|
1 |
|
00:00:05,740 --> 00:00:08,920 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุฌุฒุก ุงูุซุงูู ู
ู ุงูู
ุญุงุถุฑุฉ |
|
|
|
2 |
|
00:00:08,920 --> 00:00:14,780 |
|
ุงูุชุงุณุนุฉ ููููู ุงููู ูู ุนุจุงุฑุฉ ุนู discussion ุฃู ู
ูุงูุดุฉ |
|
|
|
3 |
|
00:00:14,780 --> 00:00:22,060 |
|
ูู Section 6.2 ู 6.3 ุงููู ูู ู
ูุงูุดุฉ ูู Main Value |
|
|
|
4 |
|
00:00:22,060 --> 00:00:25,220 |
|
Theorem and its Applications ูู
ูุงูุดุฉ ุฃูุถูุง ูู |
|
|
|
5 |
|
00:00:25,220 --> 00:00:30,560 |
|
L'Hopital's Rule ููุฌู ุงูุขู ูู 6.2 ุงูุฃุณุฆูุฉ ุงูู
ุทููุจุฉ |
|
|
|
6 |
|
00:00:30,560 --> 00:00:35,720 |
|
ูู ูู
ุง ููู ูุจุฏุฃ ูู ุณุคุงู 6.2 ุงุฏุฎููุง ุนูู ุงููุชุงุจ |
|
|
|
7 |
|
00:00:35,720 --> 00:00:39,160 |
|
ุฎูููุง ูุดูู ุงูู ุงูู ุงูู ุงูู
ุซุงู ุงูู ุงูุณุคุงู ู
ู |
|
|
|
8 |
|
00:00:39,160 --> 00:00:45,790 |
|
ุงููุชุงุจ ูุจุฏุฃ ุงูุขู ุจุณุคุงู 5 ุงูุณุคุงู ุงูุฎุงู
ุณ ูู ูู
ุง ููู |
|
|
|
9 |
|
00:00:45,790 --> 00:00:49,550 |
|
Let a ุฃูุจุฑ ู
ู ุตูุฑ ู b ุฃูุจุฑ ู
ู ุตูุฑ ู a strictly |
|
|
|
10 |
|
00:00:49,550 --> 00:00:55,570 |
|
ุฃูุจุฑ ู
ู b ุทุจุนูุง ูู ุงูุนูุงูุฉ strictly ูุจููุชุฑุถ ุฃู n |
|
|
|
11 |
|
00:00:55,570 --> 00:01:00,290 |
|
ุฃูุจุฑ ุฃู ูุณุงูู 2 prove that a ุฃุณ ูุงุญุฏ ุนูู n ูุงูุต b |
|
|
|
12 |
|
00:01:00,290 --> 00:01:05,290 |
|
ุฃุณ ูุงุญุฏ ุนูู n ุฃุตุบุฑ ู
ู a - b ุฃุณ ูุงุญุฏ ุนูู n |
|
|
|
13 |
|
00:01:05,290 --> 00:01:10,490 |
|
ูู ุฌููุง ูุงุญุธูุง ุนูู ุงููู ูู ุงูู
ุทููุจ ุนูุฏ ุฎู
ุณุฉ ุจูููู ูู |
|
|
|
14 |
|
00:01:10,490 --> 00:01:16,710 |
|
ุฃู a ุฃูุจุฑ ู
ู b ุฃูุจุฑ ู
ู 0 ุฃู n ุฃูุจุฑ ุฃู ูุณุงูู 2 |
|
|
|
15 |
|
00:01:16,710 --> 00:01:23,070 |
|
ุจูููู ูู prove that ุฃู a ุฃุณ ูุงุญุฏ ุนูู n ูุงูุต b ุฃุณ ูุงุญุฏ |
|
|
|
16 |
|
00:01:23,070 --> 00:01:30,710 |
|
ุนูู n ุฃุตุบุฑ ู
ู a - b ุงููู ุฃุณ ูุงุญุฏ ุนูู n ููุฌู |
|
|
|
17 |
|
00:01:30,710 --> 00:01:36,890 |
|
ููุจุฑูุงู ูู ุฌููุง ูุงุญุธูุง ุฅูู ุนูุฏู ุงูู ููุฌู ููุณุคุงู |
|
|
|
18 |
|
00:01:36,890 --> 00:01:40,770 |
|
ุจุณ ููู ูููุฑ ูู ุงูุณุคุงู ูู ู
ุง ุฃุนุทููู hint ูู ุงููุชุงุจ |
|
|
|
19 |
|
00:01:40,770 --> 00:01:45,190 |
|
ููู ุฎูููุง ูุดูู ููู ููู ุญุตู ุนูู ุงูู hint ูู ุฃุฏููุง |
|
|
|
20 |
|
00:01:45,190 --> 00:01:50,490 |
|
ุฌุณู
ูุง ุงูุฌูุชูู ูุฐุง ู
ุด ู
ู ุถู
ู ุงูุญู ุทุจุนูุง ุนูุฏู a / b |
|
|
|
21 |
|
00:01:51,290 --> 00:01:55,270 |
|
ุงููู ุฃุณ ูุงุญุฏ ุนูู n ูุงูุต ุฌุณู
ุฉ ุนูู ุงููู ูู b ุฃุณ |
|
|
|
22 |
|
00:01:55,270 --> 00:01:59,510 |
|
ูุงุญุฏ ุนูู n ููุฌูุชูู ุทุจุนูุง ูุงูู b ุทุจุนูุง ู
ูุฌุจุฉ ูููุด ุดูุก |
|
|
|
23 |
|
00:01:59,510 --> 00:02:05,290 |
|
ุจุชุบูุฑ ุจูุตูุฑ a / b - 1 ุงููู ุฃุณ ูุงุญุฏ ุนูู n |
|
|
|
24 |
|
00:02:05,290 --> 00:02:10,710 |
|
ูู ูุฌููุง ูุฐู a / b ุฃุณ ูุงุญุฏ ุนูู n ูุงูุต ุงูู a / |
|
|
|
25 |
|
00:02:10,710 --> 00:02:16,150 |
|
b - 1 ุฃุณ ูุงุญุฏ ุนูู n ุฃุตุบุฑ ู
ู ู
ููุ ู
ู 1 ุงูุขู |
|
|
|
26 |
|
00:02:16,700 --> 00:02:21,940 |
|
ุนูุฏู ูุฐุง ุงูุขู ููู ุนูู ุจุนุถู ูู ููุณู ุงูู F ู
ู
ูู |
|
|
|
27 |
|
00:02:21,940 --> 00:02:27,680 |
|
ูุณุชูู ุงูุฏุงูุฉ ู
ู ุฎูุงูู ุฃูู ูุงุฎุฏ ุงูู F of X ูู F of X |
|
|
|
28 |
|
00:02:27,680 --> 00:02:35,690 |
|
ููุชูุตููุง ุจูุณุงูู x ุฃุณ ูุงุญุฏ ุนูู n - x - 1 |
|
|
|
29 |
|
00:02:35,690 --> 00:02:42,810 |
|
ุฃุณ ูุงุญุฏ ุนูู n ูุทุจุนูุง ูู ุงูุขู ู
ุนุทููู ูู ุงูุณุคุงู a |
|
|
|
30 |
|
00:02:42,810 --> 00:02:47,790 |
|
ุฃูุจุฑ ู
ู b ุฃูุจุฑ ู
ู 0 ูู ุทูุนูุง ููุงูู ุงูุฏุงูุฉ ูุฐู |
|
|
|
31 |
|
00:02:47,790 --> 00:02:56,610 |
|
ููุงุญุธูุง ุฃูุฌุฏูุง ุงูู f prime ููุง f prime of x ุฎูููุง |
|
|
|
32 |
|
00:02:56,610 --> 00:03:02,130 |
|
ูุงุฎุฏ ุงูู x ุนูุฏู ุงูู x ุฃูุจุฑ ุฃู ูุณุงูู 1 ูููุดูู |
|
|
|
33 |
|
00:03:02,130 --> 00:03:05,730 |
|
ุงููู ูู ููุด ุนูุฏู ุงูู x ุฃูุจุฑ ุฃู ูุณุงูู 1 ุจุฑุถู |
|
|
|
34 |
|
00:03:05,730 --> 00:03:09,070 |
|
ุจุชุธุจุท ูู ุญุงูุชูุง ูุฃู ุงููู ุจูููุง ุนูู ุฃุณุงุณูุง ุงููู ูู |
|
|
|
35 |
|
00:03:09,070 --> 00:03:13,290 |
|
ุงูู a / b ููุณูุง ุฃูุจุฑ strictly ู
ู ู
ููุ ู
ู 1 |
|
|
|
36 |
|
00:03:13,290 --> 00:03:17,150 |
|
ูุงูุฃู
ูุฑ ู
ุชูุงุณูุฉ ู
ุน ุจุนุถ ููู ุจุฏูุง ูุทุจู ุญูููุง ุฌู ุฌู |
|
|
|
37 |
|
00:03:17,150 --> 00:03:20,670 |
|
ุงููู ูู ุชุทุจูู ู
ุนููู ุงููู ูููู ุงูู prime of x ุจูุณุงูู |
|
|
|
38 |
|
00:03:20,670 --> 00:03:26,200 |
|
1 / n ูู x ุฃุณ 1 / n - 1 ูุงูุต ุงููู |
|
|
|
39 |
|
00:03:26,200 --> 00:03:30,720 |
|
ูู 1 / n ูู x - 1 ุฃุณ 1 / n - |
|
|
|
40 |
|
00:03:30,720 --> 00:03:36,520 |
|
1 ููุณุงูู 1 / n ูู x ุฃุณ 1 / n - 1 |
|
|
|
41 |
|
00:03:36,520 --> 00:03:44,840 |
|
ูุงูุต ุงููู ูู x - 1 ุงููู ูู ุนูู 1 / n |
|
|
|
42 |
|
00:03:44,840 --> 00:03:50,460 |
|
ูุงูุต 1 ุงูุขู ูู ุทูุนูุง ููู ุนูุฏู ูุฐุง |
|
|
|
43 |
|
00:03:53,450 --> 00:03:56,930 |
|
ูู ุทูุนูุง ููู
ูุฏุงุฑ ุงููู ุนูุฏู ุงูู x ุฃูุจุฑ ุฃู ูุณุงูู ุฅูุดุ |
|
|
|
44 |
|
00:03:56,930 --> 00:04:02,450 |
|
1 ูุนูู ุงูุขู ุงูู x ุฃูุจุฑ ูุณุงูู 1 ูุฐุง ูู
ุง ุนูุฏู |
|
|
|
45 |
|
00:04:02,450 --> 00:04:06,950 |
|
ุงูุฃุณ ุงููู ููุง ุฃุณ ุฅูุดุ ู
ุงูู ุจุงูุณุงูุจ ุฃู ุตูุฑ ุนูู ุณูุก |
|
|
|
46 |
|
00:04:06,950 --> 00:04:10,130 |
|
ุงูุธุฑูู ุงููู ูู ุจุงูุณุงูุจ ู
ุนูุงุชู ุงููู ูู ุจุฏู ูุตูุฑ |
|
|
|
47 |
|
00:04:10,130 --> 00:04:16,070 |
|
1 / x ุงูู 1 / x ุนุจุงุฑุฉ ุนู ูุณุฑุ ู
ุธุจูุทุ ุงูุขู |
|
|
|
48 |
|
00:04:16,070 --> 00:04:20,430 |
|
ุจูุตูุฑ ุนูุฏู ุงูู
ูุฏุงุฑ ุงููู ุนูุฏู ุงูุนูุงูุฉ ุจูู ูุฐุง ููุฐุง |
|
|
|
49 |
|
00:04:20,940 --> 00:04:26,360 |
|
x ุฃููุฏ ุฃูุจุฑ ู
ู x - 1 ุตุญ ููุง ูุฃุ ููู ูุฃู |
|
|
|
50 |
|
00:04:26,360 --> 00:04:31,240 |
|
ู
ูููุจูุง ููุตูุฑ ุฅูุด ู
ุงููุ ููุตูุฑ ุฃุตุบุฑ ูููุตูุฑ ุงูู
ูุฏุงุฑ |
|
|
|
51 |
|
00:04:31,240 --> 00:04:35,440 |
|
ูุฐุง ุฃุตุบุฑ ู
ู ูุฐุง ุงูู
ูุฏุงุฑ ู
ุงุดู ูุจูุตูุฑ ุนูุฏู ุงูู
ูุฏุงุฑ |
|
|
|
52 |
|
00:04:35,440 --> 00:04:40,180 |
|
ูุฐุง ููู ุนูู ุจุนุถู ุฃุตุบุฑ ู
ู ู
ููุ ู
ู ุตูุฑ ูุงูุขู ุตุงุฑุช ุนูุฏู |
|
|
|
53 |
|
00:04:40,180 --> 00:04:45,720 |
|
f' ุฃุตุบุฑ strictly ู
ู ู
ููุ ู
ู ุตูุฑ ุฅุฐุง ุตุงุฑ ุนูุฏู ุฅุฐุง f |
|
|
|
54 |
|
00:04:45,720 --> 00:04:47,160 |
|
is strictly |
|
|
|
55 |
|
00:04:50,230 --> 00:04:54,310 |
|
decreasing ุจุฏู ุงุณุชุฎุฏู
ุงูุฎุงุตูุฉ ูุฐู ู
ุฏุงู
strictly |
|
|
|
56 |
|
00:04:54,310 --> 00:04:59,390 |
|
decreasing ูุฃูุง ุนูุฏู a ุฃูุจุฑ ู
ู b ูุณููุง ุนูุฏู a ุนูู |
|
|
|
57 |
|
00:04:59,390 --> 00:05:06,110 |
|
b ุฃูุจุฑ ู
ู 1 ูุงูู b ุทุจุนูุง ูุง ุชุณุงูู ุตูุฑ ุฅุฐุง ุจู
ุง ุฃู |
|
|
|
58 |
|
00:05:06,110 --> 00:05:11,930 |
|
f is strictly decreasing ุฅุฐุง f of a / b ุฃูุจุฑ ู
ู |
|
|
|
59 |
|
00:05:11,930 --> 00:05:18,440 |
|
f of 1 f of a / b ุฏูุชูุง ุจูุฌูุจ ุงูุนูุถ ููู ุจูุตูุฑ |
|
|
|
60 |
|
00:05:18,440 --> 00:05:26,380 |
|
ุนูุฏู ุงููู ูู ุขุณู ุฃุตุบุฑ ุนูุฏู f of a / b ุฅูุด |
|
|
|
61 |
|
00:05:26,380 --> 00:05:30,920 |
|
ูุชุณุงูููุ ููููุง ู
ุนุงูุง ุงููู ูู a / b ุฃุณ 1 / n |
|
|
|
62 |
|
00:05:30,920 --> 00:05:40,360 |
|
ูุงูุต a / b - 1 ูู ุฃุณ 1 / n ูุฐุง ุฅูุด |
|
|
|
63 |
|
00:05:40,360 --> 00:05:45,310 |
|
ู
ุงููุ ุฃุตุบุฑ ู
ู ู
ููุ ู
ู f of 1 f of 1 ุญุณุจ ูู f |
|
|
