|
|
173 |
|
00:14:44,520 --> 00:14:49,420 |
|
ููุณูุง ูุง ุฌู
ุงุนุฉ ุงูู F' ูุฐู is integrable ู
ุฒุจูุท |
|
|
|
174 |
|
00:14:49,420 --> 00:14:55,380 |
|
integrable ู
ู A ูุนูุฏ B ุฅุฐู ุงูู U of F ู ุงูู L of F |
|
|
|
175 |
|
00:14:55,380 --> 00:14:58,560 |
|
ุงููู ูู ุงูู Upper Integral ู ุงูู Lower Integral |
|
|
|
176 |
|
00:14:58,560 --> 00:15:01,960 |
|
ุงููู ูู ููุณุงูู ููู
ุฉ ุงูู Integration ุนุงุฑููููุง ูุฐุง |
|
|
|
177 |
|
00:15:01,960 --> 00:15:05,760 |
|
ุงูููุงู
ุงุญูุง ุจูุชุนุฑู ุดู ู
ุนูุงู integrable ุงูู U of F |
|
|
|
178 |
|
00:15:05,760 --> 00:15:11,640 |
|
ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุนู ุงูู infimum ูู
ููุ ูููุจุงุฑ ุงููู |
|
|
|
179 |
|
00:15:11,640 --> 00:15:19,640 |
|
ูู U L ุฃู U P ู F ููุฐุง ุนุจุงุฑุฉ ุนู ุงูู Supremum ูู
ููุ |
|
|
|
180 |
|
00:15:19,640 --> 00:15:28,200 |
|
ููู L, B ู F ูุนูู ุจูุตูุฑ ุนูุฏู ุงููู ูู ูุฐุง ุนุจุงุฑุฉ ุนู |
|
|
|
181 |
|
00:15:28,200 --> 00:15:32,420 |
|
ุงูู U of F ู
ู ุฌูุฉ ููุฐุง ุนุจุงุฑุฉ ุนู ุงูู L of F ู
ู ุฌูุฉ |
|
|
|
182 |
|
00:15:32,420 --> 00:15:35,900 |
|
ุฃุฎุฑู ูุฐุง ุงูู integration ูููุฉ ุจูู ุงูู F' ููุดุ ูุฃู ุงูู |
|
|
|
183 |
|
00:15:35,900 --> 00:15:40,630 |
|
F' is integrable ุฒู ู
ุง ูููุง ุทูุจุ ุฅูุด ุนูุงูุฉ ุงูู L ู |
|
|
|
184 |
|
00:15:40,630 --> 00:15:44,130 |
|
F ุจูุฐูุ L ู F ุนุจุงุฑุฉ ุนู ุงูู Supremum ููู ูุฐููุ ุฅุฐุง |
|
|
|
185 |
|
00:15:44,130 --> 00:15:47,450 |
|
ุฃููุฏ ุงูู L ู F ุฃูุจุฑ ุฃู ูุณุงูู ูุฐูุ ุฅุฐุง ุตุงุฑ ุงูู |
|
|
|
186 |
|
00:15:47,450 --> 00:15:51,610 |
|
integration ูุฐุง ุงููู ุนูุฏู ุฃูุจุฑ ุฃู ูุณุงูู ุงูู L ู Fุ |
|
|
|
187 |
|
00:15:51,610 --> 00:15:56,070 |
|
ุฎูุตูุง ู
ู ูุฐูุ ูุฃู ู
ู ุฌูุฉ ุซุงููุฉ ุงู integration ููู F |
|
|
|
188 |
|
00:15:56,070 --> 00:15:58,510 |
|
ุจุฑุงูู
ูู ุงูู U of Fุ ูุฃู ุงูู F is integrable ุฒู ู
ุง |
|
|
|
189 |
|
00:15:58,510 --> 00:16:04,770 |
|
ูููุงุ ู ุงูู U of F ู
ูู ููุ ูู ุนุจุงุฑุฉ ุนู ุงูู infimum |
|
|
|
190 |
|
00:16:04,770 --> 00:16:08,810 |
|
ููุง ุฏูู ุฅุฐุง ุงูู U of F ุฃุตุบุฑ ุฃู ูุณุงูููุง ู
ุฒุจูุท ุฃุตุบุฑ ุฃู |
|
|
|
191 |
|
00:16:08,810 --> 00:16:12,210 |
|
ูุณุงูููุง ูุนูู ุตุงุฑ ุงู integration ุฃุตุบุฑ ุฃู ูุณุงูููุง ูุนูู |
|
|
|
192 |
|
00:16:12,210 --> 00:16:18,050 |
|
ุจู
ุนูู ุขุฎุฑ ุงุญูุง ูุตููุง ุฃู ุงู integration ุชุจุนูุง ุงูู |
|
|
|
193 |
|
00:16:18,050 --> 00:16:23,450 |
|
integration ุงููู ูู ู
ู A ูุนูุฏ B ููู F ุจุฑุงูู
ุจูู |
|
|
|
194 |
|
00:16:23,450 --> 00:16:29,530 |
|
ุงูู L ู ุจูู ู
ูู ู ุจูู ุงูู U ู
ุงุดู ุงูุญุงู ุงูุขู ู ูุฐุง |
|
|
|
195 |
|
00:16:29,530 --> 00:16:35,390 |
|
ุจุฑุถู ุจูู ุงูู L ู ุจูู ู
ูู ุงูู U ุงุถุฑุจ ูู ุงูุขู ุงููู ุชุญุช |
|
|
|
196 |
|
00:16:35,390 --> 00:16:41,820 |
|
ุงููู ูู ุจุณุงูุจ ุจุชุนูุณ ุงูู inequality ูุจุนุฏูู ุงุฌู
ุนู |
|
|
|
197 |
|
00:16:41,820 --> 00:16:46,320 |
|
ุงูุฌูุชูู ู
ุงุดู ุงูุญุงู ูุฐู ุจูุตูุฑ ุณุงูุจ ููุฐู ุจูุตูุฑ ุฃูุจุฑ |
|
|
|
198 |
|
00:16:46,320 --> 00:16:51,220 |
|
ุฃู ูุณุงูู ุณุงูุจ ููุฐู ุจูุตูุฑ ุฃูุจุฑ ุฃู ูุณุงูู ุณุงูุจ ุงุฌู
ุนู |
|
|
|
199 |
|
00:16:51,220 --> 00:16:56,980 |
|
ุงูุฌูุชูู ุจูุตูุฑ ุนูุฏ ุงู integration ุฃู ุงูุนูุณ ุงุถุฑุจ ุงููู |
|
|
|
200 |
|
00:16:56,980 --> 00:16:59,720 |
|
ููู ุจุงูุณุงูุจ ุนุดุงู ุฃุนู
ู ุฒู ู
ุง ุนุงู
ู ูู ููุง ุงุถุฑุจ |
|
|
|
201 |
|
00:16:59,720 --> 00:17:02,000 |
|
ุงุณู ุงููู ูู ุงุถุฑุจ ู
ูู ุงููู ููู ุจุงูุณุงูุจ ุจูุตูุฑ ูุฐุง |
|
|
|
202 |
|
00:17:02,000 --> 00:17:07,640 |
|
ูุงูุต ููุฐุง ููู ูุงูุต ููุฐุง ุนุจุงุฑุฉ ุนู ูุงูุต ููุฐุง ุฃูุจุฑ ุฃู |
|
|
|
203 |
|
00:17:07,640 --> 00:17:12,760 |
|
ูุณุงูู ููุฐุง ุฃูุจุฑ ุฃู ูุณุงูู ูุงุฌู
ุน ูุจุนุถ ุฃู ุจูุบุฉ ุฃุฎุฑู |
|
|
|
204 |
|
00:17:13,150 --> 00:17:16,790 |
|
ูู ุงููู .. ุงููู .. ุงููู .. ุงููู ุชุญุช ูุงูุต ุงููู ููู |
|
|
|
205 |
|
00:17:16,790 --> 00:17:20,130 |
|
ุจูุทูุน ุนูุฏู ุงู integration ููู F prime ู
ู A ูุนูุฏ B |
|
|
|
206 |
|
00:17:20,130 --> 00:17:24,730 |
|
ูุงูุต ุงููู ูู F of B minus F of A ุฃุตุบุฑ ูุณุงูู ุงูู U |
|
|
|
207 |
|
00:17:24,730 --> 00:17:30,770 |
|
ูุงูุต ุงูู L ู ุฃูุจุฑ ุฃู ูุณุงูู ุงูู L ูุงูุต ุงูู U ูุงุถุญ ุฃูู |
|
|
|
208 |
|
00:17:30,770 --> 00:17:36,480 |
|
ูุฐู ุนุจุงุฑุฉ ุนู ูุงูุต ูุฐู ููุฐู ูู
ูุฉ ู
ูุฌุจุฉ ุฅุฐุง ุตุงุฑ ุนูุฏ |
|
|
|
209 |
|
00:17:36,480 --> 00:17:41,000 |
|
ุงูู absolute value ููููู
ุฉ ูุฐู ุฃุตุบุฑ ุฃู ูุณุงูู ุงูู U |
|
|
|
210 |
|
00:17:41,000 --> 00:17:49,300 |
|
ูุงูุต ู
ูู ุงูู L ูู
ุงู ู
ุฑุฉ ูุฐู ุณุงูุจ ูุฐู ููุฐู ู
ูุฌุจุฉ ุฅุฐูุง |
|
|
|
211 |
|
00:17:49,300 --> 00:17:53,540 |
|
ูุฐู ุงูู Inequality ุตุงุฑุช ูู ุนุจุงุฑุฉ ุนู ู
ูููู ุงูู |
|
|
|
212 |
|
00:17:53,540 --> 00:17:57,440 |
|
absolute value ููู F prime ุงูู integration ูุงูุต |
|
|
|
213 |
|
00:17:57,440 --> 00:18:01,840 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ุฃุตุบุฑ ุฃู ูุณุงูู ูุฐุง ุงูููู
ุฉ ููุฐุง ุงูููู
ุฉ |
|
|
|
214 |
|
00:18:01,840 --> 00:18:05,700 |
|
ูุณู ู
ุง ุณุญููุงุด ุงุญูุง ุฅูุด ูููุง ุนููุง ุฃุตุบุฑ ู
ู ู
ู epsilon |
|
|
|
215 |
|
00:18:05,700 --> 00:18:09,280 |
|
ู ุฃูุง ูุงุนุฏ ุจุงุดุชุบู ุนูู ุงู partition ุงููู ุฌุจุชูู ุฃุนูู |
|
|
|
216 |
|
00:18:09,280 --> 00:18:15,390 |
|
ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุงููู ูุตูุช ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ุงูู |
|
|
|
217 |
|
00:18:15,390 --> 00:18:20,150 |
|
absolute value ูุฐุง ุฃุตุบุฑ ู
ู epsilon ูุทุจุนูุง ุฃูุจุฑ ุฃู |
|
|
|
218 |
|
00:18:20,150 --> 00:18:24,790 |
|
ูุณุงูู ุตูุฑ ู ุงู epsilon ุงููู ูู ุดู
ุงููุง arbitrary ูุนูู |
|
|
|
219 |
|
00:18:24,790 --> 00:18:29,430 |
|
ุงูู
ูุฏุงุฑ ูุฐุง ูุฃู epsilon ูู ุงูุฏููุง ูุฃู epsilon ูู |
|
|
|
220 |
|
00:18:29,430 --> 00:18:33,770 |
|
ุงูุฏููุง ูุฐุง ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงู epsilon ูู ุฃูุจุฑ ุฃู ูุณุงูู ุตูุฑ |
|
|
|
221 |
|
00:18:33,970 --> 00:18:38,510 |
|
ุฅุฐูุง ูุงุฒู
ูููู ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ุนุจุงุฑุฉ ุนู ุตูุฑ |
|
|
|
222 |
|
00:18:38,510 --> 00:18:42,530 |
|
ูุนูู ุจู
ุนูู ุขุฎุฑ ุงู integration ุจูุณุงูู ุงููู ูู F of B |
|
|
|
223 |
|
00:18:42,530 --> 00:18:47,050 |
|
ูุงูุต F of A ู ููู ู ูููู ุญุตููุง ุนูู ุงูู
ุทููุจ ู ุฃุซุจุชูุง |
|
|
|
224 |
|
00:18:47,050 --> 00:18:51,470 |
|
ุงููุธุฑูุฉ ุทูุจ |
|
|
|
225 |
|
00:18:51,470 --> 00:18:57,850 |
|
ุงููุงุณ ุงูุขู ูุฐุง ุงููู ูู ุงูุฌุฒุก ุงูุฃูู ุงูุฌุฒุก ุงูุฃูู ู
ู |
|
|
|
226 |
|
00:18:57,850 --> 00:19:00,890 |
|
ุงููู ูู ุงูู Fundamental Theorem of Calculus ุงููู |
|
|
|
227 |
|
00:19:00,890 --> 00:19:05,750 |
|
ูู ุนุจุงุฑุฉ ุนู ุชูุงู
ู ุงูุชูุงุถู ุงููู ูู ุนู
ููุฉ ุงูุชูุงู
ู |
|
|
|
228 |
|
00:19:05,750 --> 00:19:10,470 |
|
ูุชูุบู ุนู
ููุฉ ุงูุชูุงุถู ุฒู ู
ุง ุดููุง ุงููู ูู ูุจู ุจุดููุฉ |
|
|
|
229 |
|
00:19:10,470 --> 00:19:15,130 |
|
ูุดููุง ุฅูู ุงููู ุฌุงุจู ุงูู Fundamental Theorem ุทุจุนูุง |
|
|
|
230 |
|
00:19:15,130 --> 00:19:20,270 |
|
ูุฐุง ุงูููุงู
ุชุญุช ุงูุดุฑูุท ุงูู
ุฐููุฑุฉ ุงูุขู ุจูููู ูู .. ูู
ูู |
|
|
|
231 |
|
00:19:20,270 --> 00:19:24,810 |
|
ุญููุช ูุฐู ุญุชู ุจูููู ูู corollary ุจูููู ุฃูุง ุฃุญูุงููุง |
|
|
|
232 |
|
00:19:24,810 --> 00:19:29,530 |
|
ุจุญุจ ุฃุฑูุญ ุญุงูู ู ูููู ุฎูููุง ูุฃุฎุฐ .. ุนุดุงู ูุณุชุฐูุฑ ุงูู |
|
|
|
233 |
|
00:19:29,530 --> 00:19:32,790 |
|
.. ุงู .. ุงู .. ุงู fundamental theorem ุงูุฌุฒุก ุงูุฃูู |
|
|
|
234 |
|
00:19:32,790 --> 00:19:37,950 |
|
ุจุดูู ุณุฑูุน ุจุณ ุดููุฉ ุนูุฏูุง ูุนู
ู .. ูู ุงูุดุฑูุท ุฃู ูู ูู |
|
|
|
235 |
|
00:19:37,950 --> 00:19:41,630 |
|
ู
ู a ู b ูุนูุฏ R satisfy the conditions ุงููู ูู F' |
|
|
|
236 |
|
00:19:42,150 --> 00:19:45,790 |
|
exists on A ู Bุ ู
ุง ุจุชุจุฏุฃุด ุฃุฌูุจ ุณูุฑุฉ ู
ูู ุงูู F Smallุ |
|
|
|
237 |
|
00:19:45,790 --> 00:19:49,250 |
|
ู
ุง ุจุชุจุฏุฃุด ุฃุดุบู ู
ููุ ุนูู ุงูู F Capital ูู ูุฑุถูุง ุฃู ุงูู |
|
|
|
238 |
|
00:19:49,250 --> 00:19:54,010 |
|
F ูุฐู ู
ู A ู B ูุนูุฏ R ุฅููุง ุงูู F' ุงููู ูู ุดู
ุงููุง |
|
|
|
239 |
|
00:19:54,010 --> 00:19:57,890 |
|
exist ุนูู ุงูู A ู B ูุนูู ูุฑุถ ุฅููุงุ ุจุณ ููุง ุฒุงุฏ ุดููุฉ |
|
|
|
240 |
|
00:19:57,890 --> 00:20:01,130 |
|
ุนูู ุงูุดุฑูุท ุงููู ุฌุงุจูู ุจุดููุฉ ุฅู F is differentiable |
|
|
|
241 |
|
00:20:01,130 --> 00:20:03,790 |
|
ุนูู ุงูู closed interval ููุง ูุฑุถูููุง ุฅููุง F |
|
|
|
242 |
|
00:20:03,790 --> 00:20:06,740 |
|
differentiable ุนูู ุงูู Open ู ูุฑุถูููุง continuous |
|
|
|
243 |
|
00:20:06,740 --> 00:20:10,760 |
|
ุนูู ุงููู ูู ุงูู Closed ู
ุฏุงู
ุงูุขู ุฅุฐุง ูููุง ุฏู ุณูุฉ |
|
|
|
244 |
|
00:20:10,760 --> 00:20:16,680 |
|
ุฒูุงุฏุฉ ู
ู ุงู .. ู
ู ุงููู ูู ุงูุดุฑูุท F' exists ุนูู ุงูู |
|
|
|
245 |
|
00:20:16,680 --> 00:20:19,820 |
|
A ู ุงูู B ูุนูู continuous ู differentiable ุนูู ุงูู |
|
|
|
246 |
|
00:20:19,820 --> 00:20:24,350 |
|
closed open .. ุนูู ุงูู closed interval A ู B ุงูุขู ูู |
|
|
|
247 |
|
00:20:24,350 --> 00:20:29,550 |
|
ุงูุดุฑุท ู ุงูุดุฑุท ุงูุซุงูู ูุฑุถ ุฃู ุงูู F' ู
ุด ู
ูุฌูุฏุฉ ู ุจุณ ุงูู |
|
|
|
248 |
|
00:20:29,550 --> 00:20:33,030 |
|
F' ุงูุชุฌุฑุช ุนูู ุงูู A ู ุงูู B ุฅุฐุง ุงูุชุฌูุช ุดุฑูุท ุงูู |
|
|
|
249 |
|
00:20:33,030 --> 00:20:36,210 |
|
fundamental theorem ุฅุฐุง ุญุณุจ ุงูู fundamental theorem |
|
|
|
250 |
|
00:20:36,210 --> 00:20:39,410 |
|
ุงููู ูุจูู ุจุดููุฉ ุจูููู ุนูุฏู ุงู integration ู
ู A ูู B |
|
|
|
251 |
|
00:20:39,410 --> 00:20:44,190 |
|
ูู
ูู ุงูุขูุ ููู f prime ุงููู ููุง ูุณู
ูู ูู ุงูุฌุจู f |
|
|
|
252 |
|
00:20:44,190 --> 00:20:49,310 |
|
