abdullah's picture
Add files using upload-large-folder tool
9b50984 verified
raw
history blame
89.2 kB
1
00:00:04,960 --> 00:00:09,520
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 27 ู…ุณุงู‚
2
00:00:09,520 --> 00:00:14,620
ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ
3
00:00:14,620 --> 00:00:19,740
ุงู„ุนู„ูˆู… ู‚ุณู… ุฑูŠุงุถูŠุงุช ุงู„ู„ูŠ ู‡ู†ูƒู…ู„ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡
4
00:00:19,740 --> 00:00:23,560
ุงู„ู„ูŠ ุจุฏุฃู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุงู„ู„ูŠ ู‡ูˆ tests for
5
00:00:23,560 --> 00:00:26,400
absolute convergence tests for absolute
6
00:00:26,400 --> 00:00:29,770
convergence ุญูƒูŠู†ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุนู„ู‰ ุงู„ู€ Comparison
7
00:00:29,770 --> 00:00:33,870
Test ูˆู‚ู„ู†ุง ุฅู†ู‡ ุงู„ู€ Comparison Test ุจู†ูŠุฌูŠ ุจู†ู‚ุงุฑู†
8
00:00:33,870 --> 00:00:37,610
ุงู„ู„ูŠ ู‡ูˆ Series ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ...
9
00:00:37,610 --> 00:00:37,790
.. ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
10
00:00:37,790 --> 00:00:39,290
ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
11
00:00:39,290 --> 00:00:39,890
.. ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
12
00:00:39,890 --> 00:00:40,250
ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
13
00:00:40,250 --> 00:00:40,570
.. ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
14
00:00:40,570 --> 00:00:42,550
ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
15
00:00:42,550 --> 00:00:44,930
.. ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€ ... ุงู„ู€
16
00:00:44,930 --> 00:00:49,270
ุงู„ู€ converges ูˆู„ูˆ ูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ุตุบูŠุฑุฉ diverges ู…ู†
17
00:00:49,270 --> 00:00:52,690
ุจุงุจ ุฃูˆู„ู‰ ู‡ุชูƒูˆู† ุงู„ู„ูŠ ุฃูƒุจุฑ diverges ู‡ุฐุง ุงู„
18
00:00:52,690 --> 00:00:55,250
comparison test ูˆุจุนุฏูŠู† ุฃุฎุฐู†ุง ุงู„ limit comparison
19
00:00:55,250 --> 00:00:59,570
test ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจูŠู‚ุงุฑู† ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ limit XN ุนู„ู‰
20
00:00:59,570 --> 00:01:05,070
YN ู„ูˆ ูƒุงู† ุนู†ุฏูŠ ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ู…ุนู†ุงุชู‡ ูŠุชุฃูƒุฏ ู‡ูŠ ุงู„ then
21
00:01:05,070 --> 00:01:07,930
ุงู„ู„ูŠ ู‡ูˆ summation ู„ู„ู€ XN converges ูˆ YN ุฏูˆู„ ุงู„
22
00:01:07,930 --> 00:01:10,450
summation converges ูŠุนู†ูŠ ุงู„ุชู†ุชูŠู† ูŠุนู†ูŠ converges
23
00:01:10,450 --> 00:01:14,980
ุงู„ุชู†ุชูŠู† diverges ู„ูƒู† ุงู„ู€ N ู„ูˆ ูƒุงู† ุงู„ limit ููŠ ุงู„ู€ ..
24
00:01:14,980 --> 00:01:19,860
ููŠ ุงู„ู€ ... ููŠ ุงู„ู€ ... ููŠ ุงู„ู€ limit XN ุนู„ู‰ YN ุจูŠุณุงูˆูŠ 0
25
00:01:19,860 --> 00:01:24,040
ู„ูˆ ุณุงูˆูŠ 0 ูˆูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุชุญุช ุงู„ู„ูŠ ู‡ูŠ is
26
00:01:24,040 --> 00:01:26,980
convergent ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ููˆู‚ ู‡ุชูƒูˆู† is
27
00:01:26,980 --> 00:01:31,950
convergent ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ุจุนุฏ ู‡ูŠูƒ ุฃุฎุฐู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
28
00:01:31,950 --> 00:01:35,350
Root and Ratio Test ุงู„ู€ Root and Ratio Test ู‚ู„ู†ุง
29
00:01:35,350 --> 00:01:38,470
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจู†ูŠุฌูŠ ุจู†ูุญุต ุงู„ู„ูŠ ู‡ูˆ Absolute Value ู„ู€
30
00:01:38,470 --> 00:01:42,030
XN ุฃุตุบุฑ ู…ู† 1 ู„ N ู„ูˆ ู…ู† ุนู†ุฏ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ุทุงู„ุน
31
00:01:42,030 --> 00:01:45,650
ุงู„ู„ูŠ ู‡ูŠ ุนู†ุฏูŠ XN ุฃุตุบุฑ ู…ู† 1 ู„ N ุฃุตุบุฑ ู…ู† R ุงู„ุขู†
32
00:01:45,650 --> 00:01:48,910
ุงู„ Series ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ุจุชูƒูˆู† ุดุงู…ู„ู‡ุง Absolutely
33
00:01:48,910 --> 00:01:53,610
Convergent ู„ู…ุง ุชูƒูˆู† ุงู„ู€ R ุฃุตุบุฑ ู…ู† 1 ู„ูˆ ูƒุงู† ุงู„ู„ูŠ ู‡ูˆ
34
00:01:53,610 --> 00:01:58,870
ุทู„ุน ุนู†ุฏูŠ ุงู„ู€ Xn-1 ู„ุฃู† ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 1 ู„ูƒู„ n ุฃูƒุจุฑ
35
00:01:58,870 --> 00:02:01,630
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ุจูŠูƒูˆู† ุงู„ series ุงู„ู„ูŠ ู‡ูŠ summation Xn
36
00:02:01,630 --> 00:02:06,030
ุดุงู…ู„ู‡ุง is divergent ุฃุฎุฐู†ุง ูƒูˆุฑูˆู„ุฑูŠ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ู‡ูˆ
37
00:02:06,030 --> 00:02:10,150
ุจุฏู„ ู…ุง ุนู„ู‰ ุงู„ terms ุฃุฎุฐู†ุง ุงู„ limit ู„ู„ู€ Xn-1 ู„ุฃู†
38
00:02:10,150 --> 00:02:13,270
ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ู„ุฌู†ุงู‡ุง ุจุชุณุงูˆูŠ R ุจูŠูƒูˆู† ุงู„ summation
39
00:02:13,270 --> 00:02:16,770
absolutely convergent ู„ู…ุง R ุฃุตุบุฑ ู…ู† 1 ูˆ
40
00:02:16,770 --> 00:02:24,020
divergent ู„ู…ุง R ุฃูƒุจุฑ ู…ู† 1 ุฃูˆ ู„ู…ุง ุงู„ู€ R ุจุชุณุงูˆูŠ
41
00:02:24,020 --> 00:02:28,360
ูˆุงุญุฏ No conclusion ุจุนุฏูŠู† ุงุฌูŠู†ุง ุฃุฎุฐู†ุง ุงู„ ratio test
42
00:02:28,360 --> 00:02:32,500
ุงู„ ratio test ุงู„ู„ูŠ ู‡ูˆ ู…ู‚ุงุฑู†ุฉ ููŠ ุฏุงุฎู„ ุงู„ series
43
00:02:32,500 --> 00:02:37,060
ู†ูุณู‡ุง ูŠุนู†ูŠ ุงู„ู€ XN ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ XN ุงู„ู„ูŠ ู‡ูˆ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
44
00:02:37,060 --> 00:02:43,470
R ู„ุฌู†ุงู‡ุง ู„ูƒู„ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ูˆู„ุงู‚ูŠู†ุง ุงู„ู€ R ู‡ู†ุง ุฃุตุบุฑ ู…ู†
45
00:02:43,470 --> 00:02:46,290
ูˆุงุญุฏ ูุจุตูŠุฑ ุงู„ submission ู„ู„ุฅูƒุณุงุช is absolutely
46
00:02:46,290 --> 00:02:50,030
convergent ู„ูˆ ูƒุงู†ุช ุงู„ู„ูŠ ุทู„ุนุช ุนู†ุฏูŠ ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ุฃูˆ
47
00:02:50,030 --> 00:02:54,670
ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจุชูƒูˆู† ุงู„ series is divergent ู‡ุฐุง ุญูƒูŠู†ุงู‡
48
00:02:54,670 --> 00:02:57,850
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‚ู„ู†ุง ุจุฑุถู‡ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุนู†ุฏูŠ Corollary
49
00:02:57,850 --> 00:03:01,130
ู„ูˆ ูƒุงู† ุฃุฎุฐู†ุง limit ู„ู„ุฅูƒุณุงุช ุฒูŠุงุฏุฉ ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฅูƒุณุงุช ู„ู‚ูŠู†ุงู‡ุง
50
00:03:01,130 --> 00:03:05,090
ุจุณุงูˆู‰ R ุงู„ุขู† ุญุณุจ ุงู„ู„ูŠ ู‡ูŠ R ุฏู‡ ูƒุงู†ุช R ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ
51
00:03:05,090 --> 00:03:08,670
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† Convergent ูˆู„ูˆ ูƒุงู†ุช R ุฃูƒุจุฑ ู…ู†
52
00:03:08,670 --> 00:03:11,830
ูˆุงุญุฏ ุจุชูƒูˆู† Divergent ูˆุนู†ุฏ R ุจูŠุณุงูˆู‰ ูˆุงุญุฏ ุงู„ test ูุนู„ู‹ุง
53
00:03:12,390 --> 00:03:15,930
ุงู„ุขู† ุฃูˆุตู„ู†ุง ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู„ู€ Integral Test
54
00:03:15,930 --> 00:03:19,450
ูˆุฎู„ูŠู†ุง ุงู„ูŠูˆู… ุงู„ู„ูŠ ู‡ูˆ ู†ุจุญุซ ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Integral
55
00:03:19,450 --> 00:03:23,770
Test ูˆู†ุดูˆู ูƒูŠู ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Integral Test
56
00:03:23,770 --> 00:03:31,720
ูˆู†ุดูˆู ุฅูŠุด ู‡ูˆ ุงู„ุขู† ุฎู„ูŠูƒู… ู…ุนู†ุง ุงู„ Integral Test ุงู„ู€
57
00:03:31,720 --> 00:03:36,740
927 let F be a positive decreasing function on T,
58
00:03:36,800 --> 00:03:40,760
T ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ู€ F ุนุจุงุฑุฉ ุนู† positive ูˆ
59
00:03:40,760 --> 00:03:44,720
decreasing function ูŠุนู†ูŠ ููˆู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ X-axis ูˆ
60
00:03:44,720 --> 00:03:48,580
decreasing ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง
61
00:03:48,580 --> 00:03:56,530
ู†ู‡ุงูŠุฉ ุงู„ุนู†ูˆุงู† ุซู… ุงู„ุณูŠุฑูŠุฒ summation ู„ู„ุฃู ุฃู† ุชุชุนุงู…ู„ ุฅุฐุง
62
00:03:56,530 --> 00:04:03,170
ุงู†ุชู‚ู„ุช ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ f of t dt ุจูŠุณุงูˆูŠ limit ู…ู†
63
00:04:03,170 --> 00:04:07,010
ูˆุงุญุฏ ุนู†ุฏ n as n goes to infinity f of t dt exists
64
00:04:07,590 --> 00:04:12,570
ุฅุฐู† ุงู„ุขู† ูˆูƒุฃู†ู‡ ุญูˆู„ู†ุง ุงู„ุญุฏูŠุซ ู…ู† ุงู„ convergence ุงู„ู„ูŠ
65
00:04:12,570 --> 00:04:17,470
ู‡ูˆ series ุฅู„ู‰ convergence of proper integral ูŠุนู†ูŠ
66
00:04:17,470 --> 00:04:21,690
ุงู„ุขู† ุจู†ู‚ูˆู„ ุฅู† ุงู„ series ู‡ุฐู‡ summation f of n
67
00:04:21,690 --> 00:04:26,290
converges ุฅุฐุง ูˆูู‚ุท ุฅุฐุง ูƒุงู† ุงู„ proper integral ู…ู† 1
68
00:04:26,290 --> 00:04:31,780
ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ู€ f of t dt is convergent In this case
69
00:04:31,780 --> 00:04:35,940
ู„ูˆ ูƒุงู† ููŠ ุงู„ convergence ุญุงุฏุซ In this case ุฃูˆ in
70
00:04:35,940 --> 00:04:40,420
the case of convergence The partial sum Sn ูˆุงู„
71
00:04:40,420 --> 00:04:43,460
partial sum ุงู„ู„ูŠ ู‡ูˆ sequence of partial sum ุฒุงุฆุฏ Sn
72
00:04:43,460 --> 00:04:46,900
and ุงู„ู„ูŠ ุจูŠุณุงูˆูŠ summation F of K, K ู…ู† ุนู†ุฏ ูˆุงุญุฏ
73
00:04:46,900 --> 00:04:51,520
ู„ุนู†ุฏ N and the sum S ุจูŠุณุงูˆูŠ ุงู„ summation ู„ู„ู€ F of
74
00:04:51,520 --> 00:04:55,820
K, K ู…ู† ุนู†ุฏ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ satisfy the
75
00:04:55,820 --> 00:05:02,530
estimate ุงู„ุชุงู„ูŠุฏุงูŠู…ู‹ุง ู‡ู†ู„ุงู‚ูŠ ุงู„ู…ุณุงูุฉ ุจูŠู† ุงู„ู€ S ูˆุงู„
76
00:05:02,530 --> 00:05:05,710
ุงู„ู€ Sn S ู†ุงู‚ุต Sn ู‡ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„
77
00:05:05,710 --> 00:05:09,150
integration ู…ู† N ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู„ู€ F of T DT ูˆ
78
00:05:09,150 --> 00:05:13,010
ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ
79
00:05:13,010 --> 00:05:16,550
ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ ุงู„ู€ S minus Sn S ุงู„ู„ูŠ ู‡ูŠ ู…ุฌู…ูˆุน ุงู„ู€
80
00:05:16,550 --> 00:05:19,890
series ู†ุงู‚ุต Sn ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ partial sum ู…ู†
81
00:05:19,890 --> 00:05:23,780
ูˆุงุญุฏ ู„ุนู†ุฏ N ุงู„ุญุงุตู„ ุฏู‡ ูŠุซุจุช ุฏุงุฆู…ุงู‹ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
82
00:05:23,780 --> 00:05:27,300
integration ู…ู† N ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู„ู€ F of T ูˆ ุฃูƒุจุฑ ู…ู† ุฃูˆ
83
00:05:27,300 --> 00:05:31,340
ูŠุณุงูˆูŠ ุงู„ N ุฒุงุฆุฏ 1 ู„ุนู†ุฏ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ูƒู„ู‡ ููŠ ุญุงู„ ุฃู†
84
00:05:31,340 --> 00:05:34,780
ุงู„ู€ series ุงู„ู„ูŠ ู‡ูŠ is convergent ุฃูˆ ุงู„ู€ improper
85
00:05:34,780 --> 00:05:40,240
integral is convergent ุฎู„ูŠู†ุง ู†ุจุฑู‡ู† ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
86
00:05:40,240 --> 00:05:46,560
ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู€ function F is positive and
87
00:05:46,560 --> 00:05:51,380
decreasing ู…ุงุดูŠ ุงู„ุญุงู„ ุนู†ุฏูŠ ุงู„ู€ function is
88
00:05:51,380 --> 00:05:55,620
decreasing ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
89
00:05:55,620 --> 00:06:00,280
ูŠุนู†ูŠ ุงู„ุขู† ุนู†ุฏูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ูˆุงุญุฏ ุงู„ู€ function ู…ู†
90
00:06:00,280 --> 00:06:03,420
ุนู†ุฏ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุนุงู…ู„ู‡ุง ุดุงู…ู„ู‡ุง decreasing
91
00:06:04,130 --> 00:06:07,430
ุงู„ุขู† ุจู‚ู‰ ุฌุจุช ุฃุฌุณู… ุงู„ู„ูŠ ู‡ูˆ ุฎู„ูŠู†ูŠ ุฃุฎุฏ ุงู„ูุชุฑุฉ ู‡ุฐู‡
92
00:06:07,430 --> 00:06:12,210
ุจุจุฏุฃ ู…ู† ุนู†ุฏ X knot ุจูˆุงุญุฏ X ุจูˆุงุญุฏ ุจุตูŠุฑ ุงุซู†ูŠู† ุงู„ู„ูŠ
93
00:06:12,210 --> 00:06:19,470
ู‡ูŠ X ูˆุงุญุฏ ุจุตูŠุฑ ู…ุซู„ู‹ุง X ูˆุงุญุฏ ูˆู‡ุฐุง X knot ูˆู‡ุฐุง X
94
00:06:19,470 --> 00:06:24,410
ุซู„ุงุซุฉ ุงุซู†ูŠู† X ุซู„ุงุซุฉ ู„ุนู†ุฏ ุงู„ูุชุฑุฉ ุงู„ู†ู…ูˆุฐุฌูŠุฉ XK ูˆ XK
95
00:06:24,410 --> 00:06:30,700
ู†ุงู‚ุต ูˆุงุญุฏ ูˆ XK ุงู„ุขู† ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุจุฏูŠ ุฃุฎุฏ ุงู„ุชุฌุฒุฆุฉ
96
00:06:30,700 --> 00:06:36,760
ุจุนุฏ ุฅุฐู†ูƒู… ุงู„ู€ X12 ูˆุงู„ู€ X23 ูˆุงู„ู€ XK-1 ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ
97
00:06:36,760 --> 00:06:41,560
ุนู† K-1 ูˆู‡ุฐู‡ ู…ู†ูŠู†ุŸ ุงู„ู€ K ุญุฑ ุฃู†ุง ุจุฏูŠ ุฃุฌุฒุก ุจุงู„ุชุฌุฒุฆุฉ
98
00:06:41,560 --> 00:06:45,540
ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุงู„ู„ูŠ ู‡ุชุฎุฏู…ู†ูŠ ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู† ุนู„ู‰ ุงู„ูุชุฑุฉ
99
00:06:45,540 --> 00:06:46,020
ู‡ุฐู‡
100
00:06:48,590 --> 00:06:53,010
ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ู‡ูŠู‡ุง ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุทูˆู„ู‡ุง ุฅูŠู‡
101
00:06:53,010 --> 00:06:56,930
ุดุงู…ู„ู‡ุง ุทูˆู„ู‡ุง ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู„ุฃู†ู‡ ู…ู† K ู†ุงู‚ุต ูˆุงุญุฏ ู„ุนู†ุฏ
102
00:06:56,930 --> 00:07:01,790
ู…ูŠู† ู„ุนู†ุฏ K ุงู„ู„ูŠ ู‡ูˆ ูˆุฃุฎุฏุช ุทูˆู„ ูƒู„ ูˆุงุญุฏ ุฃุฌุฏุงุด ุนุจุงุฑุฉ
103
00:07:01,790 --> 00:07:05,950
ุนู† ูˆุงุญุฏ ูุตุงุฑุช ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุงู„ุขู† ุจุฏูŠ ุฃุฏุฑุณ ุงู„ู„ูŠ
104
00:07:05,950 --> 00:07:11,670
ู‡ูˆ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ูˆุฃู‚ุงุฑู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุจุงู„ู…ุณุงุญุฉ ุฅู„ู‰ ุงู„ู€ F
105
00:07:11,670 --> 00:07:17,970
of K ูˆ F of K-1 ู„ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจุญูƒูŠ ุนุดุงู† ุฃุตู„ ู„ู„ู„ูŠ
106
00:07:17,970 --> 00:07:23,070
ุจุฏูŠู‡ ุฃู†ุช ุจุชุญูƒูŠ ุงู„ุขู† ู„ูˆ ุฌูŠู†ุง ุทู„ุนู†ุง ู„ุนู†ุฏ ... ุนู†ุฏ ...
