abdullah's picture
Add files using upload-large-folder tool
55cea61 verified
raw
history blame
53.2 kB
1
00:00:04,960 --> 00:00:12,580
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 16 ููŠ ู…ุณุงู‚
2
00:00:12,580 --> 00:00:18,080
ุชุญู„ูŠู„ ุญู‚ูŠู‚ูŠ 2 ุฃูˆ ุชุญู„ูŠู„ ุฑูŠุงุถูŠ 2 ู„ุทู„ุจุฉ ูˆุทุงู„ุจุงุช ูƒู„ูŠุฉ
3
00:00:18,080 --> 00:00:22,820
ุงู„ุนู„ูˆู… ุจุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุจุบุฒุฉูƒู†ุง ุณู…ูŠูŠู†ู‡ุง ููŠ
4
00:00:22,820 --> 00:00:29,160
ุงู„ู…ุญุงุถุฑุฉ 15 ุฅู†ู‡ุง ุฌุฒุฆูŠู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุฐูƒุฑู†ุงู‡
5
00:00:29,160 --> 00:00:31,820
ููŠ ุงู„ู…ุญุงุถุฑุฉ 15 ูˆู‚ู„ู†ุง ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู‡ู†ุฐูƒุฑู‡ ููŠ
6
00:00:31,820 --> 00:00:35,780
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ูƒุฌุฒุก ุซุงู†ูŠ ู…ู† 15 ุจุณ ุงู„ุขู† ู„ุทูˆู„
7
00:00:35,780 --> 00:00:40,440
ูุชุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุณุงุจู‚ุฉู‡ู†ุณู…ูŠ ู‡ุฐุง ุงู„ุฌุฒุก ุงู„ุขู†
8
00:00:40,440 --> 00:00:43,060
ุงู„ู„ูŠ ู‡ูˆ ูƒุงู† ุงุณู…ู‡ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ู…ุญุงุถุฑุฉ 15 ู„ุฃ ุจุฏูŠ
9
00:00:43,060 --> 00:00:48,300
ุฃุณู…ูŠู‡ ู‡ูˆ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… 16 ูˆู‡ูˆ ุงู„ู„ูŠ ู‡ูˆ ุจุฏุงูŠุฉ ุณูŠูƒุดู†
10
00:00:48,300 --> 00:00:52,020
ุฌุฏูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุณุจุนุฉ ุฃุฑุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ the integration as
11
00:00:52,020 --> 00:00:56,260
a limit ุงู„ู„ูŠ ู‡ูˆ ุจุฏู†ุง ู†ุตู„ ุงู„ integration ุนู† ุทุฑูŠู‚
12
00:00:56,260 --> 00:01:01,880
ุงู„ู„ูŠ ู‡ูˆ the limit of Riemann sumุจุณ ุดุบู„ุฉ ุณุฑูŠุนุฉ ุนุดุงู†
13
00:01:01,880 --> 00:01:05,820
ู†ุฑุจุท ุจุงู„ุณุงุจู‚ ุจุงู„ู„ุงุญู‚ ุจุงู„ุญุงุถุฑ ุนุดุงู† ู†ูู‡ู… ุฅูŠุด ุงู„ู„ูŠ
14
00:01:05,820 --> 00:01:10,780
ุจู†ุญูƒูŠ ููŠู‡ ุฅุญู†ุง ุฅุฐุง ุจุชุชุธู‡ุฑุชุชุฐูƒุฑ ูˆุงุฎุฏู†ุง ุนู„ู‰ ุงู„ูุชุฑุฉ A
15
00:01:10,780 --> 00:01:17,200
ูˆB ูˆุนู…ู„ู†ุง ู„ู‡ุง ุชุฌุฒุฆุฉ P ุจุณุงูˆูŠุฉ X Note X ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„
16
00:01:17,200 --> 00:01:25,000
XN ูˆุนุฑูู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ Upper sum ุงู„ู„ูŠ ู‡ูˆ Upper ุงู„ู„ูŠ
17
00:01:25,000 --> 00:01:31,900
ู‡ูŠ L ูˆP L ู„ูˆ function ุนู†ุฏูŠ F ูุนู†ุฏูŠ F of X ุนู„ู‰
18
00:01:31,900 --> 00:01:39,160
ุงู„ูุชุฑุฉ ู…ู† A ู„ุนู†ุฏ B ุงู„ู„ูŠ ู‡ูˆ ุงู„ UpperF of B ูˆู‚ู„ู†ุง ู‡ูˆ
19
00:01:39,160 --> 00:01:44,780
ุนุจุงุฑุฉ ุนู† summation ู„ู„ M K ููŠ X K minus X K minus
20
00:01:44,780 --> 00:01:51,060
ูˆุงุญุฏ ุฒูŠ ู…ุง ุงู†ุชู… ุงู„ุฐุงูƒุฑูŠู† K ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ N ู‡ุฐุง
21
00:01:51,060 --> 00:01:54,900
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุณู…ู†ุงู‡ ุงู„ other sum ุงู„ M K ุทุจุนุง ู‡ูŠ ุงู„
22
00:01:54,900 --> 00:01:57,600
.. ุฒูŠ ู…ุง ุงู†ุชู… ุนุงุฑููŠู† ุงู„ supremum ุนู„ู‰ ุงู„ูุชุฑุฉ .. ุงู„
23
00:01:57,600 --> 00:02:01,040
supremum ู„ุฏุงู„ ุงู„ F ุงู„ supremum ู„ุฏุงู„ ุงู„ F ุนู„ู‰
24
00:02:01,040 --> 00:02:06,340
ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุฃู…ุงู…ูŠูˆุนู†ุฏูŠ ุงู„ L F of P ุฃูˆ P ูˆ F ุฒูŠ ู…ุง
25
00:02:06,340 --> 00:02:10,300
ุงุญู†ุง ุจู†ูƒุชุจู‡ุง ุนุจุงุฑุฉ ุนู† summation ุงู„ M K ููŠ X K
26
00:02:10,300 --> 00:02:14,680
minus X K minus ูˆุงุญุฏ K ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏู†ุง ูˆู‚ู„ู†ุง ู„ูˆ
27
00:02:14,680 --> 00:02:19,380
ุงุชูŠู†ุง ุงู„ other sum ุฃุฎุฏู†ุงู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ infimum ุงู„
28
00:02:19,380 --> 00:02:24,370
other sum ูˆู‚ู„ู†ุง ุฃุฎุฏู†ุงู„ู‡ ุงู„ infimumุจู†ุณู…ูŠู‡ U of F
29
00:02:24,370 --> 00:02:29,070
ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ infimum ู„ู€ U of F ูˆ B such
30
00:02:29,070 --> 00:02:32,370
that B element in the set of all partition B of I
31
00:02:32,370 --> 00:02:36,630
ูˆ ุฃุฎุฏู†ุง ุงู„ L of F ูˆ ู‚ู„ู†ุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ supremum
32
00:02:36,630 --> 00:02:41,300
ู„ู€ L of F ูˆ Bhighest B element in the set of all
33
00:02:41,300 --> 00:02:46,780
partitions B of I ู‚ู„ู†ุง ุฅู† F ู‡ุชูƒูˆู† integrable ุฅุฐุง
34
00:02:46,780 --> 00:02:50,460
ุงู„ู„ูŠ ู‡ูˆ ุงู„ lower integral ุจุณุงูˆู…ูŠู† ุงู„ upper
35
00:02:50,460 --> 00:02:55,580
integral ู‡ุฐุง ุงู„ู…ุฏุฎู„ ุงู„ู„ูŠ ุฏุฎู„ู†ุง ููŠู‡ ู„ุฅุซุจุงุช ุฃูˆ
36
00:02:55,580 --> 00:03:00,220
ู„ุชุนุฑูŠู ุฅู† F is integrable ู…ุฏุฎู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ upper
37
00:03:00,220 --> 00:03:03,650
sum ูˆุงู„lower sumุฃูˆ ุงู„ู€ Upper Integral ูˆุงู„ู€ Lower
38
00:03:03,650 --> 00:03:07,470
Integral ูŠูˆู… ู…ุง ูŠุชุณุงูˆู† ุจู†ุณู…ูŠู‡ ุงู„ู€ Integral ุงู„ู„ูŠ ู‡ูˆ
39
00:03:07,470 --> 00:03:10,670
ุนุจุงุฑุฉ ุนู† ู‚ูŠู…ุฉ ุงู„ู€ Integration ู„ู„ู€ F ุนู„ู‰ ุงู„ูุชุฑุฉ A
40
00:03:10,670 --> 00:03:17,640
ูˆBุงู„ุงู† ุงูŠุด ุงู„ู„ูŠ ู‡ู†ุณูˆูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู†
41
00:03:17,640 --> 00:03:21,300
ุงู„ู…ุญุงุถุฑุฉ
42
00:03:21,300 --> 00:03:24,300
ุงูˆ ุงู„ู„ูŠ ุงุญู†ุง ุณู…ูŠู†ุง ุงู„ู…ุญุงุถุฑุฉ 16 ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„
43
00:03:24,300 --> 00:03:29,840
section 7-4 ู‡ู†ุฏุฎู„ ู„ู„ integration ุจุฏุงุฎู„ุฉ ุฃุฎุฑู‰ ุนู†
44
00:03:29,840 --> 00:03:35,280
ุทุฑูŠู‚ ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ remansum ูˆู…ู† ุซู… ู†ู‚ูˆู„ ู†ุซุจุช ููŠ
45
00:03:35,280 --> 00:03:40,000
ุงู„ู†ู‡ุงูŠุฉ ุงู†ู‡ limit ุงู„ remansum ู„ู…ุง ูŠูƒูˆู† ู…ูˆุฌูˆุฏุจูƒูˆู†
46
00:03:40,000 --> 00:03:45,480
ู‡ูˆ ุงู„ู€ Integration ูˆู‡ุฐุง ู…ูƒุงูุฆ ุฃูˆ ูŠุญุฏุซ if and only
47
00:03:45,480 --> 00:03:50,580
if ุฅุฐุง ุญุฏุซุช ุงู„ู„ูŠ ู‡ูˆ ู…ุนู†ู‰ ุงู„ุชูƒุงู…ู„ ุจุตูŠุบุฉ ุงู„ Upper
48
00:03:50,580 --> 00:03:54,420
Sum ูˆุงู„Lower Sum ูŠุนู†ูŠ ุงู„ุขู† .. ุงู„ุขู† ููŠ ุนู†ุฏู†ุง ู…ุฏุฎู„ูŠู†
49
00:03:54,420 --> 00:03:57,660
ู„ู„ุฏุฎูˆู„ ู„ู„ุชูƒุงู…ู„ ุฅู…ุง ุนู† ุทุฑูŠู‚ ุงู„ Upper Sum ูˆุงู„Lower
50
00:03:57,660 --> 00:04:00,560
Sum ุฃูˆ ุงู„ Upper Integral ูˆุงู„Lower Integral ุฃูˆ ุนู†
51
00:04:00,560 --> 00:04:04,200
ุทุฑูŠู‚ ุงู„ู„ูŠ ู‡ูˆ ุงู„ Remain Sum ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ limit
52
00:04:04,200 --> 00:04:09,000
ู„ู„Remain Sumูˆุงู„ุชู†ูŠู† ู„ู…ุง ู†ูƒูˆู† ูƒู„ ูˆุงุญุฏ ุฐุงูƒ ุงู„ ..