small ุจุชุณุงูู f of b ูุงูุต f of a ุฅุฐุง ูุนูุงู ูู |
|
|
|
253 |
|
00:20:49,310 --> 00:20:53,130 |
|
automatic ุญููุช ุดุฑูุท ุงูู fundamental theorem ู ุฒูุงุฏุฉ |
|
|
|
254 |
|
00:20:53,130 --> 00:20:59,850 |
|
ุณูุฉ ุฅุฐุง ุฃููุฏ ุงููุชูุฌุฉ ุจุชููู ุตุญูุญุฉ ูุนูู ุชูุงู
ู ุงูุฏุงูุฉ |
|
|
|
255 |
|
00:20:59,850 --> 00:21:05,210 |
|
ุงูู
ุชูุงุถูุฉ ุจูุณุงูู ุฃุตู ุงูุฏุงูุฉ ุงููู ูู ุฃุตู ุงูุฏุงูุฉ ุนูุฏู |
|
|
|
256 |
|
00:21:05,210 --> 00:21:09,070 |
|
ุงูููุทุฉ ุงูุฃููู ูุงูุต ุงูููุทุฉ ู
ููุ ุจูุญูู ุงูููุทุฉ ุงูุซุงููุฉ |
|
|
|
257 |
|
00:21:09,070 --> 00:21:13,950 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู integration F of B ูุงูุต ู
ููุ F of A |
|
|
|
258 |
|
00:21:13,950 --> 00:21:19,210 |
|
ุทุจ ูู ูุงูุช X ู
ุชุบูุฑ ูุนูู ูู ุฃุฎุฐูุง ุฃู X ุจูู ุงููุชุฑุชูู |
|
|
|
259 |
|
00:21:19,210 --> 00:21:23,550 |
|
ู ุทุจููุง ุงููุธุฑูุฉ ุนูู ุงูู A ุงููู ุนูุฏ ุงูู X ูุจูุตูุฑ ุงูู |
|
|
|
260 |
|
00:21:23,550 --> 00:21:27,130 |
|
integration ู
ู A ูุนูุฏ ุงูู X ุงู ุจุฑุงูู
ุจูุณุงูู ุงู |
|
|
|
261 |
|
00:21:27,130 --> 00:21:32,490 |
|
of X ูุงูุต ุงู of A X ูุฐู ูุชุตุจุญ ู
ุชุบูุฑุฉ ู ุงูู ุงู of A |
|
|
|
262 |
|
00:21:32,490 --> 00:21:39,190 |
|
ุซุงุจุชุฉ ููุฐุง ุจูุฐูุฑูุง ุฃู ุงุญูุง ููู
ุฉ ุงูุชูุงู
ู ูุฏุงูุฉ |
|
|
|
263 |
|
00:21:39,190 --> 00:21:43,790 |
|
ุจูุณุงูู ุงููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู ุงูุฅุฌุงุจุฉ ุงููู ูู |
|
|
|
264 |
|
00:21:43,790 --> 00:21:47,630 |
|
ุงูุฏุงูุฉ ุงููู ุจุชุทูุน ุฒุงุฆุฏ some constant C ุงููู ูู ุงูู |
|
|
|
265 |
|
00:21:47,630 --> 00:21:53,660 |
|
constant ุทุจุนูุง ูุงููู ูู ุทุจูุนุฉ ุงูุฏุงูู ููุฏุงุด ุจูุทูุน ููุง |
|
|
|
266 |
|
00:21:53,660 --> 00:21:56,420 |
|
ุงููู ูู ุงูู initial conditions ุจูุณูุฑ ููุง ุฅูุงู ุงูู |
|
|
|
267 |
|
00:21:56,420 --> 00:21:59,620 |
|
constant ุฃู ุจูุนุทููุง ุฅูุงู ุฎู
ุณุฉ ุฃุฑุจุนุฉ ุณุชุฉ ุฃู ุจูุธููุง |
|
|
|
268 |
|
00:21:59,620 --> 00:22:03,720 |
|
ุจุตูุฑุฉ ุนุงู
ุฉ constant ุทูุจ ุดูููุง ุตููุง ุนูู ุงููุจู ุนููู |
|
|
|
269 |
|
00:22:03,720 --> 00:22:08,090 |
|
ุงูุตูุงุฉ ู ุงูุณูุงู
ุงูุขู ุจุฏูุง ููุฌู ููุฌุฒุก ุงูุซุงูู ู
ู ุงูู |
|
|
|
270 |
|
00:22:08,090 --> 00:22:11,470 |
|
Fundamental theorem ุฎูุตูุง ุฌุฒุก ุงููู ูู ุชูุงู
ู |
|
|
|
271 |
|
00:22:11,470 --> 00:22:16,870 |
|
ุงูุชูุงุถูุ ุงูุขู ุจูุชููุน ุฅูู ุชูุงุถู ุงูุชูุงู
ูุ ุชูุงุถู |
|
|
|
272 |
|
00:22:16,870 --> 00:22:20,530 |
|
ุงูุชูุงู
ูุ ุชุญุช ุดุฑูุทุ ุจูุดูู ุงููู ูู ุงูู Fundamental |
|
|
|
273 |
|
00:22:20,530 --> 00:22:24,650 |
|
theorem of calculus second form ุฃู ุงููู ูู ุงูุฌุฒุก |
|
|
|
274 |
|
00:22:24,650 --> 00:22:27,850 |
|
ุงูุซุงูู ู
ู ุงูู Fundamental theoremุ ุฅูุด ุงููู ุจูููููุ |
|
|
|
275 |
|
00:22:27,850 --> 00:22:33,540 |
|
ุงููู ุจูููู ู
ุนุงูุง ูููุ ููุชุฑุถ ุฅู F small ู
ู a ู b |
|
|
|
276 |
|
00:22:33,540 --> 00:22:38,060 |
|
ูุนูุฏ r ุงููู ูู is integrable in a ู b ุฅุฐุง ุงูุชุฑุถูุงู |
|
|
|
277 |
|
00:22:38,060 --> 00:22:41,460 |
|
ุฃูู integrable ูููุชุฑุถ ุฃู f of x ูู ุจูุณุงูู ุงูู |
|
|
|
278 |
|
00:22:41,460 --> 00:22:46,160 |
|
integration ู
ู a ู x f for all x element in a ู b |
|
|
|
279 |
|
00:22:46,160 --> 00:22:52,200 |
|
ุจุณ ููุฃุชู ูููุชูุฌุฉ then ููุทูุน ูุฐุง ุนุจุงุฑุฉ ุนู |
|
|
|
280 |
|
00:22:52,200 --> 00:22:55,360 |
|
continuous function ูู ุงู .. ูู ุงู .. ุงููู ูู main |
|
|
|
281 |
|
00:22:55,360 --> 00:23:02,700 |
|
ูู ุงููู ูู ุนูู ุงููุชุฑุฉ a ุฃู b ูู
ุด ูู ูู
ุงู ููู ูุงู |
|
|
|
282 |
|
00:23:02,700 --> 00:23:09,830 |
|
ุงูู F small continuous ุนูุฏ ููุทุฉ C ูู ุงููุชุฑุฉ ู
ู A |
|
|
|
283 |
|
00:23:09,830 --> 00:23:14,050 |
|
ูุนูุฏ B ุฃู ู
ู A ูุนูุฏ X ูุชููู ุงูู F ูุฐู ููุณูุง |
|
|
|
284 |
|
00:23:14,050 --> 00:23:16,950 |
|
differentiable ู ุงูู derivative ุงููู ูู ุฅูุด ุจุณุงูู |
|
|
|
285 |
|
00:23:16,950 --> 00:23:22,590 |
|
ุจุณุงูู ููู
ุฉ ุงููู ูู ุงูู F ุงููู ุฌูุง ูุนูู ุจุงุฎุชุตุงุฑ ูุง |
|
|
|
286 |
|
00:23:22,590 --> 00:23:29,450 |
|
ุฌู
ุงุนุฉ ุจุชุชูุฑุฑ ุณูู ุจูููู ู
ูุชุฑุถ F integrable ู
ุงุดู |
|
|
|
287 |
|
00:23:29,450 --> 00:23:34,690 |
|
ุงูุญุงู ูุงู ุจุณ ุงูุขู ุจููู ูู ุฌูุช ุงุฎุฏุช ู
ู A ูู X on |
|
|
|
288 |
|
00:23:34,690 --> 00:23:44,670 |
|
ุทุจุนุง A ู B ูู ุงุฎุฏุช ุงูุขู A ู X F small of T DT ูุงู |
|
|
|
289 |
|
00:23:44,670 --> 00:23:51,510 |
|
ุฏู ุทุจุนุง ุงูุขู ุตุงุฑุช ูููุง ุชุนุชู
ุฏ ุนูู ู
ูู ุนูู X ุจูููู |
|
|
|
290 |
|
00:23:51,510 --> 00:23:55,370 |
|
ูุฐู ูุฐู ุงููู ุทูุน ุงููู ูู ุงูู integration ููู |
|
|
|
291 |
|
00:23:55,370 --> 00:24:01,130 |
|
integrable function ู
ู A ูู X F of T DT ูุชุทูุน ูู |
|
|
|
292 |
|
00:24:01,130 --> 00:24:05,210 |
|
continuous function ูู ุณู
ูุชูุง F capital ุฒู ู
ุง ูู |
|
|
|
293 |
|
00:24:05,210 --> 00:24:08,730 |
|
ู
ุณู
ููุง F of X ุจุชููู ุงูู F ุนูุฏูุง ุดู
ุงููุง is |
|
|
|
294 |
|
00:24:08,730 --> 00:24:16,430 |
|
continuous ุงูุขู ุจูููู ูู ุงุฌูุช ู ููุช ุฃู F is |
|
|
|
295 |
|
00:24:16,430 --> 00:24:21,390 |
|
continuous ุงูู F ุงููู ุฌูุง ูุฐู at C element in A ูB |
|
|
|
296 |
|
00:24:21,390 --> 00:24:25,650 |
|
ูู ูุงูุช F is continuous at C element in A ูB |
|
|
|
297 |
|
00:24:25,650 --> 00:24:31,730 |
|
ููุทูุนูู ุจูููู ุฅุฐุง ุงูู F capital ูุฐู F prime of C |
|
|
|
298 |
|
00:24:31,730 --> 00:24:39,870 |
|
exists ู ู
ุด exist ุจุณ ู ุงูู F prime of C ูุชุณุงูู ุงูู F |
|
|
|
299 |
|
00:24:39,870 --> 00:24:46,030 |
|
small of ุฅูุดุ of C ูุนูู ู ูุฃูู ุจูููู ูู
ุง ูุชูุงุถู |
|
|
|
300 |
|
00:24:46,030 --> 00:24:50,210 |
|
ูุฐู F prime of C ุงููู ูู ู
ู ุฅูู ุงููู ุนูุฏ C ูุนูู |
|
|
|
301 |
|
00:24:50,210 --> 00:24:57,370 |
|
ุชููู F prime of C ุจุณุงูู ุชูุงุถู ุฑููุฉ by DX ุนูุฏ |
|
|
|
302 |
|
00:24:57,370 --> 00:25:02,630 |
|
ุงูููุทุฉ C ูู integration ู
ู A ูู X F of T DT |
|
|
|
303 |
|
00:25:27,580 --> 00:25:33,180 |
|
C ู
ุซูุง ุจุชุณุงูู F of C ุงููู ูู F small of C ูู ููู |
|
|
|
304 |
|
00:25:33,180 --> 00:25:36,540 |
|
ุงูู F ุงููู ุฌูุง continuous ุนูุฏู ุงูููุทุฉ ุงููู ุจูุญูู |
|
|
|
305 |
|
00:25:36,540 --> 00:25:39,940 |
|
ุนููุง ุทุจ ูู ูุงูุช F ุงููู ุฌูุง ูุงุฏู continuous ููู |
|
|
|
306 |
|
00:25:39,940 --> 00:25:43,620 |
|
ู
ุง ูุงู ุนูู ุงููุชุฑุฉ ูุงุฏู ุจุตูุฑ ุฎูุงุต ูุงูุช ู
ุบู
ุถ ุนูุงู |
|
|
|
307 |
|
00:25:43,620 --> 00:25:47,980 |
|
ุจุชูุฌู ุจุชููู ุชูุงุถู ูุงุฏู ุจุชุดูู ุงูุชูุงู
ู ู ุจุชุญุทู ุงููู |
|
|
|
308 |
|
00:25:47,980 --> 00:25:53,540 |
|
ุฌูุง ุจุฏูุงูุฉ ุงููู ูู ุงูู X ุงูู
ุชุบูุฑูุงุถุญ ุงูู
ูุฑูุถ ุทูุจ |
|
|
|
309 |
|
00:25:53,540 --> 00:25:59,660 |
|
ููุฌู ุงูุขู ูุซุจุช ุงููู ูู ุงููุธุฑูุฉ ูุซุจุช ุดุบูุชูู ุฃู ุงูู F |
|
|
|
310 |
|
00:25:59,660 --> 00:26:02,580 |
|
ูุงุจุชูุงู continuous ุนุดุงู ุฃุซุจุชูู continuous ูุซุจุชูู |
|
|
|
311 |
|
00:26:02,580 --> 00:26:05,940 |
|
ุฃูุซุฑ ู
ู continuous ูุซุจุชูู uniform ู continuous ูุฃ |
|
|
|
312 |
|
00:26:05,940 --> 00:26:09,780 |
|
ุฃูููู ูุซุจุชูู ุฃูุซุฑ ู
ู uniform ู continuous ูุซุจุชูู |
|
|
|
313 |
|
00:26:09,780 --> 00:26:12,920 |
|
ุฃู ุงูู F is Lipschitz function ู
ุซูุง ู
ู Lipschitz |
|
|
|
314 |
|
00:26:12,920 --> 00:26:15,400 |
|
function ุฅุฐุง ุนูู ุทูู uniform ู continuous ูู
ู ุซู
|
|
|
|
315 |
|
00:26:15,400 --> 00:26:18,460 |
|
ุนูู ุทูู ุฅูุด ู
ุง ููุง continuous ุฅูุด Lipschitz |
|
|
|
316 |
|
00:26:18,460 --> 00:26:25,240 |
|
function ูุนูู ูุซุจุชูู ุฃู Fof x-f of y absolute |
|
|
|
317 |
|
00:26:25,240 --> 00:26:30,720 |
|
value ุฃุตุบุฑ ุฃู ุณุงูู K ูู x-y had there exist K ุจุญูุซ |
|
|
|
318 |
|
00:26:30,720 --> 00:26:35,260 |
|
ุฃู f of x-f of y ุฃุตุบุฑ ู
ู K ูู xy ููู x ู y element |
|
|
|
319 |
|
00:26:35,260 --> 00:26:40,020 |
|
in a ู b ูุซุจุช ูู f ุจุชุญูู ูุฐุง ุงูุดุฑุท ูุซุจุชูุง ู
ุง ุฏู |
|
|
|
320 |
|
00:26:40,020 --> 00:26:42,540 |
|
ูุซุจุชูุง ู
ุง ุฏู ูุชุญูู ูุฐุง ุงูุดุฑุท ุฅุฐุง ู
ุง ุนูู ุทูู ุงููู |
|
|
|
321 |
|
00:26:42,540 --> 00:26:45,680 |
|
ูู ูุชููู lipschitz ูุนูู ุจู
ุนูู ุขุฎุฑ ูุชููู is |
|
|
|
322 |
|
00:26:45,680 --> 00:26:49,480 |
|
continuous ูุฐุง ุงูุฌุฒุก ุงูุฃูู ุงูุฌุฒุก ุงูุซุงูู ูุง ุดุจุงุจ ู |
|
|
|
323 |
|
00:26:49,480 --> 00:26:55,760 |
|
ูุง ุจูุงุช ูุฃู if F is continuous at C ููุซุจุช ุฃู F is |
|
|
|
324 |
|
00:26:55,760 --> 00:26:59,320 |
|
differentiable ุนูุฏ C ูุนูู ุจุฏุฃ ุฃุซุจุชูู F is |
|
|
|
325 |
|
00:26:59,320 --> 00:27:03,460 |
|
differentiable ุนูุฏ C ูุนูู ุฅูุด F is differentiable |
|
|
|
326 |
|
00:27:03,460 --> 00:27:14,660 |
|
ูุนูู ุจุฏุฃ ุฃุซุจุชูู ุฃู limit F of X ุฒู ุฏุงุชุด ู
ุซูุง ุงู F |
|
|
|
327 |
|
00:27:14,660 --> 00:27:21,440 |
|
of C ุฒู ุฏุงุชุด ูุงูุต F of C ุนูู H ุงุฐุง H ุจุชุฑูุญ ููุตูุฑ |
|
|
|
328 |
|
00:27:21,440 --> 00:27:27,380 |
|
ุจุชุซุจุช ูู ุฅูู ุฅูุด ุจูุณุงูู F capital ุทุจุนุง ุจูุณุงูู F |
|
|
|
329 |
|
00:27:27,380 --> 00:27:33,660 |
|
small of C ุจุฏู ุฃุซุจุชูู ูุนูู ุฃู ุจู
ุนูู ุขุฎุฑ ูุฃุซุจุชูู ููู |
|
|
|
330 |
|
00:27:33,660 --> 00:27:37,000 |
|
Y ุฃูุจุฑ ู
ู 0 ุฏุงุฑููุฒูุฒ ุฏููุชุง ุจุญูุซ ุฃูู absolute value |
|
|
|
331 |
|
00:27:37,000 --> 00:27:41,320 |
|
ุฃุตุบุฑ ู
ู Delta L ุนูู H ุฃุตุบุฑ ู
ู Delta ูุคุฏู ุฅูู F of |
|
|
|
332 |
|
00:27:41,320 --> 00:27:48,260 |
|
C ุฒุงุฆุฏ H ูุงูุต F of C ุนูู H ูุงูุต F of C ุจุฏู ุฃุซุจุชูู |
|
|
|
333 |
|
00:27:48,260 --> 00:27:53,180 |
|
ุฅูู ุฃุตุบุฑ ู
ู 200 ู
ู Epsilon ุจููู ุงุซุจุชุช ูุนูุง ุงูู ูุฐู |
|
|
|
334 |
|
00:27:53,180 --> 00:27:56,540 |
|
ุงูู limit ุจุงูุณุงููุฉ ูุฐู ู
ุนูุงุชู ูุฐู ุงูู limit ุทุจุนุง ุฅูุด |