|
64 |
|
00:05:45,310 --> 00:05:50,290 |
|
of 1 ูุฐู 1 ููุฐู 0 ูุจูุตูุฑ ุนุจุงุฑุฉ ุนู ุฃุตุบุฑ ู
ู |
|
|
|
65 |
|
00:05:50,290 --> 00:05:53,350 |
|
1 ุทุจุนูุง ูุฐู ุงููู ูู ุจูุนู
ู ุนู
ููุฉ ุนูุณูุฉ ููู |
|
|
|
66 |
|
00:05:53,350 --> 00:05:57,530 |
|
ุนู
ููุงูุง ููู ูุจูุตูุฑ ุนูุฏู ุงุถุฑุจ ุงูุฌูุชูู ูู b ุฃุณ 1 |
|
|
|
67 |
|
00:05:57,530 --> 00:06:04,260 |
|
ุนูู n ูุจูุตูุฑ a ุฃุณ 1 ุนูู n ูุงูุต a - b ุฃุณ 1 ุนูู |
|
|
|
68 |
|
00:06:04,260 --> 00:06:10,940 |
|
n ุฃุตุบุฑ ู
ู ู
ููุ ู
ู b ุฃุณ 1 ุนูู n ุถุฑุจุช ููู ูู ู
ููุ |
|
|
|
69 |
|
00:06:10,940 --> 00:06:14,980 |
|
ูู b ุฃุณ 1 ุนูู n ุฅู ุฌููู ุงูุขู ุจูุตูุฑ ุนูุฏู a ุฃุณ |
|
|
|
70 |
|
00:06:14,980 --> 00:06:20,320 |
|
1 ุนูู n ูุงูุต b ุฃุณ 1 ุนูู n ุฃุตุบุฑ ู
ู a - b |
|
|
|
71 |
|
00:06:20,320 --> 00:06:26,530 |
|
ุงููู ุฃุณ 1 ุนูู n ููู ุงูู
ุทููุจ ููุฐุง ุงููู ูู ุจุฏู ุฅูุงู |
|
|
|
72 |
|
00:06:26,530 --> 00:06:32,150 |
|
ููุง ุฅูู ุจุนุฏูุ ุฎูููุง ููุฌู ููุณุคุงู ุงููู ุงูู
ุทููุจ ุงูุขุฎุฑ |
|
|
|
73 |
|
00:06:32,150 --> 00:06:38,570 |
|
ุงููู ูู use the mean value theorem ุณุคุงู 6 use the |
|
|
|
74 |
|
00:06:38,570 --> 00:06:42,830 |
|
mean value theorem to prove that sin x - sin y |
|
|
|
75 |
|
00:06:42,830 --> 00:06:47,070 |
|
ุฃุตุบุฑ ุฃู ูุณุงูู x - y for all x, y in R ูุฐุง |
|
|
|
76 |
|
00:06:47,070 --> 00:06:50,610 |
|
ุงูุณุคุงู ุญูููุง ุฒูู ุจุงูุธุจุท ุงููู ูู mean ุงููู ูู ุงูู |
|
|
|
77 |
|
00:06:50,610 --> 00:06:52,070 |
|
cosine ู
ุธุจูุทุ |
|
|
|
78 |
|
00:06:57,300 --> 00:07:03,320 |
|
ุงูุขู ู
ุง ุฃุนุฑูุด ููู ุฏุงุนู ูุญูู ููุง ุฅู ูู ููุณู ุฃู ู
ุตูุฑ |
|
|
|
79 |
|
00:07:03,320 --> 00:07:06,740 |
|
ุนู
ููุงู |
|
|
|
80 |
|
00:07:06,740 --> 00:07:12,000 |
|
ููุง ูุฃุ ุงููู ูู ุงูู cosine ุนู
ููุงูุง ุจููุณ ุงูุฃุณููุจ ูู
ุด |
|
|
|
81 |
|
00:07:12,000 --> 00:07:14,340 |
|
ููุฎุชูู ุงููู ูู ุงูุญู |
|
|
|
82 |
|
00:07:22,460 --> 00:07:27,840 |
|
ุฃุญูู ููุง ุฎูุตุชุ ุงูุขู ุนูุฏู ุงููู ูู ุณุจุนุฉ use the mean |
|
|
|
83 |
|
00:07:27,840 --> 00:07:32,580 |
|
value theorem to prove that x - 1 / x ุฃุตุบุฑ ู
ู x |
|
|
|
84 |
|
00:07:32,580 --> 00:07:39,160 |
|
ุฃุตุบุฑ ู
ู x - 1 for x ุฃูุจุฑ ู
ู 1 ุงููู ูู ุนูุฏ |
|
|
|
85 |
|
00:07:39,160 --> 00:07:45,440 |
|
ุงุญูุง ุญูููุง ูุงุญุฏ ุฒุงุฆุฏ x ูุฐู ุงูุขู ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
86 |
|
00:07:45,440 --> 00:07:51,040 |
|
ู
ููุ ุนู ุงููู ูู ln lx ุงูุฏุงูุฉ ุงููู ูู f of x ุจูุณุงูู ln |
|
|
|
87 |
|
00:07:51,040 --> 00:07:56,440 |
|
lx ูุจูุณุชุฎุฏู
ุงูู mean value theorem ูุจููุณ ุงูุฃุณููุจ ููู |
|
|
|
88 |
|
00:07:56,440 --> 00:08:00,540 |
|
ุฏุงุนู ูุญููุ ุฎูููุง ูุญูู ุฎูููุง ูุญูู ุนุดุงู ุจูุตูุฑ |
|
|
|
89 |
|
00:08:00,540 --> 00:08:12,360 |
|
ุงูุขู ุณุคุงู ุณุจุนุฉ ุงูุขู ุนูุฏู ุจุฏุฃ ุฃุซุจุช ุฃู ln lx ุฃุตุบุฑ ู
ู |
|
|
|
90 |
|
00:08:12,360 --> 00:08:20,000 |
|
x - 1 ูุฃูุจุฑ ู
ู x - 1 ุนุงูู
ููุง ุนูู x |
|
|
|
91 |
|
00:08:20,000 --> 00:08:26,400 |
|
solution ุงูุนุงูู
ูู value theorem ุงูุนุงูู
ูู value |
|
|
|
92 |
|
00:08:26,400 --> 00:08:29,960 |
|
theorem ูุญูู ุงูุนุงูู
ูู value theorem ูุฃูู ูุณู ู
ุง |
|
|
|
93 |
|
00:08:29,960 --> 00:08:35,980 |
|
ุฎุฏูุงุด ุงููู ูู Taylor's theorem ู
ุด |
|
|
|
94 |
|
00:08:35,980 --> 00:08:39,340 |
|
ูุงูู
|
|
|
|
95 |
|
00:08:39,340 --> 00:08:42,110 |
|
ุนููู ุจูููุน ูุญููุง ุจุงุณุชุฎุฏุงู
Taylor and x not |
|
|
|
96 |
|
00:08:42,110 --> 00:08:44,690 |
|
ุจูุณุงูููุง ูุนูู ุงูู mainly ุทูุจ ุขู ุงุญูุง ุงุญูุง ุนุดุงู |
|
|
|
97 |
|
00:08:44,690 --> 00:08:48,850 |
|
ูุณู ู
ุง ุฎุฏูุงุด Taylor's theorem ุจุฏูุง ูุญููุง ุนูู ู
ููุ |
|
|
|
98 |
|
00:08:48,850 --> 00:08:51,970 |
|
ุนูู ุงูู mean value theorem ููุดุ ูุฃูู ุงุญูุง ูุณู |
|
|
|
99 |
|
00:08:51,970 --> 00:09:00,070 |
|
ู
ุง ุฎุฏูุงุด Taylor's theorem ุทูุจ ุงูุขู let f of x |
|
|
|
100 |
|
00:09:00,070 --> 00:09:07,330 |
|
ุจุชุณุงูู ln ุงูู x ูุนูุฏู ุงูู x ุฃูุจุฑ ู
ู ู
ููุ ุฃูุจุฑ ุฃู |
|
|
|
101 |
|
00:09:07,330 --> 00:09:11,800 |
|
ุชุณุงูู ุงูู 1 ููุง ูุฃุ ุนูุฏู ุงูู x ุฃูุจุฑ ู
ู 100 ู
ู 0 |
|
|
|
102 |
|
00:09:11,800 --> 00:09:14,940 |
|
for |
|
|
|
103 |
|
00:09:14,940 --> 00:09:23,100 |
|
x ุฃูุจุฑ ู
ู 0 ู
ุด ุนุงูุฒ ุฅููู ู
ุงุดู ุงูุญูู ููุฌู ุงููู ูู ุฃู |
|
|
|
104 |
|
00:09:23,100 --> 00:09:26,540 |
|
ูุณุชุฎุฏู
ุงูู mean value theorem continuous ู closed ู |
|
|
|
105 |
|
00:09:26,540 --> 00:09:31,300 |
|
differentiable ููู ุงูุฃู
ูุฑ ูุฐู ุดุงู
ูุฉ ู
ุชุญููุฉ ุฅุฐุง |
|
|
|
106 |
|
00:09:31,300 --> 00:09:38,150 |
|
there exist c element in a ู b c ุนูุฏู ุงููู ูู |
|
|
|
107 |
|
00:09:38,150 --> 00:09:42,290 |
|
element ู
ุนุงูุงุ |
|
|
|
108 |
|
00:09:42,290 --> 00:09:52,610 |
|
ุทูุจ ูุฃู let f of x ุจูุณุงูู ln x ู x ุฃูุจุฑ ู
ู 0 ูุนูุฏู |
|
|
|
109 |
|
00:09:52,610 --> 00:09:57,430 |
|
ุงูู
ุทููุจ ูู ุงูู inequality ุงููู ูู x ุฃูุจุฑ ู
ู 1 ูุนูู |
|
|
|
110 |
|
00:09:57,430 --> 00:10:02,870 |
|
x ุณูุชู
ู ุฅูู ุงูู 1 ูู
ุง ูุง ููุงูุฉ ู
ุนุงูุงุ ุฅุฐุง there |
|
|
|
111 |
|
00:10:02,870 --> 00:10:11,590 |
|
exists c ูุฐูุง ุจุฏู ุฃุทุจู ุงูุขู we apply mean value |
|
|
|
112 |
|
00:10:11,590 --> 00:10:18,570 |
|
theorem on ููู ููู ู
ุนุงูุง on 1 ู x there exists |
|
|
|
113 |
|
00:10:18,570 --> 00:10:25,090 |
|
c element 1 ู x such that ู
ุนุงูุง such that ุงููู |
|
|
|
114 |
|
00:10:25,090 --> 00:10:36,890 |
|
ูู f prime of c ูุณุงูู f of x ูุงูุต f 1 ุนูู x ูุงูุต |
|
|
|
115 |
|
00:10:36,890 --> 00:10:48,110 |
|
ุฅูุด ูุงูุต 1 ุขู ูุงูุขู ุนูุฏู f of x ูุฏ ุฅูุดุ ููุณุงูู ln |
|
|
|
116 |
|
00:10:48,110 --> 00:10:56,450 |
|
ุงูู x ูุงูุต ln ุงูู 1 ูุฏ ุฅูุดุ 0 ุนูู x - 1 ููุฐุง |
|
|
|
117 |
|
00:10:56,450 --> 00:11:02,050 |
|
ู
ููุ ูู f prime of c ุนุจุงุฑุฉ ุนู ln ุงูู 1 ุนูู c ู
ุธุจูุท |
|
|
|
118 |
|
00:11:02,870 --> 00:11:06,570 |
|
ุฅุฐุง ุตุงุฑ ุนูุฏู ุงูุขู ุจุฏุฃ ุฃุฌูุจ ูุฅู ุงูู x ุฃุตุบุฑ ู
ู ู
ููุ ู
ู |
|
|
|
119 |
|
00:11:06,570 --> 00:11:12,270 |
|
x - 1 ุตุงุฑ ุนูุฏู ุฅุฐุง ln ุงูู x ุจูุณุงูู 1 ุนูู |
|
|
|
120 |
|
00:11:12,270 --> 00:11:18,390 |
|
c ูู x - 1 ูุงููู ุนูุฏ c ุฅูุด ู
ุงููุ ุจุฃุฎุฐู ุฃูุง |
|
|
|
121 |
|
00:11:18,390 --> 00:11:23,050 |
|
ุฃูุจุฑ ู
ู 1 ู
ุฏุงู
ุฃูุจุฑ ู
ู 1 ุฅุฐุง 1 / c ุงููู |
|
|
|
122 |
|
00:11:23,050 --> 00:11:28,390 |
|
ูู ุฃุตุบุฑ ู
ู 1 ู
ุธุจูุท ุฅุฐุง ูุฐุง ุฃููุฏ ูุฐุง ุฃุตุบุฑ ู
ู x |
|
|
|
123 |
|
00:11:28,390 --> 00:11:35,440 |
|
- 1 ู
ุธุจูุทุ ูุฃู ุงูู 1 / c ุฅูุด ู
ุงููุ ุนุจุงุฑุฉ |
|
|
|
124 |
|
00:11:35,440 --> 00:11:43,990 |
|
ุนู ูุณุฑ ุงูุขู ู
ู ุฌูุฉ ุฃุฎุฑู ุนูุฏู ุงููู ูู ln ุงูู x ุจูุณุงูู |
|
|
|
125 |
|
00:11:43,990 --> 00:11:49,410 |
|
1 / c ูู x - 1 ููู ุงูู x ุฃูุง c ุฅูุด |
|
|
|
126 |
|
00:11:49,410 --> 00:11:54,190 |
|
ู
ุนูุงูุง ุจูู ุงูู 1 ูุงูู x ูุนูู c ุฃุตุบุฑ ู
ู ู
ููุ c ุฃุตุบุฑ |
|
|
|
127 |
|
00:11:54,190 --> 00:11:59,430 |
|
ู
ู x ูุนูู ุงูู 1 / x ุงููู ูู ุฃุตุบุฑ ู
ู ู
ูู ุงูุขูุ c |
|
|
|
128 |
|
00:11:59,430 --> 00:12:05,890 |
|
ุฃุตุบุฑ ู
ู x ุฅุฐุง 1 / c ุฃูุจุฑ ู
ู 1 / x ูุจูุตูุฑ |
|
|
|
129 |
|
00:12:05,890 --> 00:12:13,190 |
|