53
00:04:09,000 --> 00:04:12,740
ุงู„ู…ู„ู‡ู…ุชู‡ ู…ูˆุฌูˆุฏ ูˆ ู‡ุฐุง ุงู„ upper ุจุณุงูˆูŠ ุงู„ lower ุจูƒูˆู†
54
00:04:12,740 --> 00:04:19,500
ุงู„ R equivalent ุฅูŠู‡ ุงู„ุขู†ุŸ ุฅูŠุด ุงู„ .. ุงู„ roman sumุŸ
55
00:04:19,500 --> 00:04:24,200
ุงุญู†ุง ุจุฑุถู‡ ุงู„ุชุฌุฒูŠุฉ ุฌุงุกุช ุชุฌุฒูŠุฉ ู‡ุงูŠ P ุจุณุงูˆูŠ X note ูˆ
56
00:04:24,200 --> 00:04:29,280
X ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„ XN ู‡ุงูŠ ุงู„ุชุฌุฒูŠุฉ ู‡ุงูŠ X note ูˆ ู‡ุงูŠ X
57
00:04:29,280 --> 00:04:32,700
ูˆุงุญุฏ ูˆู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูˆุถุงุฌูŠุฉ XK minus ูˆุงุญุฏ ู„ุนู†ุฏ ุงู„ XK
58
00:04:33,370 --> 00:04:40,570
ุงู„ุงู† ุงู„ู€ Riemann Sum ุจู†ุฎุชุงุฑ ููŠ ุงู„ู€ Intervals ู†ู‚ุทุฉ
59
00:04:40,570 --> 00:04:45,830
ุนุดูˆุงุฆูŠุฉ ู„ุง ุชู‚ูˆู„ ู„ูŠ ู„ุง ุฃูƒุจุฑ ูˆุงุญุฏุฉ ูˆู„ุง ุฃุตุบุฑ ูˆุงุญุฏุฉ
60
00:04:45,830 --> 00:04:49,150
ูˆู„ุง ูƒุฐุง ู„ุฃ ู†ู‚ุทุฉ ุนุดูˆุงุฆูŠุฉ ูˆุจู†ุณู…ูŠู‡ุง ู…ุซู„ุง ู„ูˆ ู‚ู„ุช ู„ูƒ
61
00:04:49,150 --> 00:04:54,970
ุงู„ู‡ู† ุจุณู…ูŠู‡ุง XIK ุงู„ุงู† XIK ู‡ุฐู‡ ุตุงุฑุช element ููŠ ุงู„ู€
62
00:04:54,970 --> 00:05:02,000
XK-1 ูˆุงู„ู€ xk ุงู„ุขู† ุจุฏูŠ ุจุถุฑุจ ุงู„ x ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูŠ ุทูˆู„
63
00:05:02,000 --> 00:05:05,140
ุงู„ูุชุฑุฉ ุฒูŠ ู…ุง ุถุฑุจุชู‡ุง ุฒูŠ ู…ุง ูˆุฌุฏุช ุงู„ sum ุงู„ู„ูŠ ู‡ูˆ ุงู„
64
00:05:05,140 --> 00:05:09,020
upper sum ู‡ู†ุง ุจูˆุฌุฏ ู‡ู†ุง ุจุณ ุจุณุชุจุฏู„ ุงู„ mk ูˆ ุงู„ mk
65
00:05:09,020 --> 00:05:13,380
small ูˆ upper ุจุณุชุจุฏู„ู‡ุง ุจู‚ูŠู…ุฉ ุงู„ function ุนู†ุฏ ู‡ุฐู‡
66
00:05:13,380 --> 00:05:18,270
ุงู„ู†ู‚ุทุฉ ุงู„ุนุดูˆุงุฆูŠุฉ ุงู„ู„ูŠ ุงุฎุชุฑุชู‡ุงุงู„ู„ูŠ ู‡ูŠ ุจูŠุณู…ูŠู‡ุง xik
67
00:05:18,270 --> 00:05:24,190
ูุจุตูŠุฑ xk minus xk minus 1 ููŠ ุงู„ F ุนู†ุฏ xik ูˆ ุจุงุฎุฏู‡
68
00:05:24,190 --> 00:05:28,290
ุงู„ summation k ู…ู† ุนู†ุฏ 1 ู„ุนู†ุฏ n ูˆ ู‡ุฐุง ุงู„ู„ูŠ ุจูŠุณู…ูŠู‡
69
00:05:28,290 --> 00:05:36,030
ุงู„ุฑู…ุงู† ุตู… S of B ุฃูˆ ู…ูŠู† ูˆ F S of B ุฃูˆ F ูˆ ู‡ุฐุง ุงู„ู„ูŠ
70
00:05:36,030 --> 00:05:43,470
ุจูŠุณู…ูŠู‡ ุงู„ุฑู…ุงู† ุตู… ููŠ ุงู„ู†ู‡ุงูŠุฉ ู‡ู†ุตู„ูƒู… ุฃู†ู‡ ู„ูˆ ูƒุงู† ุงู„
71
00:05:43,470 --> 00:05:49,710
limitู„ู„ู€ S, P ูˆ F as ุงู„ู€ N goes to infinity ูŠุนู†ูŠ
72
00:05:49,710 --> 00:05:53,630
ุงู„ู€ N ุงู„ู„ูŠ ู‡ูŠ ุฒุบุฑู†ุง ุงู„ูุชุฑุฉ ุตุงุฑุชู‡ุง ุงู„ุฌุฏู‘ุฉ ูˆ ุฒุบุฑู†ุง
73
00:05:53,630 --> 00:05:57,090
ุตุงุฑุชู‡ุง ุงู„ูุชุฑุฉ .. ู„ู…ุง ุชูƒูˆู† N ุชุฑูˆุญ ุฅู„ู‰ ู†ู‡ุงูŠุฉ ู…ุนู†ุงุชู‡
74
00:05:57,090 --> 00:05:59,590
ุฃู† ุตุงุฑุช ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู‡ูŠ ูˆ ูƒุฃู†ู‡ ุงู„ูุชุฑุงุช ุนุจุงุฑุฉ ุนู†
75
00:05:59,590 --> 00:06:05,130
ุฎุทูˆุท ุฌู†ุจ ุจุนุถ ู‡ุฐู‡ ุงู„ุฎุทูˆุท ุจุชู†ุทุจู‚ ุงู„ู€ XK ูˆ XK-1 ูˆ XIK
76
00:06:05,130 --> 00:06:10,950
ุนู„ู‰ ุจุนุถ ูˆ ูƒุฃู†ู‡ ุจุชุณูŠุฑ ูƒู„ ุฎุท ุฌู†ุจ ุฎุท ุฌู†ุจ ุฎุท ุฅู„ู‰ ู‚ูŠู…ุฉ
77
00:06:10,950 --> 00:06:14,640
ุงู„ู„ูŠ ู‡ูˆ ู…ุฌู…ูˆุน ู‡ุฐู‡ ุงู„ุฎุทูˆุท ุฒูŠ ู…ุง ุญูƒูŠู†ุง ู‚ุจู„ ู‡ูŠูƒุงู„ู„ูŠ
78
00:06:14,640 --> 00:06:18,820
ุจุชุนู…ู„ ุงู„ู…ุณุงุญุฉ ุชุญุช ุงู„ู…ู†ุญู†ู‰ ููŠ ุญุงู„ุฉ ุงู„ู…ูˆุฌุจ ูˆู…ู† ุซู… ู‡ูŠ
79
00:06:18,820 --> 00:06:21,740
ู‡ุชุนู…ู„ ู„ูŠ ู‚ูŠู…ุฉ ุงู„ integration ูŠุนู†ูŠ ู„ู…ุง ูŠูƒูˆู† ุงู„
80
00:06:21,740 --> 00:06:24,420
limit ู„ู€Riemann sum as N goes to infinity exist
81
00:06:24,420 --> 00:06:29,380
ูˆุณูˆู‘ุช ู„ูŠ ุฑู‚ู… ุงุณู…ู‡ ุฅูŠู‡ ู‡ุฐุง ุงู„ุฑู‚ู… ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„
82
00:06:29,380 --> 00:06:33,900
integration ุฅูŠู‡ ู„ู€ BF of X DX ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ู‡ุฐุง
83
00:06:33,900 --> 00:06:38,400
ุงู„ู„ูŠ ููŠ ุงู„ู†ู‡ุงูŠุฉ ุจุฏู†ุง ู†ุตู„ ุฅู„ูŠู‡ ุฃูˆ ู†ูˆุตู„ูƒู… ุฅู†ู‡ ููŠ
84
00:06:38,400 --> 00:06:42,680
ุญุงู„ุฉ ูˆุฌูˆุฏ ู‡ุฐุง ุงู„ limit ู‡ูŠูƒูˆู† ู‡ูˆ ุงู„ integration
85
00:06:42,680 --> 00:06:47,040
ุงู„ู„ูŠ ุจู…ูู‡ูˆู… ุงู„ upper sum ูˆุงู„lower sum ูŠุนู†ูŠ
86
00:06:47,040 --> 00:06:53,160
ุงู„ุฏุฎู„ุชูŠู† ุจู‚ุฏ ุฅู„ู‰ ู†ูุณ ุงู„ู‚ูŠู…ุฉ ุฃูˆ ุฅู„ู‰ ู†ูุณ ุงู„ู†ุชูŠุฌุฉ
87
00:06:54,950 --> 00:06:59,130
ูŠุนู†ูŠ ููŠ ุจุนุถ ุงู„ูƒุชุจ ุจุชุนุฑูู„ูƒ ุฃุตู„ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„
88
00:06:59,130 --> 00:07:04,430
integration as a limit of remansum ููŠ ูƒุชุจ ูˆ ู‡ุฐุง
89
00:07:04,430 --> 00:07:09,650
ุบุงู„ุจุง ููŠ ุงู„ calculus ุจูŠุดุชุบู„ูˆู‡ ูˆ ููŠ ูƒุชุจ ุจุชุนุฑูู‡ ุนู†
90
00:07:09,650 --> 00:07:12,230
ุทุฑูŠู‚ ุงู„ other sum ูˆ ู„ุง other sum ููŠ ุงู„ calculus
91
00:07:12,230 --> 00:07:15,930
ู„ุฃู†ู‡ ู…ู„ุฒู…ุด ู„ Supremum ูˆ ู„ Infimum ู„ุฅู† ุงู„ุทุงู„ุจ ู…ูู‡ู…
92
00:07:15,930 --> 00:07:20,370
ุงู„ Supremum ูˆู…ูู‡ู… ุงู„ Infimum ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ู†ุงุถุฌ
93
00:07:24,160 --> 00:07:29,980
ุจุนุฏ ู‡ุฐู‡ ุงู„ู…ู‚ุฏู…ุฉ ุนู† ุงู„ู…ูˆุถูˆุน ุฎู„ู‘ูŠู†ุง ู†ุฏุฎู„ ุฅู„ู‰ู‡ ุจุดูƒู„
94
00:07:29,980 --> 00:07:34,700
ุชูุตูŠู„ูŠ The integration as a limit ู„ุช I ุงู„ู„ูŠ ู‡ูŠ ุงู„
95
00:07:34,700 --> 00:07:36,820
interval ุงู„ู„ูŠ ุงู†ุง ุจุฏู‡ ุงุดุชุบู„ ุนู„ูŠู‡ุง ูˆ ุงู„ function
96
00:07:36,820 --> 00:07:40,260
ุฃูู†ุงู† I ู„R ุนุจุงุฑุฉ ุนู† bounded function ูˆ ุฎุฏู†ุง ุงู„ B
97
00:07:40,260 --> 00:07:44,440
ู‡ูˆ ุงู„ partition ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ ูˆ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุฅุฐุง ุฃุฎุฏู†ุง