|
|
|
335 |
|
00:27:56,540 --> 00:28:01,000 |
|
ุจุชุนูู ุฃู F prime F capital prime of C exist ู |
|
|
|
336 |
|
00:28:01,000 --> 00:28:06,480 |
|
ุจุชุณุงูู F of C ุงููู ูู ุงููู ูู ุทุงูุจู ุฃูู ูู
ุง ุชููู |
|
|
|
337 |
|
00:28:06,480 --> 00:28:09,280 |
|
F continuous ุนูุฏ ุงูู C ุจุชููู F capital |
|
|
|
338 |
|
00:28:09,280 --> 00:28:12,040 |
|
differentiable ุนูุฏ ุงูู C ู ุงูู derivative ููู F |
|
|
|
339 |
|
00:28:12,040 --> 00:28:15,700 |
|
capital ุจุชุณุงูู ุงูู F ุงุณู
ู ููุดูู |
|
|
|
340 |
|
00:28:17,960 --> 00:28:21,380 |
|
Media ูุซุจุช ุงูู Continuity ุฃู ูุซุจุช ุงูู Lipschitz |
|
|
|
341 |
|
00:28:21,380 --> 00:28:27,450 |
|
function ูุนูู ุงูุฃู
ุฑ ุณููุฃุญูุง ู
ูุชุฑุถูู ูุง ุฌู
ุงุนุฉ ุฃู |
|
|
|
342 |
|
00:28:27,450 --> 00:28:31,490 |
|
ุงูู F small ูุฐู is integrable ู
ุฒุงู
is integrable |
|
|
|
343 |
|
00:28:31,490 --> 00:28:37,650 |
|
ุฅุฐุง is bounded S ูุนูู ุฃูู ููู .. ููุฏุฑ ููุงูู K ุฃูุจุฑ |
|
|
|
344 |
|
00:28:37,650 --> 00:28:41,830 |
|
ู
ู 0 ุจุญูุซ ุฃู ุงูู absolute value ู F of X small ุฃุตุบุฑ |
|
|
|
345 |
|
00:28:41,830 --> 00:28:48,070 |
|
ุณูู K ููู X ู
ูุฌูุฏุฉ ุงูู A ู ุงูู B ุณุจุจ ูุฐู ุฃู F ููุณูุง |
|
|
|
346 |
|
00:28:48,070 --> 00:28:52,350 |
|
is integrable ุทูุจุ ุจุฏุฃ ุงุนุชู
ุฏ ุนูู ูุฐู ูููุตูู ุฅููุง |
|
|
|
347 |
|
00:28:52,350 --> 00:28:58,620 |
|
ูุจุดุชุงูุงู ุฎุฏ ุงู x ู y ูู ุงูู a ู ุงูู b ูุงุณู
ุญููู ุงุฎุฏ x |
|
|
|
348 |
|
00:28:58,620 --> 00:29:01,760 |
|
ุฃูู ู
ู y without loss of generality ู
ุด ุนุงุฏ ุจุงุฎุฏ y |
|
|
|
349 |
|
00:29:01,760 --> 00:29:06,100 |
|
ุฃูุจุฑ ู
ู .. ุฃุตุบุฑ ู
ู x ุงูุขู ุญุงูุฉ ุงูู x ุจุชุณุงูู |
|
|
|
350 |
|
00:29:06,100 --> 00:29:09,660 |
|
ูุชูุงูููุง automatic ุจุชุชุญูู ููู ุจุฏููุง ูุดูู ุฅูุด ุงููู |
|
|
|
351 |
|
00:29:09,660 --> 00:29:13,790 |
|
ุจุฏููุงุงูุขู ุฎุฏ x ู y ูู ุงูู a ู ุงูู b ู ููุชุฑุถ ุฃู x |
|
|
|
352 |
|
00:29:13,790 --> 00:29:16,610 |
|
ุฃุตุบุฑ ู
ู y without most of generality ุฒู ู
ุง ูููุง |
|
|
|
353 |
|
00:29:16,610 --> 00:29:22,890 |
|
ุงูุขู ุงุญุณุจูู f of x f of y ููุต ู
ูู f of x ุงููุจูุฑุฉ y |
|
|
|
354 |
|
00:29:22,890 --> 00:29:26,630 |
|
ู ุงููุจูุฑุฉ x ุงุญุณุจ f of y ููุต f of x ุฅูุด ููุณุงูู ุงู |
|
|
|
355 |
|
00:29:26,630 --> 00:29:29,470 |
|
integration ุญุณุจ ุงูุชุนุฑูู f of x ุจุชุณุงูู ุงู |
|
|
|
356 |
|
00:29:29,470 --> 00:29:33,390 |
|
integration ู
ู ุงูู x ูู ุงูู f small ุงูุขู f of y ูู |
|
|
|
357 |
|
00:29:33,390 --> 00:29:36,930 |
|
ุนุจุงุฑุฉ ุนู ุงูู integration ู
ู a ูู yุ f smallุ ูุงูุตุ f |
|
|
|
358 |
|
00:29:36,930 --> 00:29:40,210 |
|
of x ุฅูุด ุจุชุณุงููุ ุงูู integration ู
ู a ูู x ู ู
ููุ ูู |
|
|
|
359 |
|
00:29:40,210 --> 00:29:47,290 |
|
Fุ ุฅุฐุง ูุฐุง ูุงูุต ูุฐุงุ ุงูุขู ุจุฏู ุฃุญูู ูุฐูุ ุฃุฌูุจูุงุ |
|
|
|
360 |
|
00:29:47,290 --> 00:29:52,670 |
|
ุจูุตูุฑ ุฒุงุฆุฏ ุงูู integration ู
ู x ูุนูุฏ ู
ููุ ูุนูุฏ ุงูู |
|
|
|
361 |
|
00:29:52,670 --> 00:29:57,640 |
|
aุ ูู F ุตุงุฑ ุนูุฏู ุงูุขู ุงูู integration ู
ู X ูุนูุฏ ุงูู A |
|
|
|
362 |
|
00:29:57,640 --> 00:30:00,520 |
|
ู ู
ู A ูุนูุฏ ุงูู Y ุฅุฐุง ุญูุตูุฑ ูุฐุง ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
363 |
|
00:30:00,520 --> 00:30:05,940 |
|
integration ู
ู X ูู
ูู ู
ู X ูุนูุฏ ุงูู Y ุนุงุฑููู ูุฐู |
|
|
|
364 |
|
00:30:05,940 --> 00:30:09,960 |
|
ุงูุฎุงุตูุฉ ุฅุฐุง ุตุงุฑ ุนูุฏ ุงูู F of X F of Y ูุงูุต F of X |
|
|
|
365 |
|
00:30:09,960 --> 00:30:15,760 |
|
ุจุณุงูู ุงูู integration ู
ู X ูู Y ูู
ูู ููู F ุดูู ุงูุขู |
|
|
|
366 |
|
00:30:15,760 --> 00:30:20,100 |
|
ุฅูุด ุจุฏู ุฃุตูุ ุจุฏู ุฃุตู ุฅูู absolute value F of Y |
|
|
|
367 |
|
00:30:20,100 --> 00:30:24,830 |
|
ูุงูุต F of X ุฃุตุบุฑ ุฃู ุณูู K ูู ุงูู absolute value X |
|
|
|
368 |
|
00:30:24,830 --> 00:30:31,450 |
|
ู
ุงูุณ Y ูุนูู ุตุงุฑุช ูุจุดุช ููุดูู ููู ูุตููุง ูุฃููุฏ ุจุนุถูู
|
|
|
|
369 |
|
00:30:31,450 --> 00:30:36,450 |
|
ููู
ุฃู ุงุชููุน ููู ุจุชุณูู ูุฃู ุตุงุฑ ุงูู absolute value |
|
|
|
370 |
|
00:30:36,450 --> 00:30:40,250 |
|
ููุฐู ุจุณุงูู ุงูู absolute value ููุฐู ูููุง ูุฃู ุงูู |
|
|
|
371 |
|
00:30:40,250 --> 00:30:43,010 |
|
absolute value ุงูู integration ุจุฎุงุตูุฉ ุฅุญูุง ุนุงุฑููููุง |
|
|
|
372 |
|
00:30:43,010 --> 00:30:46,770 |
|
ุฃุตุบุฑ ุฃู ุณูู ุงูู integration ููู absolute value ูุงูู |
|
|
|
373 |
|
00:30:46,770 --> 00:30:50,990 |
|
absolute value ููู F ูู ุงููุชุฑุฉ X ูY ุฃุดู
ููุง .. ูู |
|
|
|
374 |
|
00:30:50,990 --> 00:30:53,570 |
|
ู
ุด ูู ุงููุชุฑุฉ X ูY ุจุณ ุงูู absolute value ููู F ุงูู |
|
|
|
375 |
|
00:30:53,570 --> 00:30:56,170 |
|
absolute value ููู F ุฃุตุบุฑ ุฃู ุณูู K ุนูู ูู ุงููุชุฑุฉ |
|
|
|
376 |
|
00:30:56,170 --> 00:31:01,030 |
|
ุงููุจูุฑุฉ ุงููู ูู A ูB ูุฃููุฏ ุจุฑุถู ูุชููู ุฃุตุบุฑ ุฃู ุณูู |
|
|
|
377 |
|
00:31:01,030 --> 00:31:05,670 |
|
K ุนูู ุงููุชุฑุฉ ุงูุตุบูุฑุฉ ูุตุงุฑ ุนูุฏู ุฃุตุบุฑ ุฃู ุณูู K ูู |
|
|
|
378 |
|
00:31:05,670 --> 00:31:07,890 |
|
ู
ููุ ูู ุงูู integration ู
ู X ูุนูุฏ Y ุงูู integration |
|
|
|
379 |
|
00:31:07,890 --> 00:31:13,080 |
|
ู
ู X ูุนูุฏ Y ูู ุฅูุด ุจุณุงููุ ุงููู ูู Y minus X ุงูู |
|
|
|
380 |
|
00:31:13,080 --> 00:31:19,400 |
|
integration ูุนูู ุงูู integration ูู DT ู
ู X ูู DT |
|
|
|
381 |
|
00:31:19,400 --> 00:31:28,660 |
|
ุงูู integration ูู DT ู
ู X ุนูุฏ Y ุฅูุด ุจูุณุงูู Y minus |
|
|
|
382 |
|
00:31:28,660 --> 00:31:36,240 |
|
X Y minus X ููุฐุง ุตุงุฑ Y minus X ู ุงููู ุฌูุง ุฃุตุบุฑ |
|
|
|
383 |
|
00:31:36,240 --> 00:31:40,790 |
|
ุจูุณุงูู K ุงูุขู ูุฐุง ุนูู ุฎุทูุชูู ุณููุงุช ุจุชุตูุฑ ุฃู ุฃูุชู
|
|
|
|
384 |
|
00:31:40,790 --> 00:31:44,370 |
|
ูุงูู
ูู ุฅูุด ุจุญูู ู
ู X ูุนูุฏ Y ุงูู integration ููู F ูุฏู |
|
|
|
385 |
|
00:31:44,370 --> 00:31:47,850 |
|
ุฃุตุบุฑ ุฃู ุณุงูู ุงููู ูู ุงูู integration ู
ู X ูุนูุฏ Y |
|
|
|
386 |
|
00:31:47,850 --> 00:31:55,370 |
|
ูุฐู ุจุฏูุฉ K ููู DT ููุฐุง ุจุณุงูู K ุจุฑุฉ ูู Y minus X |
|
|
|
387 |
|
00:31:55,370 --> 00:31:59,230 |
|
ุงููู ูู ุฃููุฏ ุญูุตูุฑ ุนูุฏ ุงูู absolute value ูุฐู ุฃุตุบุฑ |
|
|
|
388 |
|
00:31:59,230 --> 00:32:03,770 |
|
ุฃู ุณุงูู K ูู ุงูู absolute value Y minus X ุงูุขู ูุฐู |
|
|
|
389 |
|
00:32:03,770 --> 00:32:07,570 |
|
ุงูู Xุงุช ุงูุฃุตุบุฑ ู
ู ู
ููุ ู
ู Y ููู ุฒู ู
ุง ุฃูุชู
ุนุงุฑููู |
|
|
|
390 |
|
00:32:07,570 --> 00:32:11,150 |
|
ุญุงูุฉ ุงูู X ุจุชุณุงูู Y is trivial ูุฃู ูู
ุง ุชููู X |
|
|
|
391 |
|
00:32:11,150 --> 00:32:14,450 |
|
ุจุชุณุงูู Y ูุฐุง ุตูุฑ ู ูู
ุง ุชููู X ุจุชุณุงูู Y ูุฐุง ุตูุฑ ุฅุฐุง |
|
|
|
392 |
|
00:32:14,450 --> 00:32:18,610 |
|
ุงูู inequality ูุฐู ุตุญูุญุฉ ุฏุงุฆู
ุง ุฅุฐุง ุงูุขู ุตุงุฑ ุนูุฏู |
|
|
|
393 |
|
00:32:18,610 --> 00:32:25,590 |
|
ูุฐู ุงูู inequality staris true for all x ู y |
|
|
|
394 |
|
00:32:25,590 --> 00:32:30,390 |
|
limiting a ู b ูุฃูู ูููุง ุงูู x ุฃุตุบุฑ ู
ู y ุงูู y ุฃุตุบุฑ |
|
|
|
395 |
|
00:32:30,390 --> 00:32:33,990 |
|
ู
ู x ุฃููุฏ similarly ู ุจููุณ ุงูุฃุณููุจ ุฃู ุญุชู without |
|
|
|
396 |
|
00:32:33,990 --> 00:32:38,170 |
|
loss of generality ูุนูู ุจุฏูู ู
ุง ูููุฏ ุฃู ุดูุก ู
ู |
|
|
|
397 |
|
00:32:38,170 --> 00:32:44,530 |
|
ุงูุชุนู
ูู
ุจููุชุฑุถ ุฃู x ุฃุตุบุฑ ู
ู y ุตุงุฑ |
|
|
|
398 |
|
00:32:44,530 --> 00:32:53,230 |
|
ุนูุฏู ูุง ุฌู
ุงุนุฉ ุงูุขู F ู
ุณุชู
ุฑ ุนูู A ูB ูุฃู F ุจูุตุจุญ |
|
|
|
399 |
|
00:32:53,230 --> 00:33:02,750 |
|
ุนู
ููุฉ Lipschitz ุงููู ูู ุงูุขู ุถุงู ุนูู ุฃุซุจุช ุฃู ุงูู F |
|
|
|
400 |
|
00:33:02,750 --> 00:33:11,100 |
|
ู
ุณุชุฎุฏู
ูุฒู ู
ุง ููุช ุจุฏุฃ ุฃุซุจุช ุฃู ุงูู Limit ููู F of C |
|
|
|
401 |
|
00:33:11,100 --> 00:33:17,800 |
|
ุฒุงุฆุฏ H ููุต F of C ุนูู H ูู
ุง H ุชุฑูุญ ููุตูุฑ ุจุณุงูู F |
|
|
|
402 |
|
00:33:17,800 --> 00:33:23,480 |
|
small of C ุฃู ุฃุซุจุช ููู
ุงููุฑู ุจูู ูุฐููุชูู ุฃุตุบุฑ ู
ู |
|
|
|
403 |
|
00:33:23,480 --> 00:33:28,880 |
|
Epsilon ููุฐุง ุฒู ู
ุง ูููุง ูู ุงููู ููู
ุซู F' of C ุฏู |
|
|
|
404 |
|
00:33:28,880 --> 00:33:34,160 |
|
ูุดูู ููู ุทูุจ ุงูุตูุงุฉ ุนูู ุงููุจู ุตูุงุฉ ูุงูุณูุงู
ุนููู |
|
|
|
405 |
|
00:33:37,390 --> 00:33:42,130 |
|
ุฎููููุง ูุฌู ุนูุฏ .. ุฃููุฉ ููุฌู ุงูุขู ุงูุจุฑูุงู ูุชูุงููู |
|
|
|
406 |
|
00:33:42,130 --> 00:33:49,730 |
|
ุจุฑุถู ุณูู ูููุฑุชู ุณููุฉ ุดูููุง ููู ุนูุฏู ููุชุฑุถ ุงูุขู |
|
|
|
407 |
|
00:33:49,730 --> 00:33:53,550 |
|
suppose that f is continuous at c limiting a ูb |
|
|
|
408 |
|
00:33:53,550 --> 00:33:58,790 |
|
ู
ุฏุงู
continuous ุฅุฐู limit |
|
|
|
409 |
|
00:34:01,700 --> 00:34:08,460 |
|
F of X as X ุจุชุฑูุญ ููู C ุจุณุงูู F of C ู
ุธุจูุท ููุง ูุฃุ |
|
|
|
410 |
|
00:34:08,460 --> 00:34:12,300 |
|
ุฃููุฏ ู
ุธุจูุท ูุจูู ู
ู ุฌูุฉ ุฃุฎุฑู ุฎูููุง ููุชุจูุง ุจุตูุฑุฉ |
|
|
|
411 |
|
00:34:12,300 --> 00:34:18,660 |
|
ุซุงููุฉ X ูุงูุต C ุจุชุฑูุญ ููุณูุฑ if and only if ุงููู ูู |
|
|
|
412 |
|
00:34:18,660 --> 00:34:23,960 |
|
X ุจุชุฑูุญ ูู
ูู ููู C ุณู
ููู ูุฐู X minus C ุฅูุด ุงุณู
ูุง H |
|
|
|
413 |
|
00:34:23,960 --> 00:34:31,410 |
|
ุจุตูุฑ ูุฐู ุงููู ููู ู
ูู ูู limit F of ุงูู X minus C |
|
|
|
414 |
|
00:34:31,410 --> 00:34:36,490 |
|
ุจุชุณุงูู ุงูู H ูุนูู ุงูู X ุจุชุณุงูู H ุฒุงุฆุฏ C ุฃู C ุฒุงุฆุฏ |
|
|
|
415 |
|
00:34:36,490 --> 00:34:41,190 |
|
H ูุฃู x ุจุชุฑูุญ ููู c ุชูุงูุฆ ุฃูู .. ุงููู ูู x minus c |
|
|
|
416 |
|
00:34:41,190 --> 00:34:44,610 |
|
ุชุฑูุญ ููุตูุฑุ ูุนูู ุจุชูุงูุฆ H ุชุฑูุญ ูู
ูู ููุตูุฑุ ุฅูุด ุญูุซ |
|
|
|
417 |
|
00:34:44,610 --> 00:34:49,650 |
|
ูู ูุฐุงุ F of Cุ ุฅุฐุง ูุฐู ูู ุชุนุจูุฑ ุขุฎุฑ ุนู ุงูู |
|