ุนูุฏ ูุฐุง ุฃูุจุฑ ู
ู 1 / x ูู x - 1 ูุนูู ุจู
ุนูู ุขุฎุฑ |
|
|
|
130 |
|
00:12:13,190 --> 00:12:18,230 |
|
ุตุงุฑ ุนูุฏ ln ุงูู x ุงููู ูู ุฃูุจุฑ ู
ู x - 1 ุนูู ุงูู x |
|
|
|
131 |
|
00:12:18,230 --> 00:12:21,550 |
|
ูู ุนูุฏ ุงูู inequality ุงูุซุงููุฉ ููู ุนูุฏ ุงูู |
|
|
|
132 |
|
00:12:21,550 --> 00:12:26,690 |
|
inequality ุงูุฃููู ู
ู ุงูุชูุชูู ุฅุฐุง ln ุงูู x ุฅูุด ู
ุงููุ |
|
|
|
133 |
|
00:12:26,690 --> 00:12:32,790 |
|
ุฃุตุบุฑ ู
ู x - 1 ู
ุธุจูุท ุงููู ุจุนู
ูู ูุฃูุจุฑ ู
ู x |
|
|
|
134 |
|
00:12:32,790 --> 00:12:41,190 |
|
- 1 ุนุงูู
ููุง ุนูู x ููู ุงูู
ุทููุจ ุฅูุด ุงูุณุคุงู ุงููู |
|
|
|
135 |
|
00:12:41,190 --> 00:12:49,550 |
|
ุจุนุฏูุ ุงูุขู ุณุคุงู ุซู
ุงููุฉ let f ู
ู a ูุนูุฏ b |
|
|
|
136 |
|
00:13:11,390 --> 00:13:17,630 |
|
ุณุคุงู ุซู
ุงููุฉ let |
|
|
|
137 |
|
00:13:17,630 --> 00:13:30,470 |
|
f ู
ู a ู b ูุนูุฏ r ุฅูุด ู
ุงููุ continuous ุฃู |
|
|
|
138 |
|
00:13:30,470 --> 00:13:37,190 |
|
differentiable on |
|
|
|
139 |
|
00:13:37,190 --> 00:13:45,370 |
|
mean on open interval a ู b show |
|
|
|
140 |
|
00:13:45,370 --> 00:13:51,730 |
|
that if limit f prime of x ุนูุฏู limit f prime of x |
|
|
|
141 |
|
00:13:51,730 --> 00:14:01,630 |
|
ูู
ุง x ุชุฑูุญ ููู a ุจุณุงูู a capital then ุงููู ูู f |
|
|
|
142 |
|
00:14:01,630 --> 00:14:11,990 |
|
prime of a F prime of A exists and equals A |
|
|
|
143 |
|
00:14:11,990 --> 00:14:21,750 |
|
solution ุฃู proof ู
ุง ุฃุนุทููู |
|
|
|
144 |
|
00:14:21,750 --> 00:14:28,650 |
|
F is differentiable ุนูู ุงููู ูู ุงููุชุฑุฉ ู
ู A ูB ุฃู |
|
|
|
145 |
|
00:14:28,650 --> 00:14:33,350 |
|
continuous ุทุจุนูุง open ุฃู continuous ุนูู closed ู
ู A |
|
|
|
146 |
|
00:14:34,120 --> 00:14:39,860 |
|
ู ุนูุฏู limit f prime of x ู
ุนุทููููุง ูู
ุง x ุชุฑูุญ ุฅูู |
|
|
|
147 |
|
00:14:39,860 --> 00:14:50,180 |
|
ุงูู a ุฅูุด ุจุณุงููุ ุจุณุงูู ุงููู ูู a capital ุงุทูุน |
|
|
|
148 |
|
00:14:50,180 --> 00:14:58,560 |
|
ูููู ุงูุขู ุนูุฏู ุงูุขู ุงูู f prime of a ุชุนุฑูููุง ุงููู ูู |
|
|
|
149 |
|
00:14:58,560 --> 00:15:04,600 |
|
limit F of X ูุงูุต F of A ุนูู X minus A ูู
ุง X ุชุฑูุญ |
|
|
|
150 |
|
00:15:04,600 --> 00:15:09,940 |
|
ูููA ู
ุงุดู ุงูุญุงู ูุฐุง ุงููู ูู ุฅุฐุง ูุงู ุงูู limit ูุฐุง |
|
|
|
151 |
|
00:15:09,940 --> 00:15:13,500 |
|
exist ุฅุฐุง ุฃุซุจุชูุง ุฅู ุงูู limit ูุฐุง exist ุจุชููู ุงูู F |
|
|
|
152 |
|
00:15:13,500 --> 00:15:18,440 |
|
prime of A ุฃุดู
ุงููุง ุงููู ูู exist ู
ุงุดู ุงูุญุงู ุงูุขู |
|
|
|
153 |
|
00:15:18,440 --> 00:15:21,200 |
|
ูู ู
ุง ุฃุนุทููู limit F prime of X ูู
ุง X ุชุฑูุญ ููA |
|
|
|
154 |
|
00:15:21,200 --> 00:15:28,290 |
|
ุฃุดู
ุงููุง ูู ุงูู exist ูุงุถุญ ุฃูุ ูุฃู ุจุฏู ุฃุทุจู ุงูู Mean |
|
|
|
155 |
|
00:15:28,290 --> 00:15:33,290 |
|
Value Theorem ูุฃู ูู ุงูุจุฏุงูุฉ ุนูู ุฃู X ููู ูู |
|
|
|
156 |
|
00:15:33,290 --> 00:15:39,170 |
|
ุงููุชุฑุฉ A ูB ูู ุงููุชุฑุฉ A ูB ูู ุฃุฎุฏูุง X ูู ุงูู A ูB |
|
|
|
157 |
|
00:15:39,170 --> 00:15:44,380 |
|
ุจุงูู Mean Value Theorem ุจูู ุนูู ุงูู A ูุงูู X ุนูู |
|
|
|
158 |
|
00:15:44,380 --> 00:15:47,920 |
|
ุงููุชุฑุฉ ุงูู A ูุงูู X there exists CX ู
ุง ููุง |
|
|
|
159 |
|
00:15:47,920 --> 00:15:52,340 |
|
between X and A such that F of X ูุงูุต F of A ุจุณุงูู |
|
|
|
160 |
|
00:15:52,340 --> 00:15:57,240 |
|
F prime C of X ูู X minus A ูุฐู ุงููู ูู ุชุทุจูู ุงูู |
|
|
|
161 |
|
00:15:57,240 --> 00:16:02,860 |
|
Mean Value Theorem ุนูู ุงููุชุฑุฉ A ู B and so ู ู
ูู |
|
|
|
162 |
|
00:16:02,860 --> 00:16:07,700 |
|
ุงููู ูู ุจูููู F prime C of X ุจุณุงูู ุงููู ูู F of X |
|
|
|
163 |
|
00:16:07,700 --> 00:16:15,920 |
|
ูุงูุต F of A ุนูู X minus A ุงูุขู ุนูุฏู |
|
|
|
164 |
|
00:16:15,920 --> 00:16:22,520 |
|
.. ุฎููููุง ููุฌู ูุงุฎุฏ ูุฐู ุงูู
ูุทูุฉ ุฃู ุนุดุงู ูุณู ุจุฏุฃุช |
|
|
|
165 |
|
00:16:22,520 --> 00:16:26,600 |
|
ุจูู F prime of A ุฃุดู
ุงููุง ู
ูุฌูุฏุฉ ุจุณุงูู limit ุงูู F |
|
|
|
166 |
|
00:16:26,600 --> 00:16:31,180 |
|
prime CX ูู
ุง X ุชุฑูุญ ูู
ููุ ููู Aุ ู
ุงุดู ุงูุญุงูุ ูุฐู |
|
|
|
167 |
|
00:16:31,180 --> 00:16:36,610 |
|
ุงูุขู ูู exist ุจุชููู F prime of A ุฃุดู
ุงููุง exist ุงูุขู |
|
|
|
168 |
|
00:16:36,610 --> 00:16:40,510 |
|
ูุงุญุธ ุงุญูุง ุทุจููุง ุงููู ูู ุงูู mean value theorem ุนูู |
|
|
|
169 |
|
00:16:40,510 --> 00:16:46,910 |
|
ู
ููุ ุนูู ุงููุชุฑุฉ ู
ู a ูุนูุฏ ู
ููุ ูุนูุฏ x ูุฌููุง ุงูู cx |
|
|
|
170 |
|
00:16:46,910 --> 00:16:53,290 |
|
ููู ู
ูุฌูุฏุฉุ ุจูู ุงูู a ูุงูู x ุงูุขู ูู
ุง cx ุชุฑูุญ ููู a |
|
|
|
171 |
|
00:16:53,290 --> 00:17:00,050 |
|
ุฃููุฏ ุงูู x ูุชุฑูุญ ูู
ููุ ููู a ู
ุงุดู ุงูุญุงู ุทูุจ ุงูุขู |
|
|
|
172 |
|
00:17:00,050 --> 00:17:05,700 |
|
ุจูุตูุฑ ุนูุฏู ูู ู
ุง ุฃุนุทููู ุฃุตูุง limit f prime of x ูู
ุง x |
|
|
|
173 |
|
00:17:05,700 --> 00:17:10,600 |
|
ุชุฑูุญ ููู a exist ู
ุงุดู ูุจูุตูุฑ ุนูุฏู ูุฃู limit f prime |
|
|
|
174 |
|
00:17:11,520 --> 00:17:17,760 |
|
of CX ูู
ุง ุงูู X ุชุฑูุญ ููู A ูู ููุณูุง as X goes to A |
|
|
|
175 |
|
00:17:17,760 --> 00:17:21,700 |
|
CX ููู ูุชุฑูุญ ูู
ุง X ุชุฑูุญ ููู A ุฃุชูู
ุงุชูู CX ูุชุฑูุญ ููู |
|
|
|
176 |
|
00:17:21,700 --> 00:17:26,480 |
|
A ูุจูุตูุฑ ุนูุฏู ููู limit F prime of CX ูู
ุง X ุชุฑูุญ ููู |
|
|
|
177 |
|
00:17:26,480 --> 00:17:29,880 |
|
A ูู ููุณ limit F prime of CX ูู
ุง A CX ุชุฑูุญ ููู A |
|
|
|
178 |
|
00:17:29,880 --> 00:17:34,580 |
|
ููุฐุง ูู ู
ุง ุฃุนุทููู ุฅูุด ุงุณู
ู ุฅู existence ูู ุฅููุ ุฅุฐุง |
|
|
|
179 |
|
00:17:34,580 --> 00:17:39,500 |
|
ุตุงุฑ ูุฐุง ุงูู limit exist ูุนูู ูุฐุง ุงููู ูู ุงููู ู
ุณุงูู |
|
|
|
180 |
|
00:17:39,500 --> 00:17:42,620 |
|
ููู limit ูุฐุง ุงููู ุจููู ุนููู ุฅุฐุง ุญูููู ุงูู F prime |
|
|
|
181 |
|
00:17:42,620 --> 00:17:46,920 |
|
of A exist ูุจุฑุถู ุญูุณุงูู ู
ููุ ุญูุณุงูู ุฅููุ ุงุทูุน ุนูู |
|
|
|
182 |
|
00:17:46,920 --> 00:17:53,100 |
|
ูุฏู ุงููู ุจุงูู ูุฎูุต ูุนู
ูุง ุงุทูุน ุนูู ุงููู ุจุนุฏู ุฃููุฉ |
|
|
|
183 |
|
00:17:53,100 --> 00:17:55,420 |
|
ุงูุณุคุงู ุงููู ุจุนุฏู |
|
|
|
184 |
|
00:18:06,430 --> 00:18:13,030 |
|
ูุจุฑ ูุฐุง ุงูุณุคุงู ุงููู ุณุฃูุชูู ุนูู ูุง ู
ุญู
ุฏ |
|
|
|
185 |
|
00:18:13,030 --> 00:18:18,450 |
|
ูุจู ููู ุงุทูุน ูู .. ุฎููู ุจุณ ุงุทูุน ูู ุนูู ุงููุชุงุจ ุนูู |
|
|
|
186 |
|
00:18:18,450 --> 00:18:28,770 |
|
628 ุงููุธุฑูุฉ 628 ุงูุฒู ุงูุฒู 628 ุงุทูุน ูู ุนูููุง ุงููุธุฑูุฉ |
|
|
|
187 |
|
00:18:28,770 --> 00:18:36,630 |
|
ุนุดุงู ูููู ูู ุฅูุด ูู ุงูุณุคุงู ุนููู ูุฃูู ู
ูู
ูุนุฑู ุนู ุฅูุดุ |
|
|
|
188 |
|
00:18:36,630 --> 00:18:40,410 |
|
ุงูุขู ุฅุฐุง ุจุชุชุฐูุฑูุง ุฃุฎุฐูุง ุงููู ูู ุงูู first |
|
|
|
189 |
|
00:18:40,410 --> 00:18:45,390 |
|
derivative test for extrema ุจุชููู ุฅุฐุง ูุงู ูุฌููุง |
|
|
|
190 |
|
00:18:45,390 --> 00:18:47,870 |
|
neighborhood Hannah subset ู
ู I such that F double |
|
|
|
191 |
|
00:18:47,870 --> 00:18:51,950 |
|
prime ุฃูุจุฑ ุณุงุนุฉ ูุณูุฑ ูX ุงู .. ุงู .. ุงู .. ูู F |
|
|
|
192 |
|
00:18:51,950 --> 00:18:54,350 |
|
double prime ุฃูุจุฑ ุณุงุนุฉ ูุณูุฑ ู
ุฑุฉ ุน ุงููู
ูู ูู
ุฑุฉ ุน |
|
|
|
193 |
|
00:18:54,350 --> 00:18:59,350 |