98
00:07:44,440 --> 00:07:50,470
XI 1 ูˆ XI 2 ูˆ XI N ุนุจุงุฑุฉ ุนู† arbitrary numbersุงู„ู„ูŠ
99
00:07:50,470 --> 00:07:53,330
ู‡ูˆ ุงู„ู€ x i 1 ููŠ ุงู„ .. ููŠ ุงู„ .. ููŠ ุงู„ interval x
100
00:07:53,330 --> 00:07:57,270
not x 1 x i 2 ููŠ ุงู„ interval ุงู„ู„ูŠ .. ุงู„ู„ูŠ ุจุนุฏู‡ุง
101
00:07:57,270 --> 00:08:00,810
ุงูŠู‡ ุงุฎุฑู‡ ูŠุนู†ูŠ ุงู„ x i k ู‡ูŠ ููŠ ุงู„ .. ุงู„ูุชุฑุฉ ุงู„ู†ู…ูˆุฐุฌ
102
00:08:00,810 --> 00:08:06,130
ุงู„ุฐุงุฏูŠุฉ x k minus 1 x k ู„ k ู…ู† 1 ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู†
103
00:08:06,130 --> 00:08:08,570
ุงู„ sum ุงู„ู„ูŠ ู‚ูˆู„ู†ุง ุนู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„
104
00:08:08,570 --> 00:08:12,530
summation ู„ู„ F of x i k ู…ุถุฑูˆุจ ููŠ x k ู†ุงู‚ุต x k
105
00:08:12,530 --> 00:08:17,110
minus 1 ู‡ุฐุง ุงู„ summation ู…ู† 1 ู„ุนู†ุฏ ุงู† ู‡ู… ู‡ูˆ ุจุฑู…ุฒู‡
106
00:08:17,110 --> 00:08:21,030
ู„ู„ุฑู…ุฒ SPUF ุงู„ู„ูŠ ู‡ูˆ ุจุณู…ูŠู‡ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† the
107
00:08:21,030 --> 00:08:25,810
remand sum ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
108
00:08:25,810 --> 00:08:30,150
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
109
00:08:30,150 --> 00:08:31,170
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
110
00:08:31,170 --> 00:08:32,670
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
111
00:08:32,670 --> 00:08:33,050
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
112
00:08:33,050 --> 00:08:33,610
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
113
00:08:33,610 --> 00:08:34,330
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
114
00:08:34,330 --> 00:08:36,290
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู…
115
00:08:36,290 --> 00:08:43,690
ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ุฑูŠ
116
00:08:43,710 --> 00:08:48,550
ู„ุฃู† ุงู„ู€ F of XI K ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุนุดูˆุงุฆูŠุฉ ู‡ุฐู‡
117
00:08:48,550 --> 00:08:53,190
ุฃูƒูŠุฏ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ inf mum ุนู„ู‰ ูƒู„ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ
118
00:08:53,190 --> 00:08:57,710
ููŠ ุงู„ sub interval ู‡ุฐู‡ ูˆ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ูˆ ุฃุตุบุฑ ุฃูˆ
119
00:08:57,710 --> 00:09:01,730
ูŠุณุงูˆูŠ ู…ู† ุงู„ super mum ูŠุนู†ูŠ F of XI K ู‡ุฐู‡ ู†ู‚ุทุฉ
120
00:09:01,730 --> 00:09:05,490
ุนุดูˆุงุฆูŠุฉ ุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฃุตุบุฑ ูˆุงุญุฏุฉ ุฃูˆ ุฃุตุบุฑ ุงู„ู„ูŠ ู‡ูˆ
121
00:09:05,490 --> 00:09:10,070
ุงู„ inf mum ูˆ ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุงู„ super mum
122
00:09:10,610 --> 00:09:13,890
ู‡ุฐุง ู„ูƒู„ ู…ูŠู† ู„ูƒู„ sub interval ูŠุนู†ูŠ ู‡ูŠ sub interval
123
00:09:13,890 --> 00:09:20,810
xk minus ูˆุงุญุฏ ูˆู‡ูŠ xk ูˆู‡ูŠ xik ุฃูƒูŠุฏ ุงู„ู„ูŠ ู‡ูˆ f of xik
124
00:09:20,810 --> 00:09:29,210
ู‡ู†ุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฃูƒุจุฑ ูˆุงุญุฏุฉ ูˆุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฃูƒุจุฑ
125
00:09:29,210 --> 00:09:34,020
ูˆุงุญุฏุฉ ูˆุฃูƒุจุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฃุตุบุฑ ูˆุงุญุฏุฉุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ MK
126
00:09:34,020 --> 00:09:38,580
ูุจูƒูˆู†
127
00:09:38,580 --> 00:09:43,360
ุฏุงูŠู…ุง ู‡ูŠ ู‡ุฐู‡ ุฏูŠ ูˆ ู‡ุฐู‡ ุฏูŠ ูˆ ู‡ุฐู‡ ุฏูŠ ุฎุฏูˆุง ุงู„ุขู† ุถุฑุจูˆู„ูŠ
128
00:09:43,360 --> 00:09:47,680
ู‡ู†ุง ูˆู‡ู†ุง ูˆู‡ู†ุง ุถุฑุจูˆู„ูŠ ููŠ XK-XK-Y ุญุท ุทูˆู„ ุงู„ูุชุฑุฉ
129
00:09:48,770 --> 00:09:52,070
ูˆุงุฎุฏูˆุง ุงู„ู€ summation ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุฃู† ุจูŠุตูŠุฑ ู‡ุฐุง
130
00:09:52,070 --> 00:09:55,670
ุจูŠู…ุซู„ ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฃุจุฑ ุตู… ูˆู‡ุฐุง ุจูŠู…ุซู„ ู„ูŠ ุงู„ุฃูˆุฑ ุตู…
131
00:09:55,670 --> 00:10:00,070
ูˆู‡ุฐุง ุจูŠู…ุซู„ ู„ูŠ ู…ูŠู†ุŸ ุงู„ุฑูŠู…ุงู† ุตู… ุฅุฐู† ุงู„ุฑูŠู…ุงู† ุตู… ุฏุงุฆู…ุง
132
00:10:00,070 --> 00:10:05,250
ุจูŠู† ุงู„ุฃุจุฑ ูˆุจูŠู† ุงู„ุฃูˆุฑ ู„ุฃูˆู„ู‡ ุฃุตู„ุง ู†ุญู† ู„ูŠุด ุจูŠุณู…ูŠู‡ู…
133
00:10:05,250 --> 00:10:10,210
ุฃุจุฑ ูˆ ู„ุงูˆุฑ ุนุณู‰ ุฅู† ูƒู„ ุงู„ู„ูŠ ุบูŠุฑู‡ู… ุงู„ุฃุจุฑ ูƒู„ ุงู„ู„ูŠ
134
00:10:10,210 --> 00:10:14,350
ุบูŠุฑู‡ู… ุฃุตุบุฑ ูŠุณูˆูŠู‡ู… ูˆูƒู„ ุงู„ู„ูŠ ุบูŠุฑู‡ู… ุงู„ุฃูˆุฑ ุฃูƒุจุฑ ู…ู†ู‡ู…
135
00:10:14,350 --> 00:10:21,060
ุฃูˆ ูŠุณูˆูŠู‡ู… ุงู„ุชุณู…ูŠุฉ ุฌุฒุก ู…ู† ุงู„ู…ูู‡ูˆู…ุฃูˆ ุชุณุชู‚ุฑ ู…ู†
136
00:10:21,060 --> 00:10:27,020
ุงู„ู…ูู‡ูˆู… ูŠุนู†ูŠ ุจู†ุณู…ูŠู‡ุง ู…ุด ู…ุนู‚ูˆู„ ู‡ูŠ ุฃุจุฑ ูˆู†ุณู…ูŠู‡ุง ู„ุงุจุฑ
137
00:10:27,020 --> 00:10:32,520
ุฃูˆ ุฃุจุฑ ูˆู†ุณู…ูŠู‡ุง ุงุณู… ูŠุฎุงู„ู ุงู„ุฃุจุฑ ูุฃูƒูŠุฏ ุงุฎุชุฑู†ุง ุงุณู…
138
00:10:32,520 --> 00:10:37,660
ุงู„ุฃุจุฑ ุนุดุงู† ู‡ูŠ ูุนู„ุง ุฃุจุฑุทูŠุจ ู†ุฌูŠ ุงู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰
139
00:10:37,660 --> 00:10:43,520
let a ูˆ b ุนุจุงุฑุฉ ุนู† ูุชุฑุฉ ู…ุบู„ู‚ุฉ ูˆ bounded ูˆ let f ู…ู†
140
00:10:43,520 --> 00:10:46,960
I ู„ R be integrable on I ู†ูุชุฑุถ ุงู† ุงู ุงุฐุง ุงุญู†ุง ู„ู…ุง
141
00:10:46,960 --> 00:10:49,880
ู†ุญูƒูŠ integrable ู…ุนู†ุงุชู‡ integrable in the sense of
142
00:10:49,880 --> 00:10:53,340
definition 716 ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุนุชู…ุฏ ุนู„ู‰ ุงู„ U of F