|
|
418 |
|
00:34:49,650 --> 00:34:56,250 |
|
continuity ููู F ูู
ุง ุงููู ูู ุงููู ูู ุงูู F ุนูุฏ ู
ููุ |
|
|
|
419 |
|
00:34:56,250 --> 00:34:59,210 |
|
ุนูุฏ ุงูู Cุ ูุนูู ูุฐู ุชุนุจูุฑ ุขุฎุฑุ ุงูู continuity ููู |
|
|
|
420 |
|
00:34:59,210 --> 00:35:05,900 |
|
function ูู
ุง ุนูุฏ ุงูููุทุฉ ุงููู ูู C ูุฐู ุงูุขู ุดู ุจุฏู |
|
|
|
421 |
|
00:35:05,900 --> 00:35:09,520 |
|
ุงุณุชุฎุฏู
ูุง ูููุตูู ููู ุจุฏู ุฅูุงูุง ูุฃู ู
ุงุฏุงู
F is |
|
|
|
422 |
|
00:35:09,520 --> 00:35:12,600 |
|
continuous ุฏู ูุฐู ู
ุชุญููุฉ ูููุง ู
ุงุฏุงู
F is |
|
|
|
423 |
|
00:35:12,600 --> 00:35:15,480 |
|
continuous ุนู C ุฏู ูุฐู ู
ุชุญููุฉ ูู
ุงุฏุงู
ูุฐู ู
ุชุญููุฉ |
|
|
|
424 |
|
00:35:15,480 --> 00:35:18,720 |
|
ุฅุฐุง by epsilon delta definition for every epsilon |
|
|
|
425 |
|
00:35:18,720 --> 00:35:22,880 |
|
ุฃูุจุฑ ู
ู 0 there exists delta ุฃูุจุฑ ู
ู 0 such that |
|
|
|
426 |
|
00:35:22,880 --> 00:35:28,950 |
|
ูู
ุง ูููู ุงู absolute value ูู H ุฃุตุบุฑ ู
ู Delta ู |
|
|
|
427 |
|
00:35:28,950 --> 00:35:32,230 |
|
ุทุจุนุง ุฃูุง ููู ุจุดุชุบู ูู ุงูู
ูุทูุฉ ุฅูููุง ุชููู C ุฒุงุฆุฏ H |
|
|
|
428 |
|
00:35:32,230 --> 00:35:36,370 |
|
ููู ู
ุง ูุฃ ูู ุงููุชุฑุฉ ุชุจุนุช ู
ู A ูุนูุฏ ู
ูู ูุนูุฏ B ูุนูู |
|
|
|
429 |
|
00:35:36,370 --> 00:35:41,230 |
|
ุงุฎุชุฑุช ุงู H ุตุบูุฑุฉ ููุงูุฉ ุจุญูุซ ุฅููู C ุฒุงุฆุฏ H ุงุถูู ููู |
|
|
|
430 |
|
00:35:41,230 --> 00:35:45,090 |
|
ุฌุงุนุฏ ูู ุงููุชุฑุฉ ู
ู A ู B ูุนูุฏู ูุฅูู ูุงู ุงููุชุฑุฉ A ููู |
|
|
|
431 |
|
00:35:45,090 --> 00:35:49,330 |
|
B ูุงููุชุฑุฉ ูุฐู ุงููู ูู I C ุนูุฏู ู
ุซูุง ูู ุฏุงุฎููุง ุงููู |
|
|
|
432 |
|
00:35:49,330 --> 00:35:55,690 |
|
ูู ุจุชุฎุชุงุฑ H ุฏูุชุชูุง ุตุบูุฑุฉ ููุงูุฉ ุฅููู ุถุงู C ุฒุงุฆุฏ H |
|
|
|
433 |
|
00:35:55,690 --> 00:36:01,050 |
|
ู
ูุฌูุฏุฉ ูู ุงููุชุฑุฉ ู
ู A ูุนูุฏ B ุนุดุงู ุชุตูุฑ ู
ุนุฑูุฉ ูุฅูู |
|
|
|
434 |
|
00:36:01,050 --> 00:36:05,330 |
|
ุฏุงูุชู ุฃูุง ุนุดุงู ุชููู ู
ุนุฑูุฉ ุนูุฏ C ุฒุงุฆุฏ H ูุงุฒู
ุชููู C |
|
|
|
435 |
|
00:36:05,330 --> 00:36:08,490 |
|
ุฒุงุฆุฏ H ูู ุฏุงุฎู ุงูู
ูุทูุฉ ูุฐู ูุฅูู ุฏุงูุชู ู
ุนุฑูุฉ ุนูู |
|
|
|
436 |
|
00:36:08,490 --> 00:36:11,770 |
|
ุงููุชุฑุฉ ู
ู A ูุนูุฏ B ุนุดุงู ููู ุฃููููุง C ุฒุงุฆุฏ H ูุงุฒู
|
|
|
|
437 |
|
00:36:11,770 --> 00:36:16,630 |
|
ุชููู ูู ุงููุชุฑุฉ ุฒุงุฆุฏ B ุฅุฐู ุงุฎุชูุงุฑ ุงูู Delta ูุนุชู
ุฏ |
|
|
|
438 |
|
00:36:16,630 --> 00:36:20,210 |
|
ุนูู ุงู limit ููุนุชู
ุฏ ุนูู ุฅููู ุฃุถู
ู ุงู C ุฒู ุฏุงุดุฑ ุถุงู |
|
|
|
439 |
|
00:36:20,210 --> 00:36:24,510 |
|
ูููู ูู ุงููุชุฑุฉ A ูB ุฅุฐุง ุชุนุฑูู ุงู continuity ุจูููู |
|
|
|
440 |
|
00:36:25,950 --> 00:36:27,530 |
|
ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
|
|
|
|
441 |
|
00:36:27,530 --> 00:36:28,970 |
|
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ |
|
|
|
442 |
|
00:36:28,970 --> 00:36:29,950 |
|
ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y |
|
|
|
443 |
|
00:36:29,950 --> 00:36:30,650 |
|
ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
|
|
|
|
444 |
|
00:36:30,650 --> 00:36:32,710 |
|
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง |
|
|
|
445 |
|
00:36:32,710 --> 00:36:35,050 |
|
ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃููู
|
|
|
|
446 |
|
00:36:35,050 --> 00:36:41,110 |
|
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง |
|
|
|
447 |
|
00:36:41,110 --> 00:36:49,400 |
|
ููู y ุฃููู
ุจุงุณุชุฎุฏุงู
ุตูุฑ ููุฌุฏ ุฏูุชุง ููู y ุฃุทูุจุ ุงูุขู |
|
|
|
448 |
|
00:36:49,400 --> 00:36:54,020 |
|
ููู ุฃูุง ุจุฏุฃ ุฃุฑูุญุ ุจุฏุฃ ุฃุซุจุช ููู
ุฅููู ูุฐุง ูุงูุต ูุฐุง |
|
|
|
449 |
|
00:36:54,020 --> 00:36:58,240 |
|
ุฃุตุบุฑ ู
ู epsilon ุนุดุงู ุฐูู ุฏุนูุง ูุญุณุจ F of C ุฒุงุฏ H |
|
|
|
450 |
|
00:36:58,240 --> 00:37:03,060 |
|
ูุงูุต F of C ุนูู H ูุงูุต ู
ูู ูุง ุฌู
ุงุนุฉุ F of C ููุณุงูู |
|
|
|
451 |
|
00:37:03,060 --> 00:37:13,170 |
|
ุงูุขู F of C ุฒุงุฏ H ูุงูุต F of C ุฎุฏ ุงูุขู ุงููู ูู ุงูู H |
|
|
|
452 |
|
00:37:13,170 --> 00:37:16,850 |
|
ูุฏุนู
ุงูู
ุดุชุฑู ุจุงูู C ุงููุงุญุฏุฉ ููู H ู
ุงุดู F of C ุฒู |
|
|
|
453 |
|
00:37:16,850 --> 00:37:21,910 |
|
ุฏุชุด ุชุนุฑูููุง ู
ู A ูุนูุฏ C ุฒู ุฏุชุด ูู F of X DX ูููุงูุง |
|
|
|
454 |
|
00:37:21,910 --> 00:37:26,090 |
|
ูุฐู ุงููู ู
ุง ุนุทููุงูุง ู
ู ุฑุฃุณ ุงูุฏูุฑ ูุงูุต ู
ุงุดู ุชุนุฑูู F |
|
|
|
455 |
|
00:37:26,090 --> 00:37:30,230 |
|
of C Capital of C ูู ุงู integration ู
ู A ูุนูุฏ C ุฒู |
|
|
|
456 |
|
00:37:30,230 --> 00:37:35,630 |
|
ุฏุชุด ุงูุขู ุฏู ู
ุด C ุฒู ุฏุชุด ู
ู A ูุนูุฏ ู
ูู ูุนูุฏ ุงูู C |
|
|
|
457 |
|
00:37:35,630 --> 00:37:40,110 |
|
ูุงุญุฏุฉ ููู H ู
ู A ูุนูุฏ ุงูู C ุงููู ูู F of C ุฒู ุฏุชุด |
|
|
|
458 |
|
00:37:40,110 --> 00:37:46,360 |
|
ูููุง ููู ุงููุงุญุฏุฉ ุงูู H ุงููู ุจุฑุง ุงู F of C ูููุง ู
ู A |
|
|
|
459 |
|
00:37:46,360 --> 00:37:51,780 |
|
ู C ูุงุญุฏุฉ ุงูู H ูุงูุต ู
ูู F of C ูุฐุง ู
ู ุงูุชุนุฑูู |
|
|
|
460 |
|
00:37:51,780 --> 00:37:55,460 |
|
ู
ุจุงุดุฑุฉ ูุฅูู ุงุญูุง ุนุฑููุง ุงู F capital of X ูู ุนุจุงุฑุฉ |
|
|
|
461 |
|
00:37:55,460 --> 00:38:01,820 |
|
ุนู integration ู
ู A ูุนูุฏ X F of T DT ูุฃูู ูู
ุง ูููู |
|
|
|
462 |
|
00:38:01,820 --> 00:38:06,120 |
|
F of C ุฒู ุฏุชุด ุจูุญุทูุง ุฏู C ุฒู ุฏุชุด C ุจูุญุทูุง ุฏู ุนูุงุด |
|
|
|
463 |
|
00:38:06,120 --> 00:38:13,460 |
|
C ููู C ุฒู ุฏุชุด ููู ุงูู C ููู ุณุงููุฉ ุงูุขู ูุฐู ู
ู .. |
|
|
|
464 |
|
00:38:13,460 --> 00:38:18,780 |
|
ู
ู .. ู
ู ุนูุฏ A ูู C ุฒู ุฏู ุงุชุด ููุฐู ู
ู A ูุนูุฏ B |
|
|
|
465 |
|
00:38:18,780 --> 00:38:23,980 |
|
ูุนูุฏ C ูุฏููุฉ ู
ุน ุจุนุถ ูุงู ูุฏููุฉ ุงูุชูุชูู ุจุฏู ุงุญุณุจูุง |
|
|
|
466 |
|
00:38:23,980 --> 00:38:28,120 |
|
ู
ุน ุจุนุถ ุญุณุจูุง ุฒููู ูุจู ู ุดููุฉ ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู |
|
|
|
467 |
|
00:38:28,120 --> 00:38:32,400 |
|
ุงุชุด ุฎุฏูุง ุนุงู
ู ู
ุดุชุฑู ุฎุฏูุง ูุงุญุฏ ุนูู ุงุชุด ุนุงู
ู ู
ุดุชุฑู |
|
|
|
468 |
|
00:38:32,400 --> 00:38:37,340 |
|
ุจูู ุงูุฌูุชูู ุชุตุจุญ ูุงุญุฏ ุนูู ุงุชุด ุงูุชุญ ุฌูุณ ุงู |
|
|
|
469 |
|
00:38:37,340 --> 00:38:41,660 |
|
integration ู
ู A ูุนูุฏ C ุฒู ุฏู ุงุชุด ูุฃู ุจุฏู ุงููุงูุต |
|
|
|
470 |
|
00:38:41,660 --> 00:38:46,020 |
|
ุจูุตูุฑ H ุงูุชุจ ุฒุงุฆุฏ ุจุฏู ูุฐุง ุงููุงูุต ุจููุชุจ ุฒุงุฆุฏ ูุฃูู |
|
|
|
471 |
|
00:38:46,020 --> 00:38:52,460 |
|
ูุชูููุจ ู
ูู ุงูุขู ู
ู C ูุนูุฏ ุงู A ูุธุจุท ุงููู ูู ูููุณูุง |
|
|
|
472 |
|
00:38:52,460 --> 00:38:58,020 |
|
F F ูุฐู ุงูุขู ู
ู C ูุนูุฏ ุงู A ูู
ู A ูุนูุฏ ุงู C ุฒุงุฏ H |
|
|
|
473 |
|
00:38:58,020 --> 00:39:02,000 |
|
ุฅุฐุง ุฃููุฏ ูุฐู ูููุง ุนูู ุจุนุถ ูุตูุฑ ุงู integration ู
ู C |
|
|
|
474 |
|
00:39:02,000 --> 00:39:08,930 |
|
ู C ุฒุงุฏ H ูู F ูู ูุงุญุฏ ุนูู H ุฅุฐุง ูุฐู ูููุงุจุณ |
|
|
|
475 |
|
00:39:08,930 --> 00:39:11,350 |
|
ุงุจุฏูุชูุง ุจููู
ุชูุง ุงููู ูููุง ุนููุง ุงููู ูู ุงู |
|
|
|
476 |
|
00:39:11,350 --> 00:39:15,810 |
|
integration ู
ู C ู C ุฒู H ุงููู ุงูุฌุฏุชู ุจุฏู ูุฐุง ููู |
|
|
|
477 |
|
00:39:15,810 --> 00:39:23,190 |
|
ู
ู ูุงุญุฏ ุงู H ู F of X DX ูุงูุต ุงูุขู ูุฐุง ูุฐุง ุงููู ูู |
|
|
|
478 |
|
00:39:23,190 --> 00:39:28,090 |
|
F of C ุดูู ููู ุจุฏู ุงุนู
ููุง ุนูู ุฌูุฉ ุชุนุงูู ุงุญุณุจ ุงู |
|
|
|
479 |
|
00:39:28,090 --> 00:39:33,660 |
|
integration ุงู integration ู
ู C ูู C ุฒุงุฆุฏ H ููู |
|
|
|
480 |
|
00:39:33,660 --> 00:39:38,180 |
|
constant ูุงุญุฏ ุจุนุฏ ุฃุฐููู
DX ุฅูุด ููุณุงูู ุงู |
|
|
|
481 |
|
00:39:38,180 --> 00:39:44,140 |
|
integration ูุฏุง ุนุจุงุฑุฉ ุนู C ุฒุงุฆุฏ H ูุงูุต C ูููุณุงูู |
|
|
|
482 |
|
00:39:44,140 --> 00:39:48,760 |
|
ูุฏุงุด H ูุนูู ุจู
ุนูู ุขุฎุฑ ูู ุฌูุชูุง ุงูุฌุฏ ุชุนุฑููุง ููุด |
|
|
|
483 |
|
00:39:48,760 --> 00:39:52,640 |
|
ุจุนู
ู ููู ูุงุญุฏ ุนูู H ูู ุงู integration ู
ู C ูู C |
|
|
|
484 |
|
00:39:52,640 --> 00:39:58,720 |
|
ุฒุงูุฏ H ุงููู ูู ุงููุงุญุฏ ููุณุงูู ุฅูุดุ ูุงุญุฏุ ู
ุธุจูุท ููุง |
|
|
|
485 |
|
00:39:58,720 --> 00:40:03,450 |
|
ูุฃุ ุฃููุฏ ู
ุธุจูุท ู
ุงุดู ูุงูู
ู ูุงุฏู ูุณู
ุช ุงูุฏููุง ุชุงูู |
|
|
|
486 |
|
00:40:03,450 --> 00:40:10,570 |
|
ุนุดุงู ุชุทูุน ุญุฏ ูุงุญุฏ ุงูุขู ุตุงุฑ ุนูุฏู ูู ุถุฑุจุช ูุงุฏู |
|
|
|
487 |
|
00:40:11,920 --> 00:40:18,320 |
|
ุงูุฌูุชูู ูู F of C ูู F of C ุจูุณุงูู ุฅูุดุ F of C ุตุงุฑ |
|
|
|
488 |
|
00:40:18,320 --> 00:40:21,260 |
|
ุงูุขู F of C ุจูุณุงูู ูุฐู ุจุฏู ุฃุดูู F of C ุชุจุนุชู ู ุฃุญุท |
|
|
|
489 |
|
00:40:21,260 --> 00:40:25,360 |
|
ู
ูุงููุง ูุฐู ุงูุตูุฑุฉ ููุด ุญุทูุชูุงุ ุนุดุงู ูุฐู ุฃูุฏุฑ ุฃุชุญู
ู |
|
|
|
490 |
|
00:40:25,360 --> 00:40:30,380 |
|
ู
ุญุง ู
ุญุง ุฏู ุงููู ู
ูุฌูุฏุฉ ู
ู ุงูุฃุตู ุดูู ููู ุงูุขู ุดููุช |
|
|
|
491 |
|
00:40:30,380 --> 00:40:33,320 |
|
ุงู F of C ู ุญุทูุช ููู
ุชูุง ุงููู ุฃูุฌุฏูุงูุง ุงููู ูู |
|
|
|
492 |
|
00:40:33,320 --> 00:40:37,660 |
|
ุนุจุงุฑุฉ ุนู F of C ุนูู H ูู ุงู integration ู
ู C ูC ุฒู |
|
|
|
493 |
|
00:40:37,660 --> 00:40:42,480 |
|
H ูู
ูุ ูููุงุญุฏ ู
ุงุดู ูุฃูู ุตุงุฑ ูุฐุง ุงู integration ู ูุฐุง |
|
|
|
494 |
|
00:40:42,480 --> 00:40:45,920 |
|
ุงู integration ููุณ ุงูุงุดู ูุงุญุฏ ู F of X ู ูุงุญุฏ ู |
|
|
|
495 |
|
00:40:45,920 --> 00:40:50,380 |
|
ูุงุญุฏ ูุนูู ุจูุฏุฑ ุงุดุชุบู ูููู
ุจูุตูุฑ ุนูุฏู ุฎุฏ ุงู ูุงุญุฏ ุงู |
|
|
|
496 |
|
00:40:50,380 --> 00:40:53,960 |
|
H ุจุฑุง ุนู ุงูู
ุดุชุฑู ุฎุงูุต ุจูุธู ุนูุฏู ุงู integration ู
ู |
|
|
|
497 |
|
00:40:53,960 --> 00:40:58,720 |
|
C ู C ุฒุงุฏ H ูุฐุง ู
ูู ุฅูุด ุงุณู
ู F of X ู ูุฐุง F of C |
|
|
|
498 |
|
00:40:58,720 --> 00:41:01,580 |
|
ุฏุฎูุชูุง ุฌูุง ู ู