|
ุงููุณุงุฑ ุฅุฐุง F has ุฅูุด ู
ุงููุง relative ุฅูุด ู
ุงููุง |
|
|
|
194 |
|
00:18:59,350 --> 00:19:05,280 |
|
maximum ุงููู ูู ุงููู ุจุชุบูุฑ ุดุฑุทูุง ู
ู ู
ูุฌุจ ุฅูู ุณุงูุจ |
|
|
|
195 |
|
00:19:05,280 --> 00:19:09,260 |
|
ูุจุชููู ุนูุฏู relative maximumุ ุงูุขู ูู ุงูุนูุณ ุตุญูุญุ |
|
|
|
196 |
|
00:19:09,260 --> 00:19:12,440 |
|
ูุนูู ูู ูุงู ูู ุนูุฏูุง relative maximumุ ูู ุดุฑุท ุฅููุง |
|
|
|
197 |
|
00:19:12,440 --> 00:19:17,950 |
|
ุชุบูุฑ ุฅุดุงุฑุชูุง ูู ุงููู ุฏุงุ ุงุทูุน ูููู ุดููุฉ ุนุดุงู ุฃูุฑุฌูู |
|
|
|
198 |
|
00:19:17,950 --> 00:19:21,170 |
|
ุงูุณุคุงู ููู ูุงู ู
ูุฌูุฏ ูุงู remark the converse of |
|
|
|
199 |
|
00:19:21,170 --> 00:19:25,410 |
|
the first derivative test is not true ู
ูู
ุงูููุงู
|
|
|
|
200 |
|
00:19:25,410 --> 00:19:28,610 |
|
ูุฐุง for example there exists a differentiable |
|
|
|
201 |
|
00:19:28,610 --> 00:19:31,610 |
|
function f ู
ู R ููR with absolute minimum at x |
|
|
|
202 |
|
00:19:31,610 --> 00:19:35,210 |
|
ุจุงูุณุงููุฉ ุตูุฑ but such that f prime takes on both |
|
|
|
203 |
|
00:19:35,210 --> 00:19:39,110 |
|
positive and negative values on both sides of ุงููู |
|
|
|
204 |
|
00:19:39,110 --> 00:19:45,000 |
|
ูู x ุจุชุณุงูู ุนูุงุด ุจุณุงูู ุตูุฑ ู
ุงุดู ุงูุญุงู ุฅุฐุง ูุฐุง ุงูุขู |
|
|
|
205 |
|
00:19:45,000 --> 00:19:49,920 |
|
ูุฐุง ุงูุญุฏูุซ ูู ุณุคุงููุง ุงููู ุนูุฏูุง ุงููู ุจุฏูุง ูุญูู ููู |
|
|
|
206 |
|
00:19:49,920 --> 00:19:52,880 |
|
ุงููู ูู exercise ูุฏุงุดุ ุชุณุนุฉ ุงุฑุฌุน ูู ุนูู exercise |
|
|
|
207 |
|
00:19:52,880 --> 00:19:56,560 |
|
ุชุณุนุฉ ุฅุฐุง ุงูู exercise ุชุณุนุฉ ูู ุนุจุงุฑุฉ ุนู ุฅูุดุ ุจูููู ููู |
|
|
|
208 |
|
00:19:56,560 --> 00:20:00,280 |
|
ุฅู ุงูู converts of this theorem need not to be true |
|
|
|
209 |
|
00:20:00,280 --> 00:20:04,930 |
|
in general ุจุงูุธุจุท ุฅูุด ุจููููุ ุจูููู ูู F ู
ู R ูู R ุจู |
|
|
|
210 |
|
00:20:04,930 --> 00:20:08,910 |
|
define by F of X ุจูุณุงูู 2 X plus 4 ุฒุงุฆุฏ X plus 4 |
|
|
|
211 |
|
00:20:08,910 --> 00:20:12,770 |
|
Sine 1 ุนูู X For X ูุง ุชุณุงูู ุตูุฑ ุนูุฏ F of 0 ุฅูุด |
|
|
|
212 |
|
00:20:12,770 --> 00:20:16,450 |
|
ุจูุณุงูู Zero ุฅุฐุง ุฃูุง ู
ุนุฑูุช ุฏุงูุฉ ุงูู F ุจูุฐู ุงูุทุฑููุฉ |
|
|
|
213 |
|
00:20:16,450 --> 00:20:20,450 |
|
ุจูุฐู ูู
ุง X ูุง ุชุณุงูู ุตูุฑ ูุนูุฏ X ุจูุณุงูู ุตูุฑ ุนุฑููุง F |
|
|
|
214 |
|
00:20:20,450 --> 00:20:25,120 |
|
of 0 ุจูุณุงูู ุฃูุดุ Zero ุจูููู ูุดูุฏุงุช ุฃูู ุดูุก F has an |
|
|
|
215 |
|
00:20:25,120 --> 00:20:30,440 |
|
absolute minimum when ุนูุฏ ุงูู 0 but that its |
|
|
|
216 |
|
00:20:30,440 --> 00:20:34,820 |
|
derivative has both positive and negative values |
|
|
|
217 |
|
00:20:34,820 --> 00:20:40,280 |
|
everywhere ุงููู ูู ุฅูุดุ ูู neighborhood ุญูุงููู ู
ููุ |
|
|
|
218 |
|
00:20:40,280 --> 00:20:49,380 |
|
ุญูุงููู ุงูุตูุฑ ูุงุถุญ ุทูุจุ ูุดูู ุงูุขูุ ุนู
ููุฉ ููู |
|
|
|
219 |
|
00:20:49,380 --> 00:20:54,280 |
|
absolute minimum ู
ุด ุตุนุจุฉุ ุงููู ูู ุจุณ ุฎูููุง ูุชุทูุน |
|
|
|
220 |
|
00:20:54,280 --> 00:20:58,140 |
|
ุนูู ุงูุญุณุงุจุงุชุ ูุฃู ุงูุญุณุงุจุงุช ุจุชุงุฎุฏ ูุฌูุ ูุฎูููุง ูุชุทูุน |
|
|
|
221 |
|
00:20:58,140 --> 00:21:02,900 |
|
ุนูู ุงููู ุนูุฏูุง ู
ุญุณูุจุฉ ูุฎูุงุต ูุฃู ูุฃู x ุงูู ููุชู ุงุฑ |
|
|
|
222 |
|
00:21:02,900 --> 00:21:07,360 |
|
ุฃููุฏ ุงูู x ุงูุงุฑุจุนุฉ ุฅูู ุฃุดู
ุงููุง ุฃูุจุฑ ุฃู ูุณุงูู ุตูุฑ ูุงูู |
|
|
|
223 |
|
00:21:07,360 --> 00:21:11,900 |
|
sign ุงููุงุญุฏ ุนูู x ุฃูุจุฑ ุงููุฏ ุฃูุจุฑ ุฃู ูุณุงูู ู
ููุ ูุงูุต |
|
|
|
224 |
|
00:21:11,900 --> 00:21:16,300 |
|
ูุงุญุฏ ุงุถุฑุจ ุงูุฌูุชูู ูู x ุงูุงุฑุจุนุฉ ูุจูุตูุฑ x ุงูุงุฑุจุนุฉ ูู |
|
|
|
225 |
|
00:21:16,300 --> 00:21:20,680 |
|
ูุฐุง ุฃูุจุฑ ุฃู ูุณุงูู ูุงูุต ุฅูุดุ x ุงูุงุฑุจุนุฉ ุฃุถูู ููุฌูุชูู |
|
|
|
226 |
|
00:21:20,680 --> 00:21:26,110 |
|
ุงุชููู x ุงูุงุฑุจุนุฉ ูุจูุตูุฑ 2x ุฃุณ 4 ุฒุงุฆุฏ ูุฐุง ุฃูุจุฑ ุฃู |
|
|
|
227 |
|
00:21:26,110 --> 00:21:30,470 |
|
ูุณุงูู ุงููู ุถูุช 2x ุฃุณ 4 ุฒุงุฆุฏ ุงููู ูู ูุง ุนุงุด ูุงูุต ุงููู |
|
|
|
228 |
|
00:21:30,470 --> 00:21:34,930 |
|
ูู x ุฃุณ 4 ุงููู ูู ุจูุทูุน ูุฏุงุด x ุฃุณ 4 ุงููู ูู ุฃููุฏ |
|
|
|
229 |
|
00:21:34,930 --> 00:21:39,270 |
|
ุฃูุจุฑ ุฃู ูุณุงูู 0 ุตุงุฑุช ุนูุฏ ููู
ุฉ ุงูู function f of x |
|
|
|
230 |
|
00:21:39,270 --> 00:21:44,770 |
|
ุงููู ุงุญูุง ุจูุญูู ุนููุง ุฏุงุฆู
ุง ุฃูุจุฑ ุฃู ูุณุงูู 0 ุงููู ูู |
|
|
|
231 |
|
00:21:44,770 --> 00:21:49,650 |
|
ู
ููุ ุจูุณุงูู ุงููู ุนุฑููุงู F0 ุฅุฐุง ุตุงุฑ ูู ุนูุฏู F has |
|
|
|
232 |
|
00:21:49,650 --> 00:21:58,450 |
|
absolute minimum at mean at zero ููู ุนูุฏู ูุทุจูุนุฉ |
|
|
|
233 |
|
00:21:58,450 --> 00:22:02,590 |
|
ุงูู sine ูุทุจูุนุฉ ุงูู cosine ูู ุฌูุช ุงูุขู ุฃุฎุฏุช ุฃู |
|
|
|
234 |
|
00:22:02,590 --> 00:22:06,990 |
|
neighborhood ุญูุงููู ูุงูุต delta ูdelta ุจุฏู ุฃุซุจุช ูู |
|
|
|
235 |
|
00:22:06,990 --> 00:22:12,410 |
|
ุฅู F prime ู
ุฑุฉ ู
ู
ูู ุชุณูู ูู ุฃุตุบุฑ ู
ู ุตูุฑ ูู
ุฑุฉ ุชููู |
|
|
|
236 |
|
00:22:12,410 --> 00:22:21,190 |
|
ุฃุดู
ุงููุง ุฃูุจุฑ ู
ู ุตูุฑ ูุงุถุญุ ุฅุฐุง ุชุนุงู ุดูู ุนูุฏู ุฎุฏ ูุฃู |
|
|
|
237 |
|
00:22:21,190 --> 00:22:25,370 |
|
neighborhood ุญูุงููู ุงููู ูู ุงูู Zero ุฎุฏู ู
ู ูุงูุต |
|
|
|
238 |
|
00:22:25,370 --> 00:22:29,850 |
|
Delta ูDelta ูุฃู Delta ูู ุงูุฏููุง ุฃู ูุฃู ู
ุซููู ูู |
|
|
|
239 |
|
00:22:29,850 --> 00:22:34,450 |
|
ุงูุฏููุง ุนูุฏู ูู ุงูู neighborhood ุงููู ุจุญูู ููู |
|
|
|
240 |
|
00:22:40,490 --> 00:22:45,390 |
|
ุงูููุทุฉ ุงูุฏุงุฎููุฉ ุงููู ุงุญูุง ู
ุณุชูุฏููู ูููุง ุงููู ูู ุงูุตูุฑ |
|
|
|
241 |
|
00:22:45,390 --> 00:22:51,500 |
|
ุฎุฏ ุฃู neighbor ุญูุงููู ูุงูุต ุฏูุชุง ุฃู ุฏูุชุง ุชูุฏุฑ ุชูุงูู |
|
|
|
242 |
|
00:22:51,500 --> 00:22:58,220 |
|
n ุฃูุจุฑ ุฃู ูุณุงูู ุงุชููู very large ุงููู |
|
|
|
243 |
|
00:22:58,220 --> 00:23:04,540 |
|
ุจูููู n ุฃุดู
ุงููุง very close to zero ู
ุงุดู ูุนูู ู
ูู
ุง |
|
|
|
244 |
|
00:23:04,540 --> 00:23:09,300 |
|
ุฒุบุฑุช ูู ุงูู delta ุจุฑุงุฌููู n ูุจูุฑุฉ ููุงูุฉ ุฅููุง ุชุถููุง |
|
|
|
245 |
|
00:23:09,300 --> 00:23:18,320 |
|
ูู ูุฐุง ุงูุฌูุงุฑ ูุชุญูู ู
ุง ููู ุฅูุด ุฃุฎุฐุชูุงุ ุฃุฎุฏุช ุงูููุทุฉ |
|
|
|
246 |
|
00:23:18,320 --> 00:23:22,460 |
|
ูุงุญุฏ ุนูู ุงุชููู and by ุทุจุนุง ุงูุขู ูุฐุง ุจุฒุบุฑูุง ุฌุฏูุง ู
ุง |
|
|
|
247 |
|
00:23:22,460 --> 00:23:28,120 |
|
ุจุฏู ุจุชูุจูุฑ ุงูุขู ูููุณ ุงูุดูุก 2 ุนูู 4 n ุฒุงุฆุฏ ูุงุญุฏ ูู |
|
|
|
248 |
|
00:23:28,120 --> 00:23:30,780 |
|
ุจุงูู ุทุจุนุง ููุด ุฃุฎุฏุช ูููุ ุนุดุงู ูุงุญุฏุฉ ุชุฎูู ูู ุงูู sign |
|
|
|
249 |
|
00:23:30,780 --> 00:23:34,620 |
|
ุตูุฑ ููุงุญุฏุฉ ุชุฎูู ูู ุงูู cosine ุฅููุ ุนุดุงู ุตูุฑ ูุงุถุญ ููู |
|
|
|
250 |
|
00:23:34,620 --> 00:23:37,580 |
|
ููุณ ุงููุฌู ุจุชุฎูู ูู ุงูู sign ูุงุญุฏ ูุงูู cosine ูุงุญุฏ |
|
|
|
251 |
|
00:23:37,580 --> 00:23:44,380 |
|
ุจุดูู ู
ุนุงูุณ ุฏู ููุดูู ุงูุดูุก ุงููู ุจูููู ุงูุขู ูุฐู ุงูุขู ููุฐู |
|
|
|
252 |
|
00:23:44,380 --> 00:23:47,380 |
|
ุงูุขู ุงุฎุชุฑุช ุงูุขู ุงููู ุชุฎูููู ุฅูุงูุง ู
ูุฌูุฏุฉ ูู |
|
|
|
253 |
|
00:23:47,380 --> 00:23:51,060 |
|