107
00:07:23,070 --> 00:07:28,830
ู…ู† ุนู†ุฏ K-1 ู„ุนู†ุฏ K ู„ุฃู† K ู‡ุฐู‡ ุฃูƒูŠุฏ K ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ู†
108
00:07:28,830 --> 00:07:33,050
ุงุซู†ูŠู† ุทุงู„ุน ู…ุงุดูŠ ุงู„ุญุงู„ ุฅู† ุงู„ูุทุฑ ุชุจุฏุฃ ู…ู† ุนู†ุฏ ู…ูŠู† ู…ู†
109
00:07:33,050 --> 00:07:36,670
ุนู†ุฏ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุฅุฐุง ุนู†ุฏูŠ K ุจุชุณุงูˆูŠ ุงุซู†ูŠู† ุฃูˆ
110
00:07:36,670 --> 00:07:40,390
ุซู„ุงุซุฉ ุฃูˆ ุฃุฑุจุนุฉ ุฃูˆ ุฎู…ุณุฉ ุฅูŠู‡ ุงู„ู„ูŠ ุจุฏูŠ ุฅูŠุงู‡ ุงู„ู„ูŠ ู‡ู†ุฎู„ูŠู†ูŠ
111
00:07:40,390 --> 00:07:45,670
ุฃุฌูŠ ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰ ู‡ุฐุง ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰ ู‡ุฐุง
112
00:07:45,670 --> 00:07:49,290
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู‚ูŠู…ุฉ ุงู„ integration ู„ู„ function ุชุจุนุชู†ุง
113
00:07:49,290 --> 00:07:53,190
ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ decreasing ู…ู† ูˆูŠู† ู„ูˆ ุนู†ุฏ K ู†ุงู‚ุต ูˆุงุญุฏ
114
00:07:53,190 --> 00:07:56,910
ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ K ุฅุฐุง ุงู„ integration ู…ู† K ู†ุงู‚ุต ูˆุงุญุฏ
115
00:07:56,910 --> 00:08:00,630
ู„ุนู†ุฏ K f of t dt ู„ุฃู† ุงู„ function positive ุชู…ุซู„ ู‡ุฐู‡
116
00:08:00,630 --> 00:08:06,260
ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰ ุทูŠุจุŒ ุงู„ุขู† ู„ูˆ ุฌูŠู†ุง ู„ู„ู…ุณุงุญุฉ ุงู„ู„ูŠ
117
00:08:06,260 --> 00:08:11,580
ู‡ูŠ ุงู„ุขู† ู‡ุฐุง ุทูˆู„ู‡ ู‚ูŠู…ุชู‡ ูˆุงุญุฏ ูˆู‡ุฐุง ุงู„ุขู† ู‚ูŠู…ุชู‡ ู„ู‡ู†ุง
118
00:08:11,580 --> 00:08:16,820
F of K ู†ุงู‚ุต ูˆุงุญุฏ ุงู„ู…ุณุงุญุฉ ู‡ุฐู‡ ู‡ูŠู‡ุง ุงู„ุดูƒู„ ู‡ุฐุง
119
00:08:16,820 --> 00:08:21,660
ู…ุณุงุญุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุณุงุญุฉ ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ุทูˆู„ู‡
120
00:08:21,660 --> 00:08:26,060
... ุงู„ู„ูŠ ุนุฑุถู‡ ูˆุงุญุฏ ูˆุทูˆู„ู‡ ู…ูŠู†ุŸ F of K ู†ุงู‚ุต ูˆุงุญุฏ
121
00:08:26,060 --> 00:08:29,880
ุงู„ุขู† F of K ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ุฃูƒูŠุฏ ู‡ุฐู‡ ุงู„ู…ุณุงุญุฉ
122
00:08:29,880 --> 00:08:34,380
ูˆุงุถุญุฉ ุฅู†ู‡ุง ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ integration ุงู„ู„ูŠ ุนู†ุฏูŠ
123
00:08:34,380 --> 00:08:39,060
ุงู„ุขู† ุฃูˆ ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰ ุงู„ุขู† ููŠ ุงู„ู…ู‚ุงุจู„ ู„ูˆ
124
00:08:39,060 --> 00:08:46,420
ุฌูŠู†ุง ุชุทู„ุนู†ุง ู„ุฃ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุณุงุญุฉ ุงู„ู„ูŠ ุจูŠู…ุซู„ู‡ุง F of K
125
00:08:46,420 --> 00:08:51,910
F of K ู‡ูŠ ุทูˆู„ู‡ ููŠ ู…ูŠู† ููŠ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ู‡ุฐุง ูˆุงุญุฏ ุทูˆู„ู‡
126
00:08:51,910 --> 00:08:56,870
ู‡ุฐู‡ ุงู„ุขู† ู…ุณุงุญุชู‡ุง ุฃูƒูŠุฏ ุฃุตุบุฑ ู…ู† ู…ุณุงุญุฉ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ
127
00:08:56,870 --> 00:09:00,890
ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰ ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู‡ูŠูƒูˆู† ู‡ุฐู‡
128
00:09:00,890 --> 00:09:04,770
ุงู„ู…ุณุงุญุฉ ุงู„ู„ูŠ ู‡ูŠ F of K ููŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ F of K ูŠุนู†ูŠ
129
00:09:04,770 --> 00:09:09,010
ุฃุตุบุฑ ู…ู† integration ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุงู„ู„ูŠ ุนู†ุฏูŠ ูŠุนู†ูŠ
130
00:09:09,010 --> 00:09:12,530
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุชู…ุงู… ู‡ุฐุง ุงู„ู„ูŠ ุฃู†ุง ู…ุณู…ูŠู‡ุง ุชุณุนุฉ ุฃูˆ
131
00:09:12,530 --> 00:09:17,260
ุซู…ุงู†ูŠุฉ ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู…ุณุงุญุฉ ุงู„ูƒุจูŠุฑุฉ
132
00:09:17,260 --> 00:09:19,960
ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู„ุญุงู†ุฉ ุงู„ู€
133
00:09:19,960 --> 00:09:26,140
integration ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุฃูˆ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู…ุณุงุญุฉ
134
00:09:26,140 --> 00:09:30,680
ุงู„ุฃุฎูŠุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุณุชุทูŠู„ ู‡ุฐุง ุงู„ู„ูŠ ุทูˆู„ู‡ F of K ููŠ
135
00:09:30,680 --> 00:09:38,690
ู…ูŠู† ุฃูˆ ุนุฑุถู‡ ูˆุงุญุฏ ูŠุนู†ูŠ K ููŠ ุงู„ูˆุงุญุฏ ูŠุนู†ูŠ F of K ุฃุตุบุฑ ู…ู†
136
00:09:38,690 --> 00:09:39,770
ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆ
137
00:09:39,770 --> 00:09:42,770
ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆ
138
00:09:42,770 --> 00:09:43,150
ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆ
139
00:09:43,150 --> 00:09:44,770
ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆ
140
00:09:44,770 --> 00:09:56,800
ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆุฃุตุบุฑ ู„ุฃ
141
00:09:56,800 --> 00:10:02,120
ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูƒู„ู‡ ู…ู† ุนู†ุฏ N ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ N
142
00:10:02,120 --> 00:10:08,720
ูŠุนู†ูŠ ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู€ summation ุงู„ู€ summation ู„ู„ู€ F
143
00:10:08,720 --> 00:10:14,560
of K ูƒูŠ ู…ู† ุนู†ุฏ 2 ู„ุนู†ุฏ N ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
144
00:10:14,560 --> 00:10:22,220
integration summation ุทุจุนุงู‹ K-1 ู„ุนู†ุฏ K F of T DT K
145
00:10:22,220 --> 00:10:27,360
ู…ู† ุนู†ุฏ 2 ู„ุนู†ุฏ N ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ summation F of K
146
00:10:27,360 --> 00:10:35,100
-1 K ู…ู† ุนู†ุฏ 2 ู„ุนู†ุฏ N ุชู„ุงุญุธ ู‡ุฐุง ุงู„ู€ summation ุงู„ู„ูŠ
147
00:10:35,100 --> 00:10:41,060
ู‡ูˆ ู…ู† ุนู†ุฏ 2 ูŠุนู†ูŠ ุงู„ู€ integration ู…ู† 1 ู„ 2 ุฒุงุฏ ุงู„ู€
148
00:10:41,060 --> 00:10:46,820
integration ู…ู† 2 ู„ 3 ุฒุงุฏ ู…ู† 3 ู„ 4 ู„ู…ุง ู†ู‚ุตู„ ู…ู† ุนู†ุฏ
149
00:10:46,820 --> 00:10:52,140
ุงู„ู„ูŠ ู‡ูˆ N ู†ุงู‚ุต 1 ู„ ุนู†ุฏ ุงู„ู€ N ูŠุนู†ูŠ ูƒู„ ู…ุฌู…ูˆุน ู‡ุฐุง
150
00:10:52,140 --> 00:10:56,800
ู‡ูŠุจู‚ู‰ ุนุจุงุฑุฉ ุนู† ุงู„ู€ integration ู…ู† 1 ู„ ุนู†ุฏ ุงู„ู€ N ู‡ุฐุง
151
00:10:56,800 --> 00:11:02,360
F of T DT ุฃุฒุฑุน ูˆุณุงูˆูŠ ุงู„ู€ summation ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ
152
00:11:02,360 --> 00:11:10,170
ุนุจุงุฑุฉ ุนู† F of K ู…ู† ุนู†ุฏ 2 F of 2 ู†ุงู‚ุต F of 1 ูŠุนู†ูŠ F of
153
00:11:10,170 --> 00:11:18,810
ูˆุงุญุฏ ุฒุงุฆุฏ F of 2 ุฒุงุฆุฏ F of N ู†ุงู‚ุต 1 ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู† ู‡ุฐุง
154
00:11:18,810 --> 00:11:22,610
ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุงู„ู€ summation ุนุจุงุฑุฉ ุนู† ู…ูŠู† ูŠุง
155
00:11:22,610 --> 00:11:27,670
ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† F of 2 ุฒูŠ F of 3 ู„ู…ุง ุฃุตู„
156
00:11:27,670 --> 00:11:32,450
ุนู†ุฏ ุขุฎุฑ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ F of N ููŠ ุงู„ูˆุงู‚ุน ู‡ุฐุง ู…ูŠู† ู‡ุฐุง
157
00:11:32,450 --> 00:11:38,130
ุนุจุงุฑุฉ ุนู† S N ู†ูุณู‡ ุจุณ ุฎุงุณุณ ู…ูŠู† ู…ู†ู‡ ุงู„ู€ F of 1 ูŠุนู†ูŠ
158
00:11:38,130 --> 00:11:42,050
ู†ุงู‚ุต F of 1 ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ integration ู…ู† 1 ู„ู€ N
159
00:11:42,050 --> 00:11:46,970
F of T DT ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ summation
160
00:11:46,970 --> 00:11:51,450
ู„ู…ูŠู† ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ S N ู†ุงู‚ุต
161
00:11:51,450 --> 00:11:55,910
ูˆุงุญุฏ ู„ุฐุง ุญุตู„ู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ equality ุงู„ู„ูŠ ุฃู…ุงู…ูŠ
162
00:11:55,910 --> 00:12:00,910
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุงู„ูŠุฉ ุนู†ุฏ ุงู„ู€ integration ู…ู† ูˆุงุญุฏ ู„ุนู†ุฏ N
163
00:12:00,910 --> 00:12:06,190
F of PDT ุตุงุฑุช ุจูŠู† ุงู„ู€ S N ู†ุงู‚ุต ูˆุงุญุฏ ูˆุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
164
00:12:06,190 --> 00:12:13,290
S N ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ F of ูˆุงุญุฏ ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ู†ูƒู…ู„ ุงู„ู„ูŠ
165
00:12:13,940 --> 00:12:21,700
ุจุฏู†ุง ุฅูŠุงู‡ ุฃูˆ ู†ุตู„ ู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
166
00:12:21,700 --> 00:12:27,300
ุตุงุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ู‡ูŠู‡ุง ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ S N ู†ุงู‚ุต
167
00:12:27,300 --> 00:12:33,020
ูˆุงุญุฏ ูˆุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ S N ู†ุงู‚ุต ู…ูŠู† F of ูˆุงุญุฏ ุงู„ุขู†
168
00:12:33,020 --> 00:12:36,980
ู„ูˆ ูุฑุถู†ุง ุฃู† ุงู„ู€ limit ู„ู„ู€ S N exist ูŠุนู†ูŠ ุงู„ู€ series
169
00:12:36,980 --> 00:12:40,940
ู‡ุฐู‡ ุงู„ู€ summation ู…ุน ู†ู‡ุงูŠุชู‡ุง F of K ู…ู† ูˆุงุญุฏ ู„ู…ุง ู„ู‡ุง
170
00:12:40,940 --> 00:12:44,960
ู†ู‡ุงูŠุฉ ุฃูˆ ู…ู† ุงุซู†ูŠู† ู„ู…ุง ู†ู‡ุงูŠุชู‡ุง exist ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ู‡ุฐุง
171
00:12:44,960 --> 00:12:48,840
exist ูˆู‡ุฐุง exist ู„ุงุฒู… ุงู„ู€ limit ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ุฅูŠุด
172
00:12:48,840 --> 00:12:52,500
ู…ุงู„ู‡ ุจุฑุถู‡ ูŠุทู„ุน ุฅูŠุด ู…ุงู„ู‡ exist ุฅุฐุง ุตุงุฑ limit
173
00:12:52,500 --> 00:12:55,680
ู„ู„ู€ improper integral exist ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช ุงู„ู€ series
174
00:12:55,680 --> 00:13:00,280
converges ู‡ุชูƒูˆู† ุงู„ู€ improper integral ุฅูŠุด ู…ุงู„ู‡ converts
175
00:13:00,580 --> 00:13:04,540
ุงู„ุขู† ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ู‡ู†ุนู…ู„ ู…ูŠู†ุŸ ู‡ู†ุนู…ู„ ุงู„ู„ูŠ ู‡ูˆ
176
00:13:04,540 --> 00:13:08,820
ุจุงู„ู†ุณุจุฉ ู„ู…ูŠู†ุŸ ุจุงู„ู†ุณุจุฉ ู„ู„ูŠ ู‡ูŠ conversely ุจุฏู†ุง
177
00:13:08,820 --> 00:13:12,440
ู†ูุชุฑุถ ุฃู† ุงู„ู€ improper integral converge ูˆู†ุตู„ ุฃู†ู‡
178
00:13:12,440 --> 00:13:19,180
ุงู„ู€ series converge ุงู„ุขู† ุฒูŠ ู…ุง ู‚ู„ู†ุง Sn ู†ุงู‚ุต F of 1
179
00:13:19,180 --> 00:13:23,720
ุทู„ุนุช ุนู†ุฏูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ integration ู…ู† 1 ู„ู€ N F
180
00:13:23,720 --> 00:13:30,360
of T DT ูˆู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ Sn ู†ุงู‚ุต 1 ุงู„ุขู† ุฃู†ุง ุฒูŠ ู…ุง
181
00:13:30,360 --> 00:13:35,360
ุญุตุฑุช ุงู„ู„ูŠ ู‡ูŠ ูุฑุถุช ุฃู†ุง limit ุงู„ู€ Sn exist ูˆุญุตุฑุช ุงู„ู€
182
00:13:35,360 --> 00:13:38,640
integration ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงุซู†ูŠู† ุงู„ู€ summation ู‡ุฏูˆู„ ุงู„ู€
183
00:13:38,640 --> 00:13:41,960
partial sums ูˆู‚ู„ู†ุง ู‡ุฐุง exist ุงู„ู€ limit ู„ู‡ ูˆู‡ุฐุง
184
00:13:41,960 --> 00:13:45,660
exist ู„ู‡ ุฅุฐุง ู‡ุฐุง ุฅูŠู‡ ุงู„ู€ ุงู„ุดู…ุงู„ ุงู„ู„ูŠ ุฌูˆุง exist ุจุฏูŠ
185
00:13:45,660 --> 00:13:50,280
ุฃุนู…ู„ ููŠ ุงู„ู€ integration ุฃูˆ ููŠ ุงู„ู€ integration ุงู„ู„ูŠ
186
00:13:50,280 --> 00:13:53,580
ุนู…ู„ุชู‡ ู…ุน ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ partial sums ุฃูˆ
187
00:13:53,580 --> 00:13:58,310
ุงู„ู€ improper integral ู…ุน ุงู„ู€ series ูƒูŠูุŸ ู„ุฃู† ู‡ุฐุง ุตุญูŠุญ
188
00:13:58,310 --> 00:14:04,050
ู„ูƒู„ N ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู† ุนู†ุฏูŠ ู‡ุฐุง ุฃูƒูŠุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
189
00:14:04,050 --> 00:14:08,310
ุงู„ุขู† ู„ูˆ ู‚ู„ู†ุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ Sn ู†ุงู‚ุต ูˆุงุญุฏ ุนู†ุฏูŠ
190
00:14:08,310 --> 00:14:11,530
Sn ู†ุงู‚ุต F of ูˆุงุญุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
191
00:14:11,530 --> 00:14:15,930
ู‡ุฐุง ูˆู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุฐุง
192
00:14:15,930 --> 00:14:21,830
ุงู„ุขู† ุนู†ุฏูŠ ุจุฏูŠ ุฃุญุตุฑ ู‡ุฐุง ุฃุฎู„ูŠู‡ ุจูŠู† two integrations
193
00:14:21,830 --> 00:14:26,090
ุฃูˆ ุฃุฎู„ูŠ ู‡ุฐุง ุจูŠู† two integrations ุฃูŠ ูˆุงุญุฏ ู…ู†ู‡ู… ุจู†ูุน
194
00:14:26,680 --> 00:14:30,780
ุงู„ุขู† ุนู†ุฏูŠ ู…ู† ู‡ุฐุง ู†ูุณู‡ ุงู„ู€ integration ู…ู† ูˆุงุญุฏ ู„ุนู†ุฏ
195
00:14:30,780 --> 00:14:39,500
f of t dt ุตุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุฒุงุฆุฏ F of ูˆุงุญุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
196
00:14:39,500 --> 00:14:45,860
ู…ูŠู† ุงู„ู€ Sn ู…ุงุดูŠ ุงู„ู€ S N ู…ู† ู‡ู†ุง ู…ู† ู‡ู†ุง ุงู„ู€ S N ุฃูƒุจุฑ ุฃูˆ
197
00:14:45,860 --> 00:14:49,460
ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ integration ู…ู† ูˆุงุญุฏ ุจุฏู„ ุงู„ู€ N ู†ู‚ุต
198
00:14:49,460 --> 00:14:54,040
ูˆุงุญุฏ ุญุทูŠุช ู…ูŠู† ุงู„ู€ N ู…ุงุดูŠ ูุจูŠุตูŠุฑ ุนู†ุฏ ู‡ุฐู‡ ุจุฏู„ ุงู„ู€ N
199
00:14:54,040 --> 00:14:58,740
ุจุฑุถู‡ ุจุชุตูŠุฑ ุงู„ู€ integration ู…ู† F of T DT ู…ู† ูˆุงุญุฏ
200
00:14:58,740 --> 00:15:02,240
ู„ุนู†ุฏ N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุฃู†ู‡ ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ู‡ุฐู‡ ุจุฒูŠุงุฏุฉ ูˆุงุญุฏ
201
00:15:02,240 --> 00:15:05,900
ู‡ูŠ ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ู‡ุฐู‡ ุจูˆุงุญุฏ ู…ู† ููˆู‚ ุฅุฐุง ุตุงุฑ ุนู†ุฏ ุงู„ู€ S
202
00:15:05,900 --> 00:15:10,300
N ุจูŠู† ู‡ุฐู‡ ุงู„ูƒู…ูŠุฉ ูˆู‡ุฐู‡ ุงู„ูƒู…ูŠุฉ ู„ุฃู† ู„ูˆ ูุฑุถู†ุง ุฃู†ู‡ ุงู„ู€
203
00:15:10,300 --> 00:15:16,770
limit ู„ู„ู€ integration ู…ู† 1 ู„ู€ N F of T DT as N goes
204
00:15:16,770 --> 00:15:21,690
to infinity exist ู…ุฏุงู… ู‡ุฐุง exist ุงู„ู€ limit ุฅุฐุง ุญุตู„
205
00:15:21,690 --> 00:15:25,630
ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰ ุจุนุถู‡ ู‡ุฐุง limit exist ูˆู‡ุฐุง ู‡ูŠุชู„ุน exist
206
00:15:25,630 --> 00:15:29,370
ุฅุฐุง ุงู„ู„ูŠ ู‡ูŠุชู„ุน ุนู†ุฏู‡ limit ุงุซุฑ ุฅู† ุฅูŠุด exist ุฅุฐุง
207
00:15:29,370 --> 00:15:32,650
similarly if limit ู„ู„ู€ integration ุฃูˆ ุงู„ู€ improper
208
00:15:32,650 --> 00:15:37,090
integral exist ุฅุฐุง ู‡ูŠุชู„ุน limit ู„ู„ุฃุซุฑ ุฅู† exist ู‡ูˆ
209
00:15:37,090 --> 00:15:42,860
ูŠุนู†ูŠ ูˆุถุญุชู‡ุง ุฃู…ุงู…ูƒู… therefore ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ ุฅู†ู‡ ุงู„ู€
210
00:15:42,860 --> 00:15:45,860
summation ู„ู„ู€ F of N N ู…ู† ูˆุงุญุฏ ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ุงู„ู„ูŠ ู‡ูˆ
211
00:15:45,860 --> 00:15:49,580
ุงู„ู€ series exist ูŠุนู†ูŠ limit ู„ู„ู€ S n exist if and
212
00:15:49,580 --> 00:15:52,360
only if ุงู„ู€ improper integral exist ูŠุนู†ูŠ limit ุงู„ู€
213
00:15:52,360 --> 00:15:56,100
integration ูˆุงุญุฏ ู„ุนู†ุฏ N exist ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ
214
00:15:56,100 --> 00:16:00,820
ุฃุซุจุชู†ุงู‡ ู„ุญุชู‰ ุงู„ุขู† ุงู„ุขู† ุถุงู„ ุนู„ูŠ ุฃุซุจุช ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
215
00:16:00,820 --> 00:16:08,360
ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุญุงู„ุฉ ู…ูŠู† ุงู„ู€
216
00:16:08,360 --> 00:16:14,140
Convergence ููŠ ุญุงู„ุฉ ุงู„ู€ Convergence ู„ู€ Series ุฃูˆ
217
00:16:14,140 --> 00:16:19,300
ู„ู€ Improper Integral ุจุฏู†ุง ู†ุญู‚ู‚ ุงู„ู€ Estimate ุงู„ู„ูŠ
218
00:16:19,300 --> 00:16:25,220
ู‡ูˆ... ุงู„ู„ูŠ ู‡ูˆ ุนู†ุฏูŠ S ู†ุงู‚ุต S N ูŠูƒูˆู† ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
219
00:16:25,220 --> 00:16:29,160
Two Integration ุงู„ู„ูŠ ุญูƒูŠู†ุง ุนู†ู‡ ุฅุดูŠ ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ู†ุดูˆู
220
00:16:29,160 --> 00:16:32,600
ุงู„ุขู†
221
00:16:32,600 --> 00:16:41,210
ู†ูŠุฌูŠ ู†ุฑูƒุฒ ุงู„ุขู† finally assuming ุงู„ู€ relation a for k
222
00:16:41,210 --> 00:16:46,810
ุจุณุงูˆูŠ N summing the relation a for k ุจุงู„ู† ุฒุงุฆุฏ
223
00:16:46,810 --> 00:16:49,890
ูˆุงุญุฏ ู„ุนู†ุฏ N we obtain ุฅูŠุด ู‡ูŠ ุงู„ู€ relation ุงู„ู„ูŠ
224
00:16:49,890 --> 00:16:53,530
ุญุทูŠุชู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ integration ู…ู†
225
00:16:53,530 --> 00:16:58,430
ูˆุงุญุฏ ู„ุนู†ุฏ N F of T DT ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุชุจุชุฏูŠ
226
00:16:58,430 --> 00:17:02,490
ุงุณุชุฎุฏุงู…ู‡ุง ูƒู…ุงู† ู…ุฑุฉ ู„ู„ูˆุตูˆู„ ู„ู„ู€ estimation ุงู„ู„ูŠ ุจุฏูŠ ุฅูŠุงู‡ุง
227
00:17:03,180 --> 00:17:07,240
ุฃุธู‡ุฑ ูŠุณุงูˆูŠ Sn ู†ุงู‚ุต ูˆุงุญุฏ ูˆุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู† ูŠุง
228
00:17:07,240 --> 00:17:13,400
ุฌู…ุงุนุฉ ุงู„ู„ูŠ ู‡ูˆ Sn ู†ุงู‚ุต F of ูˆุงุญุฏ ุงู„ุขู† ู‡ุฐู‡ ุจุฏู†ุง
229
00:17:13,400 --> 00:17:17,780
ุงู„ู„ูŠ ู‡ูˆ ู†ุนู…ู„ summation ู„ู‡ุง ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ
230
00:17:17,780 --> 00:17:24,440
ู…ูŠู† ู„ุนู†ุฏ M ูŠุนู†ูŠ ุจุฏูŠ ุฃุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ุฃุนู…ู„ ุงู„ู€ summation
231
00:17:24,440 --> 00:17:38,450
ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€ Summation ู„ู…ู†ุŸ ู„ู€ N ุฒุงุฆุฏ
232
00:17:38,450 --> 00:17:43,410
ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ N ุฎู„ูŠู†ุง ู†ุฌู…ุญู‡ุง ุฎุฏ ุงู„ู€
233
00:17:43,410 --> 00:17:48,490
Summation ุงู„ู€ summation ุนู†ุฏูŠ ู‡ูŠ ุนู†ุฏูŠ ุจูŠุตูŠุฑ ุงู„ู€
234
00:17:48,490 --> 00:17:54,990
summation ู„ ุงู„ู€ integration ุงู„ู„ูŠ
235
00:17:54,990 --> 00:17:59,390
ุฃู…ุงู…ูŠ ุฎู„ูŠู†ูŠ ุฃุฑุฌุน ู„ูƒู… ู„ู‡ุง ุจุณ ุนุดุงู† ุชูƒูˆู† ุงู„ุฃู…ูˆุฑ ุช...