143
00:10:53,340 --> 00:10:58,080
ุจุชุณุงูˆูŠ ุงู„ O of Fุงู„ุงู† let F ู…ู† I ู„ R ุจูŠู‡ Integrable
144
00:10:58,080 --> 00:11:01,940
I ุฒูŠ ู…ุง ุจุฃูƒุฏ in the sense of definition 716 ุงู„ู„ูŠ
145
00:11:01,940 --> 00:11:09,070
ุญูƒูŠุชู‡ ุฅุฐุง ู„ูƒู„ ูŠ ุฃูƒุจุฑ ู…ู† ุณูุฑ is givenThere exists a
146
00:11:09,070 --> 00:11:11,470
partition by ุจูŠ ุฅุจุณู„ูˆู† such that if ุจูŠ is any
147
00:11:11,470 --> 00:11:15,610
partition that is a refinement of ุจูŠ ุฅุจุณู„ูˆู† and if
148
00:11:15,610 --> 00:11:19,930
ุฃุณ ุจูŠ ูˆ ุฃู is any remaining sum for ุฃู then ู‡ูŠูƒูˆู†
149
00:11:19,930 --> 00:11:24,110
ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุฃุณ ุจูŠ ูˆ ุฃู ู†ุงู‚ุต ุงู„ integration ู„ุฃู
150
00:11:24,110 --> 00:11:29,210
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ุจู‚ูˆู„ ุจุงุฎุชุตุงุฑ ูŠุนู†ูŠ ู„ูˆ ูุฑุถู†ุง
151
00:11:29,210 --> 00:11:34,490
ุฃู integrable ุงู„ู„ูŠ ู‡ู†ุฎุฏ ู„ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ุจู‚ุฏุฑ
152
00:11:34,490 --> 00:11:40,550
ุฃุฌูŠู„ูƒ partition ุจูŠ ุฅุจุณู„ูˆู†ุจุญูŠุซ ุงู†ู‡ ุงูŠ ุจูŠ ุจุงุฑุชูŠุดู†
153
00:11:40,550 --> 00:11:45,390
refinement ู„ุจูŠุจุณู„ูˆู† refinement ู…ุนู†ุงุชู‡ ุงู„ุจูŠ ุจุญุชูˆู‰
154
00:11:45,390 --> 00:11:50,910
ู…ูŠู† ุงู„ุจูŠุจุณู„ูˆู† ุชุญุณูŠู†ู„ู‡ ู‡ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ remain sum S
155
00:11:50,910 --> 00:11:55,150
ุจูŠ ูˆ F ู‡ุฐุง ู†ุงู‚ุต integration ู„ู„ู ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู†
156
00:11:55,150 --> 00:12:04,090
ุงุจุณู„ูˆู† ูŠุนู†ูŠ ุงู„ุขู† F is integrable ูŠุง ุฌู…ุงุนุฉุงู„ุฃู† for
157
00:12:04,090 --> 00:12:08,070
every epsilon ุฃูƒุจุฑ ู…ู† 0 there exist ุจูŠ ุงุจุณู„ูˆู† such
158
00:12:08,070 --> 00:12:12,490
that for every ุจูŠ ุชุญุชูˆูŠ ุจูŠ ุงุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู„ูŠ
159
00:12:12,490 --> 00:12:20,110
ุฌูŠุชู‡ and for every man some ุฃุณ ู„ู„ุจูŠ ูˆุงู„ุฃูู‡ูŠูƒูˆู†
160
00:12:20,110 --> 00:12:25,410
ุนู†ุฏูŠ ุงู„ู€ absolute value ุจูŠู† ุงู„ู€ S ุจูŠ ูˆ F ู†ุงู‚ุต ุงู„ู„ูŠ
161
00:12:25,410 --> 00:12:31,890
ู‡ูˆ ุงู„ integration ู…ู† A ู„ B ู„ู„ F ุฃุตุบุฑ ู…ู† 100 ู…ู†ุงูุณุฉ
162
00:12:31,890 --> 00:12:35,790
ูŠุนู†ูŠ ุฌุงุนุช ุจู‚ูˆู„ ุฃุฎูŠ ูŠุนู†ูŠ ุฃุตู„ุง ูŠุนู†ูŠุฃู†ูŠ ู‡ุฐุง ููŠ ุงู„ุขุฎุฑ
163
00:12:35,790 --> 00:12:39,910
ููŠ ุงู„ุขุฎุฑ ููŠ ุงู„ุขุฎุฑ ููŠ ุงู„ุขุฎุฑ ู‡ุชู„ุงู‚ูŠ ุงู„ุฑูŠู…ุงู† ุตู… ุงู„ู„ูŠ
164
00:12:39,910 --> 00:12:43,890
ู‡ูˆ ูŠูƒูˆู† ุจูŠู†ู‡ ูˆ ุจูŠู† ุงู„ F ุฅูŠุด ู…ุง ู„ู‡ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†
165
00:12:43,890 --> 00:12:47,870
ู„ู…ุง ุชูƒูˆู† ุงู„ ุฅูŠุด ุงู„ F ุงู„ู„ูŠ ู‡ูŠ Integral ูŠุนู†ูŠ ุจู„ุงู‚ูŠ
166
00:12:47,870 --> 00:12:52,890
ุจูŠ ุฅุจุณู„ูˆู† ุจุถู…ู†ูƒ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุถู…ู†ูƒ ู…ุด ุงู„ ุจูŠ ุฅุจุณู„ูˆู†
167
00:12:52,890 --> 00:12:58,550
ุจุณ ูˆ ูƒู„ ุงู„ refinement ูŠุนู†ูŠ ูƒู„ ุงู„ refinement ูŠุนู†ูŠ
168
00:12:58,550 --> 00:13:05,310
ูƒู„ ู…ุง ู†ุฒูŠุฏ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ partitionูŠุนู†ูŠ ูƒู„ ู…ุง ู†ูƒุจุฑ
169
00:13:05,310 --> 00:13:09,810
ุงู„ุงู† ูŠุนู†ูŠ ูˆ ูƒุฃู†ู‡ ุจู‚ูˆุฏู†ุง ู„ู„ู„ูŠ ุจุฏู†ุง ู†ุญูƒูŠู‡ ู‚ุฏุงู… ุงู†ู‡
170
00:13:09,810 --> 00:13:15,770
ู„ู…ุง ุงู„ุงู† ุชุฑูˆุญ ู„ู…ุงู„ุฉ ู†ู‡ุงูŠุฉ limit ุงู„ remand sum ุฅุฐุง
171
00:13:15,770 --> 00:13:18,950
ูƒุงู†ุช ู…ูˆุฌูˆุฏุฉ integrable ู‡ูŠุณุงูˆูŠ ุงู„ integration
172
00:13:18,950 --> 00:13:23,870
ูˆุงู„ุนูƒุณ ู‡ู†ู„ุงู‚ูŠู‡ ุตุญูŠุญ ุจุฑุถู‡ ู‡ูŠุณูŠู‡ definition ุทูŠุจ ููŠ
173
00:13:23,870 --> 00:13:26,870
ุจุนุถ ุงู„ูƒุชุจ ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงูˆ ู„ูˆ ุจุฏู†ุง ู†ุณู…ูŠู‡ definition
174
00:13:26,870 --> 00:13:29,950
ุจู†ู‚ูˆู„ equivalent ู„ definition ุงู„ุฃูˆู„ุงู†ูŠ ูˆ ุทุจุนุง
175
00:13:29,950 --> 00:13:37,040
ู‡ู†ู„ุงู‚ูŠู†ุง ุญุงู„ุฉ ุจุชุชูˆุงุตู„ู†ุฑุฌุน ู„ู†ุธุฑูŠุชู†ุง ู†ุซุจุชู‡ุงู„ุฃู† if F
176
00:13:37,040 --> 00:13:40,820
is integrable and Y ุฃูƒุจุฑ ู…ู† 0 then by Riemann
177
00:13:40,820 --> 00:13:45,200
criterion there exists B Epsilon of I such that U
178
00:13:45,200 --> 00:13:48,980
ู†ุงู‚ุต L ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† Y ู‡ุฐุง ุฃุญูุธู†ุงู‡ุง ุฒูŠ ุงุณู…ู†ุง ู…ุฏุงู…
179
00:13:48,980 --> 00:13:53,000
F is integrable and then by Riemann criterion ุทุจุนุง
180
00:13:53,000 --> 00:13:55,620
ุฃูƒูŠุฏ ู‡ุชูŠุฌูŠ ุน ุจุงู„ูƒู… ู„ุฃู†ู‡ ู…ุฏุงู… ู‚ุงู„ there exists B
181
00:13:55,620 --> 00:13:59,120
Epsilon ู‡ูƒูŠุฏ ุฃู‚ูˆู„ ุฃูƒูŠุฏ ุงุญู†ุง ู‡ู†ุณุชุฎุฏู… ู…ูŠู† ุงู„ู„ูŠ ุจุชุฌูŠุจ
182
00:13:59,120 --> 00:14:01,720
ุงู„ B Epsilon ู…ูŠู† ุงู„ู„ูŠ ูƒุงู†ุช ุชุฌูŠุจ ุงู„ B Epsilon ุงู„ู„ูŠ
183
00:14:01,720 --> 00:14:04,870
ู‡ูŠ ุงู„ Riemann criterionุฅุฐุง ูƒุงู† ุงู„ู€ F ู…ุณุชุนู…ู„ ูˆ ุงู„ู€
184
00:14:04,870 --> 00:14:07,790
F ุฃูƒุจุฑ ู…ู† 0 ูุจุงู„ุชุงู„ูŠ ุจุงุณุชุฎุฏุงู… ุงู„ู€ Riemann's
185
00:14:07,790 --> 00:14:11,850
criterion ูŠูˆุฌุฏ ู…ุฌู…ูˆุนุฉ ุจูŠ ุฃุจุณู„ูˆู† of I ู…ุซู„ู‹ุง ุงู„ู€ U
186
00:14:11,850 --> 00:14:14,950
ุจูŠ ุฃุจุณู„ูˆู† ูˆ ุงู„ู€ F ู†ู‚ุต ุงู„ู€ ุจูŠ ุฃุจุณู„ูˆู† ูˆ ุงู„ู€ F ุฃุดู…ุงู„ู‡
187
00:14:14,950 --> 00:14:23,290
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฃุจุณู„ูˆู† ุงู„ุขู† ุงุฎุฏูˆุง ุฃูŠ refinement ุจูŠู‡