ุถุฑุจุชูุง ุจุงููุงุญุฏ ุตุงุฑุช ู
ูู ุจูุฏุฑ ุฃุนูู ู |
|
|
|
499 |
|
00:41:01,580 --> 00:41:06,520 |
|
ุซุงุจุช ุงููู ูู ูุงูุต F of C ููู ุงุด ู
ุงูู DX ูุฐุง ุงูููุงู
|
|
|
|
500 |
|
00:41:06,520 --> 00:41:14,340 |
|
ููู ู
ู C ู C ุฒุงุฏ H ุตุงุฑ ุนูุฏู ุงูุขู ุงูุตูุฑุฉ ูุฐู ูููุง ุงู |
|
|
|
501 |
|
00:41:14,340 --> 00:41:20,840 |
|
ู ูุฐู ุงูุตูุฑุฉ ุงุตูุง ุฃูุง ุจุฏูุงูุง ุงูุขู ูุงุญุฏ ุนูู H ุฃุฒุฑุน |
|
|
|
502 |
|
00:41:20,840 --> 00:41:23,760 |
|
ุฃู ุณุงูู ููููุง absolute value of integration ุฃุฒุฑุน |
|
|
|
503 |
|
00:41:23,760 --> 00:41:28,740 |
|
ุฃู ุณุงูู ุงู integration ูู absolute value DX ุงูุขู |
|
|
|
504 |
|
00:41:28,740 --> 00:41:35,320 |
|
ูุฐุง ุงูู
ูุฏุงุฑ F of X ูุงูุต F of C ูููุง ุนููุง ู
ู ุฑุงุณ |
|
|
|
505 |
|
00:41:35,320 --> 00:41:40,420 |
|
ุงูุฏูุฑ ุฅูู F of X ูุงูุต F of C ุงููู ูู ุฃุตุบุฑ ู
ู |
|
|
|
506 |
|
00:41:40,420 --> 00:41:44,420 |
|
Epsilon ูุฃูู limit F of X ูู
ุง X ุชุฑูุญ ูููC ุฃุดูุฑ |
|
|
|
507 |
|
00:41:44,420 --> 00:41:50,240 |
|
ู
ุณุงูู F of C ูุฃูู X ุงููN ูุฐู ูู ุงููุชุฑุฉ ู
ู C ููC |
|
|
|
508 |
|
00:41:50,240 --> 00:41:56,100 |
|
ุฒุงุฆุฏ ุงุชุด ูุนูู ุจุชุณู
ุญ ูู ุฃู ุฃููู limit F of X as X |
|
|
|
509 |
|
00:41:56,100 --> 00:42:01,220 |
|
ุจุชุฑูุญ ูููC ุจุชุณุงูู F of C ูู
ุง X ุจุชุฑูุญ ูููC ุงููู ูู |
|
|
|
510 |
|
00:42:01,220 --> 00:42:05,980 |
|
ุฃุฏุด ุจุชุฑูุญ ูู
ูู ููุณูุฑ ู
ุถู ูู ููุณ ุงูู
ูุทูุฉ ูุฃูู ูููุง |
|
|
|
511 |
|
00:42:05,980 --> 00:42:10,300 |
|
ูุจู ุดููุฉ x minus c ุจุชุฑูุญ ููุณูุฑ ุฅุฐุง ูููุท ุฅุฐุง ุงููู |
|
|
|
512 |
|
00:42:10,300 --> 00:42:13,880 |
|
ูู ุงู H ุงููู ุจุชุฑูุญ ููุณูุฑ ุงููู ูู ุนุจุงุฑุฉ ุนู x minus |
|
|
|
513 |
|
00:42:13,880 --> 00:42:18,260 |
|
c ูุนูู ูุฐุง ุงูู
ูุฏุงุฑ ุจุงู continuity ูู F ุนูุฏ ุงู C |
|
|
|
514 |
|
00:42:18,260 --> 00:42:21,980 |
|
ุจุฑุถู ุจููู ุฃุตุบุฑ ู
ู ุฅุจุณููู ุนูู ุงู absolute value |
|
|
|
515 |
|
00:42:21,980 --> 00:42:25,160 |
|
ูู
ูู ูู H ูู ุงู integration ู
ู C ูC ุฒุงุฏ H |
|
|
|
516 |
|
00:42:27,990 --> 00:42:33,050 |
|
ูุงุถุญุฉ ุงูุ ุฃููุฏ ูุฐุง ุงูุขู ุฅูุด ููู
ุชูุ C ุฒู ุฏุงุด ูุงูุต C |
|
|
|
517 |
|
00:42:33,050 --> 00:42:36,050 |
|
ุงููู ูู ุนุจุงุฑุฉ ุนู H ูุจุตูุฑ Y ุนุจุงุฑุฉ ุนู absolute value |
|
|
|
518 |
|
00:42:36,050 --> 00:42:42,430 |
|
of H ูู mean ููู ุงููู ูู ุงููH ุงููH ุงููู ูู ุงููH |
|
|
|
519 |
|
00:42:42,430 --> 00:42:42,470 |
|
ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู |
|
|
|
520 |
|
00:42:42,470 --> 00:42:42,490 |
|
ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH |
|
|
|
521 |
|
00:42:42,490 --> 00:42:42,570 |
|
ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู |
|
|
|
522 |
|
00:42:42,570 --> 00:42:42,710 |
|
ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH |
|
|
|
523 |
|
00:42:42,710 --> 00:42:46,490 |
|
ุงููH ุงููู ูู ุงููH ุงููู ูู ุงููH |
|
|
|
524 |
|
00:42:46,490 --> 00:42:52,450 |
|
ุงููู ูู ุงูู ุทูุจ .. ุจูุตูุฑ ุนูุฏูุง .. ุจูุตูุฑ ุฃูุจุฑ ู
ู 0 |
|
|
|
525 |
|
00:42:52,450 --> 00:42:55,790 |
|
ุขุณู ูุฐู ุจุญุงุฌุฉ ุฏู ุจุชุทูุน ุฅูุด ุจุชุณุงูู .. ุจูุณุงูู ุจูุณุงูู |
|
|
|
526 |
|
00:42:55,790 --> 00:42:58,150 |
|
.. ุจูุฏุฑ ุฃุฎุชุงุฑ H positiveุ ุงู ุจูุฏุฑ ุฃุฎุชุงุฑ H positive |
|
|
|
527 |
|
00:42:58,150 --> 00:43:03,130 |
|
ุทูุจ ู ูู ุญุชู ุงู H negative ุจุชููู similarly ุจุณ |
|
|
|
528 |
|
00:43:03,130 --> 00:43:06,950 |
|
ุจุชููู .. ูู ุงูุจุฑูุงู
ุจูุตูุฑ .. ุจุชุฑุชุจ ุนูู ุฅููู ุงููู ูู |
|
|
|
529 |
|
00:43:06,950 --> 00:43:12,890 |
|
ุงู .. ุงู C ุฒุงุฆุฏ H ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุงู C without loss |
|
|
|
530 |
|
00:43:12,890 --> 00:43:17,250 |
|
of generality ุงู H ุฃูุจุฑ ู
ู 0 ุจุตูุฑ ุนูุฏู ูุฃูู ูุฐุง |
|
|
|
531 |
|
00:43:17,250 --> 00:43:24,750 |
|
ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ู
ูู ู
ู ุฅุจุณููู ุฅูุด ูุนูู ุงููู ุนู
ููุง |
|
|
|
532 |
|
00:43:24,750 --> 00:43:28,290 |
|
ุงููู ุนู
ููุง ููู ุฅุจุณููู ุฃูุจุฑ ู
ู Zero ูุงุฌุฆูุง Delta |
|
|
|
533 |
|
00:43:28,290 --> 00:43:33,350 |
|
ุจุญูุซ ุฅููู ูู
ุง H absolute value ุฃุตุบุฑ ู
ู Delta ูุนุทููู |
|
|
|
534 |
|
00:43:33,350 --> 00:43:39,330 |
|
ุฅูู ูุฐุง ุงูู
ูุฏุงุฑ ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ุฅุจุณููู ูุนูู ุตุงุฑ |
|
|
|
535 |
|
00:43:39,330 --> 00:43:43,450 |
|
ุนูุฏู limit ูุฐุง ุงูู
ูุฏุงุฑ ุจุณูุก f of c ู ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
536 |
|
00:43:43,450 --> 00:43:46,290 |
|
ุงููู ูู f prime of c ูุนูู ุงุนุชุจุฑุชูุง f prime of c |
|
|
|
537 |
|
00:43:46,290 --> 00:43:56,410 |
|
ุจุณูุก f small of c ููู ุงูู
ุทููุจ ุทูุจ ููุฌู ุงูุขู ููู |
|
|
|
538 |
|
00:43:56,410 --> 00:44:02,210 |
|
ูู ุงู corollary ุจุฑุถู ุงูู ุงููุธุฑูุฉ ุงููู ุฌุงู
ูุฉ ุจุดููุฉ |
|
|
|
539 |
|
00:44:02,210 --> 00:44:10,790 |
|
ุฃู ุฎููููู ูููู ุชูุฎูุตูุง ุณุฑูุน ูุงุณุชุฐูุฑูุง ุณุฑูุนูุง ุงููู |
|
|
|
540 |
|
00:44:10,790 --> 00:44:17,830 |
|
ูู ุงูุฃููู ูุงูุช ุชูุงู
ู ูุงูุชูุงุถู ูุฐู ุชูุงุถู ุงูุชูุงู
ู |
|
|
|
541 |
|
00:44:17,830 --> 00:44:23,470 |
|
ุทุจุนุง ูู ูุงุญุฏุฉ ุชุญุช ุดุฑูุทูุง ุงูู
ุฐููุฑุฉ ูู ูุธุฑูุชูุง |
|
|
|
542 |
|
00:44:25,860 --> 00:44:30,340 |
|
ููุฌู ูุดูู ูุง ุฌู
ุงุนุฉ ุงู corollary let f ู
ู a ู b ูุนูุฏ |
|
|
|
543 |
|
00:44:30,340 --> 00:44:34,940 |
|
r ุจู continuous on a ู b and let f of x ุจู ุณูู ุงู |
|
|
|
544 |
|
00:44:34,940 --> 00:44:37,720 |
|
integration ู
ู ุงู a ู ุงู x ู ุงู f ุฅุฐุง ูุฑุถ f |
|
|
|
545 |
|
00:44:37,720 --> 00:44:40,160 |
|
continuous ุงู f ุงุณู
ู ุงู continuous ุนูู ูู ุงููุชุฑุฉ |
|
|
|
546 |
|
00:44:40,160 --> 00:44:44,980 |
|
ุฑูุญ ุญุงูู ุทุจุนุง ุฃุนุทู ุฅุดู ุฃูุจุฑ ู
ู ุงููุธุฑูุฉ ุงููู ูุงุชุช |
|
|
|
547 |
|
00:44:44,980 --> 00:44:47,640 |
|
ูุนูู ูุฑุถ ุงู continuity ุนูู ุงู a ู ุงู b ู
ุง ุฒู
|
|
|
|
548 |
|
00:44:47,640 --> 00:44:49,840 |
|
continuous ุฅุฐุง ู
ุง ุจุชุฒู
ุด ุชููู integrable ูุฅูู ู ุฃูุง |
|
|
|
549 |
|
00:44:49,840 --> 00:44:52,340 |
|
continuous function ุฒู ู
ุง ูููุง ุฅูุด ู
ุง ููุง is |
|
|
|
550 |
|
00:44:52,340 --> 00:44:58,190 |
|
integrable ุฅุฐุง ู
ุฏุงู
ุฉ f continuous ุงูุขู ุจูุตูุฑ ูุฐู ุงู |
|
|
|
551 |
|
00:44:58,190 --> 00:45:01,810 |
|
integration ุงููู ูู ู
ู a ูุนูุฏ ุงู x ููุณูุง |
|
|
|
552 |
|
00:45:01,810 --> 00:45:06,030 |
|
continuous ูุฃ ู
ุด continuous ุจุณ is differentiable |
|
|
|
553 |
|
00:45:06,030 --> 00:45:09,270 |
|
ูุนูู ุฃุฌู
ุงู continuous ูุนูู ูุชููู ุนูุฏู ุงู f is |
|
|
|
554 |
|
00:45:09,270 --> 00:45:13,670 |
|
differentiable ู ุงู f ุจุฑุงู
ู ูู
ูู ูู ุงู f then f is |
|
|
|
555 |
|
00:45:13,670 --> 00:45:17,730 |
|
differentiable ู
ู a ู b ุนูุฏ f ุจุฑุงู
ู ุจูุณุงูู ูุฏู ุฅุฐู |
|
|
|
556 |
|
00:45:17,730 --> 00:45:25,000 |
|
ุจุงุฎุชุตุงุฑ ู
ู a ู x ุงููู ูู fof t dt ูู ูุฑุถูุง ูุฐู |
|
|
|
557 |
|
00:45:25,000 --> 00:45:33,060 |
|
continuous ุนูู ุงู a ู ุงู b ุฅุฐุง ููู x element in a |
|
|
|
558 |
|
00:45:33,060 --> 00:45:38,080 |
|
ู ุงู b ุจูุตูุฑ f of x ุจุงูุณุงูู ูุฐุง is differentiable |
|
|
|
559 |
|
00:45:38,080 --> 00:45:45,500 |
|
ู ุงู f prime of x ูุชุณุงูู f of ุงููู ูู x ูุนูู ุจู
ุนูู |
|
|
|
560 |
|
00:45:45,500 --> 00:45:52,590 |
|
ุขุฎุฑ ุงููู ูู ููุถู ูุฐุง ุงูุชูุงู
ู ู ูุฒูู ุงูุชูุงุถู ู ูุญุท |
|
|
|
561 |
|
00:45:52,590 --> 00:46:00,830 |
|
ุงูู L ุฌูุง ูุนูู ุจู
ุนูู ุขุฎุฑ D by DX ููู integration |
|
|
|
562 |
|
00:46:00,830 --> 00:46:08,530 |
|
ู
ู A ูุนูุฏ X F of D DT ูู
ุง ุชููู F continuous ูุฐุง |
|
|
|
563 |
|
00:46:08,530 --> 00:46:14,610 |
|
ุจููู ุจู cancel ูุฐุง ุฃู ุนู
ููุฉ ุนูุณูุฉ ููุูุจุชุธูููุง F of X |
|
|
|
564 |
|
00:46:14,610 --> 00:46:19,070 |
|
ูุนุฏูู ุงูุฃุญูุงููุง ุฃู F of T ูุงูู T ูู ุงูู
ุชุบูุฑ ุฃู ุงูู |
|
|
|
565 |
|
00:46:19,070 --> 00:46:23,370 |
|
X ูู ุงูู
ุชุบูุฑ ูุฐู ุงููู ูู ุงูููุฑูุงุฑู ุงูุขู ุจุฏูุง ููู
ููุง |
|
|
|
566 |
|
00:46:23,370 --> 00:46:26,610 |
|
ุงููุธุฑูุชูู ุงููู ูุจู ุจุดููุฉ ูู ูุธุฑูุฉ ูุงุญุฏุฉุ ููุฎุตูู ูู |
|
|
|
567 |
|
00:46:26,610 --> 00:46:30,910 |
|
ูุธุฑูุฉ ูุงุญุฏุฉ ูุดูู ููู ุจุฏูุง ููุฎุตูู ูู ูุธุฑูุฉ ูุงุญุฏุฉ |
|
|
|
568 |
|
00:46:30,910 --> 00:46:40,630 |
|
ูุนูู ุจุฏูุง ูุนูุฏูุง ุจุณ ุงููู ูู ุตูุงุบุฉ ุงููุธุฑูุชูู ุตูููุง |
|
|
|
569 |
|
00:46:40,630 --> 00:46:44,540 |
|
ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ุ ุงูุขู fundamental |
|
|
|
570 |
|
00:46:44,540 --> 00:46:48,580 |
|
theorem of calculus combined form ูุนูู ุงูุชูุชูู |
|
|
|
571 |
|
00:46:48,580 --> 00:46:53,790 |
|
ุงูุขู ู
ูุฌูุฏุงุช ูู ููุณ ุงููุธุฑูุฉุ ุดูู ุฅูุด ุจููู ูู let |
|
|
|
572 |
|
00:46:53,790 --> 00:46:57,610 |
|
F capital and F small be continuous on a and bุ ูุฑุถ |
|
|
|
573 |
|
00:46:57,610 --> 00:47:00,710 |
|
ุฃู F capital ู F small ุฃุดู
ุงููู
ุฅุชู ุชุงู continuous |
|
|
|
574 |
|
00:47:00,710 --> 00:47:04,670 |
|
ุนูู ุงููุชุฑุฉ a ู bุ ู ูุฑุถู ุฃู F of a ุจุณุงูุฉ ุตูุฑุ ูุนูู |
|
|
|
575 |
|
00:47:04,670 --> 00:47:07,610 |
|
ุจุฏู ุฃุญุท ุงู initial condition F of a ุจุณุงูุฉ ุตูุฑ ุนุณู |
|
|
|
576 |
|
00:47:07,610 --> 00:47:11,070 |
|
ุฃู ูุฌู
ูู ุงูุตูุฑุฉุ ู
ุง ุญุงุทู ุนุดุงู ุตูุฑุ ุจุชุทูุน F of a ูู |
|
|
|
577 |
|
00:47:11,070 --> 00:47:14,290 |
|
ุงูุฌูุงุจ then the following statements are |
|
|
|
578 |
|
00:47:14,290 --> 00:47:18,380 |
|
equivalentุ ูุนูู ูู
ุง ุชููู ูุฐุง ุตุญูุญุฉ ูุฐุง ุตุญูุญุฉุ ููู
ุง |
|
|
|
579 |
|
00:47:18,380 --> 00:47:22,640 |
|
ุชููู ูุฐุง ุตุญูุญุฉ ูุฐุง ุตุญูุญุฉุ ููุฌู ููุฌุฒุก ุงูุฃููุ ูู ูุฑุถูุง |
|
|