236
00:17:59,390 --> 00:18:03,530
ุช... ู…ู† ูˆูŠู†... ู‚ุจู„... ู„ุฃ ุขุณู ู…ุด ู‡ุฐู‡ ู†ูŠุฌูŠ ู„ู‡ุง ุงู„ู„ูŠ
237
00:18:03,530 --> 00:18:07,370
ู‡ูŠ ุชุณุนุฉ ุงู„ู„ูŠ ู‡ุงู„ุฉ ู„ุฃู† ู‡ุฐู‡ ุจุนุฏ ู…ุง ุงู†ุชุฌู…ุนุช ุงู„ุขู† ุจุฏูŠ
238
00:18:07,370 --> 00:18:14,830
ุฃุฌู…ุนู‡ุง ู…ู† ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ
239
00:18:17,110 --> 00:18:23,930
ุญูŠุซ M ุฃูƒุจุฑ ู…ู† N ุฎู„ูŠู†ูŠ ุฃุฌู…ุญู‡ุง ู‡ุฐู‡ ู„ุฃู† ู‡ุฐู‡ ู…ุฌู…ูˆุนุฉ
240
00:18:23,930 --> 00:18:29,230
ุฎุงู„ุตุฉ ุฎู„ูŠู†ูŠ ุฃุฌู…ุญ ู‡ุฐู‡ ู„ุฃู† ุฎุฏ ุงุฌู…ุน ู„ูŠ ู‡ุฐู‡ ุนู†ุฏูŠ ุฎุฏ
241
00:18:29,230 --> 00:18:33,610
summation ุญุณุงุจุงุช summation K ู…ู† ุนู†ุฏ N ุฒุงุฆุฏ ูˆุงุญุฏ
242
00:18:33,610 --> 00:18:39,300
ู„ุนู†ุฏ M ุญูŠุซ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ N ู…ูุชุฑุถู‡ุง ุฃูƒุจุฑ ู…ู† N ุงู„ู„ูŠ ู‡ูŠ
243
00:18:39,300 --> 00:18:43,060
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ summation K ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ M
244
00:18:43,060 --> 00:18:48,460
ุญุณุงุจุงุช summation K ู…ู† ุนู†ุฏ M ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู†
245
00:18:48,460 --> 00:18:55,170
ู„ุนู†ุฏ M ุงู„ุขู† ู‡ุฐุง ููŠ ุงู„ูˆุงู‚ุน ูŠุง ุฌู…ุงุนุฉ ุงุญู†ุง ู‚ู„ู†ุง ุงู„ู€ S N
246
00:18:55,170 --> 00:19:02,070
ู‡ูŠ summation ู„ู„ู€ F of K K ู…ู† ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ู„ุนู†ุฏ
247
00:19:02,070 --> 00:19:07,430
ู…ูŠู† ู„ุนู†ุฏ N ูˆู‚ู„ู†ุง ุงู„ู€ S N ุทุจูŠุนูŠ ู‡ุชูƒูˆู† summation ู„ู„ู€ F
248
00:19:07,430 --> 00:19:14,690
of K K ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ุงู„ุขู† ุงุทุฑุญ ู‡ุฐู‡ ู…ู† ู‡ุฐู‡ ู‡ูŠุธู„
249
00:19:14,690 --> 00:19:17,870
ุงู„ู€ summation ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู† ุนู†ุฏ N ูŠุนู†ูŠ
250
00:19:17,870 --> 00:19:23,030
ู‡ุฐู‡ ููŠ ุงู„ูˆุงู‚ุน ู‡ูŠ ุนุจุงุฑุฉ ุนู† S M ู†ุงู‚ุต ุฅูŠุด ู†ุงู‚ุต S N
251
00:19:23,030 --> 00:19:27,610
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ summation ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ุงู„ู€ summation
252
00:19:27,610 --> 00:19:34,130
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุนู†ุฏ N ุฒุงุฆุฏ ูˆุงุญุฏ ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ
253
00:19:34,130 --> 00:19:44,700
N ูˆู…ู† N ู„ุนู†ุฏ N ุฒุงุฆุฏ ุงุซู†ูŠู† ูˆู…ู† N ุฒุงุฆุฏ 2 ู„ุนู†ุฏ N ุฒุงุฆุฏ
254
00:19:44,700 --> 00:19:48,900
3 ู„ู…ุง ุฃุตู„ ู…ู† ุนู†ุฏ M ู†ุงู‚ุต ูˆุงุญุฏ ู„ุนู†ุฏ M ุฒูŠ ู…ุง ุนู…ู„ู†ุง
255
00:19:48,900 --> 00:19:58,590
ู‚ุจู„ ุดูˆูŠุฉ ู‡ูŠุทู„ุน ุนุจุงุฑุฉ ุนู† ู…ู† N ู„ู…ูŠู† ู„ุนู†ุฏ M DT ู‡ุฐุง
256
00:19:58,590 --> 00:20:02,770
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ summation ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุฎูŠุฑ
257
00:20:02,770 --> 00:20:09,050
ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ูˆู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ู‡ูŠู„ุฒู…ู†ุง ุนู†ุฏูŠ ู‡ุฐุง ุฒูŠ ู…ุง
258
00:20:09,050 --> 00:20:11,790
ุนู…ู„ุช ููˆู‚ ุจุงู„ุธุจุท ุจุณ ู‡ุฐู‡ ุจุชุงุฎุฏู‡ุง ููŠ ุนูŠู† ุงู„ุงุนุชุจุงุฑ ุฅู†
259
00:20:11,790 --> 00:20:16,970
ู‡ูŠ ุจุชุจุฏุฃ ู…ู† ุนู†ุฏ ู…ู† ุนู†ุฏ K-1 ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุจุชุจุฏุฃ
260
00:20:16,970 --> 00:20:22,930
ุชุตูŠุฑ N ู„ุนู†ุฏ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู‡ูŠ M-1 ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ
261
00:20:22,930 --> 00:20:29,530
ุนุจุงุฑุฉ ุนู† S M-1 Sn ู†ุงู‚ุต ูˆุงุญุฏ ุญุณุจ ู…ุง ุงู„ู„ูŠ ู‡ูŠ ุญุณุจู†ุง
262
00:20:29,530 --> 00:20:34,530
ููˆู‚ ุฃูˆ ุฒูŠ ู…ุง ุญุณุจู†ุง ููˆู‚ ูุจู†ูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ ู‡ุฐู‡ ุงู„ู€
263
00:20:34,530 --> 00:20:38,310
Inequality ู†ุดูˆู ู‡ุฐู‡ ุงู„ู€ Inequality ูƒูŠู ุจุฏู†ุง ู†ุณุชุฎุฏู…ู‡ุง
264
00:20:38,310 --> 00:20:43,750
ู„ู„ูˆุตูˆู„ ู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุงู„ุขู† M ุฃูƒุจุฑ ู…ู† N ุฃูƒูŠุฏ ูุนู†ุฏูŠ Sn
265
00:20:43,750 --> 00:20:48,870
ู†ุงู‚ุต Sn ุงู„ู„ูŠ ู‡ูŠ ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
266
00:20:48,870 --> 00:20:52,490
integration ู…ู† N ู„ุนู†ุฏ M ุงู„ู„ูŠ ุฃูˆุฌุฏุชู‡ุง ูˆุฃุตุบุฑ ุฃูˆ
267
00:20:52,490 --> 00:20:55,910
ูŠุณุงูˆูŠ ุงู„ู€ Sn ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต Sn ู†ุงู‚ุต ูˆุงุญุฏ ุฒูŠ ู…ุง
268
00:20:55,910 --> 00:21:01,280
ู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ุฐุง ุณู…ูŠู†ุงู‡ุง ุฅูŠู‡ ูŠุง ุฃุณุชุงุฐ ุงู„ุขู† ู…ู† ุงู„ู€ star
269
00:21:01,280 --> 00:21:06,560
ุฎู„ูŠู†ุง ู†ุฑูƒุฒ ุนู„ู‰ ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุขู† ุจุชุงุฎุฏ ุงู„ู€
270
00:21:06,560 --> 00:21:11,220
integration ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ุนู†ุฏ M ุฒุงุฆุฏ ูˆุงุญุฏ F of T
271
00:21:11,220 --> 00:21:16,420
DT ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ูŠุตูŠุฑ ุนุจุงุฑุฉ ุนู† N ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ุฐุง M
272
00:21:16,420 --> 00:21:20,000
ุฒุงุฆุฏ ูˆุงุญุฏ ุจู†ุงุก ุนู„ูŠู‡ุง ู‡ุชุตูŠุฑ M ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
273
00:21:20,000 --> 00:21:24,000
ูŠุนู†ูŠ M ูˆ N ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ N ูุจูŠุตูŠุฑ ุงู„ู€
274
00:21:24,000 --> 00:21:27,340
integration ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ุนู†ุฏ M ุฒุงุฆุฏ ูˆุงุญุฏ F of T
275
00:21:27,340 --> 00:21:30,360
DT ุฃุตุบุฑ ูˆุฃุตุบุฑ ูˆ Sn ู†ุงู‚ุต ู…ู† SN
276
00:21:33,320 --> 00:21:39,900
ุงู„ุขู† ุจุชู†ุชูŠู† ู…ุน ุจุนุถ ุงู„ู„ูŠ ู‡ูŠ Sm ู†ุงู‚ุต ู„ Sn ู‡ูŠู‡ุง ุฃุตุบุฑ
277
00:21:39,900 --> 00:21:43,740
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ integration ู…ู† N ู„ุนู†ุฏ M F of T DT ู‡ูŠ
278
00:21:43,740 --> 00:21:49,340
ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ ูƒุชุจุช ู‡ู†ุง ูˆู‡ุฐู‡ ูƒุชุจุช ู‡ู†ุง Sm
279
00:21:49,340 --> 00:21:51,660
ู†ุงู‚ุต ู„ Sn ุฃูƒุจุฑ ู…ู† ุงู„ู€ integration ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ
280
00:21:51,660 --> 00:21:56,850
ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ M ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุฃู† ุงุญู†ุง ู…ุชูู‚ูŠู† ุฅู† ุงู„ู€
281
00:21:56,850 --> 00:22:00,870
series converge ูˆ the proper integral converge ุฅุฐุง
282
00:22:00,870 --> 00:22:04,030
ุงู„ุขู† ุฎุฐ ู„ู€ M ูˆูˆุฏูŠู‡ุง ู„ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู…ุง ุฅุญู†ุง ู…ุงุฎุฏูŠู† ุงู„
283
00:22:04,030 --> 00:22:07,590
M ุดู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ุงู„ุขู† ุจูˆุฏูŠู‡ุง ุฒูŠ ู…ุง ุจุฏู‡ ูˆุจุชุธู„ู‡ุง
284
00:22:07,590 --> 00:22:11,570
ุงู„ุขู† ุฒูŠ ู…ุง ุจุฏู‡ุง ุงู„ุขู† as M goes to infinity ู‡ุชุตูŠุฑ
285
00:22:11,570 --> 00:22:15,030
ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุงู„ู€ summation ู„ู„ู€ series ูŠุนู†ูŠ ู‡ุชุตูŠุฑ S
286
00:22:15,030 --> 00:22:18,600
ู‡ุฐู‡ ุฅุฐุงู‹ ู‡ุฐุง ุณูŠุตุจุญ S ูˆู‡ุฐุง ุณูŠุตุจุญ ู„ู‡ proper integral
287
00:22:18,600 --> 00:22:21,860
ู…ู† N ุฒุงุฆุฏ ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู‡ุฐุง ุณูŠุตุจุญ ู„ู‡
288
00:22:21,860 --> 00:22:26,260
proper integral ู…ู† N ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูŠุนู†ูŠ ุณูŠุตุจุญ
289
00:22:26,260 --> 00:22:31,360
ู„ุฏูŠ ุจุงู„ุถุจุท ุงู„ู€ S ู†ุงู‚ุต S N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† N ุฒุงุฆุฏ
290
00:22:31,360 --> 00:22:36,340
ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู…ู† N ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ูˆู‡ูˆ ู‡ุฐุง
291
00:22:36,340 --> 00:22:42,040
ุงู„ู„ูŠ ู…ุทู„ูˆุจ ุงู„ู„ูŠ ุฅุญู†ุง ุทู„ุจู†ุงู‡ ู…ู† ุฃูˆู„ ุงู„ู†ุธุฑูŠุฉ ูˆู‚ู„ู†ุง
292
00:22:42,040 --> 00:22:46,760
ุญูŠุซ ุงู„ู€ S ู‡ูŠ ุงู„ู„ูŠ ุจุชู…ุซู„ ุงู„ู„ูŠ ู‡ูˆ limit ู„ู€ SM ุฃูˆ ู‡ูŠ
293
00:22:46,760 --> 00:22:51,460
ุนุจุงุฑุฉ ุนู† ู‚ูŠู…ุฉ ุงู„ู€ series ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
294
00:22:51,820 --> 00:22:58,540
examples ุจุฏู†ุง ุงู„ุขู† ู†ุญุงูˆู„ ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธุฑูŠุงุช
295
00:22:58,540 --> 00:23:03,360
ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ู†ูˆุธูู‡ุง ู„ู„ู€ examples ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆู‡ุฐู‡
296
00:23:03,360 --> 00:23:07,200
ุทุจุนุงู‹ ู‡ุชู„ุงู‚ูŠู‡ุง ู…ุนุธู…ู‡ุง ุฅู†ุชูˆุง ุฃุฎุฏุชูˆู‡ุง ููŠ ุงู„ู€ calculus
297
00:23:07,200 --> 00:23:11,700
ู†ุฐูƒุฑู‡ุง ุจุดูƒู„ ุณุฑูŠุน ุจุณ ุนุดุงู† ุฅู†ู‡ ู†ุดูˆู ุงู„ู€ applications
298
00:23:11,700 --> 00:23:16,440
ู„ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุงุช ุงู„ู„ูŠ ุฅุญู†ุง ู…ุฑูƒุฒูŠู† ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุธู€
299
00:23:16,440 --> 00:23:20,520
ุฑ ุงู„ุชุญู„ูŠู„ูŠุฉ ู„ู‡ุง ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุนู„ู‰ ุจุฑุงู‡ูŠู† ุงู„ู„ูŠ ู‡ูŠ
300
00:23:20,520 --> 00:23:24,020
ุงู„ู†ุธุฑูŠุงุช Show that the b series summation 1 ุฏู‡ ู„ุฃู†
301
00:23:24,020 --> 00:23:29,440
b diverges for b ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ 1 ุงู„ุขู† ุจุฏู†ุง ู†ุณุชุฎุฏู…
302
00:23:29,440 --> 00:23:34,920
ุงู„ู€ comparison test ูุนู†ุฏู‡ ุงู„ุขู† ุฅู† ู‚ุต ุจูŠ ุฃุตุบุฑ ุฃูˆ
303
00:23:34,920 --> 00:23:38,940
ูŠุณุงูˆูŠ ุฃู† ุฃูƒูŠุฏ ู„ูƒู„ ุฃู† element in N ูˆ ุงู„ู€ ุจูŠ ุดู…ุงู„ู‡ุง
304
00:23:38,940 --> 00:23:42,120
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูŠุนู†ูŠ ู„ู€ ุงู„ู€ ุจูŠ ุงู„ู„ูŠ ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ
305
00:23:42,120 --> 00:23:47,080
ู‡ูŠูƒูˆู† ุฃู† ู‚ุต ุจูŠ ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ู…ู† ุฃู† ุงู„ุขู† ู…ู‚ู„ุจู‡
306
00:23:47,080 --> 00:23:50,140
ู‡ูŠู†ู‚ู„ุจ ูˆุงุญุฏุฉ ู„ุฃู† ุจูŠ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏุฉ ู„ุฃู† ุงู„ุขู†
307
00:23:50,140 --> 00:23:54,800
ุงู„ู€ summation ู‡ุฐุง ุงู„ู„ูŠ diverse ุฅุฐุง ู…ู† ุจุงุจ ุฃูˆู„ู‰ ู‡ูŠูƒูˆู†
308
00:23:54,800 --> 00:23:58,380
ุงู„ูƒุจูŠุฑ by comparison test diverse ุฅุฐุง ุงู„ู€ summation
309
00:23:58,380 --> 00:24:01,400
ูˆุงุญุฏ ุนู„ู‰ N ุจูŠู‡ diverse for ุจูŠู‡ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ
310
00:24:01,400 --> 00:24:04,860
ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุณู‡ู„ ูˆุฅู†ุชูˆุง ุจุชุนุฑููˆู‡ ุฅุฐุง ู†ูŠุฌูŠ ู„ู„ู€
311
00:24:04,860 --> 00:24:08,540
summation ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน ุจุฏู†ุง ู†ุดูˆู ูƒูŠู ู‡ูŠ ุฅูŠุงู‡
312
00:24:08,540 --> 00:24:12,740
converse ุจุฏู†ุง ุงู„ุขู† ู†ู‚ุงุฑู†ู‡ุง ุจู€ Series ุฅุญู†ุง ุฃุฎุฏู†ุงู‡ุง
313
00:24:12,740 --> 00:24:15,620
ุฅู†ู‡ุง ุถุนูŠูุฉ Converse ู…ูŠู† ุงู„ู€ Series ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ุง
314
00:24:15,620 --> 00:24:18,100
ุงู„ู€ Converse ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Telescoping ุงู„ู„ูŠ ู‡ูŠ
315
00:24:18,100 --> 00:24:21,620
Summation ูˆุงุญุฏุฉ ู„ู€ N ููŠ N ุฒุงุฆุฏ ูˆุงุญุฏ ู‚ู„ู†ุง ุนู†ู‡ุง ุฏูŠ
316
00:24:21,620 --> 0:24:24,220
ุฅูŠุด ู…ุงู„ู‡ุง ุฃุซุจุชู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฅู†ู‡ุง Converse
317
00:24:24,220 --> 00:24:28,640
ุทูŠุจุŒ ุงู„ุขู† ู‡ุฐู‡ ู…ุฏุงู… ู‡ูŠ ู‡ุช Converge ุงู„ู€ series ุงู„ู„ูŠ ุนู†ุฏ
318
00:24:28,640 --> 00:24:34,160
ุงู„ู€ series ู‡ุช Converge ุฅุฐุง by example ุงู„ู„ูŠ ู‡ูˆ 918E ู‡ุช
319
00:24:34,160 --> 00:24:37,840
Converge ุจุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
320
00:24:37,840 --> 00:24:41,180
Comparison Test ุงู„ุขู† ู…ุงู‚ุฏุฑุด ู†ุณุชุฎุฏู… ุงู„ู€ direct ู„ูŠุด
321
00:24:41,180 --> 00:24:45,280
ู…ุงู‚ุฏุฑุด ู†ุณุชุฎุฏู… ุงู„ู€ direct ู„ุฅู†ู‡ ุงู„ุขู† ุงู„ู€ summation
322
00:24:45,280 --> 00:24:50,440
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ ุงู„ู€ ุงู„ู€ ูˆุงุญุฏ ุนู„ู‰ n ููŠ n ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ
323
00:24:50,440 --> 00:24:53,880
ุงู„ู€ convergence ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰
324
00:24:53,880 --> 00:24:57,800
ู…ูŠู† ุนู„ู‰ n ุชุฑุจูŠุน ูุงู„ุขู† ู‡ุฐู‡ convergence ุตุญ ู„ูƒู† ุงู„ู„ูŠ