188
00:14:23,290 --> 00:14:28,590
ุจุญุชูˆู‰ ู…ูŠู† ุงู„ู€ ุจูŠ ุฃุจุณู„ูˆู† ุงู„ู€ refinement ุงู„ุชุญุณูŠู†
189
00:14:28,590 --> 00:14:37,240
ุงู„ู„ุงูˆุฑ ุจุฒูŠุฏูˆุงู„ ุฃุจุฑ ุจุฌู„ ุงูƒูŠุฏ ุนุงุฑููŠู† ุงู† ู‡ุฐุง ุงู„ูƒู„ุงู…
190
00:14:37,240 --> 00:14:41,220
ุงุฐุง ุตุงุฑ ุนู†ุฏ ู…ุฏุงู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ refinement ุงู„ lower
191
00:14:41,220 --> 00:14:46,940
ุจุฒูŠุฏ ุงูƒูŠุฏ ุงู„ LBUF ุฃุตุบุฑ ุจูŠุณุงูˆูŠ LBUF ุงู„ู„ูŠ ู‡ูˆ ุงู„ุชุญุณูŠู†
192
00:14:46,940 --> 00:14:54,760
ูˆ LBUF ุฏุงูŠู…ุง ุงุตุบุฑ ุจูŠุณุงูˆูŠ UBF ูˆ ุงู„ UBF ุงู„ุชุญุณูŠู† ุจุฌู„
193
00:14:54,760 --> 00:14:59,800
ุนู† ุงู„ UBEF ุงุฐุง ู‡ุฐู‡ ุงู„ inequality ู…ุญููˆุธุฉ ุนู†ุฏู†ุง ู…ุงุดูŠ
194
00:14:59,800 --> 00:15:08,270
ุงู„ุญุงู„ ุงู„ุขู†ู…ู† ู‡ู†ุง ุฐูˆู„ุฉ ุตุงุฑุช ุนู†ุฏูŠ high ุงู„ L ุจูŠ
195
00:15:08,270 --> 00:15:15,090
ุฅุจุณู„ูˆู† ูˆ ุฃู high ุงู„ L ุจูŠ ูˆ ุฃู ู„ุฃู†ู‡ ุฃูƒุจุฑ high ุงู„ U
196
00:15:15,090 --> 00:15:22,630
ุจูŠ ูˆ ุฃู high ุงู„ U ุจูŠ ุฅุจุณู„ูˆู† ูˆ ุฃู ุฃูƒูŠุฏ ุฃูƒูŠุฏ ุฃูƒูŠุฏ
197
00:15:22,630 --> 00:15:27,570
ุงู„ู…ุณุงูุฉ ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡ุฃุตุบุฑ ุงู„ู…ุณุงูุฉ ุจูŠู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡
198
00:15:27,570 --> 00:15:33,170
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ UBF ู†ุงู‚ุต ุงู„ LBF ุงู„ู…ุณุงูุฉ ุจูŠู†ู‡ู…
199
00:15:33,170 --> 00:15:39,130
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ UBY ูˆ ุงู„ LBY ู…ู† ู‡ุฐู‡ ูˆ ู‡ุฐู‡ ู…ู† ุงู„ู„ูŠ
200
00:15:39,130 --> 00:15:43,990
ููˆู‚ ุฃุดู…ุงู„ู‡ุง ุฃุตุบุฑ ู…ู† Y ุฅุฐุง ุตุงุฑุช ุนู†ุฏูŠ ุงู„ U ุตุงุฑ ุนู†ุฏูŠ
201
00:15:43,990 --> 00:15:50,210
ุงู„ UBF ู†ุงู‚ุต ุงู„ BF ุฃุตุบุฑ ู…ู† ู…ูŠู†ุŸ ู…ู† Y ุตุงุฑ ุนู†ุฏูŠ ุงู„ U
202
00:15:51,040 --> 00:16:01,320
ุจุฃู ู†ุงู‚ุต ุงู„ ุจุฃู ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู„ูƒู„ ุจูŠ ูŠุญุชูˆูŠ ู…ู† ุงู„
203
00:16:01,320 --> 00:16:04,120
ุจูŠ ุฅุจุณู„ูˆู† ู„ูƒู„ refinement ู„ู…ูŠู† ู„ู„ุจูŠ ุฅุจุณู„ูˆู† ุงู„ู„ูŠ
204
00:16:04,120 --> 00:16:08,280
ู„ุฌู†ุงู‡ ุจูˆุณุท ุงู„ุฑูŠู…ุงู† ุงู„ criterion ุฎู„ู‘ูŠู†ุง ู†ูƒู…ู„ ูŠุง
205
00:16:08,280 --> 00:16:19,320
ุฌู…ุงุนุฉ ุงู„ุขู† ู„ูƒู† ุงุญู†ุง ุจู†ุนุฑู ุงู† ุงูŠ ุฑูŠู…ุงู† ุตู… ู„ุจูŠ ู…ุนูŠู†ุฉ
206
00:16:19,510 --> 00:16:24,830
ู‡ูŠูƒูˆู† ุจูŠู† ุงู„ู€ L ูˆ ุจูŠู† ุงู„ู€ P ุฃูƒูŠุฏ ุตุญ ูˆู„ุง ู„ุฃุŸ ุทุจุนุง
207
00:16:24,830 --> 00:16:28,910
ุงู„ู€ S ุจูŠู† ุงู„ู€ P ูˆ ุงู„ู€ F ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ุจูŠู†
208
00:16:28,910 --> 00:16:34,570
ุงู„ู€ L P ูˆ F ูˆ ุงู„ู€ U P ูˆ FุทูŠุจ ุฎุฏ ุงู„ integration ุงู„
209
00:16:34,570 --> 00:16:36,970
integration ู…ุง ู‡ูˆ ุงู„ F is integrable ู…ุฒุงู…
210
00:16:36,970 --> 00:16:41,330
Integrable ุฅุฐุง ู‡ูŠ ุจุชุณุงูˆูŠ ุฒูŠ ู…ุง ุนู…ู„ู†ุงู‡ุง ูƒุชูŠุฑ ุจุณุงูˆูŠ
211
00:16:41,330 --> 00:16:45,430
ุงู„ U ููŠ F ูˆ ุจุชุณุงูˆูŠ ุงู„ L ููŠ F ุงู„ L ููŠ F ู‡ูŠ ุงู„
212
00:16:45,430 --> 00:16:48,070
supremum ู„ู‡ุฐู‡ ุงู„ุฃุดูŠุงุก ุฅุฐุง ุฃูƒูŠุฏ ู‡ุฐุง ุฃูƒุจุฑ ูŠุณุงูˆูŠ ุงู„
213
00:16:48,070 --> 00:16:52,410
lower ุงู„ู„ูŠ ู‡ูŠ sum ู‡ุฐุงูˆุงู„ู€ Integration ุจูŠุณุงูˆูŠ ุงู„ู€ U
214
00:16:52,410 --> 00:16:56,370
ูˆ F ูˆ ุงู„ู€ U ูˆ F ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ M ููŠ ู…ู‡ู… ู„ู„ู€ U ูˆ B
215
00:16:56,370 --> 00:16:59,230
ูˆ F ุฅุฐุง ู†ุญู† ู†ูƒูˆู† ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุฅุฐุง ูุนู„ุง ุงู„
216
00:16:59,230 --> 00:17:04,610
integration ุจูŠู† ุงู„ lower sum ูˆ ุจูŠู† ุงู„ upper sum ูˆ
217
00:17:04,610 --> 00:17:09,560
ู‡ุฐู‡ ุงู„ููƒุฑุฉ ุนู…ู„ู†ุงู‡ุง ูƒุชูŠุฑ ู‚ุจู„ ู‡ุงุชุฅุฐุง L ู‡ูˆ ุฃุทุฑุญ ู‡ุฐู‡
218
00:17:09,560 --> 00:17:15,560
ู…ู† ู‡ุฐู‡ ุชู†ุชู‡ูŠ ู…ู† ุจุนุถ ุจูŠุตูŠุฑ ุนู†ุฏ ุงู„ S ู†ุงู‚ุต ู‡ุฐู‡ ุจูŠู† ุงู„
219
00:17:15,560 --> 00:17:20,600
L ู†ุงู‚ุต ุงู„ U ูˆ ุจูŠู† ุงู„ U ู†ุงู‚ุต ุงู„ L ุนู…ู„ู†ุงู‡ุง ูƒุชูŠุฑ ุทุฑุญ
220
00:17:20,600 --> 00:17:24,440
ู…ุนุงุฏู„ุชูŠู† ู…ู† ุจุนุถ ุงู„ุขู† ู‡ูŠ ุงู„ U ูˆ ุงู„ U ูˆ ู‡ูŠ ุงู„ L ูˆ ู‡ูŠ
221
00:17:24,440 --> 00:17:26,660
ุงู„ L ูˆ ุถุฑุจ ูˆุงุญุฏุฉ ููŠ ู†ุงู‚ุต ุงู„ู„ูŠ ุจุฏู†ุง ู†ุทุฑุญ ู‡ุฐู‡ ููŠ
222
00:17:26,660 --> 00:17:31,220
ู†ุงู‚ุต ุชู†ุนูƒุณ ุงู„ุฃุดุงุฑุงุช ุชุฌู…ุญ ู„ุจุนุถ ูˆ ุชุทู„ุน ู‡ุฐู‡ ุฃุตุบุฑ ุฃูˆ
223
00:17:31,220 --> 00:17:36,920
ุณุงูˆูŠ ู‡ุฐู‡ ูˆ ุฃุตุบุฑ ุฃูˆ ุณุงูˆูŠ ู‡ุฐู‡ุงู„ุฃู† ู‡ุฐู‡ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู„ูŠ
224
00:17:36,920 --> 00:17:41,040
ู‡ูˆ ุจุชุณุงูˆูŠ ุณุงู„ุจ ู‡ุฐู‡ ูŠุนู†ูŠ ุตุงุฑุช ุงู„ absolute value
225
00:17:41,040 --> 00:17:44,260
ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ู‚ุฏุงุฑ ุงู„ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง
226
00:17:44,260 --> 00:17:48,220
ูˆุงู„ู…ู‚ุฏุงุฑ ุงู„ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ูˆูŠู†ุŸ ู‡ู†ุง ู„ู‚ู†ุง ุฃุตุบุฑ
227
00:17:48,220 --> 00:17:51,800
ู…ู† ุฅูŠุงุด ู…ู† ุฅุจุณู„ูˆู† ูŠุนู†ูŠ ุตุงุฑ ุนู†ุฏ ุงู„ S ุจูŠ ูˆ F ู†ุงู‚ุต ู…ู†
228
00:17:51,800 --> 00:17:58,860
ุงู„ F ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู†ุฌูŠ ู„ู„ู†ุธุฑูŠุฉ
229
00:17:58,860 --> 00:17:59,300
ุงู„ุจุงุนุชู‡ุง
230
00:18:09,320 --> 00:18:15,260
ุงู„ู†ุธุฑูŠุฉ ุชู„ุงุชุฉ ุฃุฑุจุนุฉ .. ุณุจุนุฉ ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ู†ุดูˆู ..