|
580 |
|
00:47:22,640 --> 00:47:29,160 |
|
ุฃู F prime of X ุจูุณุงูู F of Xุ ุฅุฐุง ุญูุตูุฑ ุนูุฏู ุงูู F |
|
|
|
581 |
|
00:47:29,160 --> 00:47:33,460 |
|
ูุฐู is differential ุงูู
ุงุดู ููู ู
ูุชุฑุถ ุฃู F prime of |
|
|
|
582 |
|
00:47:33,460 --> 00:47:38,620 |
|
X ุจูุณุงูู F of Xุ ุจููู ุฅุฐุงู ุฅุฐุงู ูุฐู ุตุญูุญุฉุ ุฅูุด ูุนูู |
|
|
|
583 |
|
00:47:38,620 --> 00:47:43,260 |
|
ูุฐู ุตุญูุญุฉุ ูุนูู ุงู integration ู
ู ุงู AX ููู F of |
|
|
|
584 |
|
00:47:43,260 --> 00:47:48,400 |
|
ุงูุชู ูู T DTุ ูุฐู DT ูุง ุฌู
ุงุนุฉุ ุจุณ .. ุจุณ ูุฎูู ุนู |
|
|
|
585 |
|
00:47:48,400 --> 00:47:58,200 |
|
ูุฐูุ F of T DTุ ูุฐุง ููุณุงูู ู
ููุ ููุณุงูู F of Xุ |
|
|
|
586 |
|
00:47:58,200 --> 00:48:03,070 |
|
ูุงุดูุ ุงูุขู then the following statements are |
|
|
|
587 |
|
00:48:03,070 --> 00:48:06,950 |
|
equivalentุ ูุนูู ูู
ุง ุชููู ูุฐู ุตุญูุญุฉ ุจุชุนุทููุง ุฏู ุงู |
|
|
|
588 |
|
00:48:06,950 --> 00:48:11,350 |
|
ูุฑุถูุง ุฅู f prime of x ุจูุณุงูู f of xุ ุฅุฐุง ุญูููู ุนูุฏ |
|
|
|
589 |
|
00:48:11,350 --> 00:48:14,290 |
|
ุงู integration ู
ู a ู x f of t dt ุจูุณุงูู ุฅูุด |
|
|
|
590 |
|
00:48:14,290 --> 00:48:20,630 |
|
ุจุงูุธุจุทุ F of x ููู ุฏู ุชุจุชูุงุ ุงูุขู ูุฑุถูุง ูุฐุง ุตุญูุญ |
|
|
|
591 |
|
00:48:20,630 --> 00:48:24,710 |
|
ุฅุฐุง ุงู integration ู
ู a ู ุนูุฏ ุงู x f of t ุงููู ูู |
|
|
|
592 |
|
00:48:24,710 --> 00:48:33,010 |
|
ู
ูู ูุชุตูุฑุ f prime of t DT ูุฐู ูุจู ุจุดููุฉ ู
ู ูุธุฑูุฉ |
|
|
|
593 |
|
00:48:33,010 --> 00:48:36,470 |
|
ุงูุฃููู ูููุง ูุงู
ู ุงูุชูุงูุถ ู ููุด ุจุชุทูุน ุนูุฏู ุฌูุงุจ F |
|
|
|
594 |
|
00:48:36,470 --> 00:48:42,210 |
|
of X ูุงูุต ู
ููุ F of A ูุฅู ูู ุงูุดุฑูุท ู
ุชุญููุฉุ ู
ุงุดู |
|
|
|
595 |
|
00:48:42,210 --> 00:48:48,110 |
|
ุงูุขู ูุงู ูู
ุงู ู
ุฑุฉ ูุง ุฌู
ุงุนุฉ ูุฑุถูุง ุฅู ูุฐุง ู
ุชุญูู ุจุฏู |
|
|
|
596 |
|
00:48:48,110 --> 00:48:51,250 |
|
ุฃุญุณุจ ูุฐูุ ุฃุชุจุชูุง ุจุงูุณุงููุฉ ูุฐูุ ุฎุฏ ุงู integration ู
ู |
|
|
|
597 |
|
00:48:51,250 --> 00:48:55,510 |
|
X F of T DTุ ูู ู
ุง ุนุงุทููู ุงูู F smallุ ูุฏ ู
ูู ูู ุงูู F |
|
|
|
598 |
|
00:48:55,510 --> 00:48:58,830 |
|
ุจุฑุงููุ ุดูุช .. ุดููุช ุงูู F small ุฅูุด ุญุทูุช ู
ูุงููุงุ F |
|
|
|
599 |
|
00:48:58,830 --> 00:49:03,510 |
|
ุจุฑุงููุ ุงูุขู ูุฐู ูุจู ุจุดููุฉ ูู ุงูู Corollary ูุธููุง .. |
|
|
|
600 |
|
00:49:03,510 --> 00:49:07,490 |
|
ูู
ููุง ุงูุชูุงุถูุ ููู ูู
ููุง ุงูุชูุงุถูุ ุฅูู ููููุง ุดูู |
|
|
|
601 |
|
00:49:07,490 --> 00:49:11,230 |
|
ุงูุชูุงุถู .. ุดูู ุงูุชูุงู
ู .. ุดูู ุงูุชูุงุถู ุจุชุตูุฑ ุนุจุงุฑุฉ |
|
|
|
602 |
|
00:49:11,230 --> 00:49:15,270 |
|
ุนู F ุงููู ููู ุงููู ูุงูุช B ูุงูุต F ุงููู ุชุญุช ุงููู ูู |
|
|
|
603 |
|
00:49:15,270 --> 00:49:19,390 |
|
A ููุณุงูู ุฃู of X ููุต ุฃู of Aุ ุฃู of A ู
ุง ุนุงุทููููุง ู
ู |
|
|
|
604 |
|
00:49:19,390 --> 00:49:24,350 |
|
ุฑุฃุณ ุงูุฏูุงุฑ ุตูุฑุ ุฅุฐุง ุฅูุด ูุชุณุงูู ุฃู of Xุ ุฅุฐุง ูุฐู ุงููู |
|
|
|
605 |
|
00:49:24,350 --> 00:49:28,290 |
|
ุจุฏูููุง ุญุณุงุจุงุชูุง ุจุชุณุงูู ูุฐูุ ุทูุนุช ุฅูุด ุจุชุณุงูู ุฃู of X |
|
|
|
606 |
|
00:49:28,290 --> 00:49:32,830 |
|
ูุนูู ุฃู of X ุจุชุณุงูู ูุฐุง ุงูู
ูุฏุงุฑ ููู ุงูู
ุทููุจุ ุทูุจ |
|
|
|
607 |
|
00:49:32,830 --> 00:49:36,730 |
|
ูุฐุง ุงูุฌุฒุก ุงูุฃูู ู
ู ุงููุธุฑูุฉ ุงููู ููุ ููุฌู ููุฌุฒุก |
|
|
|
608 |
|
00:49:36,730 --> 00:49:42,240 |
|
ุงูุซุงููุ ููุชุฑุถ ุงูุขู ุฅู ูุฐู ุตุญูุญุฉุ ูุฏู ุชุนุทููุงุ ุงูุขู ุจุฑุถู |
|
|
|
609 |
|
00:49:42,240 --> 00:49:44,760 |
|
ุงูุดุฑูุท ูููุง ู
ุชุญููุฉุ ูุฃู ุงูู F ูู ุงุณู
ู ููุด ู
ุงููุง |
|
|
|
610 |
|
00:49:44,760 --> 00:49:47,340 |
|
continuous ูุณู ุฅู ุฃูุง ู
ุง .. ู
ุง .. ู
ุง ู
ูุงุญุชูุด ุฃูุง |
|
|
|
611 |
|
00:49:47,340 --> 00:49:52,080 |
|
ูุฐุง ุฅูู ุนูุฏู F continuous ู
ุฏุงู
F continuous ุงู |
|
|
|
612 |
|
00:49:52,080 --> 00:49:57,720 |
|
integration ู
ู ุฃุนูู ุนูุฏ ุงู X ูุฐุง ููู ุงููู ูู ุงุณู
ู F |
|
|
|
613 |
|
00:49:57,720 --> 00:50:01,320 |
|
of X ููููู differentiable ุญุณุจ ุงููุธุฑูุฉุ ู
ุฒุงู
|
|
|
|
614 |
|
00:50:01,320 --> 00:50:04,780 |
|
differentiable ุญุณุจ ูุฐู ุงููุธุฑูุฉุ ุฅุฐุง F prime of X |
|
|
|
615 |
|
00:50:04,780 --> 00:50:11,100 |
|
ุฅูุด ูุชุณุงููุ F of Xุ ูุนูู ุญูููุง ู
ููุ ุงููู ูู I ูุนูู |
|
|
|
616 |
|
00:50:11,100 --> 00:50:20,070 |
|
ูุฐุง ูุคุฏู ุฅูู ูุฐุงุ ูุฌู ุงูุขู ูุจุนุถ ุงูุชุนุฑููุงุช ุงููู |
|
|
|
617 |
|
00:50:20,070 --> 00:50:26,890 |
|
ููุชูุฑูุง ููู
ูุฃููุชู ูุชููููุง ุงููู ูู ุงุชุงุจุนูุง ุงูุฃู
ุซูุฉ |
|
|
|
618 |
|
00:50:26,890 --> 00:50:32,130 |
|
ู
ู ุฎูุงู ุงู homework ุงููู ู
ุนุงูู
ุ ููุนุทู ุงููู ูู ุชุนุฑูู |
|
|
|
619 |
|
00:50:32,130 --> 00:50:36,830 |
|
ู
ู
ูู ุฃูุชูุง ุญุชู ู
ุฑ ุนูููู
ูู ุงู calculus ูู
ู ุซู
ุงููู |
|
|
|
620 |
|
00:50:36,830 --> 00:50:41,710 |
|
ูููุนุทู ุจุนุถ ุงู counter examples ุงููู ูู ููุฑุฌุนูู
|
|
|
|
621 |
|
00:50:41,710 --> 00:50:47,370 |
|
ูููุง ููู ูู ุงูุฃุณุฆูุฉ ุงููู ูู ุงููุชุงุจ ุชุดูููุง ูุตูุตูุง |
|
|
|
622 |
|
00:50:47,370 --> 00:50:53,530 |
|
ุนูู ุงูุฃูู ูุงููู ู
ุทููุจ ุชุญูููุง ุฅูู ุชุญูููุงุ ูุงููู ู
ุง |
|
|
|
623 |
|
00:50:53,530 --> 00:50:56,910 |
|
ุจุชุญููู ูุนุฑูุด ุชุญูููุงุ ูู ุนูุฏูุง ุงููู ูู ูู ุงู homework |
|
|
|
624 |
|
00:50:56,910 --> 00:51:01,230 |
|
ุงูุญููู ุงูู
ูุฌูุฏุฉ ุจุชุฏุฑุณููุง ูุญุงููู
ุ ู
ุง ุฏุฑุณุชููุง ุจุฑุถู |
|
|
|
625 |
|
00:51:01,230 --> 00:51:04,310 |
|
ู
ุง ููู
ุชููุงุดุ ุงุญูุง ุจูุนู
ู ูููุง discussion ููู ุนู
ููุงูุง |
|
|
|
626 |
|
00:51:04,310 --> 00:51:07,930 |
|
ุญุชู ุจุดูู ุตูุชู ุนูู ุฃุณุงุณ ุงููู ูู ุงุญูุง ูู
ูู ู
ุง ููุฏุฑุด |
|
|
|
627 |
|
00:51:07,930 --> 00:51:12,110 |
|
ูุตูุฑ ุจุดูู ูุงู
ู ุงููู ูู ุงู discussions ุนุจุฑ ุงููู ูู |
|
|
|
628 |
|
00:51:12,110 --> 00:51:16,270 |
|
ุงูุชุตููุฑ ุงููู ุงุญูุง ุงูุญุงูู ุจูุตูุฑู ุนุจุฑ ุงู power point |
|
|
|
629 |
|
00:51:16,270 --> 00:51:22,710 |
|
ู
ู ุงูุจูุช ุฅู ุดุงุก ุงูููุ ุทูุจ definition let I ุจุชุณุงูู A |
|
|
|
630 |
|
00:51:22,710 --> 00:51:27,630 |
|
ู B subset ู
ู ู
ููุ ู
ู Rุ ุฅุฐุง ูุงูุช F small ู
ู I ูู R |
|
|
|
631 |
|
00:51:30,720 --> 00:51:35,400 |
|
then ูุฑุถูุง ุฃูู ูู ุฏุงูุฉ ุงุณู
F ู
ู I ูุนูุฏ R then the |
|
|
|
632 |
|
00:51:35,400 --> 00:51:42,280 |
|
antiderivative of F ูุนูู ููุฃููุง ุนูุณ ุนู
ููุฉ ุนูุณ |
|
|
|
633 |
|
00:51:42,280 --> 00:51:45,920 |
|
ุงูุฏุงูุฉ ุงููู ุจููุถููุง roughly antiderivative of F on |
|
|
|
634 |
|
00:51:45,920 --> 00:51:50,620 |
|
I is a function F ู
ู I ูุนูุฏ R such that F prime of |
|
|
|
635 |
|
00:51:50,620 --> 00:51:59,830 |
|
X ุณูู F of X ูุนูู ุนูุฏูุง ุฏุงูุฉ F ู
ู ุนูุฏ I ูุนูุฏ R ูู |
|
|
|
636 |
|
00:51:59,830 --> 00:52:05,310 |
|
ุฌููุง ูุฌููุง F ุชุงููุฉ ู
ู ุนูุฏ I ูุนูุฏ R ู ูุฌููุง F prime |
|
|
|
637 |
|
00:52:05,310 --> 00:52:10,450 |
|
of X ููู ุงููู ูู ุงูู I ุจุชุณุงูู mean ูู F small of X |
|
|
|
638 |
|
00:52:11,290 --> 00:52:15,490 |
|
ูู ูุฐู ุงูุญุงูุฉ ุจูุณู
ู ุงูู F capital ูุฐู ุนุจุงุฑุฉ ุนู |
|
|
|
639 |
|
00:52:15,490 --> 00:52:19,850 |
|
antiderivative ููู Fุ ูุนูู ุจู
ุนูู ุขุฎุฑ ูู ูุถููุงูุง ูุฐู |
|
|
|
640 |
|
00:52:19,850 --> 00:52:25,130 |
|
ุงูู antiderivative ูุชุทูุน ู
ููุ ุงูู F ุงูุฃุตููุฉ ูุนูู |
|
|
|
641 |
|
00:52:25,130 --> 00:52:30,890 |
|
ุจุชููู ุนูุฏู ุงููู ูู ุงูู F capital ูู ุงู |
|
|
|
642 |
|
00:52:30,890 --> 00:52:35,210 |
|
antiderivative ููู F ูุงูู F small ูู ุงู derivative |
|
|
|
643 |
|
00:52:35,210 --> 00:52:41,910 |
|
ููู Fุ ูุงุถุญ ุฃุฎุฏุชู ูู ุงู calculus ุญุชู ููุฌู ุงูุขู ู |
|
|
|
644 |
|
00:52:41,910 --> 00:52:45,650 |
|
ุงููู ูู ุจุฑุถู ู
ูููู
ุฃุฎุฏุชู ูู ุงููุงุฑูููุงุณ if f ู
ู I |
|
|
|
645 |
|
00:52:45,650 --> 00:52:49,750 |
|
ูุนูุฏ R small is integrable ูู ูุฑุถูุง ูุฐู integrable |
|
|
|
646 |
|
00:52:49,750 --> 00:52:53,950 |
|
ู ุฌููุง ุนุฑููุง |
|
|
|
647 |
|
00:52:53,950 --> 00:52:56,910 |
|
ุงุฏุงูุฉ ู
ู A ูุนูุฏ X F of X DXุ ูุจู ุดููุฉ ููููุง ูุฐุง |
|
|
|
648 |
|
00:52:56,910 --> 00:53:00,290 |
|
ุฃููุฏ ู
ุนุฑูุฉ ู
ุซูุงู ูู integrable ูู
ุด ู
ุนุฑูุฉ ุงู |
|
|
|
649 |
|
00:53:00,290 --> 00:53:04,110 |
|
function F of X ูุชุทูุน continuous ูุฐู ุงููู ูู ุงู |
|
|
|
650 |
|
00:53:04,110 --> 00:53:09,930 |
|
function ุฃู ูุฐุง ูู ุงููู ุจูุณู
ูู ุงูุชูุงู
ู ุงูู
ุญุฏูุฏุ ูุฐู |
|
|
|
651 |
|
00:53:09,930 --> 00:53:15,110 |
|
ุจูุณู
ููุง ุงูู Indefinite Integral of F ูุนูู ูุฐุง |
|
|
|
652 |
|
00:53:15,110 --> 00:53:17,790 |
|
ุจูุณู
ูู Indefinite Integral of F ุฃู ูุฐู ุงูุฏูุฉ |
|
|
|
653 |
|
00:53:17,790 --> 00:53:23,030 |
|
ุจูุณู
ููุง ุงููู ูู The Indefinite Integral of F on I |
|
|
|
654 |
|
00:53:23,030 --> 00:53:28,230 |
|
ุจุฑุถู ูุฐุง ุจุฑุถู ุดุบูุงุช ุงููู ูู ุฃุฎุฏุชููุง ุณุงุจููุง ูู ุงููู |
|
|
|
655 |
|
00:53:28,230 --> 00:53:33,780 |
|
ูู ุงู calculus ููุฌู ุจุนุถ ุงูู
ูุงุญุธุงุช ุจุณ ุนูู ุงููู ูู |
|
|
|
656 |
|
00:53:33,780 --> 00:53:42,820 |
|
ุงููู ุจุชุนูู ุจูุฐู ุงููู ูู ุงูู
ูุงููู
ุ ูุดูููุง ููู ุทุจุนูุง |
|
|
|
657 |
|
00:53:42,820 --> 00:53:48,760 |
|
ูุฐู ุงูู
ูุงููู
ูู ุนูููุง counter examplesุ ุงูุชู
ููุฒ |
|
|
|
658 |
|
00:53:48,760 --> 00:53:56,400 |
|
ุจูููุง ูุดูู ุงูู
ุญุจุฉ ูุฐู ูุง ุดุจุงุจุ ุทูุจ ุตููู ุนูู ุงููุจู |
|
|
|
659 |
|
00:53:56,400 --> 00:54:03,640 |
|
ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ุ ุงูุขู ุนูุฏู ุณุคุงู ุณุจุนุฉ ุชูุงุชุฉ ุงุชููู |
|
|
|
660 |
|
00:54:03,640 --> 00:54:06,400 |
|
ูุนูู ูู ุณุจุนุฉ ุชูุงุชุฉ ุณุคุงู ุงุชููู ุฃู ุณุจุนุฉ ุชูุงุชุฉ ุณุคุงู |
|
|
|
661 |
|
00:54:06,400 --> 00:54:10,660 |
|
ุฎู