325
00:24:57,800 --> 00:25:00,120
ุฃูƒุจุฑ ู…ู†ู‡ุง ู…ุด ุดุฑุท ุฅู†ู‡ุง ุชูƒูˆู† convergence ูˆู…ุงู‚ุฏุฑุด
326
00:25:00,120 --> 00:25:04,080
ู†ุญูƒู… ุงู„ู€ comparison test ุฅุฐุง ุจุฏู†ุง ู†ุณุชุฎุฏู… ุงู„ู€ limit
327
00:25:04,080 --> 00:25:07,380
comparison test ุฎุฐ ุงู„ู€ limit ุงู„ู„ูŠ ู‡ูŠ 1 ุนู„ู‰ n ูุงู†
328
00:25:07,380 --> 00:25:11,040
ุฒุงุฆุฏ 1 ุนู„ู‰ 1 ุนู„ู‰ n ุชุฑุจูŠุน ุจูŠุตูŠุฑ limit ุนุจุงุฑุฉ ุนู† n
329
00:25:11,040 --> 00:25:14,680
ุนู„ู‰ n ุฒุงุฆุฏ 1 ู…ุน ุงู„ุงุฎุชุตุงุฑุงุช ุงู„ู„ูŠ ู‡ูˆ ุทุจุนุงู‹ ู‡ุฐุง ุงู„
330
00:25:14,680 --> 00:25:17,360
limit ุงู„ู„ูŠ ู‡ูŠ as n goes to infinity ู‡ุฐูŠ ุจูŠุตูŠุฑ 1
331
00:25:17,360 --> 00:25:20,820
ุนู„ู‰ 1 ุฒุงุฆุฏ 1 ุนู„ู‰ n ู‡ุฐูŠ ุจุชุฑูˆุญ ู„ู„ุณูุฑ ูˆุจุชุธู„ู‡ุง 1 ูˆ ุงู„
332
00:25:20,820 --> 00:25:24,140
1 ุฃูƒูŠุฏ ู…ุด ุณูุฑ ู…ุง ุฒูŠ ู…ุง ูŠุทู„ุน ุนู†ุฏ ุงู„ู€ limit ู„ุฃ ุงู„ู„ูŠ
333
00:25:24,140 --> 00:25:28,310
ู‡ูˆ ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..ุงู„ู€ .. ุงู„ .. ุงู„ .. ุงู„
334
00:25:28,310 --> 00:25:30,870
limit ู„ู€ ุงู„ .. ุงู„ .. ุงู„ comparison test ุฃูˆ ุงู„ู„ูŠ ู‡ูŠ
335
00:25:30,870 --> 00:25:33,990
ุงู„ู€ two series ู‡ุฐูˆู„ ุงู„ู„ูŠ ุนู„ู‰ ุจุนุถ ุงู„ู€ XN ุนู„ู‰ ุงู„ู€ YN
336
00:25:33,990 --> 00:25:37,610
ุจูŠุณุงูˆู‰ ุฑู‚ู… ุฅุฐุง ุงู„ุชู†ุชูŠู† converged ุฃูˆ ุงู„ุชู†ุชูŠู†
337
00:25:37,610 --> 00:25:41,550
diverged ูˆุจู†ุงุก ุนู„ู‰ ุงู„ุญุฏูŠุซ ุฅู†ู‡ ุจู…ุง ุฅู†ู‡ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ
338
00:25:41,550 --> 00:25:45,090
ุงู„ู€ telescope ูƒุงู†ุช converged ุฅุฐุง ุงู„ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน
339
00:25:45,090 --> 00:25:50,530
ุฃูˆ ุตู…ุดูŠ ู„ู„ูˆุงุญุฏ ุนู„ู‰ N ุชุฑุจูŠุน is convergent ุทูŠุจ ู‡ุฐุง
340
00:25:50,530 --> 00:25:56,030
ูƒู„ุงู… ูƒู„ู‡ ุฅู†ุชูˆุง ุทุจุนุงู‹ ุจุชุงุฎุฏูˆู‡ ููŠ ุงู„ู€ .. ู‡ูˆ ุฃุฎุฏุชู‡ ูƒุซูŠุฑ
341
00:25:56,030 --> 00:25:58,830
ู…ู†ู‡ ููŠ ุงู„ู€ calculus ูˆู„ูƒู† ุฅุญู†ุง ุนุดุงู† ูŠูƒุชู…ู„ ุงู„ู…ูˆุถูˆุน
342
00:25:58,830 --> 00:26:02,770
ุจุฏู†ุง ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ู‰ ุงู„ู„ูŠ ุจุฑู‡ู†ู†ุงู‡ู… ุงู„ู„ูŠ ู‡ุงู† show
343
00:26:02,770 --> 00:26:08,190
that summation 1 ุนู„ู‰ n ุจูŠ converts for b ูŠุดู…ู„ ุฃูƒุจุฑ
344
00:26:08,190 --> 00:26:12,370
ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจูŠ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฃุณู ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ
345
00:26:12,370 --> 00:26:15,270
strictly P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
346
00:26:15,270 --> 00:26:16,850
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
347
00:26:16,850 --> 00:26:22,690
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
348
00:26:22,690 --> 00:26:25,810
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
349
00:26:25,810 --> 00:26:28,150
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
350
00:26:28,150 --> 00:26:29,090
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
351
00:26:29,090 --> 00:26:30,170
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
352
00:26:30,170 --> 00:26:30,770
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
353
00:26:30,770 --> 00:26:34,550
ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P ุฃูƒุจุฑ ุฃูˆ P
354
00:26:34,550 --> 00:26:40,020
ุฃูƒุจุฑ ุงู„ู€ second method ุจูŠู‚ูˆู„ูƒ ุฃู†ุง ุจุฏูŠ ุงุณุชุฎุฏู… ุงู„
355
00:26:40,020 --> 00:26:44,000
limit comparison test ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ N ุฃู‚ุต ุจูŠ ุนู„ู‰ 1
356
00:26:44,000 --> 00:26:48,360
ุนู„ู‰ N ุชุฑุจูŠุน ุจูŠุณุงูˆู‰ limit 1 ุนู„ู‰ N ุจูŠ minus 2 ูˆ ุจูŠ
357
00:26:48,360 --> 00:26:53,000
ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 2 ุฅุฐุง 1 ุนู„ู‰ N ุจูŠ minus 2 ุงู„ู„ูŠ ู‡ูˆ
358
00:26:53,000 --> 00:26:57,660
ู‡ูŠุณุงูˆูŠ limit 0 ู…ุฏุงู… ุงู„ู€ limit 0 ูˆุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ
359
00:26:57,660 --> 00:27:02,000
ุชุญุช converge ุฅุฐุง ู…ู† ุจุงุจ ุฃูˆู„ู‰ ุงู„ู„ูŠ ููˆู‚ ุชูƒูˆู†
360
00:27:02,000 --> 00:27:06,130
converge ุฅุฐุง summation 1 ุนู„ู‰ N ุจูŠ ุงู„ู„ูŠ ู‡ูˆ convert
361
00:27:06,130 --> 00:27:14,370
by limit comparison test ุทูŠุจ show
362
00:27:14,370 --> 00:27:19,170
that the ratio and the root tests fail in the case
363
00:27:19,170 --> 00:27:22,570
of B series ูŠุนู†ูŠ ุงู„ุขู† ู„ูˆ ุจุฏู†ุง ู†ุฌุฑุจ ู†ุณุชุฎุฏู… ุงู„ู€ ratio
364
00:27:22,570 --> 00:27:26,310
test ูˆ ุงู„ู€ root test ู…ุด ู‡ุชุธุจุท ุทุจุนุงู‹ ุงู„ู€ limit ุจู†ู‚ุตุชู‡
365
00:27:26,310 --> 00:27:31,680
ู„ูŠุดุŸ ุจู‚ูˆู„ูƒ ู„ูˆ ุฌูŠู†ุง ุฃุฎุฏู†ุง limit ุงู„ู€ 1 ุนู„ู‰ N ุฃูุณ B
366
00:27:31,680 --> 00:27:36,080
ุฃูุณ 1 ุนู„ู‰ N ุงู„ู€ N through test ู‡ุฐุง ุจูŠุณุงูˆู‰ ุงู„ู€ limit
367
00:27:36,080 --> 00:27:41,200
ูˆ N ุฃูุณ 1 ุนู„ู‰ N ุฃูุณ minus B ู…ุงุดูŠ ุงู„ู€ N ุฃูุณ 1 ุนู„ู‰ N
368
00:27:41,200 --> 00:27:43,840
ุงู„ู€ limit ุงู„ู„ูŠ ู„ู‡ุง ู…ู† example ุฃุฎุฏู†ุงู‡ุง ููŠ ุดุจุทุฑ 3 ููŠ
369
00:27:43,840 --> 00:27:49,080
ุงู„ูุตู„ ุงู„ู…ุงุถูŠ ุฃูˆ ููŠ ุชุญู„ูŠู„ 1 ู‡ุฐุง ูˆุจุฑุถู‡ ุจุชู‚ู ุชุนู…ู„ูˆุง
370
00:27:49,080 --> 00:27:52,340
ุฃุตู„ุงู‹ ู„ุญุงู„ูƒู… ุงู„ู€ limit ู„ู‡ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ
371
00:27:52,340 --> 00:27:56,580
ูˆุงุญุฏ ุฃู‚ุตู‰ minus b ุฅุฐุง ุจูŠุณุงูˆูŠ ุฅูŠุด ูˆุงุญุฏ ุงู„ุขู† ู…ุฏุงู…
372
00:27:56,580 --> 00:28:01,500
ุทุงู„ุน ุนู†ุฏูŠ ุงู„ู€ limit ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Xn ุฃู‚ุตู‰ ูˆุงุญุฏุฉ ุงู„ุขู†
373
00:28:01,500 --> 00:28:05,020
ุจูŠุณุงูˆู‰ ูˆุงุญุฏ ุฅุฐุง ุจูŠู‚ูˆู„ ุงู„ู€ test failed ุงู„ุขู†
374
00:28:05,020 --> 00:28:10,320
similarly ู„ูˆ ุฌุฑุจู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ ratio test ูˆุงุญุฏุฉ
375
00:28:10,320 --> 00:28:13,300
ุงู„ุขู† ุฒูŠุงุฏุฉ ูˆุงุญุฏุฉ ุฃู‚ุตู‰ b ุนู„ู‰ ูˆุงุญุฏุฉ ุฃู† ุฃู‚ุตู‰ b ุจูŠุณุงูˆู‰
376
00:28:13,300 --> 00:28:18,930
ุงู„ู€ limit ู„ุง ุงู„ู„ูŠ ู‡ูŠ 1 ุนู„ู‰ 1 ุฒุงุฆุฏ 1 ุนู„ู‰ ุฃู†ู‚ุต ุจูŠ
377
00:28:18,930 --> 00:28:23,130
ุนุงุฑููŠู† ุฅูŠุด ุงู„ู„ูŠ ุณูˆู†ุงู‡ ุงู„ู„ูŠ ู‡ูˆ ุฌุณู…ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ
378
00:28:23,130 --> 00:28:26,770
ู‡ู†ุง ุนู„ู‰ ุฃู†ู‚ุต ุจูŠ ูˆู‡ู†ุง ุนู„ู‰ ุฃู†ู‚ุต ุจูŠ ุตุงุฑุช 1 ู‡ุฐุง ุนู„ู‰
379
00:28:26,770 --> 00:28:29,910
ุฃู†ู‚ุต ุจูŠ ูˆู‡ุฐุง ุนู„ู‰ ุฃู†ู‚ุต ุจูŠ ุจูŠุตูŠุฑ 1 ุฒุงุฆุฏ 1 ู„ุฃู† ูƒู„ ุฃุณ
380
00:28:29,910 --> 00:28:34,080
ุจูŠ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ limit as n goes to infinity ู„ุงุฒู…
381
00:28:34,080 --> 00:28:39,040
ูŠุตูŠุฑ 1 ุฅุฐุง ุงู„ู€ test ุจุฑุถู‡ ุงู„ู€ ratio test ูุงุดู„ ุฅุฐุง
382
00:28:39,040 --> 00:28:46,700
ู…ุงู†ูุนุด ุงู†ุญู„ ุงู„ู€ b series by ุงู„ู€ ratio test ูˆ ู„ุง ุงู„
383
00:28:46,700 --> 00:28:48,200
anthro test
384
00:28:55,790 --> 00:29:01,050
ุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ ุฅูŠุด ุฑุงูŠูƒ ุชุณุชุฎุฏู…ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
385
00:29:01,050 --> 00:29:06,360
Integral Test ุชุดูˆูู‡ ุจูŠุธุจุท ููŠ ุงู„ู€ B Series ูˆู„ุง ู„ุฃ ุงู„ุช
386
00:29:06,360 --> 00:29:11,680
F of T ุจูŠุณุงูˆูŠ T Os minus B ุฏู‡ ุงู„ู…ุคู‡ู„ุฉ ุฅู†ู‡ุง ุงู„ู„ูŠ ู‡ูŠ
387
00:29:11,680 --> 00:29:16,560
ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ุงุณุชุฎุฏุงู… ุงู„ู„ูŠ ู‡ูŠ 1 ุนู„ู‰ T ุฃูˆุณ ุจูŠ
388
00:29:16,560 --> 00:29:21,320
1 ุนู„ู‰ T ุฃูˆุณ ุจูŠ ุงู„ุขู† ูˆู‡ุฐู‡ ุงู„ู€ series decreasing
389
00:29:21,320 --> 00:29:24,960
ูˆูŠู…ุญู„ุงู‡ุง ุฅู„ู‰ ุขุฎุฑู‡ and recalled that ุงู„ู€ integration
390
00:29:24,960 --> 00:29:28,580
ู…ู† 1 ู„ุนู†ุฏ ุฅู† 1 ุนู„ู‰ T DT ุฅูŠุด ุจูŠุณุงูˆูŠ ุณู‡ู„
391
00:29:28,580 --> 00:29:31,820
ุฅูŠุฌุงุฏู‡ุง ูƒู…ุงู† ุนุจุงุฑุฉ ุนู† ู„ู† ุงู„ุงู† ู†ุงู‚ุต ู„ู† ุงู„ูˆุงุญุฏ ู„ู†
392
00:29:31,820 --> 00:29:36,080
ุงู„ูˆุงุญุฏ ุณูุฑ ูŠุนู†ูŠ ุจุชุจู‚ู‰ ุนู†ุฏ ู„ู† ุงู„ุงู† ู„ูƒู† as n goes to
393
00:29:36,080 --> 00:29:39,700
infinity ูˆุงุถุญ ุฅู† ู‡ุฐุง ู…ุจุงุดุฑุฉ ู‡ูŠุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
394
00:29:39,700 --> 00:29:45,020
ูŠุนู†ูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† diverse ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ู€ summation
395
00:29:45,020 --> 00:29:49,040
ู„ู„ูˆุงุญุฏ ุงู„ุงู† diverse by integral test ุนู†ุฏูŠ ุทุจุนุงู‹ ุงู„ู€
396
00:29:49,040 --> 00:29:55,360
b ุดู…ุงู„ู‡ุง ุจูŠ ุฃุตุบุฑ ุฃูˆ ุชุณุงูˆู‰ ุงู„ูˆุงุญุฏ ุงู„ุขู† ููŠ ุญุงู„ุฉ
397
00:29:55,360 --> 00:30:00,040
.. ู„ุง ู„ุง ุขุณู ุงู„ู€ b ู‡ู†ุง ุจุชุณุงูˆูŠ ุงู„ูˆุงุญุฏ ุงู„ุขู† ุจุฏู†ุง ู†ุดูˆู
398
00:30:00,040 --> 00:30:06,420
ู…ูŠู† ุฅู† ู‡ูŠ ุงู„ุญุงู„ุงุช ุงู„ุชุงู†ูŠุฉ ู„ูˆ ุฌูŠู†ุง ุงู„ู€ integration
399
00:30:06,420 --> 00:30:12,560
ุฅุญู†ุง ุฃุซุจุชู†ุง ู„ู…ูŠู† ู„ู€ B ุจุชุณุงูˆูŠ ูˆุงุญุฏ ุงู„ุขู† also recall
400
00:30:12,560 --> 00:30:16,780
that ุงู„ู€ integration 1 ุนู„ู‰ T ู‚ุต ุจูŠ ุฏูŠ T ู…ู† 1
401
00:30:16,780 --> 00:30:21,120
ู„ุนู†ุฏ ู…ูŠู† 1 ู„ุนู†ุฏ ุฃู†ุง ุจู†ูุถู„ ุนู†ุฏู†ุง ุงู„ู€ ุจูŠ ุดู…ุงู„ู‡ุง ู‡ู†ุง
402
00:30:21,120 --> 00:30:26,040
ู„ุง ุชุณุงูˆูŠ 1 ูƒู…ู„ุฉ ุงู„ุขู† ุจูŠุตูŠุฑ 1 ุนู„ู‰ 1 minus
403
00:30:26,040 --> 00:30:30,480
ุจูŠ ุงู†ู‚ุต 1 ุนู„ู‰ minus ุจูŠ ู†ุงู‚ุต 1 ุจุนุฏ ู…ุง ุนูˆุถู†ุง
404
00:30:30,480 --> 00:30:31,860
ุงู„ุขู† ู‡ุฐู‡
405
00:30:34,860 --> 00:30:41,960
as n goes to infinity ูˆูƒุงู†ุช ุงู„ู€ b ุฃูƒุจุฑ ู…ู† 1 ุฅุฐุง
406
00:30:41,960 --> 00:30:46,520
ุงู„ู€ b ุฃูƒุจุฑ ู…ู† 1 ุฅุฐุง ุงู„ู€ b ุฃูƒุจุฑ ู…ู† 1 ูˆูˆุฏูŠู†ุง n
407
00:30:46,520 --> 00:30:52,400
ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ุณูŠุตุจุญ ุนุจุงุฑุฉ ุนู† ุณูุฑ ูˆู‡ุฐุง ุนุจุงุฑุฉ
408
00:30:52,400 --> 00:30:56,240
ุนู† ู†ุงู‚ุต 1 ูŠุนู†ูŠ ุงู„ู€ limit ู‡ุฐู‡ as n goes to
409
00:30:56,240 --> 00:31:00,060
infinity ููŠ ุญุงู„ุฉ ุงู„ู€ B ุฃูƒุจุฑ ู…ู† 1 ู‡ุชุตูŠุฑ ู‡ุฐู‡ ุนุจุงุฑุฉ
410
00:31:00,060 --> 00:31:03,940
ุนู† ู†ุงู‚ุต 1 ููŠ ู‡ุฐู‡ ุจูŠุตูŠุฑ 1 ุนู„ู‰ B minus 1
411
00:31:03,940 --> 00:31:08,540
ู‡ุฐุง ููŠ ุญุงู„ุฉ ุงู„ู€ B ุฃูƒุจุฑ ู…ู† 1 ุฅุฐุง ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
412
00:31:08,540 --> 00:31:12,640
integration ู‡ุฐุง converge ูˆุจู†ุงุก ุนู„ูŠู‡ ู‡ุชูƒูˆู† ุงู„ู€ B
413
00:31:12,640 --> 00:31:16,180
series ููŠ ุญุงู„ุฉ ุงู„ู€ B ุฃูƒุจุฑ ู…ู† 1 by integral test
414
00:31:16,180 --> 00:31:21,460
ุจุฑุถู‡ ุฅูŠุงู‡ converge ู„ูƒู† ู„ูˆ ูƒุงู†ุช ุงู„ู€ B ุฃุตุบุฑ ู…ู† 1
415
00:31:22,000 --> 00:31:25,480
ุงู„ุขู† ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจูŠุฑูˆุญ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ
416
00:31:25,480 --> 00:31:29,260
ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ู„ุฃู† ุงู„ู€ B ุฃุตุบุฑ ู…ู† 1 ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู€
417
00:31:29,260 --> 00:31:33,500
integration ู‡ุฐุง as N goes to infinity diverges ูˆ
418
00:31:33,500 --> 00:31:37,400
ุจู†ุงุก ุนู„ูŠู‡ summation 1 ุนู„ู‰ N B diverges ู‡ุฐุง ููŠ
419
00:31:37,400 --> 00:31:42,060
ุญุงู„ุฉ ุงู„ู€ B ุดู…ุงู„ู‡ุง ุฃุตุบุฑ ู…ู† 1 ูˆ ุจูƒูˆู† ู‡ูŠูƒ ุฅุญู†ุง
420
00:31:42,060 --> 00:31:46,220
ุงุณุชุฎุฏู…ู†ุง ุงู„ .. ุงู„ .. ุงู„ B series ููŠ ุฅุซุจุงุช ุงู„ .. ุงู„
421
00:31:46,220 --> 00:31:49,620
.. ุงู„ integral test ููŠ ุฅุซุจุงุช ุฃู†ู‡ ุงู„ู€ B series
422
00:31:49,620 --> 00:31:56,810
converges for b ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ and diverges for b ุฃูŠุด
423
00:31:56,810 --> 00:32:01,950
ู…ุง ู„ู‡ุง ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุฃู†ุชูˆ
424
00:32:01,950 --> 00:32:07,310
ุนุงุฑููŠู†ู‡ุง ุงู„ู€B Series ุงู„ู…ุดู‡ูˆุฑุฉ ู†ูŠุฌูŠ ุงู„ุขู† ุจุฏู†ุง ู†ุญูƒูŠ
425
00:32:07,310 --> 00:32:12,990
ุนู† ุงู„ู„ูŠ ู‡ูˆ root test ุฃุญูŠุงู†ุง ุงู„ู„ูŠ ู‡ูˆ ู…ุฏุงู…ุฉ ุงู„ู„ูŠ ู‡ูˆ
426
00:32:12,990 --> 00:32:18,560
ุงู„ ratio test ุงู„ู„ูŠ ู‡ูˆ fails ููŠ ุญุงู„ุฉ ุงู„ limit ูŠุทู„ุน
427
00:32:18,560 --> 00:32:24,380