ูุงูุต delta ูdelta ูุฐูู ุงูููุทุชูู ูู ูููุ ูู ุงูุฌูุงุฑ |
|
|
|
254 |
|
00:23:51,060 --> 00:23:56,880 |
|
ุงููู ุฃุนุทูุชูู ุฅูุงู ุฃู ุฌูุงุฑ ุจุชุนุทููู ูุง ุจุฏุฃ ุฌููู ุงูุขู |
|
|
|
255 |
|
00:23:56,880 --> 00:24:01,300 |
|
ุงูู
ูุงุณุจุฉ ุฅููู ุงุญุณุจ ูู ุงูุขู F prime F prime of X |
|
|
|
256 |
|
00:24:01,300 --> 00:24:04,040 |
|
ุจุชุนุฑู .. ูุนุฑู ูุญุณุจูุง ุฎูููุง ูุญุณุจ F prime of X ุนูู |
|
|
|
257 |
|
00:24:04,040 --> 00:24:08,580 |
|
ุฌูุชูุง ูุฃูู ู
ุด ูุญุณุจูุง ุนุดุงู ุชููู ูุฏุงู
ูู
F prime of X |
|
|
|
258 |
|
00:24:10,740 --> 00:24:18,560 |
|
ุฃู ุจุฑุงูู
of x ุฅูุด ุจุชุณุงููุ ุชู
ุงููุฉ x ุชูุนูุจ ุฒุงุฆุฏ ุฃุฑุจุนุฉ |
|
|
|
259 |
|
00:24:18,560 --> 00:24:28,300 |
|
x ุชูุนูุจ sign ูุงุญุฏ ุนูู x ูุงูุต ุงููู ูู ููุด |
|
|
|
260 |
|
00:24:28,300 --> 00:24:34,800 |
|
ุฒุงุฆุฏ ูุงูุต x ุฃุตุจุญ ุฃุฑุจุนุฉ ุจูุตูุฑ x ุชุฑุจูุน sign ูุงุญุฏ ุนูู |
|
|
|
261 |
|
00:24:34,800 --> 00:24:41,650 |
|
x ุตุญูุญุ ูุฐู ุงูููู
ูู f prime of x ุจุฏู ุงูุขู ูุนูุถ ุนูู |
|
|
|
262 |
|
00:24:41,650 --> 00:24:47,310 |
|
f ุนูุฏ ุงูููุทุฉ ุฃูู ุดูุก ุงูููุทุฉ ุงูุฃููู ุนุจุงุฑุฉ ุนู ูุงุญุฏ |
|
|
|
263 |
|
00:24:47,310 --> 00:24:52,450 |
|
ุนูู ุงุชููู and by ุนูุถูุง ุนููุง ูู ุชู
ุงููุฉ x ุณูุนูุจ ูู |
|
|
|
264 |
|
00:24:52,450 --> 00:24:57,210 |
|
ุซู
ุงููุฉ ูู x ุณูุนูุจ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูู x ุณูุนูุจ ููู sin |
|
|
|
265 |
|
00:24:57,210 --> 00:25:01,820 |
|
ูุงุญุฏ ุนูู x ุจูุตูุฑ sin ุงุชููู and by ุนุดุงู ููู ุงูุงุฎุชูุงุฑ |
|
|
|
266 |
|
00:25:01,820 --> 00:25:05,020 |
|
ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุงุชููู and by ุฃุณ ุฃุฑุจุนุฉ ุงููู ูู .. |
|
|
|
267 |
|
00:25:05,020 --> 00:25:11,580 |
|
ุงููู ูู .. ุจุญูุง ุฏู ุจูุตูุฑ ุฃุณ ุงุชููู ุฃู ููุงู ุงููุงูุต |
|
|
|
268 |
|
00:25:11,580 --> 00:25:16,900 |
|
ูุงูู
ููุ x ุชุฑุจูุน ูุง ุฏู ู
ุญุงุฏู ุงููู ูู ุจูุตูุฑ x ุชุฑุจูุน |
|
|
|
269 |
|
00:25:16,900 --> 00:25:23,800 |
|
ุจุงูุณุงูุจ ูุงุถุญ ูู ูู cosine ู
ู ุงููู ูู 2 unbi ุงูุขู |
|
|
|
270 |
|
00:25:23,800 --> 00:25:27,580 |
|
ูุฐุง ุงูู
ูุฏุงุฑ ุงููู ูู ุงููุต ููู ุฅูุด ุญุจุงููุ ููุตูุฑ ุตูุฑ |
|
|
|
271 |
|
00:25:27,580 --> 00:25:32,160 |
|
ูุฃูู sin 2 unbi ุตูุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุนุจุงุฑุฉ ุนู ุงููู ูู |
|
|
|
272 |
|
00:25:32,160 --> 00:25:34,860 |
|
ุซู
ุงููุฉ ุจุชุฑูุญ ู
ุน ุซู
ุงููุฉ ุงููู ูู
ูุตูุฑ ูุงุญุฏ ุนูู unbi |
|
|
|
273 |
|
00:25:34,860 --> 00:25:39,880 |
|
ูู ุชูุนูุจ ูุฐุง ุงูู cosine ุฅูุด ุจูุณุงููุ ูุงุญุฏ ุฅุฐุง ุจูุธู ู
ู |
|
|
|
274 |
|
00:25:39,880 --> 00:25:47,480 |
|
ุนูุฏู ุงููู ูู ูุฐุง ุณุงูุจ ุชุฑุจูุน ุฅูู ุงูุขู ูุงุฎุฏ 1 ุนูู |
|
|
|
275 |
|
00:25:47,480 --> 00:25:52,120 |
|
unbi ุนุงู
ุงูู
ุดุชุฑู ุชุฑุจูุน ุจูุธู ุนูุฏู ุงููู ููุง ุนุจุงุฑุฉ ุนู |
|
|
|
276 |
|
00:25:52,120 --> 00:25:59,560 |
|
ุงููู ูู 4 unbi ูุฃูู ู
ุงุฎุฏ ููุง ุงููู ูู 1 ุนูู 2 unbi |
|
|
|
277 |
|
00:25:59,560 --> 00:26:03,720 |
|
ููู ุชุฑุจูุน ุงููู ูู ุนุงู
ุงูู
ุดุชุฑู ุจูุธู 4 ุนูู unbi ูุงูุต |
|
|
|
278 |
|
00:26:03,720 --> 00:26:08,840 |
|
ุฅููุ ุงุด ูุงุญุฏ ูุงุถุญ ุงูู 4 ุนูู n by ููู n ุฃูุจุฑ ุฃู ูุณุงูู |
|
|
|
279 |
|
00:26:08,840 --> 00:26:14,660 |
|
2 ุฅู ูุฐุง ุงูู
ูุฏุงุฑ ุจูุตูุฑ ูุตุบุฑ ูุฏุฑุฌุฉ ุฃูู ุฃุตุบุฑ ู
ู |
|
|
|
280 |
|
00:26:14,660 --> 00:26:18,320 |
|
ุงููุงุญุฏ ููู n ุฃูุจุฑ ูุณุงูู 2 ุฅุฐุง ุตุงุฑ ูุฐุง ุงูู
ูุฏุงุฑ ุนุจุงุฑุฉ |
|
|
|
281 |
|
00:26:18,320 --> 00:26:22,460 |
|
ุนู ุณุงูุจ ูู ู
ูุฌุฉ ุจูุทูุน ุฃุตุบุฑ ู
ู 0 ุฅุฐุง F ุจุฑุงูู
ุทูุนุช |
|
|
|
282 |
|
00:26:22,460 --> 00:26:29,390 |
|
ุฃุตุบุฑ ู
ู 0 ูู ููุณ ุงูููุช ุฃู ุจุฑุงูู
ู 2 ุนูู ูุฐุง ุนูู 4n |
|
|
|
283 |
|
00:26:29,390 --> 00:26:34,130 |
|
ุฒุงุฆุฏ 1 ูู ฯ ุฃุถุฑุจูุง ุฃุญุณุจูุง ุจูุตูุฑ ุชู
ุงููุฉ ูุนูุถ ูุนูุถ |
|
|
|
284 |
|
00:26:34,130 --> 00:26:38,150 |
|
ูุนูุถ ุงูุขู ู
ุด ุงู sign ุงููู ูุชุช cancel ูุชุช cancel |
|
|
|
285 |
|
00:26:38,150 --> 00:26:43,110 |
|
ู
ูู ุงู cosine ูููุทูุน ุนูุฏู ูุฐุง ุงูู
ูุฏุงุฑ ูู ูููู ูุฐุง |
|
|
|
286 |
|
00:26:43,110 --> 00:26:48,390 |
|
ุงูู
ูุฏุงุฑููุ ุงูู
ูุฏุงุฑูู ู
ูุฌุจุงุชุ ุฅุฐุง ููููู ุฃูุจุฑ ู
ู |
|
|
|
287 |
|
00:26:48,390 --> 00:26:53,510 |
|
ู
ููุ ู
ู ุตูุฑุ ุฅุฐุง ูู ูู ุงูู
ูุทูุฉุ ูู ูู ุงูู
ูุทูุฉุ |
|
|
|
288 |
|
00:26:53,510 --> 00:26:58,050 |
|
ูุชูุงูู ุงููู ูู ุฌุงูุจ ุจุนุถุ ุฌุงูุจ ุจุนุถุ ู
ุฑุฉ ุฃูุจุฑ ู
ู |
|
|
|
289 |
|
00:26:58,050 --> 00:27:00,530 |
|
ุตูุฑุ ู
ุฑุฉ ุฃุตุบุฑ ู
ู ุตูุฑุ ู
ุฑุฉ ุฃูุจุฑ ู
ู ุตูุฑุ ู
ุฑุฉ ุฃุตุบุฑ ู
ู |
|
|
|
290 |
|
00:27:00,530 --> 00:27:05,070 |
|
ุตูุฑุ ูููุด ุนูุฏู ุงููู ูู ุชุบูุฑ ุฅุดุงุฑุชูุง ู
ู ู
ูุฌุจ ุฅูู |
|
|
|
291 |
|
00:27:05,070 --> 00:27:09,750 |
|
ุณุงูุจุ ูุงุ ูู
ุฌุงูุจ ุจุนุถุ ูุฐูู ุชููุฌ ูุง ูุงุญุฏุฉ ุชูุณุงุด ูู |
|
|
|
292 |
|
00:27:09,750 --> 00:27:14,570 |
|
ุฌูุฉ ูุงุญุฏุฉ ู
ู ุงูู neighborhood ู
ุด ุนูู ุงูุฌูุชูู ูู ุงู |
|
|
|
293 |
|
00:27:14,570 --> 00:27:18,270 |
|
test ุงููู ุจูุนุฑูู ุฃุดู
ู ุจูููู ูู ูู ุงุชุบูุฑ ู
ู ูุจู ุงู .. |
|
|
|
294 |
|
00:27:18,270 --> 00:27:21,690 |
|
ูุจู .. ูู ุงู neighborhood ูุจู ุงูููุทุฉ ุงู X note ู
ู |
|
|
|
295 |
|
00:27:21,690 --> 00:27:26,990 |
|
ู
ูุฌุจ ุฅูู ุณุงูุจ ุจูุตูุฑ maximum ู
ู ุณุงูุจ ุฅูู ู
ูุฌุจ ุจูุตูุฑ |
|
|
|
296 |
|
00:27:26,990 --> 00:27:34,400 |
|
ู
ูุฌุจ ุจูุตูุฑ minimum ุงูุขู ูุญู ูุฌููุง relative minimum |
|
|
|
297 |
|
00:27:34,400 --> 00:27:38,800 |
|
ุฃู absolute minimum ููู ูู ุงูููุงุท ู
ู ูุงูุต ุฐูุช |
|
|
|
298 |
|
00:27:38,800 --> 00:27:44,180 |
|
ุงูุนูู ุฏูุช ูุงูู ุงุฎุชุงุฑุช ูู ููุง ูููุง ุฌุงู ุจุนุถ ูุฌุฑุจ |
|
|
|
299 |
|
00:27:44,180 --> 00:27:48,650 |
|
ูู
ุงู ุจูุง ุฌููู ูู
ุงู ุงููู ูู ุจุญูุซ ุฃู ุชููู ู
ูุฌุจุฉ ู |
|
|
|
300 |
|
00:27:48,650 --> 00:27:53,050 |
|
ุณุงูุจุฉ ูู
ูุฌุจุฉ ูุณุงูุจุฉ ูุนูู ูุด derivative ููุง ุชููู |
|
|
|
301 |
|
00:27:53,050 --> 00:27:57,690 |
|
ู
ูุฌุจุฉ ูููุง ูููุง ุณุงูุจุฉ ูููุง ุนุดุงู ุชุญูู
max .. ุชููู |
|
|
|
302 |
|
00:27:57,690 --> 00:28:01,190 |
|
ุงููู ูู .. ุงููู ูู ุงู .. ู .. ู .. ู ููุท ุงููู ูู |
|
|
|
303 |
|
00:28:01,190 --> 00:28:04,750 |
|
the converse in and the converse need not to |
|
|
|
304 |
|
00:28:04,750 --> 00:28:09,990 |
|
be true in general ูุงุถุญุ ูู ุงูุฌูุงุฑูู |
|
|
|
305 |
|
00:28:09,990 --> 00:28:14,830 |
|
.. ูุฐุง .. ูุฐุง ู
ู ููุง .. ู
ู ููุง ูุนูู ุฏููุง ูุด ุฅุดุงุฑุฉ |
|
|
|
306 |
|
00:28:14,830 --> 00:28:19,040 |
|
ูุงุญุฏุฉ ูู
ู ููุง ูุนูู ุฏููุง ูุด ุฅุดุงุฑุฉ ูุงุญุฏุฉ ุฅุฐุง the |
|
|
|
307 |
|
00:28:19,040 --> 00:28:22,320 |
|
converse need not to be true in general ูุงุถุญ ู |
|
|
|
308 |
|
00:28:22,320 --> 00:28:30,400 |
|
ุงููู ูุงุถุญ ูุฃุนูุฏ ูุงุถุญ ูุง ู
ุญู
ุฏ ุงู ุทูุจ ุงููู ุจุนุฏู |
|
|
|
309 |
|
00:28:30,400 --> 00:28:34,120 |
|
ุจุฑุถู ูู ุงู .. ูู ุงู .. ูู ุงู .. ูู ุงูู
ุซุงู ุงุฑุฌุน ูู |
|
|
|
310 |
|
00:28:34,120 --> 00:28:38,700 |
|
ูููุชุงุจ ุนุดุงู ุฃููู ูู ูุฐุง ุจุฑุถู ุจุฎุฏู
ูู ุงูุณุคุงู ูุจููุง |
|
|
|
311 |
|
00:28:38,700 --> 00:28:42,160 |
|
ุงูุฒู ุงุทูุน ูุจู ุงููุธุฑูุฉ ูุจู ุงููุธุฑูุฉ ูุจู ุงููุธุฑูุฉ ูู |
|
|
|