231
00:18:15,260 --> 00:18:21,920
ู†ุชุจู‡ ู„ู†ุต ุงู„ู†ุธุฑูŠุฉ ูˆ ู…ู† ุซู… ู†ูŠุฌูŠ ุฅู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุจุฑู‡ุงู†
232
00:18:21,920 --> 00:18:27,380
ุฅุฐุง ู…ู† ุงู„ .. ู…ู† ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„ู‡ ุดูˆูŠุฉ ู„ูƒู„ ุฅุจุณู„ูˆู†
233
00:18:27,380 --> 00:18:32,760
ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ุฌูŠู†ุง ุจูŠ ุฅุจุณู„ูˆู† such that for every ุจูŠ
234
00:18:32,760 --> 00:18:38,220
ูŠุญุชูˆูŠ ุงู„ุจูŠ ุฅุจุณู„ูˆู† ุฃูˆ .. ูˆ ู„ูƒู„ ุงู„ู„ูŠ ู‡ูˆ ุฃุณ ุจูŠ ูˆ ุฃู
235
00:18:38,980 --> 00:18:43,700
ุงู„ู„ูŠ ู‡ูˆ corresponding to this partition ุจุฏูŠูƒูˆู† S P
236
00:18:43,700 --> 00:18:49,000
ูˆ F ู†ุงู‚ุต ุงู„ integration ู…ู† ู‡ู†ุง ู„ P ู„ู„ F ุฃุตุบุฑ ู…ู† P
237
00:18:49,000 --> 00:18:53,480
ู„ Y ูˆู‡ุฐุง ููŠ ุญุงู„ ุฃู† F is integrable ู‡ุฐุง ุนู†ูˆุงู† ุงู„ู„ูŠ
238
00:18:53,480 --> 00:18:57,220
ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‚ุจู„ ุจุดูˆูŠุฉ ู„ุฅู†ู‡ ุจุชุญุชุงุฌู‡ุง
239
00:18:57,220 --> 00:19:03,130
ุจุนุฏ ุดูˆูŠุฉ ุทูŠุจ ุดูˆู ุงู„ุขู† ุฅูŠุด ุงู„ู†ุธุฑูŠุฉ ู‡ุฐูŠ ุจุชู‚ูˆู„ุฎู„ู‘ูŠุช
240
00:19:03,130 --> 00:19:05,870
ุฃูุถู„ about the closed interval A ูˆB ุงู„ู„ูŠ ู‡ูŠ I ุงู„ู„ูŠ
241
00:19:05,870 --> 00:19:09,110
ุนู†ุฏ ุงู„ R ุจู€A bounded function Suppose that there
242
00:19:09,110 --> 00:19:19,130
exists a number A ูŠุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ุงู„ุชุงู„ูŠุฉ ูŠุญู‚ู‚
243
00:19:19,130 --> 00:19:21,390
ุงู„ุฎุงุตูŠุฉ ุงู„ุชุงู„ูŠุฉ
244
00:19:30,260 --> 00:19:34,660
ู†ูุชุฑุถ ุฃู† ูŠูˆุฌุฏ A ุจุญูŠุซ ุฃู†ู‡ ู„ุงูŠู‡ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† 0
245
00:19:34,660 --> 00:19:40,140
ุจู†ู„ุงู‚ูŠ partition ุจูŠ ุฅุจุณู„ูˆู† ูˆ FB ูŠุญุชูˆู‰ ุจูŠ ุฅุจุณู„ูˆู†
246
00:19:40,140 --> 00:19:45,100
and F SB is any remand sum for F corresponding to
247
00:19:45,100 --> 00:19:52,100
B ุชุฆุฐู† ุงู„ S ุจูŠ ูˆ F ู†ุงู‚ุต A ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู†
248
00:19:54,770 --> 00:20:02,070
ู„ูˆ ู„ุงุฌูŠู†ุง .. ุงู†ุง ุงูุชุฑุถ ุงู† ุงุญู†ุง ุจู†ู„ุงู‚ูŠ ุงู„ู€ Number A
249
00:20:02,070 --> 00:20:07,190
ู‡ุฐุง ู…ุนุทู‰ ุงู†ู‡ Number AุŒ ุงูŠุด ุจุชู…ุชุญ ู‡ุฐุง Number AุŸ ุงู†ู‡
250
00:20:07,190 --> 00:20:12,190
ู„ู…ุง ูŠูƒูˆู† ุนู†ุฏูƒ ู„ูƒู„ ูŠ ุฃูƒุจุฑ ู…ู† ุณูุฑ ู„ุฌู‡ุฉ partition ุจูŠู‡
251
00:20:12,190 --> 00:20:15,290
ูŠุจุณู„ูˆู† ุจุญูŠุซ ุงู†ู‡ ู„ูƒู„ refinement ุจูŠู‡ ุชุญุชูˆู‰ ุจูŠู‡
252
00:20:15,290 --> 00:20:19,870
ูŠุจุณู„ูˆู† ูˆ ุงู„ S, B ูˆ F is any remand sum
253
00:20:22,380 --> 00:20:24,760
ูŠุฌุจ ุฃู† ูŠูƒูˆู† ุงู„ู€ a ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b ูˆ ุงู„ f
254
00:20:24,760 --> 00:20:31,980
ู†ู‚ุต ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b ูˆ ุงู„ f ู†ู‚ุต ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ
255
00:20:31,980 --> 00:20:32,420
ูˆ ุงู„ b ูˆ ุงู„ f ู†ู‚ุต ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b ูˆ ุงู„ f ู†ู‚ุต
256
00:20:32,420 --> 00:20:32,460
ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b ูˆ ุงู„ f ู†ู‚ุต ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„
257
00:20:32,460 --> 00:20:34,200
ูˆ ุงู„ f ู†ู‚ุต ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b ูˆ ุงู„ f ู†ู‚ุต ู…ู†
258
00:20:34,200 --> 00:20:37,640
ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b ูˆ ุงู„ f ู†ู‚ุต ู…ู† ุฅุจุณู„ูˆู† ู„ุฃุณ ูˆ ุงู„ b
259
00:20:37,640 --> 00:20:42,860
ูˆู„ูƒู„ ูŠ ุฃูƒุจุฑ ู…ู† 0 ุจู„ุงู‚ูŠ ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ุงู„
260
00:20:42,860 --> 00:20:46,780
ุจูŠ ูŠุญุชูˆูŠ ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ูˆูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ ุฃุณ ุจูŠ ูˆ ุงู„
261
00:20:46,780 --> 00:20:50,800
ุฃู ู†ุงู‚ุต ุง ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ุจู‚ูˆู„ then ุฃู ุงูŠ ุดู…ุงู„ู‡ุง
262
00:20:50,800 --> 00:20:56,020
must be integrable in I in the sense ุทุจุนุงู‹ ููŠ 716
263
00:20:56,020 --> 00:21:00,500
ูˆ ุงู„ a ู‡ูˆ ู…ู† ู‡ุฐุง ุงู„ integration ูŠุนู†ูŠ ุจู‚ูˆู„ู†ุง ู„ูˆ
264
00:21:00,500 --> 00:21:05,360
ู„ุฌูŠู†ุง a ุจุชุญู‚ู‚ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‡ุชุทู„ุนู„ูƒู… ุงู„ a ูŠุง ุฌู…ุงุนุฉ
265
00:21:05,360 --> 00:21:10,070
ู‡ุฐุง ู‡ูŠ ุงู„ integrationู‡ูŠ ู‚ูŠู…ุฉ ุงู„ู€ integration ุงู„ู€
266
00:21:10,070 --> 00:21:12,630
integration in the sense of ุงู„ู€ definition ุงู„ู„ูŠ
267
00:21:12,630 --> 00:21:17,730
ุญูƒูŠู†ุง ุนู„ูŠู‡ ุทูŠุจ ุดูˆู ุงู„ุขู† ุงู„ุงู†
268
00:21:17,730 --> 00:21:22,410
ุจุฏูŠ ุฃุนุทูŠูƒ ุดุบู„ ุนุงู…ุฉ ูˆุจุนุฏู‡ุง ู†ุฎุตุตู‡ุง ุนู„ู‰ ุงู„ู„ูŠ ุจุฏู†ุงูŠุงู‡
269
00:21:22,410 --> 00:21:26,370
ุงู„ุงู† give an epsilon ุฃูƒุจุฑ ู…ู† ุณูุฑ and be any fixed
270
00:21:26,370 --> 00:21:31,250
partition of I ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุงู† ุฎุฏ ุฃูŠ ุฅุจุณู„ูˆู† ูˆุฎุฏ ุจูŠ
271
00:21:31,250 --> 00:21:37,020
ุฃูŠ ุดู…ู„ู‡ ุฃูŠ fixed partition thenThere exist S1
272
00:21:37,020 --> 00:21:41,800
ุจูŠูˆู‚ู ูˆ S2 ุจูŠูˆู‚ู ุจุญูŠุซ ุฃู† S U ุจูŠูˆู‚ู ู†ู‚ุต S ุจูŠูˆู‚ู
273
00:21:41,800 --> 00:21:46,800
ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† ุฅุจุณู„ูˆู† ูˆ S2 ู†ู‚ุต ุงู„ ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
274
00:21:46,800 --> 00:21:57,260
ุฅุจุณู„ูˆู† ุดูˆู ู‡ุฐู‡ ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ูƒูŠู ุนู…ู„ู‡ุง ู‡ูŠุง ุฃุฎุฏู†ุง
275
00:21:57,260 --> 00:22:02,580
ุฃูŠ ุฅุจุณู„ูˆู† ููŠ ุงู„ุฏู†ูŠุง ูˆ ุจุฃูŠ partition ุงู„ุขู† ุจู‚ูˆู„ ู„ูŠ
276
00:22:04,500 --> 00:22:11,460
ุตุงุฑ ุนู†ุฏู‰ S P ูˆ F ุตุงุฑ ุนู†ุฏู‰ ุงุณู ุงู„ุจุงุฑุชูŠุดู† ุงู„ู„ู‰ ู‡ูˆ P
277
00:22:11,460 --> 00:22:17,260
ู…ูˆุฌูˆุฏ ูˆุงู„ุฅุจุณู„ูˆู† ู…ูˆุฌูˆุฏ ุจุงู†ููƒุณ ุจุงุฑุชูŠุดู† ู…ุด ุจุงุฑุชูŠุดู†