ู„ู†ุง ูˆุงุญุฏ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูุจุฏู†ุง ุฅูŠุด ูŠุฎู„ู‘ูŠู†ุง ู†ู‚ูˆู„ ูŠุญู„ู„ู†ุง
428
00:32:24,380 --> 00:32:28,700
ู…ุดูƒู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ failure for .. for .. for ุงู„ู„ูŠ ู‡ูˆ
429
00:32:28,700 --> 00:32:33,240
ุธู‡ูˆุฑ ุงู„ limit ุจุณุงูˆุฉ ูˆุงุญุฏ ู‡ู†ุง ุนู†ุฏูŠ root test
430
00:32:33,240 --> 00:32:38,640
ุจุชุนุงู„ุฌ ุงู„ุฃู…ุฑ fx ุจุณุงูˆุฉ xn is a sequence of non-zero
431
00:32:38,640 --> 00:32:46,670
elements ู„ูˆ ูˆุฌุฏู†ุง real number a ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ and a
432
00:32:46,670 --> 00:32:50,990
natural number k such that xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ xn
433
00:32:50,990 --> 00:32:54,990
ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต a ุนู„ู‰ n for n ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ k then ุงู„
434
00:32:54,990 --> 00:32:58,890
summation ู„ู„ xn is absolutely ุงูŠุด ู…ุงู„ู‡ convergent
435
00:32:59,220 --> 00:33:02,500
ุฅุฐุง ูƒุงู† ู‡ู†ุงูƒ a ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ูˆุดูƒู„ ุงู„ู€ K ุทุจูŠุนูŠ
436
00:33:02,500 --> 00:33:06,500
ูƒุฐู„ูƒ ุงู„ู€ absolute value of xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ xn
437
00:33:06,500 --> 00:33:11,100
ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต a ุนู„ู‰ n for n ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ k ูุฅู†
438
00:33:11,100 --> 00:33:15,880
ุณู„ุณู„ุฉ xn ู„ูŠุณุช ู…ุทู„ู‚ุง ู…ุชู‚ุงุฑุจุฉ ูŠุนู†ูŠ ุจุงุฎุชุตุงุฑ ุนุดุงู† ุฃุฑูŠุญูƒู…
439
00:33:15,880 --> 00:33:21,920
ุฅูŠุด ุจู†ุณูˆูŠ ุจู†ุญุณุจู„ู†ุง ุงู„ู€ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ xn ุฅุฐุง
440
00:33:21,920 --> 00:33:26,480
ูˆุฌุฏู†ุง .. ุฅุฐุง ูˆุฌุฏู†ุง ู†ู‚ุงุฑู† ู‡ุฐู‡ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ xn
441
00:33:26,480 --> 00:33:31,280
ุจุงู„ู…ู‚ุฏุงุฑ ูˆุงุญุฏ ู†ุงู‚ุต a ุนู„ู‰ n ุฅุฐุง ู„ุฌูŠู†ุง ุฅู† ู‡ุฐุง
442
00:33:31,280 --> 00:33:34,540
ุงู„ู…ู‚ุฏุงุฑ .. ุงู„ู…ู‚ุฏุงุฑ ุงุณู…ู‡ ูˆุงุญุฏ ู†ุงู‚ุต a ุนู„ู‰ n ุฅุฐุง
443
00:33:34,540 --> 00:33:38,950
ู„ุฌูŠู†ุง ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 1 ู†ุงู‚ุต ุนู„ู‰ a ุนู„ู‰ n ูˆูƒุงู†ุช
444
00:33:38,950 --> 00:33:43,050
ุงู„ู€ A ุฃูƒุจุฑ ู…ู† 1 ุนู„ู‰ ุทูˆู„ ุจู†ุญูƒู… ุนู„ู‰ ุงู„ู€ Absolutely
445
00:33:43,050 --> 00:33:47,030
Convergent ู„ู„ู€ Series ู„ูƒู† ู„ูˆ ู„ุฌูŠู†ุง ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุนุฏ
446
00:33:47,030 --> 00:33:51,690
ู…ุง ุญุณุจู†ุงู‡ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 1 ู†ุงู‚ุต A ุนู„ู‰ N ุญุชู‰ ู„ูˆ ูƒุงู†ุช
447
00:33:51,690 --> 00:33:56,040
A ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 1 ุตุบูŠุฑุฉ ูุจู†ู‚ูˆู„ ุฅู†ู‡ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู†ุญูƒู…
448
00:33:56,040 --> 00:33:59,760
ุนู„ู‰ ุฅูŠุด ุนู„ู‰ ุฅู†ู‡ ุงู„ series is not absolutely
449
00:33:59,760 --> 00:34:03,500
convergent ูŠุนู†ูŠ ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุญุณุงุจุงุช ู‡ุฐู‡ ุนู„ู‰ ู‡ุฐู‡
450
00:34:03,500 --> 00:34:08,660
ูˆู†ุฌูŠุจู‡ุง ุจุฏู„ุงู„ุฉ 1 minus a ุนู„ู‰ n ุฃูˆ ุจู†ู‚ุฑู†ู‡ุง ุจ 1
451
00:34:08,660 --> 00:34:12,840
minus a ุนู„ู‰ n 1 minus a ุนู„ู‰ n ููŠ ุญุงู„ุฉ ุฅู† ุงู„ a ุฃุตุบุฑ
452
00:34:12,840 --> 00:34:16,380
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ู‡ุชุทู„ุน ู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ ู‡ู†ุง ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
453
00:34:16,380 --> 00:34:19,140
it's not absolutely convergent ููŠ ุญุงู„ุฉ ุงู„ a ุฃูƒุจุฑ
454
00:34:19,140 --> 00:34:24,710
ู…ู† ูˆุงุญุฏ is absolutely convergent ูˆุฎู„ู‘ูŠู†ุง ู†ุดูˆู ุงู„ู„ูŠ
455
00:34:24,710 --> 00:34:33,230
ู‡ูˆ ุงู„ุจุฑู‡ุงู† ู„ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ suppose that ุนุดุฑุฉ
456
00:34:33,230 --> 00:34:39,730
holds ุนุดุฑุฉ ุนุดุฑุฉ ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุญูƒูŠู†ุงู‡ุง
457
00:34:39,730 --> 00:34:42,930
ุนุดุงู† ุชูƒูˆู†ูˆุง ููŠ ุตูˆุฑุฉ ู†ู‚ูˆู„ูƒู… ุนุดุฑุฉ ู†ุฐูƒุฑูƒู… ููŠู‡ุง ู‡ุฐู‡
458
00:34:42,930 --> 00:34:50,840
ุนุดุฑุฉ ุงู„ู„ูŠ ู‡ูŠ xn ุฒุงุฆุฏ ูˆุงุญุฏ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ xn ุฃุตุบุฑ
459
00:34:50,840 --> 00:34:57,220
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ 1 ู†ุงู‚ุต a ุนู„ู‰ n a ุฃูƒุจุฑ ู…ู† 1 ูˆ n ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ k
460
00:34:57,220 --> 00:35:01,500
ุงู„ุชุงู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ุณู…ูŠู†ุงู‡ุง ุนุดุฑุฉ ุงู„ู„ูŠ ุณู…ูŠู†ุงู‡ุง 11 ุงู„ู„ูŠ
461
00:35:01,500 --> 00:35:07,700
ู‡ูˆ xn ุฒุงุฆุฏ 1 ุนู„ู‰ absolute value xn ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
462
00:35:07,700 --> 00:35:16,820
ุงู„ู„ูŠ ู‡ูˆ 1 ู†ุงู‚ุต a ุนู„ู‰ n ูˆ a ุงู„ู„ูŠ ู‡ูŠ a ุดู…ุงู„ู‡ุง ุฃุตุบุฑ ู…ู†
463
00:35:17,510 --> 00:35:23,610
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ูˆุงุญุฏ ู…ุงุดูŠ ุงู„ุญุงู„ ุทูŠุจ ู‡ูŠ ู‡ุฐุง ุนุดุฑุฉ ูˆู‡ุฐุง
464
00:35:23,610 --> 00:35:28,150
ุงุญุฏ ุนุดุฑุฉ ุนุดุงู† ุจุนุฏ ุดูˆูŠุฉ ู‡ู†ุณุชุฎุฏู…ู‡ู… ููŠ ุงู„ุจุฑู‡ุงู† ุฎู„ูˆูƒูˆุง
465
00:35:28,150 --> 00:35:32,800
ู…ุนู†ุง ุงู† ุดุงุก ุงู„ู„ู‡ ุงู„ุจุฑู‡ุงู† ู…ุด ุตุนุจ ุงู„ุขู† suppose that
466
00:35:32,800 --> 00:35:39,080
ุงู†ู‡ ุนุดุฑุฉ holds ู‡ูŠ for M ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ุงู„ุขู† ุงุถุฑุจ
467
00:35:39,080 --> 00:35:43,280
ู„ุทุฑููŠู† ููŠ ูˆุณุทูŠู† ุงุถุฑุจ ู‡ุฐู‡ ููŠ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ูˆุจุฏู„ a
468
00:35:43,280 --> 00:35:48,980
ุง ุจุฏูŠ ุงุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูŠ M ุนู†ุฏูŠ ุจุฏู„ M ุฒุงุฆุฏ ูˆุงุญุฏ ุฎู„ูŠู†ูŠ
469
00:35:48,980 --> 00:35:51,880
ุจูŠุตูŠุฑ ุนู†ุฏ ู…ู†ุญ ุฏุนุด ุนุดุงู† ุงู†ุง ุงุฌูŠุจ ู„ูƒู… ูŠุงุฏูŠ ูƒูŠู ุงุฌุช
470
00:35:51,880 --> 00:35:56,870
absolute value ู„ X M ุฒุงุฆุฏ ูˆุงุญุฏ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€
471
00:35:56,870 --> 00:36:02,750
absolute value ู„ู„ู€ XM ู…ุถุฑูˆุจุฉ ููŠ ูˆุงุญุฏ ู†ุงู‚ุต A ุนู„ู‰ MุŒ
472
00:36:02,750 --> 00:36:07,970
ู…ุธุจูˆุทุŸ ุทูŠุจุŒ ุงู„ุขู† ุงุถุฑุจูˆู„ูŠ ุงู„ุฌู‡ุชูŠู† ููŠ ู…ูŠู†ุŸ ููŠ M
473
00:36:07,970 --> 00:36:14,640
ูุจุตูŠุฑ M ู‡ู†ุงุŒ ุจุตูŠุฑ M ููŠ ู‡ู†ุง ู‡ูˆ ุจูŠูƒูˆู† ุญุตู„ู†ุง ุนู„ู‰ M ููŠ
474
00:36:14,640 --> 00:36:19,700
ู‡ุฐู‡ ูˆ M ููŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฏุฎู„ูˆู„ูŠ ุงู„ M ุงู„ุขู† ุฌูˆุง ูุจุตูŠุฑ
475
00:36:19,700 --> 00:36:23,580
absolute value XM ุฒูŠ ู…ุง ู‡ูŠ ุฃู†ุง ุจุตูŠุฑ M ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ
476
00:36:23,580 --> 00:36:31,020
A ุงู„ุขู† ู‡ุฐู‡ ุจุชุณุงูˆูŠ ุงู„ุขู† ูƒุชุจุชู‡ุง ุนู„ู‰ ุตูˆุฑุฉ ุงู„ุขู† ุถูุช
477
00:36:31,020 --> 00:36:35,720
ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ูˆ ุทุฑุญุช ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ู‡ูŠ ุนู†ุฏูŠ ู‡ู†ุง ุทุฑุญุช
478
00:36:35,720 --> 00:36:39,800
ูˆุงุญุฏ ูˆ ู‡ู†ุง ุถูุช ุงู„ูˆุงุญุฏ ูุตุงุฑุช ุนุจุงุฑุฉ ุนู† M ู†ุงู‚ุต ูˆุงุญุฏ
479
00:36:39,800 --> 00:36:44,830
XM ู†ุงู‚ุต A ู†ุงู‚ุต ูˆุงุญุฏ XM ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ุตุงุฑ ู‡ุฐุง
480
00:36:44,830 --> 00:36:50,110
ุงู„ู…ู‚ุฏุงุฑ ุจุนุฏ ู…ุง ุถูุช ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต XM ูˆุทุฑุญุช ู†ุงู‚ุต ุงู„
481
00:36:50,110 --> 00:36:56,590
XM ูˆุถูุช ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ุถูุฉ ุงู„ XM ูุตุงุฑ ุนู†ุฏูŠ
482
00:36:56,590 --> 00:37:00,630
ุงู„ู…ู‚ุฏุงุฑ ู‡ูˆ ู†ูุณู‡ ู‡ุฐุง ุฒูŠ ู…ุง ู‚ู„ุช ู„ูƒู… ู„ุฃู† ู…ู† ู†ู‚ุทุฉ ูู„ูˆุณ
483
00:37:00,630 --> 00:37:06,680
ุฐุงุช ุนู†ุฏูŠ ุงู„ M ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงู„ XM ู†ุงู‚ุต ุฌูŠุจู„ูŠ ู‡ุฐู‡ ู‡ู†ุง
484
00:37:06,680 --> 00:37:13,940
ูˆู‡ุฐู‡ ูˆุฏูŠู‡ุง ู‡ู†ุงูƒ ูุจุตูŠุฑ ุนู†ุฏูŠ M-1 ููŠ XM ู†ุงู‚ุต ู„ุบุงูŠุฉ M
485
00:37:13,940 --> 00:37:17,820
ููŠ XM ุฒูŠ 1 ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ู…ูŠู† ุงู„ู„ูŠ ุฌุช ู‡ู†ุง ู‡ุฐู‡ ุงู„ู„ูŠ
486
00:37:17,820 --> 00:37:24,290
A-1 ููŠ XM ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ู‡ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† 0 for M ุฃูƒุจุฑ
487
00:37:24,290 --> 00:37:28,390
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ู„ุฃู† ุงู„ู€A ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฅูŠุด ู…ูุชุฑุถูŠู†ู‡ุง ุฃูƒุจุฑ
488
00:37:28,390 --> 00:37:32,250
ู…ู† 1 ูˆู‡ุฐุง absolute value ุฅุฐุง ุตุงุฑ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุฃูƒุจุฑ
489
00:37:32,250 --> 00:37:38,640
ู…ู† 0 ู‡ุฐุง ุฅูŠู‡ ู…ุนู†ุงู‡ุŸ ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ sequence ุงู„ู„ูŠ ุงู„ู€
490
00:37:38,640 --> 00:37:44,560
M X M ุฒุงุฆุฏ ูˆุงุญุฏ is decreasing sequence ู„ุฃู† ุงู„ู„ูŠ
491
00:37:44,560 --> 00:37:49,040
ู‚ุจู„ ู†ุงู‚ุต ุงู„ู„ูŠ ุจุนุฏ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ูŠุนู†ูŠ ุตุงุฑ ุงู„ู„ูŠ
492
00:37:49,040 --> 00:37:54,940
ู‡ูˆ ุงู„ู„ูŠ ุจุนุฏ ุดู…ุงู„ู‡ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู„ูŠ ู‚ุจู„ ูŠุนู†ูŠ
493
00:37:54,940 --> 00:37:59,960
ุตุงุฑุช ุงู„ sequence M X M ุฒุงุฆุฏ ูˆุงุญุฏ is a decreasing
494
00:37:59,960 --> 00:38:05,790
sequence for ู…ูŠู† M ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงุชู†ูŠู† ุงู„ุขู† ู‡ุฐู‡
495
00:38:05,790 --> 00:38:11,430
ุงู„ู„ูŠ ู‡ูŠ ุงู„ relation ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ 12 ุจุฏู†ุง ุงู„ู„ูŠ
496
00:38:11,430 --> 00:38:19,070
ู‡ูˆ ู†ุฌู…ุนู‡ุง for K for M ุจุชุณุงูˆูŠ K ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ and
497
00:38:19,070 --> 00:38:24,290
and we note the left side ุชู„ุณูƒูˆุจ ุงู„ู„ูŠ ู‡ูˆ ู†ุดูˆู ูƒูŠู
498
00:38:24,290 --> 00:38:28,750
ุงู„ left side ู‡ุฐุง ุชู„ุณูƒูˆุจ ูˆุงุถุญ ุงู†ู‡ ุชู„ุณูƒูˆุจ we find
499
00:38:28,750 --> 00:38:37,180
ุนู†ุฏูŠ ุฃุฎุฏ ุงู„ summation ู…ู† ุนู†ุฏ N ู…ู† ุนู†ุฏ K ู„ุนู†ุฏ N
500
00:38:37,180 --> 00:38:43,840
ุนู…ู„ูƒู… ุฅูŠุงู‡ุง ู‡ุงู† ู…ู† ุนู†ุฏ K ุจุชุณุงูˆูŠ ุฃูˆ ู…ู† ุนู†ุฏ M ุจุชุณุงูˆูŠ
501
00:38:43,840 --> 00:38:51,220
K ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ summation ู…ู† M
502
00:38:51,220 --> 00:38:58,280
ุจุชุณุงูˆูŠ K ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ N ู‡ุฐู‡ ุจุชุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆ K ู†ุงู‚ุต
503
00:38:58,280 --> 00:39:07,350
ูˆุงุญุฏ fixed K ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูŠ K ููŠ X K ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ู„ูŠ
504
00:39:07,350 --> 00:39:12,190
ุจุนุฏู‡ุง K ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุจูŠุตูŠุฑ K ููŠ X K ุฒุงุฆุฏ ูˆุงุญุฏ
505
00:39:12,190 --> 00:39:15,250
ุฑุงุญุช ู…ุน ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต ูƒุฏู‡ ููƒู„ ูˆุงุญุฏุฉ ุจุช cancel
506
00:39:15,250 --> 00:39:19,570
ุงู„ุซุงู†ูŠุฉ ุจุชุธู‡ุฑ ุฃูˆู„ ูˆุงุญุฏุฉ ูˆ ุขุฎุฑ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูŠ ุฃูˆู„
507
00:39:19,570 --> 00:39:25,470
ูˆุงุญุฏุฉ K ู†ุงู‚ุต ูˆุงุญุฏ ููŠ X K ู†ุงู‚ุต ุขุฎุฑ ูˆุงุญุฏุฉ ุงู„ู„ูŠ ู‡ูŠ N
508
00:39:25,470 --> 00:39:30,110
ููŠ X N ุฒุงุฆุฏ ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ summation ู‡ุฐุง
509
00:39:30,110 --> 00:39:34,560
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† A ู†ุงู‚ุต ูˆุงุญุฏ ุนุงู… ุงู„ู…ุดุชุฑูƒ ู„ุฃู†ู‡ ููŠู‡ุง
510
00:39:34,560 --> 00:39:39,620
ุจูŠุช ู…ุถุฑูˆุจ ู…ุถุฑูˆุจ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู„ูŠ ุจุถุฑ ู…ู† ุนู†ุฏ K ู„ุนู†ุฏ
511
00:39:39,620 --> 00:39:44,400
ู…ูŠู†ุŸ ู„ุนู†ุฏ XK XK ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ู…ูŠู†ุŸ ู„ุนู†ุฏ X ุจูƒูˆู†
512
00:39:44,400 --> 00:39:51,380
ุญุตู„ุช ุนู„ู‰ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ inequality ุงู„ุขู† ู„ุงุญุธูˆุง ู…ุง
513
00:39:51,380 --> 00:39:57,930
ูŠู„ูŠู‡ ุญุตู„ุช ูŠุง ุฌู…ุงุนุฉ ุงู†ู‡ ุงู„ู€ Series ู‡ุฐู‡ ุฃูˆ ุงู„ู€
514
00:39:57,930 --> 00:40:02,770