312 |
|
00:28:42,160 --> 00:28:45,520 |
|
ุนูุฏู ู
ุซุงู ููู ุฃู ูุง .. ุงููู ุงู remark ุงู remark |
|
|
|
313 |
|
00:28:45,520 --> 00:28:52,760 |
|
ุฃููู ุงุทูุน ุงู remark ูุฐู ุงูุขู ุฅุฐุง ุจุชุชุฐูุฑูุง ุณุคุงู ุนุดุฑ |
|
|
|
314 |
|
00:28:52,760 --> 00:28:55,260 |
|
ุงููู ุจูุงุญูููุง ุงูุฌุฏ ุญูููุง ุฃู ุงุญูุง ููููุง it is |
|
|
|
315 |
|
00:28:55,260 --> 00:28:59,420 |
|
reasonable to define a function to be increasing |
|
|
|
316 |
|
00:28:59,420 --> 00:29:04,170 |
|
at a point ุฅุฐุง ูุงูุช ููุงู ู
ูุงุฑูุฉ ููู
ูุงุฑูุฉ ูู |
|
|
|
317 |
|
00:29:04,170 --> 00:29:13,750 |
|
ุงูู
ูุงุฑูุฉ ุงููู ุญูุงููุงุ ุฅุฐุง |
|
|
|
318 |
|
00:29:13,750 --> 00:29:18,810 |
|
ูุงูุช ููุงู ู
ูุงุฑูุฉ ูู ุงูู
ูุงุฑูุฉ ุงููู ุญูุงููุงุ ุฅุฐุง ูุงูุช |
|
|
|
319 |
|
00:29:18,810 --> 00:29:19,510 |
|
ููุงู ู
ูุงุฑูุฉ ูู ุงูู
ูุงุฑูุฉ ุงููู ุญูุงููุงุ |
|
|
|
320 |
|
00:29:22,640 --> 00:29:27,460 |
|
ู
ู ุงูู
ู
ูู ุฃู ูููู ุงูู derivative ุตุญูุญ ุจุดูู ุตุญูุญ ูู |
|
|
|
321 |
|
00:29:27,460 --> 00:29:35,840 |
|
ููุทุฉ ูุงูุนู
ู ูุฒูุฏ ูู ูุฐู ุงูููุทุฉ ูููู ูุฐุง ุงููุถุน ุบูุฑ |
|
|
|
322 |
|
00:29:35,840 --> 00:29:40,960 |
|
ุตุญูุญ ูุนูู ูุฐุง ุงูููุงู
ุฅูุด ู
ุงูู ููุณ ุดุฑุท ุฃู ูููู ุตุญูุญ ุฃู |
|
|
|
323 |
|
00:29:40,960 --> 00:29:44,500 |
|
ุนูุฏู ุงููู ูููุงูู ุงููู ูู ุงูู derivative ุตุญูุญ ุจุดูู |
|
|
|
324 |
|
00:29:44,500 --> 00:29:49,220 |
|
ุตุญูุญ ููู ู
ุงููุด .. ู
ุง ููุฏุฑุด ูููู ุนููุง ุฅูุด ู
ุงููุง is |
|
|
|
325 |
|
00:29:49,220 --> 00:29:53,460 |
|
increasing at this point ูุฐุง ูู ุงูู Interval ุตุญูุญ |
|
|
|
326 |
|
00:29:53,460 --> 00:29:57,020 |
|
ููู ูู ุงูู Point ุฅูุด ู
ุงูู need not to be true in |
|
|
|
327 |
|
00:29:57,020 --> 00:30:01,860 |
|
general ููู ู
ุซุงู G of X ูู ุงููู ูู ุจุญูุซ ุฃู G' |
|
|
|
328 |
|
00:30:02,240 --> 00:30:07,940 |
|
ููู 0 ุจุณุงูู 1 ููู ุงูู G is not increasing in any |
|
|
|
329 |
|
00:30:07,940 --> 00:30:14,260 |
|
neighbourhood ุญูุงููู ู
ูู ุงูุตูุฑุ ูุฐุง ู
ุซุงู ุนูู G' of |
|
|
|
330 |
|
00:30:14,260 --> 00:30:20,200 |
|
0 ุจุณุงูู 1 ุงููู ูู strictly ุฃูุจุฑ ู
ู 0 but ุงููู ูู ูู |
|
|
|
331 |
|
00:30:20,200 --> 00:30:24,940 |
|
ูุฐุง ุงู .. ุนูุฏ ูุฐู ุงูููุทุฉ ุงููู ูู ูู ุงูุฌูุงุฑ ุชุจุนูุง |
|
|
|
332 |
|
00:30:24,940 --> 00:30:30,260 |
|
ูุง ูู
ูู ุฃู ุชููู ุงููู ูู increasing ูู ุฃู ุฌูุงุฑ |
|
|
|
333 |
|
00:30:30,260 --> 00:30:35,610 |
|
ุญูุงูููุง ูุฐุง ู
ุซููุง ูููุง ุฎููููู ูุญู ุงูุณุคุงู ุงูุขู ูุงู |
|
|
|
334 |
|
00:30:35,610 --> 00:30:40,090 |
|
ุณุคุงููุง let g ู
ู R ูR be defined by g of X ุจูุณุงูู X |
|
|
|
335 |
|
00:30:40,090 --> 00:30:44,410 |
|
ุฒู 2 X ุซุงูููุฉ ุตูู ูุงุญุฏุฉ ู X for X ุชุชุณุงูู ุตูุฑ and g |
|
|
|
336 |
|
00:30:44,410 --> 00:30:47,550 |
|
of 0 ุจูุณุงูู 0 show that g prime of 0 ุฅูุด ุจูุณุงูู |
|
|
|
337 |
|
00:30:47,550 --> 00:30:53,030 |
|
ูุงุญุฏ but in every neighborhood of zero, the |
|
|
|
338 |
|
00:30:53,030 --> 00:30:57,430 |
|
derivative g prime takes on both positive and |
|
|
|
339 |
|
00:30:57,430 --> 00:31:01,710 |
|
negative values. Thus, g is not monotonic in any |
|
|
|
340 |
|
00:31:01,710 --> 00:31:05,830 |
|
neighborhood. ูููุงูู ูู ุงูู
ูุทูุฉ ูุฐูุ ููู ู
ุง ูุงูุ |
|
|
|
341 |
|
00:31:05,830 --> 00:31:13,210 |
|
ูููุงูู ุงูู g prime ุงููู ูู ุฃูุจุฑ ู
ู ุตูุฑ ูุฃุตุบุฑ ู
ู ุตูุฑ |
|
|
|
342 |
|
00:31:13,210 --> 00:31:18,410 |
|
ูุนูู ู
ุด ูููุงูู ูู ุฃู neighborhood ุฃู ุงูู G' ุฃูุจุฑ |
|
|
|
343 |
|
00:31:18,410 --> 00:31:25,410 |
|
ู
ู ุตูุฑ ูุญุงููุง ุฃู ุงูู G' ููู X ูู ุฃูุจุฑ ู
ู ุญุงููุง ุฃู |
|
|
|
344 |
|
00:31:25,410 --> 00:31:33,910 |
|
ุฃุตุบุฑ ู
ู ุญุงููุง ูู ูู .. ู
ู ุตูุฑ ูู ูู ุงูุฌูุงุฑ G' ู
ุด |
|
|
|
345 |
|
00:31:33,910 --> 00:31:38,930 |
|
ูุชููู ุฃุตุบุฑ ู
ู ุตูุฑ ูู ูู ุงูุฌูุงุฑ ููุง ุฃูุจุฑ ู
ู ุตูุฑ ูู |
|
|
|
346 |
|
00:31:38,930 --> 00:31:46,630 |
|
ูู ุงูุฌูุงุฑ ูููุงูู ุฅููุง ู
ุชุฐุจุฐุจุฉ ูู ุงูุฅุดุงุฑุฉ ูููุ |
|
|
|
347 |
|
00:31:48,510 --> 00:31:54,930 |
|
ุงูุญู ุดุจูู ุตุญูุญ ุงูุญู ุดุจูู ุจุณ ูุฐุง ุงูุขู ู
ูุธู ูู
ููุ ูุง |
|
|
|
348 |
|
00:31:54,930 --> 00:31:58,990 |
|
ุงููู ูู ุงููู ูู counter example ุนูู ุงููู ูู ุงู |
|
|
|
349 |
|
00:31:58,990 --> 00:32:02,630 |
|
remark ุงููู ุนูุฏูุง ูุฏู counter example ุนูู ุงููู ูู |
|
|
|
350 |
|
00:32:02,630 --> 00:32:08,010 |
|
ุงููุธุฑูุฉ ูุฐู ุจูุถุญ ุฃู ุงู theorem need not to be true |
|
|
|
351 |
|
00:32:08,010 --> 00:32:12,170 |
|
in general ูููุง ุงููู ูู ุจูุถุญ ุฃูู ุงููู ูู ุงู |
|
|
|
352 |
|
00:32:12,170 --> 00:32:18,000 |
|
strictly increasing ุนูุฏ ููุทุฉ ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
353 |
|
00:32:18,000 --> 00:32:18,380 |
|
.. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. |
|
|
|
354 |
|
00:32:18,380 --> 00:32:18,540 |
|
ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
355 |
|
00:32:18,540 --> 00:32:19,120 |
|
.. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
356 |
|
00:32:19,120 --> 00:32:19,800 |
|
.. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
357 |
|
00:32:19,800 --> 00:32:26,540 |
|
.. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
358 |
|
00:32:26,540 --> 00:32:29,660 |
|
.. |
|
|
|
359 |
|
00:32:29,660 --> 00:32:31,300 |
|
ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
360 |
|
00:32:31,300 --> 00:32:32,100 |
|
ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง .. ูุง |
|
|
|
361 |
|
00:32:32,100 --> 00:32:39,020 |
|
.. ูุง .. ูุง |
|
|
|
362 |
|
00:32:39,020 --> 00:32:46,020 |
|
.. ูุง ุฅูุด ุจุนู
ู ูุงุนุฏ ุจุฏู ุฃุญุงูู ุฃุซุจุช ุฃู g prime of 0 |
|
|
|
363 |
|
00:32:46,020 --> 00:32:51,600 |
|
ุงููู ูู ุจูุณุงูู ูุงุญุฏ ูุงู ุงูุชุนุฑูู ูุงู ุนูุฏู y ุณุงูู |
|
|
|
364 |
|
00:32:51,600 --> 00:32:55,180 |
|
ุฌุณู
ูุง ุนููู ุจูุตูุฑ ูุงุญุฏ ุฒุงุฆุฏ ุงุซููู limit x sin ูุงุญุฏ |
|
|
|
365 |
|
00:32:55,180 --> 00:33:00,380 |
|
ุนูู x ุงููู ูู ูุฐุง ุงูู ุดู
ุงููุ ุจุณุงูู ุตูุฑ ูุฃู ุงูู |
|
|
|
366 |
|
00:33:00,380 --> 00:33:03,720 |
|
absolute value ููู X sin ูุงุญุฏ ุนูู X ุฃูุจุฑ ุจุณุงูู ุตูุฑ |
|
|
|
367 |
|
00:33:03,720 --> 00:33:07,740 |
|
ูุฃุตุบุฑ ุฃู ูุณุงูู ุงูู absolute value ููู X ุงููู ูู |
|
|
|
368 |
|
00:33:07,740 --> 00:33:11,020 |
|
by Sandwich theorem ุงููู ูู ุงู limit ูุฐุง ุฅูุด ุจุณุงูู |
|
|
|
369 |
|
00:33:11,020 --> 00:33:15,040 |
|
ุตูุฑ ุฅุฐุง ุงู limit ุนูู ุจุนุถ ูููู ุฅูุด ุจุณุงูู ูุงุญุฏ ุฅุฐุง |
|
|
|
370 |
|
00:33:15,040 --> 00:33:17,740 |
|
D prime of zero ุจุณุงูู ูุงุญุฏ ุงุทูุน ูููู |
|
|
|
371 |
|
00:33:20,460 --> 00:33:26,260 |
|
ุนูุฏู for x ุชุชุณุงูู 0 ุงูู g prime ุณูู ุฃู ุฃูุง ุฃุฌุฏูุง |
|
|
|
372 |
|
00:33:26,260 --> 00:33:30,300 |
|
ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุฒุงุฆุฏ ุชูุงุถู ูุงุนุฏ ุฃุฑุจุน x sin ูุงุญุฏ ุนูู |
|
|
|
373 |
|
00:33:30,300 --> 00:33:34,080 |
|
x ูุงูุต ุงุซููู cosine ูุงุญุฏ ุนูู x ูุฃู ุจุงูุธุจุท as above |
|
|
|
374 |
|
00:33:34,080 --> 00:33:37,520 |
|
for any neighborhood ุฒู ุงููู ุญูููุง ูุจู ุดููุฉ for |
|
|
|
375 |
|
00:33:37,520 --> 00:33:43,340 |
|