278
00:22:17,260 --> 00:22:21,320
ู…ุนูŠู† ู„ุฃ ุงู†ููƒุณ ุจุงุฑุชูŠุดู† ุงู„ูƒู„ุงู… ุฏู‡ ุจุธุจุท ุนู„ูŠู‡ ุจู‚ูˆู„
279
00:22:21,320 --> 00:22:32,410
ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ remansum S ูˆุงุญุฏ ู…ุณู…ู‰ P ูˆ F ุจุญูŠุซ ุฃู†ู‡ SU
280
00:22:32,410 --> 00:22:44,070
B ูˆ F ู†ุงู‚ุต S1 B ูˆ F ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู† Y ุงู„ู…ู†ุทู‚ูŠ
281
00:22:44,070 --> 00:22:49,980
ุงู„ูƒู„ุงู… ู‡ุฐุง ุงู„ุฃุจุฑู‡ูˆ ุงุนุทุงู†ูŠ ุงู„ู€ Epsilon ุฌุงู„ูŠ ุงุซุจุช
282
00:22:49,980 --> 00:22:54,980
ุงู†ู‡ ุจุชู„ุงู‚ูŠ S1 Remains sum ุจุญูŠุซ ุงู† ุงู„ูุฑู‚ ุจูŠู†ู‡ ูˆุจูŠู†
283
00:22:54,980 --> 00:22:57,340
ุงู„ A ุจุฑ ู„ู„ B ูˆุงู„F ุงู„ partition ู‡ุฐุง partition ู…ุนูŠู†
284
00:22:57,340 --> 00:23:01,680
ุจุญูƒูŠ ุงู„ุงุฑุจูŠูˆุชุฑ ุงู„ partition ุจุณ fixed ุงู†ู‡ ุงุฎุฏุช ุงูŠ
285
00:23:01,680 --> 00:23:07,900
Epsilonุฃุฌุฏุฑุช ุฃู„ุงู‚ูŠ S1 remains sum ุจุญูŠุซ ุฃู† ู‡ุฐุง ู†ู‚ุต
286
00:23:07,900 --> 00:23:10,980
ู‡ุฐุง ูŠูƒูˆู† ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ุทุจุนุง ู‡ุฐุง ุงู„ุทุจูŠุนูŠ ู‡ูˆ ุฃูƒุจุฑ
287
00:23:10,980 --> 00:23:13,760
ู…ู† ู‡ุฐุง ู„ูƒู† ุงู„ูุฑู‚ ุจุฏูŠ ุฃุฎู„ูŠู‡ ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ูˆุฃู†ุง
288
00:23:13,760 --> 00:23:20,440
ุจู‚ุฏุฑ ุฃุฎู„ูŠู‡ ุงู„ุขู† ุนู†ุฏูŠ ุงู„ Mk ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
289
00:23:20,440 --> 00:23:27,580
ุงู„ supremum ู„ู„ F of X such that X element XK minus
290
00:23:27,580 --> 00:23:33,490
ูˆุงุญุฏ ูˆ XK ู…ุธุจูˆุทุŸุงู„ุงู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ infimum ุงู„
291
00:23:33,490 --> 00:23:37,010
least upper bound ุงู„ุงู† ุงู„ least upper bound ู„ูˆ
292
00:23:37,010 --> 00:23:43,890
ุดูŠู„ู†ุง ู…ู†ู‡ ู†ุฌูู†ุง ู…ู†ู‡ ุงูŠ ุนุฏุฏ ุตุบูŠุฑ ูƒุชูŠุฑ ูƒุชูŠุฑ ูˆ ู„ูŠูƒู†
293
00:23:43,890 --> 00:23:49,850
ุงู„ y ุนู„ู‰ ู…ูŠู† ุนู„ู‰ b minus a ุจุจุทู„ upper bound ู…ุฏุงู…
294
00:23:49,850 --> 00:23:55,510
ุจุทู„ upper bound ุงุฐุง ุจู‚ุฏุฑ ุงู†ุงุฌูŠ xik element ุงู„ xk
295
00:23:55,510 --> 00:23:57,230
minus ูˆุงุญุฏ ูˆ xk
296
00:24:00,970 --> 00:24:08,050
ุชูƒูˆู† ู…ุงู„ู‡ุง ุฃูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุจุทู„ other
297
00:24:08,050 --> 00:24:13,600
boundุงู„ุงู† ู‡ุฐุง ุงู„ู„ูŠ ุณูˆูŠุชู‡ ู…ุน ุงู„ุงู… ูƒูŠู‡ ุจู‚ุฏุฑ ุงุณูˆูŠู‡ ู…ุน
298
00:24:13,600 --> 00:24:16,280
ุงู„ุงู… ูˆุงุญุฏ ูˆ ุงู„ุงู… ุงุชู†ูŠู† ูˆ ุงู„ุงู… ุชู„ุชุฉ ุงูŠู‡ ู…ู†ู‡ู… ูƒู„ู‡ู…
299
00:24:16,280 --> 00:24:21,500
ุฅุฐุง ุตุงุฑ ุงู„ summation ูƒ ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุงู† ูˆ ุงุถุฑุจู‡
300
00:24:21,500 --> 00:24:25,940
ูƒู…ุงู† ููŠ ู…ูŠู† xk minus xk minus ูˆุงุญุฏ ู…ุงููŠุด ู…ุงู†ุน ู„ุฅู†
301
00:24:25,940 --> 00:24:29,740
ุฃู†ุง ุฏู…ูˆุฌุฉ ูˆ ุฃู†ุง ุฏู…ูˆุฌุฉ ุจุชุธู‡ุฑ ุฒูŠ ู…ุง ู‡ูŠ xk ู†ุงู‚ุต xk
302
00:24:29,740 --> 00:24:32,720
minus ูˆุงุญุฏ ูˆุงุฎุฏู‡ ุงู„ summation ู‡ุฐุง ูƒ ู…ู† ุนู†ุฏ ูˆุงุญุฏ
303
00:24:32,720 --> 00:24:38,120
ู„ุนู†ุฏ ู…ูŠู† ู„ุนู†ุฏ ุงู† ู„ุฌูŠุชู‡ุง ุงู„ xi k ุชุจุนุช ุงู„ S ูˆุงุญุฏ ู‡ุฐู‡
304
00:24:39,040 --> 00:24:47,580
ุงู„ุงู† ู‡ุฐุง remain sum ุจุณู…ูŠู‡ S1 ุจูŠูˆู ุนู„ู‰ ู…ูŠู† ุงุนุชู…ุฏ
305
00:24:47,580 --> 00:24:52,620
ุนู„ู‰ ุงู„ exiled case ุงู„ู„ูŠ ุงู†ุง ู„ุฌูŠุชู‡ุง ู‡ุฐุง ุงูŠุด ุจูŠุณุงูˆูŠ
306
00:24:52,620 --> 00:24:59,480
ุงู„ู„ูŠ ู‡ูˆ summation Mk ููŠ Xk minus Xk minus ูˆุงุญุฏ
307
00:24:59,480 --> 00:25:08,840
ู†ุงู‚ุต ุงู„ summationXY-XK
308
00:25:08,840 --> 00:25:10,840
-1
309
00:25:17,430 --> 00:25:22,310
ู‡ุฐุง summation ุณุงู…ุญูˆู†ูŠ ุนู„ู‰ ุงู„ุถูŠู‚ ุงู„ู„ูˆุญ ู‡ุฐุง ุจูŠุตูŠุฑ ุงู„
310
00:25:22,310 --> 00:25:24,350
summation ุนู„ู‰ ุงู„ุฃูˆู„ ุฒุงุฏ ุงู„ summation ุนู„ู‰ ุงู„ุซุงู†ู‰ ู‡ูŠ
311
00:25:24,350 --> 00:25:27,630
ุงู„ summation ุนู„ู‰ ุงู„ุฃูˆู„ ูƒู… ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุฃู† ู†ุงู‚ุต
312
00:25:27,630 --> 00:25:29,910
ุงู„ summation ุนู„ู‰ ุงู„ุชุงู†ูŠ ูƒู… ู…ู† ุนู†ุฏ ูˆุงุญุฏ ู„ุนู†ุฏ ุฃู†
313
00:25:29,910 --> 00:25:34,810
ูˆุงุฎุฏุช ุงู„ y ุจูŠ ูˆ ู…ุงูŠู†ูˆุณ ุฃูŠู‡ ุนู† ุงู„ู…ุดุชุฑูƒ ุจุฑุง ุงู„
314
00:25:34,810 --> 00:25:37,830
summation ุฏู„ุช ุงู„ summation ู„ู‡ุฐุง ุฃุตุบุฑ ุฃูˆ ูŠุณุงูˆูŠ
315
00:25:37,830 --> 00:25:44,330
ุจูŠู‚ูˆู„ ู„ู‡ุฐุง ู…ูŠู† ู‡ูˆ ุฃูˆ ุฃุตุบุฑ ู…ู† ุฑู…ุงู† ุตู… ุฃุณ ุจูŠ ูˆ ุฃู ูˆ
316
00:25:44,330 --> 00:25:53,580
ุณู…ู†ู‡ุง ุฃุณ ูˆุงุญุฏู‡ุฐุง ู…ูŠู† ู‡ูˆ ุงูƒูŠุฏ ูƒู„ูƒู… ุนุงุฑูู‡ U P ูˆ F ูˆ
317
00:25:53,580 --> 00:26:00,000
ู‡ุฐุง ุงูŠุด ู‡ูˆ ู†ุงู‚ุต ุงูŠุด ู‡ุฐุงู‡ุฐุง ุงูƒูŠุฏ y ุนู„ู‰ b minus a ููŠ
318
00:26:00,000 --> 00:26:03,680
ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุนุจุงุฑุฉ ุนู† x naught x ูˆุงุญุฏ
319
00:26:03,680 --> 00:26:08,440
ู†ุงู‚ุต x naught ุฒุงุฆุฏ x ุงุชู†ูŠู† ู†ุงู‚ุต x ูˆุงุญุฏ ุฒุงุฆุฏ ุนุฑูุชู‡
320
00:26:08,440 --> 00:26:12,240
ุงุฐุง ุงุฎุฑ ูˆุงุญุฏ xn ู†ุงู‚ุต xn ู†ุงู‚ุต ูˆุงุญุฏ ูŠุนู†ูŠ ุจูŠุธู„ xn
321
00:26:12,240 --> 00:26:16,280
ู†ุงู‚ุต x naught ูƒู„ู‡ ุจ cancel ุจุนุถ xn ุงู„ู„ูŠ ู‡ูŠ ุงู„ a ุงู„
322
00:26:16,280 --> 00:26:20,180
b ูˆ ุงู„ x naught ู‡ูŠ ุงู„ a ูŠุนู†ูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† b minus
323
00:26:20,180 --> 00:26:27,450
a ุงุตู„ุง ู…ู† s ูˆุงุญุฏ ุจูŠู‚ููŠุนู†ูŠ ุตุงุฑ ุนู†ุฏูŠ ุงู„ู€ U ุจูŠ ูˆ F ูˆ
324
00:26:27,450 --> 00:26:35,710
ุฌูŠุจ ู„ูŠ ู‡ุฐุง ู‡ู†ุง ู†ู‚ุต S1 ุจูŠ ูˆ Fุฃุดู…ุงู„ู‡ ุฃุตุบุฑ ู…ู† ุฃุจุณู„ูˆู†
325
00:26:35,710 --> 00:26:43,150
ูุนู„ุง ุงู†ุง ุงุฌุฏุช ุงุณ ูˆุงุญุฏ ู…ู†
326
00:26:43,150 --> 00:27:00,870
ุฃุจุณู„ูˆู†
327
00:27:00,980 --> 00:27:08,700
ุฅุฐุง ู„ุฌูŠุช S1 ูˆ S2 ุจุญูŠุซ ุชุญู‚ู‚ ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ุงู†ุชุจู‡ูˆุง
328
00:27:08,700 --> 00:27:14,340
ุงู„ุงู† ู‡ุฐุง ุงู„ุงู† ูƒู„ ุงู„ู„ูŠ ุญูƒูŠุชู‡ ู‡ู†ุง ุจุฑู‡ุงู† ู„ู„ุฌุฒุฆูŠุฉ ุงู„ู„ูŠ