Sequence ู‡ุฐู‡ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ู†ู‡ุง ู…ุฏุงู… ุงู„ู€
515
00:40:02,770 --> 00:40:08,810
Decreasing ุญุตู„ุช ูˆ ุฌู…ุนู†ุง ูˆ ุงุณุชุฎุฏู…ู†ุง ุงู„ู€ Telescoping
516
00:40:08,810 --> 00:40:15,640
ุญุตู„ู†ุง ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุทูŠุจ ุงู„ุขู† ู‡ุฐุง ูŠุธู‡ุฑ ุฃู† ุงู„ู€
517
00:40:15,640 --> 00:40:20,900
partial sums Sn of ุณู…ูŠุด ุงู„ู€ Xn ุงู„ู„ูŠ ู‡ูŠ ุตุงุฑ ุนู†ุฏู‡ุงูŠ
518
00:40:20,900 --> 00:40:25,920
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Sn ู…ุธุจูˆุท ู‡ุฐุง ุงู„ู€ Sn ู„ุฃู†ู‡ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
519
00:40:25,920 --> 00:40:29,740
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนู„ู‰ A-1 ูˆA-1 ุนุจุงุฑุฉ ุนู† ุฅูŠู‡ุŸ ุนุดุงู† ุซุงุจุช
520
00:40:30,560 --> 00:40:34,860
ุงู„ุขู† ุงู„ู€ sequence of partial sums Sn ุงู„ู„ูŠ ู‡ูˆ summation
521
00:40:34,860 --> 00:40:40,220
Xn are bounded ู…ุฏุงู† bounded ุฅุฐุง ุฅูŠุด ุจุฏู‡ ูŠูƒูˆู†ุŸ ุจุฏู‡
522
00:40:40,220 --> 00:40:46,580
ูŠูƒูˆู† convergent ุฏู‡ ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ ุฃูƒุชุจ ููˆู‚
523
00:40:46,580 --> 00:40:53,420
ูˆู„ุง .. ุทูŠุจ ุดูˆููˆุง ุนู†ุฏูŠ ุฅูŠุด
524
00:40:53,420 --> 00:40:58,990
ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Sn ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„
525
00:40:58,990 --> 00:41:00,810
summation absolute value ู„ู„
526
00:41:04,710 --> 00:41:10,610
ุงู„ู€ XK ุฃูˆ ู‚ุจู„ ุญุชู‰ ู‚ุจู„ ุงู„ุฃุณุฆู„ุฉ ุญุตู‘ู„ู†ุง ุนู„ู‰ ุงู„ู€ A-1
527
00:41:10,610 --> 00:41:16,390
ููŠ ุงู„ู€ XK ุฒุงุฆุฏ absolute value ู„ู€ XN ู‡ุฐุง ูƒู„ู‡ ุนู„ู‰
528
00:41:16,390 --> 00:41:23,690
ุจุนุถู‡ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ K-1 ุจุญูƒูŠู‡ุง K-1 ุฃูŠุดูŠ
529
00:41:23,690 --> 00:41:29,950
ู…ุนูŠู† K ู„ุฃู†ู‡ ู…ู† ุนู†ุฏู‡ุง M ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ู…ู† K K ุฃูŠุดูŠ
530
00:41:29,950 --> 00:41:36,200
ู…ุนูŠู† K-1 ููŠ ุงู„ absolute value ู„XK ู†ุงู‚ุต N ููŠ ุงู„ู€
531
00:41:36,200 --> 00:41:41,040
absolute value XN ุฒุงุฆุฏ ูˆุงุญุฏ ู…ุงุดูŠ ุงู„ุญุงู„ ู‡ุฐู‡ ุงู„ู€ N
532
00:41:41,040 --> 00:41:51,800
ุนุงู„ู…ูŠู„ ุนู„ู‰ ุงู„ A ู†ุงู‚ุต ูˆุงุญุฏ ู„ุฃู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ุฃูˆ
533
00:41:51,800 --> 00:41:58,040
ูŠุณุงูˆูŠ ู‡ุฐุง ูˆู‡ุฐุง ุฃูƒูŠุฏ ุฃูƒูŠุฏ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ K
534
00:41:58,040 --> 00:42:03,400
ู†ุงู‚ุต ูˆุงุญุฏ ููŠ absolute value XK ุนู„ู‰ A ู†ุงู‚ุต ูˆุงุญุฏ
535
00:42:03,860 --> 00:42:07,840
ู„ุฃู†ู‡ ุงู„ุขู† ุงู„ู€ Schilt ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ุณุงู„ุจ
536
00:42:07,840 --> 00:42:12,520
ุงู„ู„ูŠ ู…ุทุฑูˆุญ ุฅุฐุงู‹ ู‡ุฐุง ุจูŠูƒุจุฑ ูุตุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† ุฃูˆ
537
00:42:12,520 --> 00:42:17,700
ูŠุณุงูˆูŠ ู‡ุฐุง ู‡ุฐุง ุงู„ K ุนุจุงุฑุฉ ุนู† fixed ุฑู‚ู… fixed number
538
00:42:17,700 --> 00:42:21,120
ุงู„ู„ูŠ ู‡ูˆ ู„ุฅู†ู‡ ุงุญู†ุง ุจุฏูŠู‡ ู…ู† ุนู†ุฏ K ุฃูƒุจุฑ ุฃูˆ ุฃูƒุจุฑ ูŠุณุงูˆูŠ
539
00:42:21,120 --> 00:42:26,080
K ุฅุฐุงู‹ K ุฅุดูŠ ู…ุนูŠู† ุจุญูƒูŠ ุนู†ู‡ ุฅุฐุงู‹ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู…ู† XK
540
00:42:26,080 --> 00:42:30,720
ู„ุนู†ุฏ ุงู„ XN ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุงู…ุงุดูŠ ุงู„ุญุงู„ ุฅุฐุง ุตุงุฑ
541
00:42:30,720 --> 00:42:42,880
ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† sn-sk-1 ู…ุธุจูˆุท
542
00:42:42,880 --> 00:42:47,780
ูˆู„ุง ู„ุฃุŸ ุฃูƒูŠุฏ ู„ู„ู€ absolute values ุทุจุนุงู‹ ูŠุนู†ูŠ ุจู…ุนู†ู‰
543
00:42:47,780 --> 00:42:52,720
ุขุฎุฑ ุตุงุฑ Sn ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ Sk-1 ุจุฑุถู‡ ุนุฏุฏ ุนุฏุฏ ุนุฏุฏ
544
00:42:52,720 --> 00:43:01,500
ู…ุนูŠู† ุฒุงุฆุฏ ุงู„ู„ูŠ ู‡ูˆ K-1 ููŠ XK ุนู„ู‰ A-1 ุตุงุฑ ู‡ุฐุง Sn
545
00:43:01,500 --> 00:43:08,570
ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุงู„ูƒู„ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ K ูŠุนู†ูŠ ุตุงุฑุช
546
00:43:08,570 --> 00:43:11,850
ุงู„ู€ S N is bounded ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑุŒ ุทุจุนุง ู‡ุฐุง ุฃูƒุจุฑ
547
00:43:11,850 --> 00:43:15,390
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุณูุฑ ุฃูƒูŠุฏ ุงู„ู€ NุŒ ุฅุฐุง limit ุงู„ู€ S N as N
548
00:43:15,390 --> 00:43:19,910
goes to infinity ู…ู‡ู…ุง ูƒุจุฑุช ุงู„ู€ NุŒ ู‡ุฐู‡ ู…ุง ู„ู‡ุงุด
549
00:43:19,910 --> 00:43:23,650
ุนู„ุงู‚ุฉ ููŠู‡ุง ุงู„ู€ N ู„ุฃู†ู‡ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠู‡ุงุŒ ุฅุฐุง ุฃุตุบุฑ
550
00:43:23,650 --> 00:43:27,560
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ S K ู†ุงู‚ุต ูˆุงุญุฏ ุฒุงุฆุฏ K ู†ุงู‚ุต ูˆุงุญุฏ ููŠ
551
00:43:27,560 --> 00:43:31,660
ุงู„ู€ absolute value of xk ุนู„ู‰ a-1 ุจู…ุนู†ู‰ ุขุฎุฑ ุตุงุฑุช
552
00:43:31,660 --> 00:43:36,640
ุงู„ู€ Sn is convergent ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ุตู…ู…ุด ู„ู„
553
00:43:36,640 --> 00:43:40,040
absolute value of xn is convergent ูŠุนู†ูŠ ู‡ุชุตูŠุฑ
554
00:43:40,040 --> 00:43:44,660
ุงู„ุณูŠุฑูŠุฒ ุนู†ุฏูŠ is absolutely convergent
555
00:43:46,650 --> 00:43:51,190
ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ู‡ุฐุง ุชูุณูŠุฑ ุงู†ู‡ ุงู„ู„ูŠ ู‡ูˆ this shows the
556
00:43:51,190 --> 00:43:53,510
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
557
00:43:53,510 --> 00:43:53,850
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
558
00:43:53,850 --> 00:43:54,190
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
559
00:43:54,190 --> 00:43:56,030
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
560
00:43:56,030 --> 00:43:57,570
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
561
00:43:57,570 --> 00:43:57,730
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
562
00:43:57,730 --> 00:43:57,890
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
563
00:43:57,890 --> 00:43:57,990
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
564
00:43:57,990 --> 00:43:58,010
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„
565
00:43:58,010 --> 00:43:58,330
.. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
566
00:43:58,330 --> 00:44:04,710
ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ .. ุงู„ ..
567
00:44:04,710 --> 00:44:06,150
ุงู„ .. ุงู„ ..
568
00:44:15,000 --> 00:44:24,940
ู†ุฃุฎุฐ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู€ similarly ู†ุดูˆู ูƒูŠู suppose
569
00:44:24,940 --> 00:44:29,660
that suppose that the relation 11 ู‡ูŠู‡ุง ุงู„ relation
570
00:44:29,660 --> 00:44:34,700
11 holds for n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ k ูˆุทุจุนุง ุงุญู†ุง ู…ูุชุฑุถูŠู† ุงู„
571
00:44:34,700 --> 00:44:39,640
a ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ ุงู„ n ุถุฑุจู†ุง ุทุฑููŠู†
572
00:44:39,640 --> 00:44:42,800
ููŠ ูˆุณุทูŠู† ู†ูุณ ุงู„ุดูŠุก ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„
573
00:44:42,800 --> 00:44:47,880
ุดูˆูŠุฉ ุถุฑุจู†ุง ู‡ุฐุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ n ุงู„ู„ูŠ ู‡ูˆ xn ุฒุงุฆุฏ ูˆุงุญุฏ
574
00:44:48,690 --> 00:44:53,530
a ุฃุตุบุฑ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู‡ุฐุง ููŠ ู‡ุฐุง ูˆุถุฑุจู†ุง ููŠ n ูุตุงุฑุช
575
00:44:53,530 --> 00:44:57,890
ุงู„ n ููŠ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ู„ู…ุง ุถุฑุจุช ุงู„ n
576
00:44:57,890 --> 00:45:04,070
ู‡ู†ุง ุจูŠุตูŠุฑ n ู†ุงู‚ุต a ููŠ ุงู„ absolute value ู„ู„ xn ุงู„ุขู†
577
00:45:04,070 --> 00:45:08,910
ุงู„ a ุฃุตุบุฑ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุฅุฐุง ู†ุงู‚ุต ุงู„ a ุฃูƒุจุฑ ูŠุณุงูˆูŠ ู†ุงู‚ุต
578
00:45:08,910 --> 00:45:12,230
ูˆุงุญุฏ ูู…ุง ุฏุงู… ู†ุงู‚ุต ุงู„ a ุฃูƒุจุฑ ูŠุณุงูˆูŠ ู†ุงู‚ุต ูˆุงุญุฏ ุฅุฐุง
579
00:45:12,230 --> 00:45:15,710
ุตุงุฑุช ุนู†ุฏูŠ n ู†ุงู‚ุต a ููŠ absolute value xn ุฃูƒุจุฑ ูŠุณุงูˆูŠ
580
00:45:15,710 --> 00:45:19,070
n ู†ุงู‚ุต ูˆุงุญุฏ ููŠ absolute value xn ู„ูƒู„ n ู†ุงู‚ุตุฉ ูˆk
581
00:45:19,070 --> 00:45:24,200
ู‡ุฐู‡ ู„ุฃู† ุงู„ a ุฃุตุบุฑ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ ุงู„ุขู† ูˆุงุถุญ
582
00:45:24,200 --> 00:45:28,580
ุฃู†ู‡ ุงู„ sequence ุงู„ู„ูŠ ู‡ูˆ ุงู„ุขู† xn ุฒุงุฆุฏ ูˆุงุญุฏ ุฃูƒุจุฑ ุฃูˆ
583
00:45:28,580 --> 00:45:31,960
ูŠุณุงูˆูŠ n ู†ุงู‚ุต ูˆุงุญุฏ xn ูŠุนู†ูŠ ุงู„ sequence ู‡ุฐู‡ ุตุงุฑุช
584
00:45:31,960 --> 00:45:35,900
increasing for n ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ k ู…ุง ุฒู… increasing
585
00:45:35,900 --> 00:45:40,680
ุฅุฐุง there exists c such that ุงู„ุขู† ููŠ ุงู„ absolute
586
00:45:40,680 --> 00:45:45,300
value xn ุฒุงุฆุฏ ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† c for n ุฃูƒุจุฑ ุฃูˆ
587
00:45:45,300 --> 00:45:49,750
ูŠุณุงูˆูŠ k ู…ุงุดูŠ ุงู„ุญุงู„ ุตุงุฑุช ู…ุฏุงู… ู‡ุฐู‡ ุงู„ series increasing
588
00:45:49,750 --> 00:45:55,630
ุฅุฐุง ุฃูƒูŠุฏ ู‡ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† ุฃูŠ ุดูŠุก ูˆู…ู† some c ู„ุฃู†ู‡ุง
589
00:45:55,630 --> 00:46:00,630
ุจุชุชุฒุงูŠุฏ ู…ุฏุงู… ุตุงุฑุช ุฃูƒุจุฑ ู…ู† some c ูˆู„ูŠูƒู† ุงู„ุญุฏ ุงู„ุฃูˆู„
590
00:46:00,630 --> 00:46:05,230
ู…ุซู„ุง and some absolute value xn ุฒุงุฆุฏ ูˆุงุญุฏ ุฃุตุบุฑ ู…ู†
591
00:46:05,230 --> 00:46:11,300
c ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ and ู‚ุณู…ู†ุง ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ุขู† ุงู„ุขู† ู‡ุฐู‡
592
00:46:11,300 --> 00:46:15,460
ุงู„ series diverse ุชุจุนุชู‡ุง ุงู„ series ู‡ุฐู‡ ุชุจุนุช ุงู„ู„ูŠ
593
00:46:15,460 --> 00:46:18,760
ู‡ูŠ ูˆุงุญุฏุฉ ุงู„ุขู† diverse ุฅุฐุง ู…ู† ุจุงุจ ุฃูˆู„ู‰ ุจุงู„
594
00:46:18,760 --> 00:46:23,100
comparison test ู‡ุฐู‡ ุชูƒูˆู† diverse ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„
595
00:46:23,100 --> 00:46:27,580
series summation xn is not absolutely convergent
596
00:46:27,930 --> 00:46:33,170
ูˆู‡ุฐุง ู‡ูˆ ุงู„ู€ Reopts Test ุงู„ุขู† ู†ุงุฎุฐ ุงู„ู€ Corollary ู„ู‡
597
00:46:33,170 --> 00:46:37,150
ุงู„ู€ Corollary ุทุจุนุง ู‡ุชู†ุณุญุจ ุนู„ู‰ ุฅูŠุด ูŠุง ุฌู…ุงุนุฉุŸ
598
00:46:37,150 --> 00:46:41,110
ู‡ุชู†ุณุญุจ ุฒูŠ ู…ุง ู‡ูˆ ุงู„ู…ู†ู‡ุฌ ุงู„ู„ูŠ ุจู†ุนู…ู„ู‡ ุฅุญู†ุง ุจู†ุงุฎุฏ ุงู„
599
00:46:41,110 --> 00:46:44,910
test ูˆุจู†ุงุฎุฏ ุงู„ limit ุชุจุนู‡ ุฃูˆ limit test ุชุจุนู‡ ูˆู‡ู†ุง
600
00:46:44,910 --> 00:46:48,870
ุงู„ limit test ุชุจุน ุงู„ Reopts Test ู†ุดูˆู ุฅูŠุด ุงู„ู„ูŠ
601
00:46:48,870 --> 00:46:51,770
ุจูŠุนุทูŠู†ุง ุฅูŠุงู‡ ูˆุนุงุฏุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ limits ุจุชูƒูˆู† ููŠ
602
00:46:51,770 --> 00:46:56,150
ุงู„ุบุงู„ุจ ุฃุณู‡ู„ ุฃูˆ ุฃุณู‡ู„ ููŠ ุงู„ุชุนุงู…ู„ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
603
00:46:56,150 --> 00:47:01,180
comparison ุงู„ุนุงุฏูŠ Latex ุจูŠุณุงูˆูŠ XN ุจูŠู‡ sequence of
604
00:47:01,180 --> 00:47:05,340
non-zero real numbers ูŠุนู†ูŠ ุฅูŠุด ู…ุงู„ู‡ุง sequence of
605
00:47:05,340 --> 00:47:08,320
non-zero real numbers ู…ุงุดูŠ ู…ุด .. ู…ุด .. ู…ุด ุตูุงุฑ
606
00:47:08,320 --> 00:47:11,580
ูŠุนู†ูŠ ุนุดุงู† ู‡ูŠูƒ ุฃุตู„ุง ููˆู‚ ุงุญู†ุง ู„ู…ุง ุฃุฎุฐู†ุง strictly
607
00:47:11,580 --> 00:47:16,040
ุฃูƒุจุฑ ู…ู† C ู„ุฅู†ู‡ ู‡ู†ุง .. ู‡ู†ุง .. ู‡ู†ุง ูŠุนู†ูŠ ู…ุฒุงู…
608
00:47:16,040 --> 00:47:22,130
sequence of non-zero ุงู„ู„ูŠ ู‡ูˆ numbers ุนุดุงู† ู„ูˆ ุญุฏ ุณุฃู„
609
00:47:22,130 --> 00:47:27,250
ุนู† ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ ูƒูŠู ุฃูƒุจุฑ ู…ู† C ุงู„ู„ูŠ ู‡ูˆ strictly
610
00:47:27,250 --> 00:47:31,190
ู‡ุฐูˆู„ non-zero ู„ูˆ ูƒุงู† ุฃูˆู„ ูˆุงุญุฏ non-zero ุฅุฐุง ู‚ูŠู…ุชู‡
611
00:47:31,190 --> 00:47:34,550
strictly ุฃูƒุจุฑ ู…ู† 0 ูŠุนู†ูŠ ู„ู‡ ู‚ูŠู…ุฉ ู…ุญุฏุฏุฉ ูˆุงู„ุจุนุฏู‡ ุจูŠูƒูˆู†
612
00:47:34,550 --> 00:47:38,750
ุฃูƒุจุฑ ู…ู†ู‡ ุฅุฐุง ุฃูƒูŠุฏ ููŠ ุนู†ุฏูŠ ุจุฏูŠุช ู…ู† ุฑู‚ู… C ุงู„ู„ูŠ ู‡ูˆ
613
00:47:38,750 --> 00:47:43,010
ุงู„ู„ูŠ ู‡ูˆ ุงู„ term ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ XK ู…ุซู„ุง ูˆุจุนุฏู‡
614
00:47:43,010 --> 00:47:46,370