any neighborhood ูุงูุต ุฏูุชุง ูุฏูุชุง ุญูู ุงูุตูุฑ ุจูุฏุฑ |
|
|
|
376 |
|
00:33:43,340 --> 00:33:49,200 |
|
ุฃูุงูู ุงุฏ ุฃูุจุฑ ุณูุงุก ูุงุญุฏ ุจุญูุซ ุฃู ูุฐุง ููุฐุง ูููู ูู |
|
|
|
377 |
|
00:33:49,200 --> 00:33:54,160 |
|
ุงูุฌูุงุฑ ููู ุฌู ุจุฑุงูู
ุนูุฏ ุงูุฃููู ุฃุตุบุฑ ู
ู ุตูุฑ ูุฌู |
|
|
|
378 |
|
00:33:54,160 --> 00:33:58,480 |
|
ุจุฑุงูู
ุนูุฏ ุงูุซุงููุฉ ุดู
ุงูู ุฃูุจุฑ ู
ู ุตูุฑ ุจุญุณุงุจุงุช |
|
|
|
379 |
|
00:33:58,480 --> 00:34:01,580 |
|
ู
ุดุงุจูุฉ ุฃู ุณุคุงูุ |
|
|
|
380 |
|
00:34:05,050 --> 00:34:09,570 |
|
ุทูุจ ููุฌู ูุณุคุงู 12 ุณุคุงู 12 ุจูููู ุฅุฐุง ูุงูุช h of x |
|
|
|
381 |
|
00:34:09,570 --> 00:34:13,590 |
|
ุจูุณุงูู 0 ุฅุฐุง ูุงูุช x ุฃุตุบุฑ ู
ู 0 ู1 ุฅุฐุง ูุงูุช x ุฃูุจุฑ |
|
|
|
382 |
|
00:34:13,590 --> 00:34:16,650 |
|
ุจูุณุงูู 0 prove that there does not exist a |
|
|
|
383 |
|
00:34:16,650 --> 00:34:21,310 |
|
function f ู
ู R ูR such that f prime of x ุดู
ุงูู |
|
|
|
384 |
|
00:34:21,310 --> 00:34:26,190 |
|
ุจูุณุงูู h of x ูุฐุง ุญููุง ุฒูู ุจุฑุถู ุงููู ูู ุฏุฑุงุจููุณ |
|
|
|
385 |
|
00:34:26,190 --> 00:34:29,270 |
|
theorem using ุฅูุด ุฏุฑุงุจููุณ theorem ุฅูุด ุจูููู |
|
|
|
386 |
|
00:34:29,270 --> 00:34:37,360 |
|
suppose not ู
ุธุจูุท ุทุจู ุงูุขู ูู ุนูุฏ H of X ููุงุจููู |
|
|
|
387 |
|
00:34:37,360 --> 00:34:42,920 |
|
ูุฃุซุจุช ุฃูู ููุด ููุง function F ูู ูุถููุงูุง ุจุชุทูุน ู
ููุ |
|
|
|
388 |
|
00:34:42,920 --> 00:34:46,540 |
|
H of X ุจุฏูุง ููุชุฑุถ ุงูุนูุณุ ููุชุฑุถ ุฃูู ูู function |
|
|
|
389 |
|
00:34:46,540 --> 00:34:51,260 |
|
ุงุณู
ูุง F ุจุญูุซ ุฃู F' ุฅูุด ุจุชุณุงูู H ุตุงุฑุช H ููุณูุง |
|
|
|
390 |
|
00:34:51,260 --> 00:34:54,400 |
|
differentiableุ ู
ุงุดู ุขุณูุ F ุฅูุด ู
ุง ูุงุ |
|
|
|
391 |
|
00:34:54,400 --> 00:34:57,880 |
|
differentiableุ ู
ุธุจูุทุ ู
ุฏุงู
F differentiableุ ุฅุฐุง |
|
|
|
392 |
|
00:34:57,880 --> 00:35:03,120 |
|
by ู
ููุ By Daraboux's theorem ุงููู ูู there exist ู |
|
|
|
393 |
|
00:35:03,120 --> 00:35:07,640 |
|
ุทุจุนุง ูุฅุญูุง ุนุงุฑููู ุงููุต ุจูู ู
ููุ ุจูู ุงูู 0 ูุงูู 1 |
|
|
|
394 |
|
00:35:07,640 --> 00:35:12,880 |
|
ุฅุฐุง by Daraboux's theorem there exist ุงููู ูู .. |
|
|
|
395 |
|
00:35:12,880 --> 00:35:19,840 |
|
ุงููู ูู C ุจูู ุงูู X1 ู X2 ุจุญูุซ ุฃู G of C ุจุณูุก ุฃูู |
|
|
|
396 |
|
00:35:19,840 --> 00:35:24,940 |
|
prime of C ููุณุงูู ูุต which is impossible ุฃุณุฑุนุช |
|
|
|
397 |
|
00:35:24,940 --> 00:35:32,940 |
|
ุนูููู
ุ ู
ุธุจูุทุ ุงูุขู ูุง ุฌู
ุงุนุฉ ุจุฏู ุฃูุชุฑุถ ุฃู ุงูุนูุณ ุตุญูุญ |
|
|
|
398 |
|
00:35:32,940 --> 00:35:37,880 |
|
ูุนูู ุจุฏู ุฃูุชุฑุถ ุฃู F ู
ู R ู R ุจุญูุซ ุฃู F prime of X |
|
|
|
399 |
|
00:35:37,880 --> 00:35:42,740 |
|
ุฅูุด ุจุชุณุงููุ X ููู X element in R ู
ุงุดู ุงูุญุงู ุงุชูุฌู |
|
|
|
400 |
|
00:35:42,740 --> 00:35:47,840 |
|
ุงููู ุฅุฐุง F ููุณูุง ุจูุงุก ุนูู ูุฐุง ุงูุญุฏูุซ F is |
|
|
|
401 |
|
00:35:47,840 --> 00:35:52,340 |
|
differentiable ุนูู R ู
ู ุฌูุฉ ุฃุฎุฑู ุฃุฎุฑู ูุงุญุธ ุฅู ุงููุต |
|
|
|
402 |
|
00:35:52,340 --> 00:35:55,160 |
|
ุจูู ุงูู 0 ูุงูู 1ุ ู
ูู ูู ุงูู 0 ูุงูู 1ุ ุงูู 0 ูุงูู |
|
|
|
403 |
|
00:35:55,160 --> 00:35:58,060 |
|
1 ูู ููู
ุงูู function ูุฐู ุงููู ุจุญูู ุนููุงุ ูุนูู ุงูู |
|
|
|
404 |
|
00:35:58,060 --> 00:36:03,840 |
|
0 ูุงูู 1 ูุชููู ุงูู 0 ุนุจุงุฑุฉ ุนู ุฃุดูู X1 ูุงูู A1 |
|
|
|
405 |
|
00:36:03,840 --> 00:36:09,390 |
|
ุฃุดูู X2ุ ู
ูู X1 ู X2ุ ุงุฎุชุฑุช ุงูู X1 ุฃุตุบุฑ ู
ู 0ุ ู X2 |
|
|
|
406 |
|
00:36:09,390 --> 00:36:13,690 |
|
ุฃูุจุฑ ู
ู 0 ุตุงุฑ ุนูุฏ ููุทุชูู X1 ู X2 ูุงุญุฏ ุฃุตุบุฑ ู
ู 0 |
|
|
|
407 |
|
00:36:13,690 --> 00:36:18,030 |
|
ูุงุญุฏ ุฃูุจุฑ ู
ู 0 ูุนูู ุงูุชู
ุชูู ุนุงู
ููู ููุชุฑุฉ ุฅุฐุง ุตุงุฑ |
|
|
|
408 |
|
00:36:18,030 --> 00:36:24,870 |
|
ุนูุฏ ูุต ูู ุงููุชุฑุฉ ุจูู 0 ู 1 ุงููู ูู ุนุจุงุฑุฉ ุนู ุจูู H |
|
|
|
409 |
|
00:36:24,870 --> 00:36:31,520 |
|
of X1 ู H of X2 ููู H of X1 ู H of X2 ู
ู ูู
ุ F' of |
|
|
|
410 |
|
00:36:31,520 --> 00:36:36,900 |
|
X1 ู F' of X2 ุฅุฐุง ุตุงุฑุช ุงููู ูู ุฏุฑุงุจููุณ theorem |
|
|
|
411 |
|
00:36:36,900 --> 00:36:41,260 |
|
ู
ุญููุฉ F is differentiable ููุต ุชูุชู
ู ูููุชุฑุฉ ุจูู |
|
|
|
412 |
|
00:36:41,260 --> 00:36:47,340 |
|
ุงููู ูู F' of X1 ู F' of X2 of X2 ุฅุฐุง ุญุณุจ ุงููู ูู |
|
|
|
413 |
|
00:36:47,340 --> 00:36:51,340 |
|
ุฏุฑุงุจููุณ theorem ุฃู ุญุงุฌุฉ ุจูููู
ูุงุฒู
ูููู ููุง ุฃุตู |
|
|
|
414 |
|
00:36:51,340 --> 00:36:57,190 |
|
ุฅุฐุง there exists C ุจูู ุงูู x1 ูุงูู x2 ุจุญูุซ ุฃูู |
|
|
|
415 |
|
00:36:57,190 --> 00:37:02,450 |
|
ุงููู ูู f prime ููู c ูุฐู ุงููู ุงููู ุฌุงุชูุง ุจูู x1 ู |
|
|
|
416 |
|
00:37:02,450 --> 00:37:08,770 |
|
x2 ูู ู
ูู ุงููุต ูุนูู ุฒู ุจู
ุณุญ ูู ุงูููู
ุงููู ุจูู f of |
|
|
|
417 |
|
00:37:08,770 --> 00:37:13,080 |
|
x1 ู f of x2 ู
ุด ููู ุชุฏุฑุจุช ูู ุชุณุชูุฑูู ุจุชููู ุฅุฐุง ุตุงุฑุช |
|
|
|
418 |
|
00:37:13,080 --> 00:37:17,460 |
|
ุนูุฏู ูู c ุจูู ูุฐู ููุฐู ุจุญูุซ ุฃู f prime of c ุจุณุงูู |
|
|
|
419 |
|
00:37:17,460 --> 00:37:21,480 |
|
ูุต ูุนูู g of c ุจุณุงูู ูุต ุทุจ ูุฐุง ู
ุณุชุญูู ูุฃู ุฃุตูุง g |
|
|
|
420 |
|
00:37:21,480 --> 00:37:25,100 |
|
.. h ุทุจุนุง ูุฐุง ู
ุด g .. h of c .. ูุฐุง ู
ุณุชุญูู ููุด |
|
|
|
421 |
|
00:37:25,100 --> 00:37:28,760 |
|
ู
ุณุชุญููุ ูุฃู h ุฃุตูุง ู
ุง ุชุฃุฎุฐ ุฑูู
ุซุงููุ ูุง ุตูุฑ ูุง |
|
|
|
422 |
|
00:37:28,760 --> 00:37:32,020 |
|
ูุงุญุฏ ุฅุฐุง contradictionุ ู
ุฏุงู
contradiction ุฅุฐุง |
|
|
|
423 |
|
00:37:32,020 --> 00:37:37,940 |
|
there is no function f ู
ู R ูR ุจุญูุซ ุฃู f prime of |
|
|
|
424 |
|
00:37:37,940 --> 00:37:41,080 |
|
x ูุณุงูู f of x for every x |
|
|
|
425 |
|
00:37:45,230 --> 00:38:01,830 |
|
ูู ุถูุงุน ุณุคุงููู ุฎููุง ูู
ุฑ ุนูููู
ูุฐุง |
|
|
|
426 |
|
00:38:01,830 --> 00:38:06,130 |
|
ุญููุง ุฒููุง ุงููู ูู let I be an interval and let F |
|
|
|
427 |
|
00:38:06,130 --> 00:38:11,110 |
|
ู
ู I ูR be differentiable on I ู
ูุชุฑุถูู ุฃู F ุนุจุงุฑุฉ |
|
|
|
428 |
|
00:38:11,110 --> 00:38:16,000 |
|
ุนู ุงููู ูู differentiable function ุนูู an interval |
|
|
|
429 |
|
00:38:16,000 --> 00:38:19,820 |
|
I ูููู ูู show that ุฅุฐุง ูุงูุช F prime is positive |
|
|
|
430 |
|
00:38:19,820 --> 00:38:25,000 |
|
on I ูู F prime ุฃูุจุฑ ู
ู 0 ุนูู I ูุชููู ุงูู F ุฃุดู
ุงููุง |
|
|
|
431 |
|
00:38:25,000 --> 00:38:29,800 |
|
strictly increasing on I ุทุจุนุง ุงููู ูู ุนูู ุงูุณุฑูุน |
|
|
|
432 |
|
00:38:29,800 --> 00:38:34,940 |
|
ูููุชุฑุถ F prime ุฃูุจุฑ ู
ู 0 ููู X element on I ู
ุงุดู |
|
|
|
433 |
|
00:38:34,940 --> 00:38:41,240 |
|
ูู ููุณูุ ุฎูุงุต ุงููู ุจุฏู ุงูุณุคุงู ู
ูุฌูุฏ ูู ุงูุดุฑูุญุฉ ุงููู |
|
|
|
434 |
|
00:38:41,240 --> 00:38:44,300 |
|
ูู ุงูู main value theorem ุงุชูู ุงููู ุฎูููู ุฃูููู |
|
|
|
435 |
|
00:38:44,300 --> 00:38:50,490 |
|
ุนูู ุงูุขู let I be an interval and let F ู
ู I ูุนูุฏ R |
|
|
|
436 |
|
00:38:50,490 --> 00:38:55,050 |
|
ุณูุงุก ุงูู 14 ุจูู differentiable on I show that if |
|
|
|
437 |
|
00:38:55,050 --> 00:38:59,210 |
|
the derivative F' is never zero on I ูุนูู ุฅุฐุง ูุงูุช |
|
|
|
438 |
|