ุณุฉ ุทุจุนูุง ููู ูู ุงูุทุจุน ุงูุชุงููุ ูุฐุง ุงููู ูู ุนูุฏู an |
|
|
|
662 |
|
00:54:10,660 --> 00:54:13,540 |
|
integrable function may not have an antiderivative |
|
|
|
663 |
|
00:54:13,540 --> 00:54:17,220 |
|
ูุนูู ูููุงูู ูู ุงูุณุคุงู ูุฐุง integrable function |
|
|
|
664 |
|
00:54:17,220 --> 00:54:24,080 |
|
ูู
ุงููุงุด .. ูู
ุงููุงุด antiderivativeุ ูุนูู ูููุงูู |
|
|
|
665 |
|
00:54:24,080 --> 00:54:30,660 |
|
function F ุฅูููุง ุชููู integrable ููู ู
ุงููุงุฌูุด |
|
|
|
666 |
|
00:54:30,660 --> 00:54:34,540 |
|
function F ุงููู ุงู derivative ุชุจุนู ุชุงุด ุจุชุณุงูู |
|
|
|
667 |
|
00:54:34,540 --> 00:54:39,860 |
|
ุจุชุณุงูู Fุ ูุฐุง ุงููู ูู ุจุชุดูููู ูู ุงูู 7 3 2 ู 7 3 5 |
|
|
|
668 |
|
00:54:39,860 --> 00:54:43,340 |
|
ุงูุฃู
ุซูุฉ ุฃู ุงู counter examples ุงููู ูุฌูุฏุฉ ููุงุ ุทูุจ |
|
|
|
669 |
|
00:54:43,340 --> 00:54:47,710 |
|
ุงูู
ูุงุญุธุฉ ุงูุชุงููุฉุ ุงูู function may have an |
|
|
|
670 |
|
00:54:47,710 --> 00:54:52,830 |
|
antiderivativeุ ูุนูู ุนูุฏู F ู ุจุชุญูู F ููู ุนูุฏู F |
|
|
|
671 |
|
00:54:52,830 --> 00:54:57,310 |
|
ูุงุจุชุงู ูู
ุงู ู F ุจุฑุงูู
ุฅูุด ุจุชุณุงูู ุจุณูุก Fุ but ุงููู |
|
|
|
672 |
|
00:54:57,310 --> 00:55:02,210 |
|
ูู ุงู integration ููู F ุฅูุด ู
ุงูู does not existุ ููู |
|
|
|
673 |
|
00:55:02,210 --> 00:55:07,370 |
|
but not integrable ููุฐุง ุจุชุฌุงูุจ ุนููู ุจุฑุถู ุณุจุนุฉ |
|
|
|
674 |
|
00:55:07,370 --> 00:55:12,580 |
|
ุชูุงุชุฉ ุฎู
ุณุฉุ ูุนูู ูู function F ูู ุฅููุง F' ุจุณุงูุฉ F |
|
|
|
675 |
|
00:55:12,580 --> 00:55:17,640 |
|
ููู ุงู integration ููู F ุฅุดู
ุงูู does not exist |
|
|
|
676 |
|
00:55:17,640 --> 00:55:24,900 |
|
ุชูุงุชุฉุ ุนูุฏู ุงูู
ูุงุญุธุฉ ุงูุซุงูุซุฉ a continuous function |
|
|
|
677 |
|
00:55:24,900 --> 00:55:27,800 |
|
always have antiderivativeุ ุทุจุนูุง ุงู continuous |
|
|
|
678 |
|
00:55:27,800 --> 00:55:35,290 |
|
function ุฃุตูุง ู
ู ุงูููุฉ ุจู
ูุงู ุฅูููุง ุชุฎููู ุนูุฏูุง ูููู |
|
|
|
679 |
|
00:55:35,290 --> 00:55:39,490 |
|
ููุง ุงูู mean antiderivativeุ ุงูุขู a continuous |
|
|
|
680 |
|
00:55:39,490 --> 00:55:44,190 |
|
function always have antiderivative ููุฐุง ุงููู ูู |
|
|
|
681 |
|
00:55:44,190 --> 00:55:51,910 |
|
ู
ุจุงุดุฑุฉ ู
ู ุงู corollary 7 3 4 ุงููู ูุงูุช F |
|
|
|
682 |
|
00:55:51,910 --> 00:55:56,770 |
|
continuousุ ู
ุฏุงู
F continuous ุฅุฐุง ุงู integration ู
ู |
|
|
|
683 |
|
00:55:56,770 --> 00:56:07,120 |
|
ุงู X ู
ู A ูุนูุฏ ุงู XA of T DT ุจุณุงูุฉ F of X ุงููู ูู |
|
|
|
684 |
|
00:56:07,120 --> 00:56:10,900 |
|
is differentiable ูู
ุด differentiable ูู
ุงู ู F |
|
|
|
685 |
|
00:56:10,900 --> 00:56:14,860 |
|
prime of X ุจุชุณุงูู F small of X ูุนูู ู
ุฏุงู
ุฃู |
|
|
|
686 |
|
00:56:14,860 --> 00:56:17,880 |
|
continuous ุฅุฐุง ุตุงุฑ ููุง antiderivative ุตุงุฑุช ุงูู F |
|
|
|
687 |
|
00:56:17,880 --> 00:56:20,580 |
|
ุงููู ูู ุงู derivative ููุง ุจุณุงูุฉ F of Xุ ุฅุฐุง ุตุงุฑุช |
|
|
|
688 |
|
00:56:20,580 --> 00:56:24,620 |
|
ุฅูุด antiderivativeุ ูุฏ ู
ูู ูุฐุง ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูู |
|
|
|
689 |
|
00:56:24,620 --> 00:56:28,980 |
|
Corollary 7 3 4ุ ู
ุฏุงู
ุฅู F continuous ุฅุฐุง ูุฐู |
|
|
|
690 |
|
00:56:28,980 --> 00:56:33,360 |
|
ุงูุฏุงูุฉ ุงููู ุณู
ูุชูุง F of X is differentiable ูู
ุด ูู |
|
|
|
691 |
|
00:56:33,360 --> 00:56:35,540 |
|
ูู
ุงูุ ูุฐุง ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงู fundamental theorem of |
|
|
|
692 |
|
00:56:35,540 --> 00:56:39,200 |
|
calculus ูุงูู F prime of X ุฅูุด ุจูุณุงููุ F of Xุ ูุนูู |
|
|
|
693 |
|
00:56:39,200 --> 00:56:44,280 |
|
ุงูู F capital is an antiderivative of the F small |
|
|
|
694 |
|
00:56:44,280 --> 00:56:50,760 |
|
ุงููู ูู ุงูููุทุฉ ุงูุฑุงุจุนุฉุ the indefinite integral may |
|
|
|
695 |
|
00:56:50,760 --> 00:56:57,520 |
|
not be an antiderivative of mean of Fุ ุงูุขู ุงูู |
|
|
|
696 |
|
00:56:57,520 --> 00:57:02,400 |
|
indefinite integral ุงููู |
|
|
|
697 |
|
00:57:02,400 --> 00:57:12,000 |
|
ูู ู
ู A ูุนูุฏ X F of T DT ูู ุณู
ููุงู F of Xุ ูุฐุงูุฐุง |
|
|
|
698 |
|
00:57:12,000 --> 00:57:15,480 |
|
the indefinite integral ูุฐุง ู
ู
ูู ูููู ูุฐุง ูุนูู ุฅูุด |
|
|
|
699 |
|
00:57:15,480 --> 00:57:18,480 |
|
ุจู
ุนูู ุขุฎุฑุ ูุนูู ุจุฏูุง ููุชุฑุถ ุฅู ุงู integration ู
ู A |
|
|
|
700 |
|
00:57:18,480 --> 00:57:22,580 |
|
ู X F of T DT ู
ูุฌูุฏุ ุทุจุนูุง ุงููู ุจููู ุนูู ู
ูุฌูุฏ ุจุณ |
|
|
|
701 |
|
00:57:22,580 --> 00:57:25,040 |
|
ุชููู F of T is integrable ู
ุง ุญุงุฌููุงุด ุนูู control U |
|
|
|
702 |
|
00:57:25,040 --> 00:57:29,000 |
|
of T ุงูู F of T is integrable ุฅุฐุง ุงูู A ูุนูุฏู ุงูู X F |
|
|
|
703 |
|
00:57:29,000 --> 00:57:35,100 |
|
of T DT ูู ู
ู
ูู ูููู ูุฐุง ู
ูุฌูุฏ ู ุจูุณู
ู F of X |
|
|
|
704 |
|
00:57:35,100 --> 00:57:39,830 |
|
ุจููู ูู the indefinite integral ูุฐุง may not have |
|
|
|
705 |
|
00:57:39,830 --> 00:57:44,490 |
|
antiderivative of F ูุนูู ู
ู
ูู ู
ุง ููููุด ูุฐุง ุจุงูุฑุบู
|
|
|
|
706 |
|
00:57:44,490 --> 00:57:48,610 |
|
ุฃูู ูุฐุง ู
ูุฌูุฏ ู
ุง ููููุด ุงูู F capital ุงููู ูู ูุฐุง |
|
|
|
707 |
|
00:57:48,610 --> 00:57:53,530 |
|
ู
ุง ููููุด antiderivative ูู
ููุ ููู F small ูุนูู ุฑุบู
|
|
|
|
708 |
|
00:57:53,530 --> 00:57:58,670 |
|
ุฃูู ูุฐุง ู
ูุฌูุฏ ููุณ ุดุฑุทูุง ุฃู ูููู ูุชูุงุถู ููู
ุง |
|
|
|
709 |
|
00:57:58,670 --> 00:58:03,290 |
|
ูุชูุงุถู ูุทูุน ุงููู ุฌูุง ูุนูู ู
ุด ุดุฑุท ุฃู ุชููู ุงูู F |
|
|
|
710 |
|
00:58:03,890 --> 00:58:07,170 |
|
ุงููู ูู antiderivative ุงููู ูู ู
ููุ ูู ุงูู |
|
|
|
711 |
|
00:58:07,170 --> 00:58:10,110 |
|
indefinite integral ููู ุจุชููู ุงูู
ูุงุญุฏุฉ ุทุจ ุฅูุด |
|
|
|
712 |
|
00:58:10,110 --> 00:58:14,150 |
|
ุฏููููู
ุ ุฏููููุง ูุงู ูู counter examples ูุงู ุณุจุนุฉ |
|
|
|
713 |
|
00:58:14,150 --> 00:58:19,390 |
|
ุซูุงุซุฉ ุฃุฑุจุนุฉ ููุฐุง ูุงุชุฌ ูุงุฌู
ูุงุฌู
ุนุฏู
ุชุญูู ูุฐู ุฃู |
|
|
|
714 |
|
00:58:19,390 --> 00:58:23,910 |
|
ุนุฏู
ุชุญูู ุงูู antiderivative ุฃูู it may fail to be |
|
|
|
715 |
|
00:58:23,910 --> 00:58:28,050 |
|
differentiable at points at the interval ู
ู
ูู ุฃุตูุงู |
|
|
|
716 |
|
00:58:28,050 --> 00:58:35,440 |
|
ุฃู ุงูู F prime ุชูููุด ู
ูุฌูุฏุฉ ุจุงูู
ุฑุฉ ุนูุฏ ููุทุฉ ุงููู ูู |
|
|
|
717 |
|
00:58:35,440 --> 00:58:39,620 |
|
ูู ุฏุงุฎู ุงูู interval ู
ู a ุฅูู x ู
ุฒุงู
ูุฐู is not |
|
|
|
718 |
|
00:58:39,620 --> 00:58:42,720 |
|
differentiable ููู ุจุฏูุง ููุงูู f prime ุจุชุณุงูู f |
|
|
|
719 |
|
00:58:42,720 --> 00:58:48,640 |
|
small ุฅุฐุง ูุฏ ููุดุฃ ุนุฏู
ูุฌูุฏ ุงูู antiderivative ู
ูู |
|
|
|
720 |
|
00:58:48,640 --> 00:58:52,640 |
|
ุฃูู ูุฐู ู
ุง ุชูููุด differentiable ุนูุฏ ููุทุฉ ุจูู ุงูู a |
|
|
|
721 |
|
00:58:52,640 --> 00:58:59,090 |
|
ู ุงูู x ูุงู ุฃูููุง ุงููู ูู ุณุจุจ ู
ู
ูู ูุคุฏู ุฅูู ุนุฏู
ุชุญูู |
|
|
|
722 |
|
00:58:59,090 --> 00:59:03,150 |
|
ุฃูู ูููู ุงูู Indefinite Integral ููุณ Anti |
|
|
|
723 |
|
00:59:03,150 --> 00:59:09,650 |
|
-derivative ููุฏุงูุฉ ุงููู ุฅุญูุง ุจููู
ููุง Or ุงูู |
|
|
|
724 |
|
00:59:09,650 --> 00:59:12,850 |
|
Derivative of Indefinite Integral ู
ู
ูู ูููู ู
ูุฌูุฏ |
|
|
|
725 |
|
00:59:13,450 --> 00:59:18,310 |
|
ููู ูุฎุชูู ุนู ู
ููุ but different from the value of F |
|
|
|
726 |
|
00:59:18,310 --> 00:59:22,410 |
|
at any point of the interval ููุฐุง ุจูุฌูุจูุง ุณุจุนุฉ |
|
|
|
727 |
|
00:59:22,410 --> 00:59:26,990 |
|
ุซูุงุซุฉ ุซู
ุงููุฉ ูุนูู ุจููู ูู ู
ู
ูู ุชููู ูุง ู
ุญูุงูุง ูุชุฌูุจ |
|
|
|
728 |
|
00:59:26,990 --> 00:59:32,990 |
|
ุงููู ูู ุงูู F prime of X ููู ู
ุง ุชุทูุนุด ุชุณุงูู F |
|
|
|
729 |
|
00:59:32,990 --> 00:59:38,780 |
|
of X ููู ูุฐู ุงูุญุงูุฉ ุจูููู ุงูู Indefinite Integral |
|
|
|
730 |
|
00:59:38,780 --> 00:59:46,320 |
|
ููุณ ุงููู ูู ุฅููุ ุดู
ุงูู ูู Antiderivative ุนุงุฑูุด |
|
|
|
731 |
|
00:59:46,320 --> 00:59:55,080 |
|
ูุญุงูู ููุงู ูู ู
ุซุงู ุทุจุนูุง ูุฃุชู |
|
|
|
732 |
|
00:59:55,080 --> 01:00:01,300 |
|
ุงูุขู ููุจุฏุฃ ุญุฏูุซูุง ุนู ุงูู evaluation of integrals |
|
|
|
733 |
|
01:00:01,300 --> 01:00:07,780 |
|
evaluation of integrals ููุงุฎุฏ ุงููู ูู ุงููู ูู ุงููู |
|
|
|
734 |
|
01:00:07,780 --> 01:00:12,660 |
|
ููุง ูููู ุนููุง ุงููู ูู integration by parts ุงููู |
|
|
|
735 |
|
01:00:12,660 --> 01:00:17,380 |
|
ููุง ูููู ุนูู integration by parts ูุดูู ููู ุงููู ูู |
|
|
|
736 |
|
01:00:17,380 --> 01:00:21,360 |
|
ุงูุจุฑูู ุงูุฃูู ูุงุญุฏุฉ ูุนูู ููุงุฎุฏ ุงููู ูู ุงููุธุฑูุฉ |
|
|
|
737 |
|
01:00:21,360 --> 01:00:28,430 |
|
ุงูุฃููู ุงููู ูู ูู ู
ู ุถู
ู ุงููู ููููู ูู
ูู ุฃู ูุฌุฏ |
|
|
|
738 |
|
01:00:28,430 --> 01:00:33,770 |
|
ุทุฑู ูุฅูุฌุงุฏ ุงูุชูุงู
ูุ evaluation of integrals ุฃูู |
|
|
|
739 |
|
01:00:33,770 --> 01:00:39,730 |
|
ุดูุก ูุญูู ุนูู ูู integral by parts ุงูุชูุงู
ู ุจุงูุชุฌุฒุฆุฉ |
|
|
|
740 |
|
01:00:41,640 --> 01:00:48,040 |
|
ูุถุน ุงูุฃุณุณ ุงููุธุฑูุฉ ููุชูุงู
ู ุจุงูุชุฌุฒุฆุฉ ุฃู ูุดุฑุน ุงูุชูุงู
ู |
|
|
|
741 |
|
01:00:48,040 --> 01:00:50,920 |
|
ุจุงูุชุฌุฒุฆุฉ ู
ู ุฎูุงู ุงููุธุฑูุฉ ุงููู ุฃู
ุงู
ูุงุ ุฃูุด ุจุชููู |
|
|
|
742 |
|
01:00:50,920 --> 01:00:54,720 |
|
ูููุ ุฅุฐุง ูุงูุช f ู g ู
ู a ู bุ f small ู g small |
|
|
|
743 |
|
01:00:54,720 --> 01:00:58,520 |
|
ุทุจุนูุงุ ูุนูุฏ Rุ R integrable on a ู bุ ููุชุฑุถ ุฃู |
|
|
|
744 |
|
01:00:58,520 --> 01:01:02,040 |
|
ุงูุชูุชูู ุฅู
ุง ุงููู ููู integrable ูุจุฏูุง ููุชุฑุถ ุฃูู |
|
|
|
745 |
|
01:01:02,040 --> 01:01:06,510 |
|
ูููู antiderivatives ุงูุขู ุจุฏุฃ ุงูุฑุถ ุฃู F ููุง |
|
|
|
746 |
|
01:01:06,510 --> 01:01:09,430 |