ุจูŠุตูŠุฑ ูƒู„ ุงู„ู„ูŠ ุจุนุฏู‡ ุฃูƒุจุฑ ู…ู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ strictly
615
00:47:46,370 --> 00:47:52,310
ู…ู† C ูˆุฒูŠ ู…ุง ูˆุตู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ diversity ุฅุฐุง ุงู„ุขู† let X
616
00:47:52,310 --> 00:47:55,310
ุจูŠุณุงูˆูŠ XN ุจูŠุจู‚ู‰ sequence of non-zero real numbers
617
00:47:55,310 --> 00:48:01,110
and let A ุจูŠุณุงูˆูŠ limit N ููŠ ูˆุงุญุฏ ู†ุงู‚ุต XN ุฒุงุฆุฏ ูˆุงุญุฏ
618
00:48:01,110 --> 00:48:04,850
ุนู„ู‰ XN whenever this limit exists then the series
619
00:48:04,850 --> 00:48:08,030
summation XN is absolutely convergent when A ุฃูƒุจุฑ
620
00:48:08,030 --> 00:48:10,930
ู…ู† ูˆุงุญุฏ and this series is not absolutely
621
00:48:10,930 --> 00:48:13,790
convergent ููŠ A ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ูˆุฐุง ูƒุงู† let A ุจูŠุณุงูˆูŠ
622
00:48:13,790 --> 00:48:17,450
ูˆุงุญุฏ ูุนู„ุง ุทูŠุจ ูŠุนู†ูŠ ุฅูŠุด ุจูŠู‚ูˆู„ ู„ู‡ุŸ ุจูŠู‚ูˆู„ ู„ู‡ ุชุนุงู„ ุงุญุณุจ
623
00:48:18,370 --> 00:48:23,390
ุงุญุณุจ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ limit n ููŠ 1 ู†ุงู‚ุต xn ุฒุงุฆุฏ 1 ุนู„ู‰ xn
624
00:48:23,390 --> 00:48:26,490
ุฅุฐุง ุฌูŠุช ุงู„ limit as n goes to infinity ู„ู‡ุฐุง
625
00:48:26,490 --> 00:48:30,230
ุงู„ู…ู‚ุฏุงุฑ ูˆุจูŠูƒุณู‘ู„ู†ูŠ ุฃุตู„ุง ุฅุฐุง ุฌูŠุช ุงู„ limit ุจูŠุณุงูˆูŠ
626
00:48:30,230 --> 00:48:34,890
ุฑู‚ู… a ุฅุฐุง ูƒุงู† ุงู„ู„ูŠ ูƒุฏู‡ exist ูŠุนู†ูŠ ูˆู„ูˆ ุฌูŠุช ุจุณุงูˆูŠ a
627
00:48:34,890 --> 00:48:39,990
ุจุชูŠุฌูŠ ุงู„ุขู† ู„ู„ุญูƒู… ุฅุฐุง a ุจูŠุณุงูˆูŠ 1 ุจุชุญูƒูŠ ู„ูƒ ุฅุฐุง ุงู„ู€ A
628
00:48:39,990 --> 00:48:43,990
ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุนู„ู‰ ุชู‚ูˆู„ ุจุชู‚ูˆู„ converge ูˆุฅุฐุง ูƒุงู†ุช ุงู„ู€
629
00:48:43,990 --> 00:48:47,570
A ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ุจุชู‚ูˆู„ ุฅูŠู‡ุŸ ุงุดู…ุงู„ู‡ is not absolutely
630
00:48:47,570 --> 00:48:50,990
convergent ุญุชู‰ ู…ุด converge absolutely convergent
631
00:48:50,990 --> 00:48:54,650
ููŠ ุงู„ุฃูˆู„ู‰ ู„ู…ุง ุชูƒูˆู† A ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ was not
632
00:48:54,650 --> 00:48:59,370
absolutely convergent for A ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ
633
00:48:59,370 --> 00:49:05,370
ู†ูŠุฌูŠ ุงู„ุขู† ู„ ุงู„ู„ูŠ ู‡ูˆ ู†ูุชุฑุถ ุฃู†ู‡ ุงู„ limit ู‡ุฐู‡ exist
634
00:49:05,370 --> 00:49:11,180
ูˆู†ุตู„ ู„ ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ ุงู„ุขู† ู‡ุฐู‡ ุงู„ููƒุฑุฉ ุนู…ู„ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ
635
00:49:11,180 --> 00:49:15,940
ููŠ ุงู„ proof of Corolla 926 ุงู„ุขู† ุจุฏู†ุง ู†ูุชุฑุถ suppose
636
00:49:15,940 --> 00:49:21,040
that limit 1100-Xn ุฒูŠ 1Xn ูŠุณุงูˆูŠ ุฅูŠู‡ุŸ ุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
637
00:49:21,040 --> 00:49:25,800
ูˆุงุญุฏ ุงู„ุขู† suppose that
638
00:49:33,400 --> 00:49:40,040
limit n ููŠ 1 ู†ุงู‚ุต xn ุฒูŠ 1 ุนู„ู‰ xn ุจูŠุณุงูˆูŠ a ุฃูƒุจุฑ ู…ู† 1
639
00:49:40,040 --> 00:49:43,820
ู…ุฏุงู… ุงู„ limit ู‡ุฐุง exist ุฅุฐุง ู„ูƒู„ y ุฃูƒุจุฑ ู…ู† 0 ูŠูˆุฌุฏ
640
00:49:43,820 --> 00:49:47,900
ูŠูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ k such that ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู†ุงู‚ุต a ุฃุตุบุฑ
641
00:49:47,900 --> 00:49:51,280
ู…ู† y for every n ุฃูƒุจุฑ ูŠุณุงูˆูŠ k ุงู„ู„ูŠ ูŠุนู†ูŠ ุงู„ epsilon
642
00:49:51,280 --> 00:49:54,480
ุงู„ู„ูŠ ุจุฏุฃ ุงุฎุชุงุฑู‡ุง ุจุฏุฃ ุชุฎุฏู…ู†ูŠ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ู‡ูŠูƒ ููŠ
643
00:49:54,480 --> 00:49:59,320
ุงู„ proof ุชุจุน 109 ุงู„ู„ูŠ ู‡ูˆ 6 ุงู„ุขู† ุจู…ุง ุฃู†ู‡ a ุฃูƒุจุฑ ู…ู†
644
00:49:59,320 --> 00:50:04,180
ูˆุงุญุฏ ูŠุนู†ูŠ ุงู„ูุชุฑุฉ ุจูŠู† a ูˆุงู„ูˆุงุญุฏ ูˆุงู„ a ุฃูƒูŠุฏ ููŠ a
645
00:50:04,180 --> 00:50:09,740
ูˆุงุญุฏ ุจูŠู†ู‡ู… ุงู„ุขู† ุนู†ุฏูŠ ุงู„ a ูˆุงุญุฏ ุงู„ a ูˆุงุญุฏ ุงู„
646
00:50:09,740 --> 00:50:14,620
element ูˆุงุญุฏ ูˆุงู„ a ู„ูˆ ุฌูŠุช ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ a ูˆุงุญุฏ
647
00:50:14,620 --> 00:50:19,620
ุฃูƒุจุฑ ู…ู† ุงู„ a ูˆุฃุตุบุฑ ู…ู† ุงู„ a ุงู„ุขู† ุฎุฐ ุงู„ epsilon let
648
00:50:19,620 --> 00:50:24,900
epsilon ุจูŠุณุงูˆูŠ a minus a ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† 0 ุงู„ุขู† if
649
00:50:24,900 --> 00:50:30,410
there exist then There exists K element in N such
650
00:50:30,410 --> 00:50:35,390
that for every N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ K ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„
651
00:50:35,390 --> 00:50:39,990
N ููŠ ุงู„ูˆุงุญุฏ ู†ุงู‚ุต absolute value XN ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
652
00:50:39,990 --> 00:50:46,090
ุงู„ absolute value ู„ู„ XN ู†ุงู‚ุต ุงู„ A ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Y
653
00:50:46,090 --> 00:50:51,050
ุงู„ู„ูŠ ู‡ูŠ ุงู„ A minus A ูˆุงุญุฏ ููˆู‚ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ูŠุตูŠุฑ
654
00:50:51,050 --> 00:50:56,730
ุนุจุงุฑุฉ ุนู† ู‡ุฐุง absolute value ุฃุตุบุฑ ู…ู† ู‡ุฐุง ูˆุฃูƒุจุฑ ู…ู†
655
00:50:56,730 --> 00:51:01,650
ุงู„ู„ูŠ ู‡ูˆ A ู†ุงู‚ุต ุฃูˆ A ูˆุงุญุฏ ู†ุงู‚ุต A ู‡ุฐุง ุงู„ู„ูŠ ูŠู‡ู…ู†ูŠ
656
00:51:01,650 --> 00:51:06,370
ุงู„ุขู† ุงู„ุขู† ู‡ุชู„ุงุญุธ ุฅู† ุฅู† ููŠ ูˆุงุญุฏ ู†ุงู‚ุต absolute value
657
00:51:06,370 --> 00:51:10,630
of xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ absolute value of xn ุงู„ู„ูŠ ู‡ูˆ
658
00:51:10,630 --> 00:51:17,530
ุฃุตุบุฑ ุฌูŠุจ ู‡ุฐู‡ hand ุจูŠุตูŠุฑ ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ุฅูŠู‡
659
00:51:21,840 --> 00:51:25,820
ุฃูˆ ุฎู„ูŠู†ุง ู„ุฃ ู…ู† ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ ุฃู†ุง ู…ุด ุงู„ุฌู‡ุฉ ุฏูŠ ุฃูƒุจุฑ
660
00:51:25,820 --> 00:51:30,260
ู…ู† a ูˆุงุญุฏ ู†ุงู‚ุต a ูˆู†ุงู‚ุต a ุจุฌูŠุจู‡ุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ
661
00:51:30,260 --> 00:51:35,260
ุจูŠุตูŠุฑ ุฒุงุฆุฏ a ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃูƒุจุฑ ู…ู† a ุฒุงุฆุฏ a
662
00:51:35,260 --> 00:51:40,670
ูˆุงุญุฏ ู†ุงู‚ุต a ูŠุนู†ูŠ ุจุชุฑูˆุญ ุงู„ a ู…ุน ุงู„ A ู†ู‚ุต ูˆุงุญุฏ ูˆุจุตูŠุฑ
663
00:51:40,670 --> 00:51:45,090
ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃูƒุจุฑ ู…ู† A ูˆุงุญุฏ ุญูŠุซ ุงู„ A ูˆุงุญุฏ
664
00:51:45,090 --> 00:51:50,890
ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ A ูˆุงุญุฏ ุฃุตุบุฑ ู…ู† ู‡ุฐุง
665
00:51:50,890 --> 00:51:56,100
ุงู„ู…ู‚ุฏุงุฑ ู„ูƒู„ N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ K ูˆู…ู†ู‡ ุฎู„ูŠู†ุง ุจู†ุฌูŠุจ
666
00:51:56,100 --> 00:52:01,680
ุงู„ู„ูŠ ู‡ูˆ ุจู†ุฌุณู… ุนู„ู‰ N ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ 1
667
00:52:01,680 --> 00:52:06,480
ู†ุงู‚ุต ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† A1 ุนู„ู‰ N ุจู†ุฌูŠุจ ุงู„ู…ู‚ุฏุงุฑ
668
00:52:06,480 --> 00:52:09,840
ู‡ุฐุง N ูˆุจู†ุฌูŠุจ ู‡ุฐุง N ุจูŠุตูŠุฑ ุนู†ุฏูŠ XN ุฒุงุฆุฏ 1 ุนู„ู‰ XN
669
00:52:09,840 --> 00:52:15,300
ุฃุตุบุฑ ู…ู† 1 ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ A1 ุนู„ู‰ N ุทุจุนุง ุจุนุฏ ู…ุง ู‚ุณู…ู†ุง
670
00:52:15,300 --> 00:52:18,840
ู‡ุฐุง ุฃูˆู„ ุดูŠุก ูˆุจุนุฏูŠู† ุจู†ุฌูŠุจ ู‡ุฐุง N ุจุนุฏ ู…ุง ู‚ุณู…ู†ุงู‡
671
00:52:18,840 --> 00:52:22,120
ูˆุจู†ุฌูŠุจ ู‡ุฐุง N ุจูŠุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ููˆุฑุฃู† ุฃูƒุจุฑ
672
00:52:22,120 --> 00:52:26,400
ุดูˆูŠุฉ ุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ุตูˆุฑุฉ ู‡ุฐู‡ ุตูˆุฑุฉ ู…ูŠู†ุŸ ุตูˆุฑุฉ ุงู„ู„ูŠ
673
00:52:26,400 --> 00:52:31,140
ู‡ูŠ ุงู„ุฑุงู‚ุจุณุช ุงู„ุฃูˆู„ู‰ ุฅุฐุง ุจู‚ู‰ ุฑู‚ุงุจุณุช ู‡ูŠูƒูˆู† ุนู†ุฏู‡ ุงู„ู„ูŠ
674
00:52:31,140 --> 00:52:36,990
ู‡ูˆ ุจู…ุง ุฃู†ู‡ A ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู„ุฃู†ู‡ ุจูŠู† ุงู„ูˆุงุญุฏ ุจูŠู†
675
00:52:36,990 --> 00:52:41,070
ุงู„ูˆุงุญุฏ ูˆุงู„ A ู‡ูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุฑุงุจุณุชูŠุณ
676
00:52:41,070 --> 00:52:46,890
ุงู„ุตู…ู…ุดูŠ ู„ู„ ุฅูƒุณุงู† is absolutely convergent ูุฃุตุบุฑ ู…ู†
677
00:52:46,890 --> 00:52:52,630
ูˆุงุญุฏ ูุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ุจุฏูˆ ูŠุตูŠุฑ ุงู„ู…ูˆุถูˆุน ุงู„ุขู† ู…ุดุงุจู‡ ุจุณ
678
00:52:52,630 --> 00:52:56,090
ุจุชุฎุชู„ู ู…ู† ู‡ู†ุง ุฎู„ูŠ ุฃุชูŠ ู†ุดูˆู ู„ูƒู… ุฅูŠุงู‡ ูƒูŠู ุจูŠุฎุชู„ู
679
00:52:56,090 --> 00:53:03,220
ุงู„ุขู† for a ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† ูˆุงุญุฏ ู„ู…ุง ุชูƒูˆู† a ุฃุตุบุฑ ู…ู†
680
00:53:03,220 --> 00:53:06,040
ูˆุงุญุฏ ุจุฏุง ุชุจุชู„ูƒูˆุง ูŠุง ู„ู‡ from national exam is not
681
00:53:06,040 --> 00:53:10,420
absolutely convergent a ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ู…ุนู†ุงุชู‡ ุฃู†ู‡ ููŠ
682
00:53:10,420 --> 00:53:14,680
ุจูŠู†ู‡ู… a ูˆุงุญุฏ ุฎู„ุฌูŠู†ุง ู†ู‚ูˆู„ a ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ู„ุฅู†ู‡
683
00:53:14,680 --> 00:53:16,680
between any two real numbers there exists a real
684
00:53:16,680 --> 00:53:21,080
number ุงู„ู„ูŠ ู‡ูˆ a ูˆุงุญุฏ ุจูŠู† ุงู„ a ูˆ ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ
685
00:53:21,080 --> 00:53:26,810
ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ุนุงู„ูŠุฉ epsilon a ูˆุงุญุฏ ู†ุงู‚ุต a A1-A ูˆู‡ูŠ
686
00:53:26,810 --> 00:53:30,010
ุฃูƒุจุฑ ู…ู† 0 ูˆูƒู„ู‡ ู†ูุณู‡ ุฒูŠ ู…ุง ู‡ูˆ there exists such
687
00:53:30,010 --> 00:53:38,030
that ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃุตุบุฑ ู…ู† A 1-A ู‡ูˆ ุฃูƒุจุฑ ู…ู† ุงู„ู„ูŠ ู‡ูˆ
688
00:53:38,030 --> 00:53:42,530
ุณุงู„ุจ ุงู„ู„ูŠ ู‡ูˆ A-A1 ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ ุจุฏูŠุด ุฅูŠุงู‡ุง ุจุงุฎุฐ
689
00:53:42,530 --> 00:53:46,010
ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„
690
00:53:46,010 --> 00:53:50,110
ุจุงู„ุถุจุท ุจูŠุตูŠุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูˆุจุฌูŠุจ ู‡ุฐุง ุงู„ A ู‡ุงู…
691
00:53:50,110 --> 00:53:54,210
ุจูŠุตูŠุฑ ุฃุตุบุฑ ู„ู…ุง ู†ุงู‚ุต A ุชุฌู‡ุงู† ุจูŠุตูŠุฑ ุฒุงุฆุฏ A ู…ุน ู†ุงู‚ุต A
692
00:53:54,210 --> 00:53:58,710
ุจุชุฑูˆุญ ุจูŠุตูŠุฑ ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† A ูˆุงุญุฏ ุงู„ุขู† ู‡ุฐุง ุฃุตุบุฑ ู…ู†
693
00:53:58,710 --> 00:54:02,130
A ูˆุงุญุฏ ุฅุฐุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุจูƒุณุจ ุงู„ุฌู‡ุชูŠู† ุนู„ู‰ N ุจูŠุตูŠุฑ ุนู„ู‰
694
00:54:02,130 --> 00:54:06,090
N ูˆู‡ุฐู‡ ุจู†ุฌู„ู‡ุง ุนู„ู‰ ุงู„ุฌู‡ุฉ ู‡ุฐู‡ ูˆู‡ุฐู‡ ุจุฌูŠุจู‡ุง ู‡ู†ุง
695
00:54:06,090 --> 00:54:10,030
ุจูŠุตูŠุฑ ูˆุงุญุฏ ู†ุงู‚ุต A ูˆุงุญุฏ ุนู„ู‰ N ุฃุตุบุฑ ู…ู† absolute
696
00:54:10,030 --> 00:54:15,270
value XN ุฒุงุฆุฏ 1 ุนู„ู‰ ุงู„ absolute ู„ู„ XN ุจูƒูˆู† ุญุตู„ู†ุง
697
00:54:15,270 --> 00:54:20,250
ุนู„ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู†ุงู‚ุต A ูˆุงุญุฏ ุนู„ู‰ N ูˆู‡ุฐุง
698
00:54:20,250 --> 00:54:25,270
ุงู„ู„ูŠ ู‡ูˆ ู„ูƒู„ N ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ K ุฅุฐุง ุญุณุจ B ููŠ ุฑู‚ุงุจ ุงู„
699
00:54:25,270 --> 00:54:30,190
test ุจู…ุง ุฃู† A ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ุฅุฐุง ู‡ุฐู‡
700
00:54:30,190 --> 00:54:33,450
ุงู„ู„ูŠ ู‡ูŠ ุงู„ series ุงู„ู„ูŠ ู‡ูŠ summation ู„ู„ X absolute
701
00:54:33,450 --> 00:54:36,810
value XN is not convergent ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ summation
702
00:54:36,810 --> 00:54:40,690
ุงู„ู€ XN is not absolutely convergent ุฅุฐุง ุงู„ exercise
703
00:54:40,690 --> 00:54:45,390
ู‡ุฐุง ู‡ูŠู†ูŠ ูˆุถุญุช ู„ูƒู… ูŠุง ุฌู…ุงุนุฉ ุทูŠุจ
704
00:54:47,450 --> 00:54:51,130
ู„ุฃู† ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ุฅู„ุง ุฅูŠู‡ ุจุงู„ุณุงุนุฉ ูˆุงุญุฏ ู‚ู„ู†ุง No
705
00:54:51,130 --> 00:54:54,870
conclusion where either convergence or divergence
706
00:54:54,870 --> 00:55:00,490
is possible ุทูŠุจ ุฎู„ูŠู†ุง ู†ุดูˆู ุงู„ู„ูŠ ู‡ูˆ examples ุนู„ู‰
707
00:55:00,490 --> 00:55:04,670
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Raab's test ู‡ู†ุฑุฌุน ู„ู…ูŠู†ุŒ ู‡ู†ุฑุฌุน ู„ู„ูŠ ู‡ูˆ
708
00:55:04,670 --> 00:55:08,970