00:38:59,210 --> 00:39:04,230 |
|
F' ุฃูุจุฑ ู
ู ุตูุฑ ุงููู ูู ุชุณุงูู ุตูุฑ on I then either |
|
|
|
439 |
|
00:39:04,230 --> 00:39:08,430 |
|
F' ุฃูุจุฑ ู
ู ุตูุฑ for all X limited on I ุฃู F' ุฃุตุบุฑ |
|
|
|
440 |
|
00:39:08,430 --> 00:39:13,480 |
|
ู
ู ุตูุฑ ููู X ุฌู
ุงููุงูุนูู ุจูููู ูู ุฅุฐุง ูุงูุช ุงูู F |
|
|
|
441 |
|
00:39:13,480 --> 00:39:17,760 |
|
differentiable ุนูู ุงู interval I ููุงูุช ุงูู F' |
|
|
|
442 |
|
00:39:18,160 --> 00:39:23,240 |
|
ุจุชุณุงููุด 0 ูู ูุฐู ุงูุญุงูุฉ ุงูู F' ูุง ูุชููู ูููุง ู
ูุฌุจุฉ |
|
|
|
443 |
|
00:39:23,240 --> 00:39:28,940 |
|
ุนูู ุงู I ูุง ูููุง ุณุงูุจุฉ ุนุงูู
ูุง ุนูู ุงู I ู
ุฏุงู
ุช ู
ุง ุบูุฑุชุด |
|
|
|
444 |
|
00:39:28,940 --> 00:39:32,760 |
|
ุดุฑุทูุง ุจุงูู
ุฑุฉ ูุนูู ุจู
ุนูู ุขุฎุฑ ูุนูู ู
ุด ูุชุบูุฑ ุดุฑุทูุง |
|
|
|
445 |
|
00:39:32,760 --> 00:39:38,260 |
|
ุจุงูู
ุฑุฉ ู
ุฏุงู
ุช ุงูู F' ู
ุด 0 ุนูู ุงููุชุฑุฉ ุฅุฐุง ุฅุดุงุฑุชูุง |
|
|
|
446 |
|
00:39:38,260 --> 00:39:43,650 |
|
ูุงุญุฏุฉ ูุง F ุฃูุจุฑ ู
ู 0ุ ูุง F ุฃูุจุฑ ู
ู .. ุฃุตุบุฑ ู
ู 0ุ |
|
|
|
447 |
|
00:39:43,650 --> 00:39:47,070 |
|
ูุฐุง ูู ุถูุก ุฃู F is differentiableุ ุจุฏูุง ููุชุฑุถ |
|
|
|
448 |
|
00:39:47,070 --> 00:39:51,170 |
|
ุงูุนูุณ ููุตู ูู contradictionุ suppose on the contrary |
|
|
|
449 |
|
00:39:51,170 --> 00:39:56,290 |
|
ููุชุฑุถ ุฃู F prime of X ุฃูุจุฑ ู
ู 0 ูููุงุท ... ูุจุนุถ |
|
|
|
450 |
|
00:39:56,290 --> 00:40:00,390 |
|
ุงูููุท ูู Iุ ู F prime of X ุฃูุจุฑ ู
ู .. ุฃุตุบุฑ ู
ู 0 |
|
|
|
451 |
|
00:40:00,390 --> 00:40:04,660 |
|
ูุจุนุถ ุงูููุงุท ูู Iุ ูุนูู ู
ุฎููุทุฉ ู ุจุฏูุง ูุตูู ูู
ูู ูู |
|
|
|
452 |
|
00:40:04,660 --> 00:40:08,640 |
|
contradiction ุทูุจ then there exist a ู b element |
|
|
|
453 |
|
00:40:08,640 --> 00:40:12,220 |
|
in I such that ุฃู ุจุฑุงูู
of a ุฃุดู
ุงููุง ุฃูุจุฑ ู
ู ุตูุฑ ู |
|
|
|
454 |
|
00:40:12,220 --> 00:40:15,520 |
|
ุฃู ุจุฑุงูู
b ุฃุตุบุฑ ู
ู ุตูุฑ ูุฅู ุฃูุง ู
ูุชุฑุถ ุงูุขู ุงูุชุฑุถุช |
|
|
|
455 |
|
00:40:15,520 --> 00:40:18,200 |
|
ุฃูู ูู ููุงุท ุงููู ูู ุฃูุจุฑ ู
ู ุตูุฑ ุนูุฏูุง ุงู |
|
|
|
456 |
|
00:40:18,200 --> 00:40:20,940 |
|
derivative ููู ููุงุท ุฃุตุบุฑ ู
ู ุตูุฑ ุนูุฏูุง ุงู |
|
|
|
457 |
|
00:40:20,940 --> 00:40:25,040 |
|
derivative ู
ุงุดู ุงูุญุงู ุฅุฐุง ุจููุงูู a ู b ุจุงูุญูู ูุฐู |
|
|
|
458 |
|
00:40:25,490 --> 00:40:28,710 |
|
ุงูุขู ุฃููุฏ ู
ุฏุงู
ูุฐุง ุฃูุจุฑ ู
ู ุตูุฑ ููุฐุง ุฃุตุบุฑ ู
ู ุตูุฑุ |
|
|
|
459 |
|
00:40:28,710 --> 00:40:32,910 |
|
ุฅุฐุง ุงูุตูุฑ ุจูู ุงูู F'A ู ุงูู F'B ูุฃููุง ูุงุญุฏุฉ ู
ูุฌุจุฉ |
|
|
|
460 |
|
00:40:32,910 --> 00:40:36,850 |
|
ุจูุงุญุฏุฉ ู
ููุ ู
ุฏุงู
ุงูุตูุฑ ุจูููู
ุ ุฅุฐุง ุญุณุจ Darabowski's |
|
|
|
461 |
|
00:40:36,850 --> 00:40:40,990 |
|
theoremุ ูู ุจุชู
ุณุญ ูู ุงูู
ูุทูุฉ ุงููู ุจูู ุงูุตูุฑุ ูุงุฒู
|
|
|
|
462 |
|
00:40:40,990 --> 00:40:45,570 |
|
ูููุง ูููู ุงููู ูู ุฃุตูููุง ุฅุฐู by Daraboux's theorem |
|
|
|
463 |
|
00:40:45,570 --> 00:40:49,430 |
|
there exists c element in I such that f prime of c |
|
|
|
464 |
|
00:40:49,430 --> 00:40:52,970 |
|
ูุณุงูู ุตูุฑ ููุฐุง ุงููู ูู ุจูุงูุถ ุงููุฑุถูุฉ ุงููู ุงุญูุง |
|
|
|
465 |
|
00:40:52,970 --> 00:40:57,570 |
|
ูุฑุถูุงูุง ุฃู f prime ูุง ุชุณุงูู ุตูุฑ ุนูู ูู ุงู I ุฅุฐู f |
|
|
|
466 |
|
00:40:57,570 --> 00:41:01,730 |
|
prime ูุง ุชุณุงูู ุตูุฑ ุนูู ูู ุงู I ู
ุนูุงุชู ู |
|
|
|
467 |
|
00:41:01,730 --> 00:41:05,670 |
|
differentiable ุทุจุนุง ู
ุนูุงุชู ูุง ุฅู
ุง ูููู ุงู f prime |
|
|
|
468 |
|
00:41:05,670 --> 00:41:11,950 |
|
ู
ูุฌุจุงุช ูุง ุฅู
ุง ูููู ุฅูู ุฃุดู
ุงููุง ุณุงูุจุฉ ูุนูู ูุง |
|
|
|
469 |
|
00:41:11,950 --> 00:41:15,710 |
|
increasing strictly increasing ูุง strictly ูุง |
|
|
|
470 |
|
00:41:15,710 --> 00:41:23,230 |
|
ุฃุดู
ุงููุง decreasing ู
ุงููุด ุฃู ุชุบููุฑ ููุฑุณู
ูุงูุดูู ุทูุจ |
|
|
|
471 |
|
00:41:23,230 --> 00:41:28,820 |
|
ููุฌู ูุขุฎุฑ ุงูุณุคุงู let I Be An Interval Prove That If |
|
|
|
472 |
|
00:41:28,820 --> 00:41:32,980 |
|
F Is Differentiable On I And The Derivative Of F' |
|
|
|
473 |
|
00:41:33,300 --> 00:41:37,820 |
|
Is Bounded On Iุ Then F Satisfies Lipschitz |
|
|
|
474 |
|
00:41:37,820 --> 00:41:43,920 |
|
Condition On Iุ ู
ุงุดู ุงูุญูุ ุจุชููู ููุ ุจุชููู ูู |
|
|
|
475 |
|
00:41:43,920 --> 00:41:48,460 |
|
ุงูุณุคุงู ู
ุง ูุนููุ Lipschitz Condition |
|
|
|
476 |
|
00:41:53,580 --> 00:41:58,020 |
|
ุฎูููุง ูุดูู ุฅูุด ุงููู ุจููููู ุฅุฐุง ูุงูุช F |
|
|
|
477 |
|
00:41:58,020 --> 00:42:10,320 |
|
differentiable on I ู F' bounded on I ุงุซุจุช ุฅู F |
|
|
|
478 |
|
00:42:10,320 --> 00:42:15,680 |
|
satisfies Lipschitz conditions ู
ุงุดูุ ุฅูุด Lipschitz |
|
|
|
479 |
|
00:42:15,680 --> 00:42:23,450 |
|
conditionุ ุฅูู there exists K ุฃูุจุฑ ู
ู 0 such that F |
|
|
|
480 |
|
00:42:23,450 --> 00:42:30,130 |
|
of X ูุงูุต F of Y ุฃุตุบุฑ ุฃู ูุณุงูู ูุจุณ ุงูููุฏ ูููุง ู X |
|
|
|
481 |
|
00:42:30,130 --> 00:42:34,330 |
|
minus Y ูู ู
ููุ ูู K ุงููู ููุง ูููู ุนููุง ุนูู ุทูู |
|
|
|
482 |
|
00:42:34,330 --> 00:42:40,630 |
|
ูุฐู ุจุชุนุทู ุฅูุด ู
ุง ููุง uniformly continuous ููู X ู |
|
|
|
483 |
|
00:42:40,630 --> 00:42:44,190 |
|
Y ููู X ู Y ูู ุงููุชุฑุฉ ุงููู ุจูุญูู ุนููุง ุงููู ุจุดุช |
|
|
|
484 |
|
00:42:44,190 --> 00:42:48,790 |
|
ุบู condition ุฅูุด ู
ุง ููุง ู
ุชุญููุฉ ุฅุฐุง ุงูู Absolute ูุฐุง |
|
|
|
485 |
|
00:42:48,790 --> 00:42:54,670 |
|
ู
ุนูุงู ุงููู ุจุด ุชุณููุฏุดู ููุฌู ูุญูููุง ูุฐู ููุฌู ูุญูู |
|
|
|
486 |
|
00:42:54,670 --> 00:42:55,710 |
|
ุงููู ูู |
|
|
|
487 |
|
00:42:58,230 --> 00:43:02,930 |
|
ุงูู Lipschitz condition ูุช x ู y element in I ุจูู |
|
|
|
488 |
|
00:43:02,930 --> 00:43:06,130 |
|
such that x strictly ุฃุตุบุฑ ู
ู 100 ู
ู y |
|
|
|
489 |
|
00:43:27,180 --> 00:43:30,960 |
|
ุฅุฐุง ู
ููุง ูุงุฎุฐ ุงูู absolute value ููุฌูุชูู ุจุชุทูุน ุนูุฏู |
|
|
|
490 |
|
00:43:30,960 --> 00:43:36,260 |
|
ุงููู ุฃู
ุงูู ูุงุถุญ ููู F' is bounded ู
ุฏุงู
bounded F' |
|
|
|
491 |
|
00:43:36,740 --> 00:43:41,940 |
|
ุฅุฐุง there exist K ุจุญูุซ ุฃู F' of C ุฃุตุบุฑ ูุณุงูู K ููู C |
|
|
|
492 |
|
00:43:41,940 --> 00:43:47,550 |
|
ุฅูู ุฃุดู
ุงููุง ู
ู ุถู
ู ุงูู C ุงููู ููููุง ูุฃู ุฃู ุจุฑุงูู
is |
|
|
|
493 |
|
00:43:47,550 --> 00:43:51,870 |
|
bounded ุนูู ูู ุงู I ู ูุฐู ุงูู K ุจุชููุน ููู ู
ูู ููู |
|
|
|
494 |
|
00:43:51,870 --> 00:43:54,570 |
|
ุงูู C's ุงููู ูู ุงู I ุฅุฐุง ุตุงุฑุช ุฃู ุจุฑุงูู
ูู C ุฃุตุบุฑ ุฃู |
|
|
|
495 |
|
00:43:54,570 --> 00:43:58,270 |
|
ุดููู K ุจูุนูุฏ ููู ุจูุตูุฑ ุฃู of X ูุงูุต ุฃู of Y ุฃุตุบุฑ |
|
|
|
496 |
|
00:43:58,270 --> 00:44:02,150 |
|
ุฃู ุดููู K ูู X minus Y ู ุงู X ู ุงู Y ูุงูุช ููุด |
|
|
|
497 |
|
00:44:02,150 --> 00:44:06,870 |
|
ู
ุงูููู arbitrary ุฅุฐุง ุตุงุฑ ูุฐู ุฃุตุบุฑ ุฃู ุดููู K ูู X |
|
|
|
498 |
|
00:44:06,870 --> 00:44:11,790 |
|
minus Y ูุฏุฎูุช ุงูู
ุชุณุงููุฉ ูุฃู ูู ุญุงูุฉ ุงู X ุจุชุณุงูู Y |
|
|
|
499 |
|
00:44:11,790 --> 00:44:21,600 |
|
ุงููู ูู it is trivial therefore I satisfy ุงููู ูู |
|
|
|
500 |
|
00:44:21,600 --> 00:44:25,820 |
|
Lipschitz condition ู ุงููู ูุนุทูููุง ุงูุนุงููุฉ |
|
|