|
antiderivative ุงุณู
ูุง F capital ู G ููุง |
|
|
|
747 |
|
01:01:09,430 --> 01:01:13,910 |
|
antiderivative ุงุณู
ูุง G capital on A ู B ุฅุฐุง ุงูุขู |
|
|
|
748 |
|
01:01:13,910 --> 01:01:22,050 |
|
ูุธุฑูุชูุง ุชุฑุชูุฒ ูู ู
ุนุทูุงุชูุง ุนูู ุฃู ุงูู F small ูู F ู |
|
|
|
749 |
|
01:01:22,050 --> 01:01:24,210 |
|
G integrable ูู ูุงุญุฏ |
|
|
|
750 |
|
01:01:36,840 --> 01:01:45,420 |
|
ุซู
ุนุฑุถ ุนูููุง ุงูุขู ูุนู
ู integration ุซู
ุจููุฌู ุจููู |
|
|
|
751 |
|
01:01:45,420 --> 01:01:52,610 |
|
ูููุ ุงูู Integration ูุญุงุตู ุถุฑุจ ุฏุงูุชูู F of X ูู G of |
|
|
|
752 |
|
01:01:52,610 --> 01:01:58,890 |
|
X DX ู
ู A ูุนูุฏ B ูุฃู ุทูุจ ูุฐู Integrable ุนุงุฑูููุ ุทุจ F |
|
|
|
753 |
|
01:01:58,890 --> 01:02:01,090 |
|
capital Integrableุ ุงู Integrable ูุฃููุง |
|
|
|
754 |
|
01:02:01,090 --> 01:02:03,930 |
|
differentiable ูุฃููุง differentiable ูุนูู |
|
|
|
755 |
|
01:02:03,930 --> 01:02:07,370 |
|
continuous ุฃูุซุฑ ู
ู continuous ูุนูู ูุนูู ุฃููุฏ ุฅูุด |
|
|
|
756 |
|
01:02:07,370 --> 01:02:11,250 |
|
ู
ุง ููุง Integrable ุฅุฐุง ู
ุนููู ููุงู
ู ู
ู A ูุนูุฏ B F of |
|
|
|
757 |
|
01:02:11,250 --> 01:02:15,590 |
|
X G of X DX ุฅูุด ุจุชุณุงููุ ุจููู ูู ุนุจุงุฑุฉ ุนู F capital |
|
|
|
758 |
|
01:02:15,590 --> 01:02:21,750 |
|
of B G capital of B ููุต F capital of A G capital |
|
|
|
759 |
|
01:02:21,750 --> 01:02:31,040 |
|
of A ูุฐุงูุงูุต ุงูู integration F small of X G |
|
|
|
760 |
|
01:02:31,040 --> 01:02:37,520 |
|
capital of X dx ู
ู A ูุนูุฏ B ูุฐู ุงููู ูู ุงูู |
|
|
|
761 |
|
01:02:37,520 --> 01:02:41,240 |
|
integration by parts ุงููู ุนุงู
ุฉ ุงููู ุจุชุฏุฎูุชู ุฃู |
|
|
|
762 |
|
01:02:41,240 --> 01:02:45,960 |
|
ุงููู ูู ุงููู ุจุชููู ุนูู ุงููุธุฑูุฉ ุฅุฐุง if f ู g ู
ู a |
|
|
|
763 |
|
01:02:45,960 --> 01:02:49,260 |
|
ูุนูุฏ b are integrable on a ู b and have |
|
|
|
764 |
|
01:02:49,260 --> 01:02:52,140 |
|
antiderivatives f capital and g capital on a ู b |
|
|
|
765 |
|
01:02:52,140 --> 01:02:56,580 |
|
then ุงู integration ู
ู a ูุนู b f of x g x dx |
|
|
|
766 |
|
01:02:56,580 --> 01:03:00,080 |
|
ุจูุณุงูู f of b g of b ููุต f of a g of a ุทุจุนูุง |
|
|
|
767 |
|
01:03:00,080 --> 01:03:06,360 |
|
ููู capitals ููุต ุงู integration ู
ู a ูู b f small g |
|
|
|
768 |
|
01:03:06,360 --> 01:03:12,200 |
|
capital dx ู
ุงุดู ุงูุญุงู ุจุฏูุง ุงูุขู ุงููู ูู ุงูุจุฑูู |
|
|
|
769 |
|
01:03:12,200 --> 01:03:17,750 |
|
ุงููุธุฑู ุงูุจุฑูู ุฃุณูู ูุง ุฌู
ุงุนุฉ ูู ุจุฑูุงู ูุนุชู
ุฏ ุนูู |
|
|
|
770 |
|
01:03:17,750 --> 01:03:22,970 |
|
ุชูุงุถู ุงููู ูู ุญุงุตู ุถุฑุจ ุฏุงูุชูู ููู
ูู ุฅุญูุง ููุง ุฃุตูุงู |
|
|
|
771 |
|
01:03:22,970 --> 01:03:27,110 |
|
ูู ุฃุซูุงุก ุฃูู ู
ุง ุจูุจุฏุฃ ูู ุงู integration by parts |
|
|
|
772 |
|
01:03:27,110 --> 01:03:31,870 |
|
ุณูุฉ ุนุงุฑูุฉ ููุทูุงุจ ูู ุงู calculus ูู ุงููุงูุน ูู ูู |
|
|
|
773 |
|
01:03:31,870 --> 01:03:36,490 |
|
ุณุคุงู ูู ุงูุฃูู ูุนูู ููุฃููุง ุจูุจุฑูู ุงููุธุฑูุฉ ูุจุนุฏ |
|
|
|
774 |
|
01:03:36,490 --> 01:03:40,170 |
|
ุฐูู ุจูุณูุฑ ุงููู ูู ุญุงูุธูุง ุงูุทุฑููุฉ ููุนู
ููุง ุจุดูู |
|
|
|
775 |
|
01:03:40,170 --> 01:03:48,220 |
|
ุณุฑูุน ุทูุจ ูุดูู ููู ุณู
ูููู ุงููู ูู F capital of X G |
|
|
|
776 |
|
01:03:48,220 --> 01:03:52,060 |
|
of capital of X ุฅูุด ุจุชุณุงููุ H of X ุทุจุนูุง F is |
|
|
|
777 |
|
01:03:52,060 --> 01:03:53,840 |
|
differentiable ู G is differentiable ุฒู ู
ุง ููุง |
|
|
|
778 |
|
01:03:53,840 --> 01:03:56,600 |
|
ูุงุชุจ ูุฐู ูุฃู F antiderivative ู G |
|
|
|
779 |
|
01:03:56,600 --> 01:03:59,860 |
|
antiderivative ูุนูู F prime ููุง F small ู G prime |
|
|
|
780 |
|
01:03:59,860 --> 01:04:03,700 |
|
ููุง G small ูุนูู ุฅุฐุง ุตุงุฑุช ุงูู H ุนุจุงุฑุฉ ุนู |
|
|
|
781 |
|
01:04:03,700 --> 01:04:07,160 |
|
differentiable ูู
ุฏุงู
differentiable ุฅุฐุง ุฃููุฏ ุงูู H |
|
|
|
782 |
|
01:04:07,160 --> 01:04:12,340 |
|
ุดู
ุงููุง continuous ุนูู ุงููุชุฑุฉ A ู B ู
ุงุดู ุงูุญุงู ูู
ุด |
|
|
|
783 |
|
01:04:12,340 --> 01:04:18,630 |
|
ููู ูู
ุงู ูุจููุฏุฑ ููุถููุง ุดูููุง ููู |
|
|
|
784 |
|
01:04:22,920 --> 01:04:26,280 |
|
ูุงุถุญุฉ ูููุง .. ุงู ูุงุถุญุฉ ูููุง .. ู
ุงุดู ุฒู ู
ุง ูููุง ูุง |
|
|
|
785 |
|
01:04:26,280 --> 01:04:29,440 |
|
ุฌู
ุงุนุฉ ุณู
ููุง F capital of X ูู G capital of X |
|
|
|
786 |
|
01:04:29,440 --> 01:04:32,240 |
|
ุจุงูุณุงููุฉ H of X F differentiable ู G |
|
|
|
787 |
|
01:04:32,240 --> 01:04:35,440 |
|
differentiable ุซู
H differentiable ูู
ู ุซู
ุฃููุฏ |
|
|
|
788 |
|
01:04:35,440 --> 01:04:39,780 |
|
continuous ูุถููู H prime of X ูู ุญุงุตู ุถุฑุจ ุฏุงูุชูู |
|
|
|
789 |
|
01:04:39,780 --> 01:04:44,740 |
|
ุงูุชูุงุถู ุงูุฃูู ูู ุงูุซุงูู ุฒู ุงููู ูู ุงูุซุงูู ุงูุฃูู ูู |
|
|
|
790 |
|
01:04:44,740 --> 01:04:49,840 |
|
ุงูุชูุงุถู ุงูุซุงูู ููุณุงูู ุชูุงุถู ุงูู F' ุงููู ูู F small |
|
|
|
791 |
|
01:04:49,840 --> 01:04:54,440 |
|
ููุฐู ุชูุฒู ุฒู ู
ุง ูู ูุชูุงุถู ูุฐู ุงููู ูู G small ูุฐุง |
|
|
|
792 |
|
01:04:54,440 --> 01:04:59,020 |
|
ุตุงุฑุช ุงูู H' ุจุงูุณุงููุฉ ููุง ูุนูู ููุฃูู ุตุงุฑ ุนูุฏู ุงููู |
|
|
|
793 |
|
01:04:59,020 --> 01:05:04,360 |
|
ูู ุงูู H ูุฐู ุจุฏูู ุงูู Prime antiderivative ูู
ูุ ููุฐู |
|
|
|
794 |
|
01:05:04,360 --> 01:05:09,520 |
|
ุตุงุฑุช ูุนูู ุงูู H capital is an antiderivative of FG |
|
|
|
795 |
|
01:05:09,520 --> 01:05:17,320 |
|
ุฒู ู
ููุ ุฒู FG ุงูุขู ูู ุดูุก ูููุญ F ู G Integrable ู F |
|
|
|
796 |
|
01:05:17,320 --> 01:05:21,560 |
|
capital ู G continuous ุฅุฐุง ุงููู ูู ุฃููุฏ F capital |
|
|
|
797 |
|
01:05:21,560 --> 01:05:25,520 |
|
ู G capital Integrable ูู
ู ุซู
ููุทูุน ูู ูุฐุง ุดู
ุงูู |
|
|
|
798 |
|
01:05:25,520 --> 01:05:31,920 |
|
is integrable ู
ุงุดู ูู
ุงู ู
ุฑุฉ F |
|
|
|
799 |
|
01:05:33,190 --> 01:05:36,910 |
|
Integrable ู G-Integrable ู G-Capital ู F-Capital |
|
|
|
800 |
|
01:05:36,910 --> 01:05:40,450 |
|
continuous ุฅุฐุง ุตุงุฑ ุงูู Integrable ุฅุฐุง ูุฐุง ููู ุนูู |
|
|
|
801 |
|
01:05:40,450 --> 01:05:44,830 |
|
ุจุนุถ ุฅูุด ู
ุงููุ ุตุงุฑ Integrable ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุงููู |
|
|
|
802 |
|
01:05:44,830 --> 01:05:49,550 |
|
ูู ูู ุงูุดุฑูุท ู
ุชุญููุฉ ุฅุฐุง ู
ู ุณุจุนุฉ ุซูุงุซุฉ ู
ุฏุงู
ุฉ ุงูู H |
|
|
|
803 |
|
01:05:50,390 --> 01:05:53,570 |
|
ุงูู H ููููุง ุงูู Hุ ูู ุงูู Antiderivative ููุฐู |
|
|
|
804 |
|
01:05:53,570 --> 01:05:57,470 |
|
ููุฐู Integrable ูุจุตูุฑ ุนูุฏู ุงูุขู ุงู integration ู
ู |
|
|
|
805 |
|
01:05:57,470 --> 01:06:01,770 |
|
ููุง ุจ F ูู G ุฒุงุฆุฏ F capital ูู G DX ุจุชุณุงูู H of B |
|
|
|
806 |
|
01:06:01,770 --> 01:06:11,650 |
|
ูุงูุต ู
ููุ ูุงูุต H of A ุทูุจ ุตุงุฑ ุนูุฏู ุงูุขู ุงูุฃู
ูุฑ ูุถุญุช |
|
|
|
807 |
|
01:06:11,650 --> 01:06:20,490 |
|
ูุทูุนุช ุงููุชูุฌุฉ H of B ุฃุทูุน ุนูููุง ููู H of Bุ ูููุง H |
|
|
|
808 |
|
01:06:20,490 --> 01:06:26,610 |
|
of B ุจูุณุงูู F capital of B ูู G |
|
|
|
809 |
|
01:06:26,610 --> 01:06:30,930 |
|
of B ูููุง ู
ุงุดู F of B ูู G of B ุนุงุฏูุฉ ูู ุฃูุชู |
|
|
|
810 |
|
01:06:30,930 --> 01:06:36,070 |
|
ู
ูุฌูุฏูู ูุฃ ุนูู ุทูู ููุช ููู
ูููุง ุงูุขู H of A ุจูุณุงูู |
|
|
|
811 |
|
01:06:36,070 --> 01:06:41,980 |
|
F of A ูู G of A ูููุง G of A ู
ุงุดู ุฅุฐุง ุฅูุฏููุง ูุฐุง |
|
|
|
812 |
|
01:06:41,980 --> 01:06:46,060 |
|
ุงูู
ูุฏุงุฑ ุนูุถูุง ุนู H of B ูููุง ูุนูุถูุง ุนู H ุฏู ูููุง |
|
|
|
813 |
|
01:06:46,060 --> 01:06:49,960 |
|
ูููุง ูุฅูุด ุฌููุงุ ููุฐู ูุตููุงูุง ูุฃู Integrable ุฅุฐุง |
|
|
|
814 |
|
01:06:49,960 --> 01:06:52,940 |
|
ูุตููุงูุง ุจูุฌูุจ ูุงุญุฏุฉ ุนูู ุงูุฌูุฉ ุฏู ููุงุญุฏุฉ ุนูู ุงูุฌูุฉ |
|
|
|
815 |
|
01:06:52,940 --> 01:06:57,940 |
|
ุฏู ููู ุงูู
ุทููุจ ุฃุนู
ู ููู
ุฅูุงูุง ุทูุจ ุงู integration ู
ู |
|
|
|
816 |
|
01:06:57,940 --> 01:07:01,780 |
|
A ูู B integration |
|
|
|
817 |
|
01:07:01,780 --> 01:07:10,680 |
|
ู
ู A ูู B FG capital ุฒุงุฆุฏ F capital ูู G ุจุณุงูู |
|
|
|
818 |
|
01:07:11,790 --> 01:07:24,730 |
|
H of B ูู H of B H of B ุชุณุงูู F of B G of B ููุต H of |
|
|
|
819 |
|
01:07:24,730 --> 01:07:31,770 |
|
A ูู F of A G of A ู
ู ุงูุฌูุฉ ุงูุซุงููุฉ ุจูุณุงูู ุงูู |
|
|
|
820 |
|
01:07:31,770 --> 01:07:35,890 |
|
integration F ูู G capital ุฒุงุฆุฏ ุงู integration F |
|
|
|
821 |
|
01:07:35,890 --> 01:07:41,070 |
|
capital ูู G small ู
ู A ูุนูุฏ B ู
ู A ูุนูุฏ B ูุฃู ุฃู |
|
|
|
822 |
|
01:07:41,070 --> 01:07:44,490 |
|
ููุชู
ูู ูุฐุง ุนูู ุงูุฌูุฉ ูุฐู ุจูุตูุฑ ุนูุฏ ุงู integration |
|
|
|
823 |
|
01:07:44,490 --> 01:07:51,350 |
|
ุงูู
ุทููุจ ูุฐุง ุฃููุฏ ููู
ุชู
ุงูุฃุตู ู
ู a ูุนู b ุจูุณุงูู ุงูู |
|
|
|
824 |
|
01:07:51,350 --> 01:07:55,570 |
|
integration f ูู g capital ุฒู f capital ูู g small |
|
|
|
825 |
|
01:07:55,570 --> 01:08:06,170 |
|
ูุฃ ุฎูุตูุง ู
ูู ุจูุณุงูู f of b ูู f of a ูู g of a ูู b |
|
|
|
826 |
|
01:08:06,170 --> 01:08:16,030 |
|
ููุต f of a ูู g of a ูู ูุฐุง ูุฐุง ุงูู
ูุฏุงุฑ integration |
|
|
|
827 |
|
01:08:16,030 --> 01:08:27,230 |
|
of capital ูู G ู
ู A ูู B ููู ุงูู
ุทููุจ ูููู ุฅุญูุง |
|
|
|
828 |
|
01:08:28,050 --> 01:08:32,490 |
|
ุจูููู ุงูููู
ุฅู ุดุงุก ุงููู ูุตููุง ูุนูุฏ ุงูู first |
|
|
|
829 |
|
01:08:32,490 --> 01:08:36,250 |
|
substitution theorem ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู |
|
|
|
830 |
|
01:08:36,250 --> 01:08:45,010 |
|
ุจููู
ู ุงูู
ุญุงุถุฑุฉ ุฃู ุจููู
ู ุงูู
ุงุฏุฉ ูุจููู
ู ูุฐุง ุงูู |
|
|
|
831 |
|
01:08:45,010 --> 01:08:49,330 |
|
section ูู ู
ุญุงุถุฑุฉ ูุงุฏู
ุฉ ุฅู ุดุงุก ุงููู ูุฅูู ููุงุฆูุง |
|
|