ุงู„ู€ B series ุชุจุนู†ุง ูˆู†ุดูˆู ูƒูŠู ู†ูˆุถุญ ุงู„ู„ูŠ ู‡ูˆ ุงู„ test
709
00:55:08,970 --> 00:55:12,230
ุชุจุนู†ุง ุงู„ู€ Raab's test ุฃูˆ ุงู„ู€ Corollary ุงู„ู„ูŠ ุนู„ูŠู‡
710
00:55:12,230 --> 00:55:25,120
ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ ู†ุณุชุฎุฏู…ู‡ุง ุนู†ุฏู†ุง ููŠ ุฃู…ุซู„ุชู†ุง ุงู„ุขู† ุฃุฎุฐู†ุง
711
00:55:25,120 --> 00:55:28,780
ุงู„ limit ุนู„ู‰ ุทูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ X ุฒุงุฆุฏ N ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
712
00:55:28,780 --> 00:55:33,520
ุงู„ Xn ุทุจุนู‹ุง ู‡ุฐู‡ ุฌุงู‡ุฒุฉ ูˆ positive ุฃุตู„ู‹ุง ุจูŠุตูŠุฑ ุนู†ุฏูŠ
713
00:55:33,520 --> 00:55:37,980
ุงู„ู„ูŠ ู‡ูˆ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงู„ xn ูˆุงุญุฏ ู†ุงู‚ุตู‡ุง ููŠ n
714
00:55:37,980 --> 00:55:42,380
ุญุณุจุชู‡ุง ูˆ ูŠุณุงูˆูŠ limit n ููŠ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n
715
00:55:42,380 --> 00:55:47,140
ุบู„ุจุชู‡ุง ุตุงุฑุช n<sup>b</sup> ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ูƒู„ ุฃุณ b ูˆ
716
00:55:47,140 --> 00:55:52,860
ูŠุณุงูˆูŠ limit ุนู†ุฏูŠ ุงู„ n ุงู„ู„ูŠ ู‡ูŠ ุฃุญุทุช ุงู„ู…ู‚ุงู…ุงุช ูุตุงุฑุช N
717
00:55:52,860 --> 00:55:56,060
ุฒุงุฆุฏ ูˆุงุญุฏ ุฃุณ b N ุฃุณ b ุนู„ู‰ N ุฒุงุฆุฏ ูˆุงุญุฏ ูˆูƒู„ ุฃุณ b ููŠ
718
00:55:56,060 --> 00:56:03,020
ู…ูŠู† ููŠ N ูˆูŠุณุงูˆูŠ ุงู„ N ุนุจุงุฑุฉ ุนู† N ุฒุงุฆุฏ ูˆุงุญุฏ ุฃุณ b ู†ุงู‚ุต
719
00:56:03,020 --> 00:56:08,660
N ุฃุณ b ุนู„ู‰ ูˆุงุญุฏ ุนู„ู‰ N ูˆู‡ุฐู‡ ุฌุจุช ู…ูŠู† ู„ุญุงู„ู‡ุง ูˆุงุญุฏ
720
00:56:08,660 --> 00:56:12,300
ุนู„ู‰ N ุฒุงุฆุฏ ูˆุงุญุฏ ุฃุณ b ูŠุนู†ูŠ ุฌุจุช ู‡ุฐู‡ ู‡ู†ุง ูˆู‡ุฐู‡ ูุตู„ุช
721
00:56:12,300 --> 00:56:17,280
ู„ุญุงู„ู‡ุง ุตุงุฑุช ู‡ุฐู‡ ููŠ ู‡ุฐู‡ ู„ุฃู† ู‡ุฐู‡ limit ู…ุนุฑูˆู ุตุงุฑ ุงู„ N
722
00:56:17,280 --> 00:56:22,980
limit ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ุขู† ูˆุงุญุฏ ุนู„ู‰ n ุฌูŠุช ุงู„ู„ูŠ
723
00:56:22,980 --> 00:56:29,860
ู‡ูˆ ุฌุณู…ุช ููˆู‚ ุนู„ู‰ n ุฃุณ b ูˆ ุชุญุช ุนู„ู‰ n ุฃุณ b ู…ุงุดูŠ
724
00:56:29,860 --> 00:56:33,760
ู„ู…ุง ุฌุณู…ุช ู‡ุฐุง ุนู„ู‰ n ุฃุณ b ุตุงุฑ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ
725
00:56:33,760 --> 00:56:37,760
ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ูƒู„ ุฃุณ b ูˆู‡ุฐู‡ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
726
00:56:37,760 --> 00:56:41,140
ูˆู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠ ุฏู„ุช ูˆู„ู…ุง ุฌุณู…ุช ู‡ุฐุง ุนู„ู‰ n ุฃุณ b
727
00:56:41,140 --> 00:56:45,770
ุตุงุฑุช ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุฃุณ b ุงู„ุขู† ูˆ ูŠุณุงูˆูŠุŒ
728
00:56:45,770 --> 00:56:50,550
ุงู„ุขู† limit ุงู„ุฃูˆู„ ููŠ limit ู…ูŠู†ุŸ ุงู„ุซุงู†ูŠ ุงู„ุขู† limit
729
00:56:50,550 --> 00:56:54,730
ุงู„ุซุงู†ูŠ ู‡ุฐุง ุณู‡ู„ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ููˆู‚ ุตุงุฑ ุนุจุงุฑุฉ ุนู†
730
00:56:54,730 --> 00:56:59,210
ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ุตูุฑ ุนู„ู‰ ุตูุฑุŒ ู„ูŠุดุŸ ู„ุฃู† as n goes to
731
00:56:59,210 --> 00:57:02,110
infinityุŒ ู‡ุฐู‡ ุจูŠุตูŠุฑ ุตูุฑุŒ ู‡ุฐู‡ ุจูŠุตูŠุฑ ูˆุงุญุฏุŒ ูˆ ูˆุงุญุฏ
732
00:57:02,110 --> 00:57:05,030
ุจูŠุทู„ุน ุตูุฑุŒ ูˆ ู‡ุฐู‡ ุตูุฑุŒ ุตูุฑ ุนู„ู‰ ุตูุฑุŒ ุฏู‡ ู†ุณุชุฎุฏู… ุงู„ู„ูŠ
733
00:57:05,030 --> 00:57:07,610
ู‡ูˆ ุจุงู„ุชุงู„ูŠ ุงู„ู€ L'Hรดpital's Rule ุงุณุชุฎุฏู…ุช ุงู„ู€
734
00:57:07,610 --> 00:57:11,450
ูˆุงุดุชู‚ู‚ุช ุงู„ู„ูŠ ููˆู‚ ูˆ ุงู„ู„ูŠ ุชุญุช ุจุงู„ู†ุณุจุฉ ู„ู„ n ุทุจุนู‹ุง ู‡ุฐุง
735
00:57:11,450 --> 00:57:14,970
ุงู„ limit ุทู„ุน ูˆ ุฎู„ุตู†ุง ูˆุงุญุฏ ุงุดุชู‚ู‚ู†ุง ุทุงู„ุน ุนุจุงุฑุฉ ุนู† b
736
00:57:14,970 --> 00:57:18,870
ููŠ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ูƒู„ ุฃุณ b ู†ุงู‚ุต ูˆุงุญุฏ ูุทู„ุน
737
00:57:18,870 --> 00:57:22,050
ุฏูˆู„ ุฌูˆุง ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n ุชุฑุจูŠุน ู„ู…ุง ูุถู„ุช ุงู„ู„ูŠ ุชุญุช
738
00:57:22,050 --> 00:57:25,570
ุจุฑุถู‡ ู‡ูŠุทู„ุน ู„ูŠู‡ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ n ุชุฑุจูŠุน ู‡ุฐุง ุจูŠุฑูˆุญ ู…ุน
739
00:57:25,570 --> 00:57:28,490
ุญุฏู‘ู‡ ุจูŠุตูŠุฑ ุนู†ุฏูŠ as n goes to infinity ู‡ุฐุง ุจูŠุฑูˆุญ
740
00:57:28,490 --> 00:57:32,310
ู„ู„ุตูุฑ ุฅุฐุง ุจูŠุตูŠุฑ ุฅูŠุด ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† b ููŠ
741
00:57:32,310 --> 00:57:36,510
ูˆุงุญุฏ ุฃุณ b ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู† ุฅูŠู‡ุŸ ุนู† b ุงู„ุขู†
742
00:57:36,510 --> 00:57:40,390
ู…ุง ุฏุงู… b ูˆ b ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏุŒ ุฅุฐุง ู…ู† ุงู„ู€ Corollary
743
00:57:40,390 --> 00:57:47,350
ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู€ B Series ุฅูŠุด ู…ุงู„ู‡ุงุŒ converges
744
00:57:47,350 --> 00:57:53,140
for b ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ูˆุงุญุฏ ุงู„ุขู† ููŠ ุญุงู„ุฉ ุงู„ูˆุงุญุฏ ู‚ู„ู†ุง
745
00:57:53,140 --> 00:57:56,460
ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ุงู„ู€ b ุจุชุทู„ุน ูˆุงุญุฏ ุงู„ู€ limit ุจูŠูƒูˆู† ุงู„
746
00:57:56,460 --> 00:58:00,720
test fail ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ ุจุณ ุจู†ุณุชุฎุฏู… ููŠู‡ุง ุงู„ test
747
00:58:00,720 --> 00:58:04,560
for convergence ุจุณ ููŠ ุญุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
748
00:58:04,560 --> 00:58:08,800
b ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุฃุซุจุชู†ุง ุฅู†ู‡ converge ุจุทุฑูŠู‚ุฉ ุงู„ู„ูŠ
749
00:58:08,800 --> 00:58:14,260
ูŠุฑู‚ุจ ุงู„ test ุงู„ุขู†
750
00:58:14,260 --> 00:58:20,270
ู„ูˆ ูƒุงู†ุช b ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู„ูˆ ูƒุงู†ุช b ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ
751
00:58:20,270 --> 00:58:26,270
ู‚ู„ู†ุง ุงู„ู„ูŠ ู‡ูŠ convergence
752
00:58:26,270 --> 00:58:31,570
ูˆ for b ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ no conclusion ุทูŠุจ ู†ูŠุฌูŠ
753
00:58:31,570 --> 00:58:38,400
ุงู„ุขู† ู„ู…ุซุงู„ ุขุฎุฑ use the Raab's test to the series
754
00:58:38,400 --> 00:58:42,040
summation ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุจุฏู†ุง
755
00:58:42,040 --> 00:58:48,240
ู†ุฃุฎุฐ ุงู„ู„ูŠ ู‡ูˆ limit ุงู„ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ xn ุจูŠุณุงูˆูŠ
756
00:58:48,240 --> 00:58:51,940
ูŠุนู†ูŠ ุจุฏู‡ ูŠู‚ูˆู„ ู„ูƒ ุฃู†ู‡ ุงุญู†ุง ู…ุง .. ู…ุง ุธุจุทุด ู…ุนู†ู‰ ุงู„ู„ูŠ ู‡ูˆ
757
00:58:51,940 --> 00:58:55,920
ู…ูŠู† ุงู„ ratio test ุงู„ุนุงุฏูŠ ูุจุฏู†ุง ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†
758
00:58:55,920 --> 00:58:59,980
ุงู„ Raab's test ุทูŠุจ ุดูˆููˆุง ู…ุนุงูŠุง limit xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
759
00:58:59,980 --> 00:59:04,480
xn ุงู„ xn ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ n ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ
760
00:59:04,480 --> 00:59:08,340
ูˆุงุญุฏ ูƒู„ู‡ ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ูุฅู† ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n
761
00:59:08,340 --> 00:59:11,960
ุงู„ู„ูŠ ู‡ูŠ ุงู„ xn ู‡ุฐู‡ ู„ู…ุง ุฌุณู…ุช ุทุจุนู‹ุง ูˆุฌู„ุจุช ููŠ ุงู„ุขุฎุฑ
762
00:59:11,960 --> 00:59:19,970
ูุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ n ุจูŠุณุงูˆูŠ ุฌุณู…ุช ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ุนู„ู‰ n ุจูŠุตูŠุฑ
763
00:59:19,970 --> 00:59:23,150
ุนุจุงุฑุฉ ุนู† ู‡ุฐู‡ ุฌุณู…ุชู‡ุง ุนู„ู‰ ู‡ุฐุง n ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
764
00:59:23,150 --> 00:59:26,270
ุงู„ n ุชุทู„ุน ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงู„ n ูˆู‡ุฐู‡ ุฒูŠ
765
00:59:26,270 --> 00:59:29,710
ู…ุง ู‡ูŠ n ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ู‡ุฐู‡ ูˆู‡ูŠ ุชุณุงูˆูŠ limit
766
00:59:29,710 --> 00:59:35,630
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ู†ุง ุจุฑุถู‡ ุฌุณู…ุช ุนู„ู‰ ู…ูŠู† ุนู„ู‰ n ุชุฑุจูŠุน ุตุงุฑ
767
00:59:35,630 --> 00:59:39,230
ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุชุฑุจูŠุน ูˆู‡ู†ุง ุนู„ู‰ n ุชุฑุจูŠุน ุตุงุฑุช
768
00:59:39,230 --> 00:59:43,650
ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงู„ n ุงู„ูƒู„ ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
769
00:59:43,650 --> 00:59:47,920
ู…ูŠู† n ุชุฑุจูŠุน ู„ุฃู† as n goes to infinity ู‡ุฐู‡ ูˆุงุญุฏ as
770
00:59:47,920 --> 00:59:51,940
n goes to infinity ู‡ุฐู‡ ูˆุงุญุฏ ูˆู‡ุฐู‡ ุตูุฑ ูˆู‡ุฐู‡ ูˆุงุญุฏ
771
00:59:51,940 --> 00:59:54,920
ูŠุนู†ูŠ ุงู„ู…ุญุตู„ุฉ ูˆุงุญุฏ ุฅุฐุง ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
772
00:59:54,920 --> 01:00:01,380
ุงู„ุขู† ุฅุฐุง ุจู‚ุตู‡ by corollary 926 does not apply ุฃูˆ
773
01:00:01,380 --> 01:00:05,640
corollary 926 ุงู„ู„ูŠ ู‡ูŠ ุงู„ ratio limit limit ratio
774
01:00:05,640 --> 01:00:12,830
limit ratio test does not ู‡ู†ุง ุงู„ู„ูŠ ู‡ูˆ applied ู„ูŠุดุŸ
775
01:00:12,830 --> 01:00:16,970
ู„ุฃู† ุงู„ limit ุงู„ู„ูŠ ุนู†ุฏูŠ ูˆุงุญุฏ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุจุฏู†ุง ุงู„ู„ูŠ
776
01:00:16,970 --> 01:00:22,790
ู‡ูˆ ู†ุญุงูˆู„ ู†ูˆุฌุฏ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู„ูˆ ุฌูŠุช ุฃูˆ ูˆุฌุฏุช ุงู„ู„ูŠ ู‡ูˆ
777
01:00:22,790 --> 01:00:27,370
ุจุฑุถู‡ ุจุงู„ Raab's test ุงู„ู„ูŠ ู‡ูˆ limit n ููŠ 1 ู†ุงู‚ุต xn ุฒูŠ
778
01:00:27,370 --> 01:00:31,190
1 ุนู„ู‰ xn ุงู„ู„ูŠ ู‡ูˆ ุญุงูˆู„ ุชูˆุฌุฏ ุงู„ limit ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ
779
01:00:31,190 --> 01:00:34,330
ุงู„ู„ูŠ ููˆู‚ ุจุณ ุฅู„ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงุญุณุจู‡ู† 1 ู†ุงู‚ุต ู‡ุฐู‡
780
01:00:34,330 --> 01:00:37,130
ูˆุจุนุฏูŠู† ุงุถุฑุจ ู…ู† ููŠ ุงู„ n ุญุงูˆู„ ุชูˆุฌุฏ ุงู„ limit ู‡ุชู„ุงู‚ูŠู‡
781
01:00:37,130 --> 01:00:41,230
ุจูŠุณุงูˆูŠ 1 ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ Raab's test ุจุฑุถู‡ ุฃู†ุง
782
01:00:41,230 --> 01:00:51,310
ุฃุดู…ู„ู‡ does not apply ู„ูƒู† ู„ูˆ ุฌูŠุช ู„ูˆ ุฌูŠุช ุงุทู„ุนุช ุนู„ู‰
783
01:00:51,310 --> 01:00:56,760
ุงู„ู…ู„ุงุญุธุฉ ุงู„ุชู‡ู„ูŠุฉ ุฃุจุฏู‹ุง ู†ูˆุฌุฏ ุญู„ู„ ุฃู…ุฑ Xn ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰
784
01:00:56,760 --> 01:01:00,240
Xn ู‡ุชู„ุงู‚ูŠ n ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ุฒุงุฆุฏ ูˆุงุญุฏ ูƒู„ ุชุฑุจูŠุน
785
01:01:00,240 --> 01:01:03,740
ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ n ุชุฑุจูŠุน ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ n ู‡ุฐุง ุงู„ู„ูŠ ููˆู‚
786
01:01:03,740 --> 01:01:09,800
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูŠ Xn ุฒุงุฆุฏ ูˆุงุญุฏ ูˆู‡ุฐุง ู…ู‚ู„ูˆุจ ู…ู† Xn ุงู„ุขู† ู„ูˆ
787
01:01:09,800 --> 01:01:16,060
ุฌูŠุช ุญุณุจุช ู‡ุฐู‡ ุฌุฑุจ ุฃู†ุช ุงุญุณุจ ู„ูŠ ุฃุซุจุช ู„ูŠ ุฃู†ู‡ it is an
788
01:01:16,060 --> 01:01:19,220
exercise to show that ุงู„ Xn ุฒูŠุงุฏุฉ ูˆุงุญุฏุฉ ู„ู„ Xn ุฃู†ู‡
789
01:01:19,220 --> 01:01:22,400
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ูŠ ุงู„ู„ูŠ ุทู„ุน ุนู†ุฏูŠ ู‡ุชู„ุงู‚ูŠู‡ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ
790
01:01:22,400 --> 01:01:28,150
n ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ n ุงู„ุขู† ู…ุง ุฏุงู… ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ู‡ุฐุง
791
01:01:28,150 --> 01:01:32,550
ูˆู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰
792
01:01:32,550 --> 01:01:36,770
n therefore by Raab's test ุงู„ู„ูŠ ู‡ูŠ b the series
793
01:01:36,770 --> 01:01:41,290
ุฅูŠุด ู…ุงู„ู‡ุง diverges ู„ุฃู†ู‡ ูƒุชุจุช ุนู„ู‰ ุตูˆุฑุฉ ูˆุงุญุฏ ู†ุงู‚ุต
794
01:01:41,290 --> 01:01:45,710
ูˆุงุญุฏ ุนู„ู‰ n ูˆู‡ุฐุง ุงู„ a ุชุณุงูˆูŠ ูˆุงุญุฏ ู…ุนู†ุงู‡ ุจุงู„ Raab's
795
01:01:45,710 --> 01:01:49,450
test ู‡ูŠูƒูˆู† ุงู„ series ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ summation ู„ู„ x
796
01:01:49,450 --> 01:01:52,570
and is not convergence is not absolutely
797
01:01:52,570 --> 01:01:57,310
convergence ุฃูˆ ุจู…ุนู†ู‰ ุขุฎุฑ diverges ูˆุจูƒูˆู† ู‡ูŠูƒ ุงุญู†ุง
798
01:01:57,310 --> 01:02:02,250
ุงู†ู‡ูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ section ุงู„ู„ูŠ ู‡ูˆ ุชุณุนุฉ ุงุซู†ูŠู† ูˆุงู„ู‰
799
01:02:02,250 --> 01:02:03,310
ู„ู‚ุงุก ุขุฎุฑ