329
00:27:14,340 --> 00:27:20,770
ูƒุงุชุจู‡ุง ุงู†ุง ููŠ ุงู„ุจุฑู‡ุงู† ูˆ ู…ุด ู…ุถุญูƒ ุจุดูƒู„ู‡ุง ุงู„ูƒุงู…ู„ุทูŠุจ
330
00:27:20,770 --> 00:27:23,930
ููŠูƒู… ุฃุตู„ูŠ ุนู„ู‰ ุงู„ู†ุจูŠ ุงู„ู„ู‡ ู…ุตู„ูŠ ุนู„ู‰ ุณูŠุฏู†ุง ู…ุญู…ุฏ ู†ุฑุฌุน
331
00:27:23,930 --> 00:27:28,450
ู†ู‚ูˆู„ูƒู… ุงู†ู‡ ู„ุฌูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุณ ูˆุงุญุฏ ูˆุงู„ุงุณ ุงุชู†ูŠู†
332
00:27:28,450 --> 00:27:31,870
ุงู„ู„ูŠ ุจูŠุญู‚ู‚ู† ู‡ุฐุง ุทุจุนุง ุงู„ ุจูŠ ูƒุงู† ุงูŠุด ู…ุงู„ู‡ any fixed
333
00:27:31,870 --> 00:27:37,410
partition ุงู„ุงู† ู…ุนุทูŠู†ุง
334
00:27:37,410 --> 00:27:43,050
ู‡ู†ุง ุงู†ู‡ ู‡ุฐุง ู…ุนุทู‰ ู‡ุฐุง ู…ุนุทู‰ ุฏูŠุฑูˆุง ุจุงู„ูƒู… ุงู†ู‡ there
335
00:27:43,050 --> 00:27:46,970
exists ุจูŠ ุงุจุณู„ูˆู† ุจุญูŠุซ ุงู† ุจูŠ ุจุชุญุชูˆูŠ ุจูŠ ุงุจุณู„ูˆู† ู‡ุฐุง
336
00:27:46,970 --> 00:27:52,630
ูŠุชุญู‚ู‚ ุงู„ุงู†ุงู„ู„ูŠ ุงุชุญู‚ู‚ ุนู„ู‰ ุงู„ู€ P ุงู„ู„ูŠ ู‡ุงู…ุŒ ู‡ูŠุชุญู‚ู‚
337
00:27:52,630 --> 00:27:57,010
ุนู„ู‰ ุงู„ู€ P ุงู„ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู‡ุงู… ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ุฅุฐุง ุงู„ุฃู†
338
00:27:57,010 --> 00:28:01,930
ุงู„ู€ U P ุฅุจุณู„ูˆู† ูˆ ุงู„ู€ F ู†ุงู‚ุต ุงู„ู€ L P ูˆ F ุงู„ู„ูŠ ู‡ูˆ
339
00:28:01,930 --> 00:28:10,460
ุจุณุงูˆูŠ U U P ูˆ F ู†ุงู‚ุต L P ูˆ Fู…ุงุดูŠ ุงูŠุด ู‡ุฐุง ุงุฎุฏุช ุงู„
340
00:28:10,460 --> 00:28:13,740
ุจูŠ ุฅุจุณู„ูˆู† ุงู„ ุจูŠ ุงู„ู„ูŠ ู‡ู†ุง ู‡ูŠ ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ุนุดุงู† ุงู‚ูˆู„
341
00:28:13,740 --> 00:28:17,440
ุงู†ู‡ ุงู†ุง ุงู„ู„ูŠ ุญู‚ู‚ุชู‡ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ ุจูŠ ูุฏู‡ ุญู‚ู‚ุชู‡ ุนู„ู‰
342
00:28:17,440 --> 00:28:20,460
ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ุงู†ู‡ ู‡ุฐุง ูƒุงู† unfixed partition ุงุตุบุฑ ุงูˆ
343
00:28:20,460 --> 00:28:25,700
ูŠุณุงูˆูŠ ุจุงู„ triangle inequality UBF ู†ุงู‚ุต SBF ุฒูŠ S1BF
344
00:28:25,700 --> 00:28:33,440
ู†ุงู‚ุต A ุฒูŠ A ู†ุงู‚ุต S2BFู…ุงุฐุง ูุนู„ุชุŸ ุจุงู„ู€ Triangle
345
00:28:33,440 --> 00:28:37,380
Inquality ุฃุถูุช ุงู„ู€ S ูˆุงุญุฏ ูˆุทุฑุญุช ุงู„ู€ S ูˆุงุญุฏ ูˆุถูุช
346
00:28:37,380 --> 00:28:41,260
ุงู„ู€ A ูˆุทุฑุญุช ุงู„ู€ A ูˆุถูุช ุงู„ู€ S ุงุชู†ูŠู† ูˆุทุฑุญุช ุงู„ู€ S
347
00:28:41,260 --> 00:28:44,480
ุงุชู†ูŠู† ูˆุนู…ู„ุช ุงู„ู€ Triangle Inquality ูˆุทุจู‚ุช ู‡ุฐู‡ ูˆุงุญุฏุฉ
348
00:28:44,480 --> 00:28:48,260
ูƒุงู…ุชูŠู†ุŒ ุชู„ุงุชุฉุŒ ุฃุฑุจุนุฉ ุตุงุฑ ุนู†ุฏูŠ ุฃุฒุฑุน ูŠุณุงูˆูŠ ู‡ุฐุงุŒ ุฒุงุฆุฏ
349
00:28:48,260 --> 00:28:57,300
ู‡ุฐุงุŒ ุฒุงุฆุฏ ู‡ุฐุงุŒ ุฒุงุฆุฏ ู‡ุฐุงุŒ ู…ุงุดูŠ ุงู„ุญู„ ุตุงุฑ
350
00:28:57,300 --> 00:28:58,480
ุนู†ุฏูŠ ูŠุง ุฌู…ุงุนุฉ ุงู„ุขู†
351
00:29:12,650 --> 00:29:17,970
ุตุงุฑ ุนู†ุฏู‰ ุงู„ู„ู‰ ู‡ูˆ ุงู„ุงู† ุทุจุนุง ุงู„ a ุงูŠุด ู‡ูŠ ุงู„ a ุงู„ู„ู‰
352
00:29:17,970 --> 00:29:20,310
ููŠ ุงู„ู†ุธุฑูŠุฉ ุฏู‰ ุจู‚ุงู„ูƒู… a is the number in the
353
00:29:20,310 --> 00:29:24,270
hypothesis of theorem then by the hypothesis of
354
00:29:24,270 --> 00:29:31,650
theorem and star ุงู„ุงู† ู…ู† ุงู„ู„ู‰ ู‡ูˆ ุงู„ู…ุนุทู‰ ุจูŠุนุทูŠู†ุง ุงู†
355
00:29:31,650 --> 00:29:35,630
ุงู„ s ูˆุงุญุฏ ู†ู‚ุต ุงู„ู„ู‰ a ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ูˆ ุงู„ s ุงุชู†ูŠู†
356
00:29:35,630 --> 00:29:39,430
ู†ู‚ุต ุงู„ู„ู‰ a ุฃุตุบุฑ ู…ู† ูŠุจุณู„ูˆู† ู„ุฃู† ู‡ุฐุง ุตุญูŠุญ ุงู„ู„ู‰ ููˆู‚
357
00:29:39,430 --> 00:29:39,850
ู„ุงู†
358
00:29:47,480 --> 00:29:53,200
ุฃุฐูƒุฑูƒู… ูƒู…ุงู† ู…ุฑุฉ ุจุงู„ู…ุนุทู‰
359
00:29:53,200 --> 00:30:00,540
ุงู† ู‡ู†ุงูƒ ู…ุฌู…ูˆุนุฉ ุจูŠ ุงุณ ุงูŠุจุณู„ูˆู† ู‡ูŠ ุงู„ู„ูŠ ุจุชุดุชุบู„ ููŠ ุงุณ
360
00:30:00,540 --> 00:30:05,040
ุจูŠ ูˆ ุงู is any remansum corresponding ู„ุฃู ู‡ูŠูƒูˆู†
361
00:30:05,040 --> 00:30:07,860
ุงู„ูุฑู‚ ุจูŠู† ู‡ุฐุง ูˆ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุงูŠุจุณู„ูˆู† ู…ู† ุถู…ู† ุงู„ุงุณ
362
00:30:07,860 --> 00:30:11,740
ูˆุงุญุฏ ูˆุงู„ุงุณ ุงุชู†ูŠู† ุงู„ู„ูŠ ุฌุงุชู†ูŠ ู‚ุจู„ ุดูˆูŠุฉ ุงุฐุง ุตุงุฑ ุนู†ุฏูŠ
363
00:30:11,740 --> 00:30:20,530
ุงู„ูƒู„ ุงู„ู„ูŠ ุจุดุชุบู„ูˆุง ู…ุดุฑูˆุน ุจูŠุตูŠุฑ ุงู„ู„ูŠ ู‡ูˆุงู„ู€ UB ู†ู‚ุต
364
00:30:20,530 --> 00:30:25,730
ุงู„ู€ S1 ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุงู„ุฅุจุณู„ูˆู† ู…ูุนุทู‰
365
00:30:25,730 --> 00:30:29,230
ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู† ุงู„ุฅุจุณู„ูˆู† ู…ูุนุทู‰ ูˆู‡ุฐุง ูˆ ู‡ุฐุง ุฃุตุบุฑ ูƒู„
366
00:30:29,230 --> 00:30:33,370
ูˆุงุญุฏ ู…ู† ุฅุจุณู„ูˆู† ู…ู† ุงู„ู„ูŠ ุฃุชุจุชู‡ ู‡ู†ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุฅุฐุง ุตุฑุช
367
00:30:33,370 --> 00:30:41,070
ุงู„ู„ูŠ ู‡ูŠ ูƒู„ู‡ุง ุฃุตุบุฑ ู…ู† 4 ุฅุจุณู„ูˆู† ู…ุงุดูŠ ุงู„ุญุงู„ุฃุจุณู„ูˆู† was
368
00:30:41,070 --> 00:30:48,930
arbitrary then by 4718 F is integrableF is
369
00:30:48,930 --> 00:30:53,690
integrable ู„ุฃู†ู‡ ูˆุฌุฏุช ุจุฅุจุณู„ูˆู† ู„ุฃู† U ู†ู‚ุต ู„ุฃุฎุฑ ู…ู†
370
00:30:53,690 --> 00:30:57,430
ุฃุฑุจุนุฉ ุฅุจุณู„ูˆู† ุจุฅุจุณู„ูˆู† ูˆุจุนุถ arbitrarily ุฅุฐุง ุจุตูŠุฑ
371
00:30:57,430 --> 00:31:01,910
ุนู†ุฏูŠ ุตุญูŠุญ ูˆุงุญุฏ ู…ุชุถุงูŠู‚ ู…ู† ุงู„ุฃุฑุจุนุฉ ุฅุจุณู„ูˆู† ููŠ ุงู„ู„ูŠ
372
00:31:01,910 --> 00:31:04,430
ููˆู‚ ุฎุฏ ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ ูˆ ุงู„ู†ุธุฑูŠุฉ
373
00:31:04,430 --> 00:31:08,730
ุงู„ุฃูˆู„ู‰ ูˆ ุงู„ู…ุนุทู‰ ุจุฑุถู‡ ุจุชุงุฎุฏูˆุง ุฅุจุณู„ูˆู† ุนู„ู‰ ุฃุฑุจุนุฉ
374
00:31:08,730 --> 00:31:19,300
ุจุทุฑูŠู‚ุฉ ุญุณุงุจูŠุฉ ู…ุนุงู‡ ุทูŠุจ ุฅุฐุง ุตุงุฑ ุนู†ุฏูŠู„ุฌูŠู†ุง ุงู„ุงู† then
375
00:31:19,300 --> 00:31:22,480
by theorem 7 1 8 F is integrable and for every
376
00:31:22,480 --> 00:31:25,360
epsilon ุฃูƒุจุฑ ู…ู† 0 there exists B epsilon of I such
377
00:31:25,360 --> 00:31:28,800
that FB ุจุชุญุชูˆู„ ุจูŠ ุงุจุณู„ูˆู† and B is a partition of I
378
00:31:28,800 --> 00:31:36,380
then S of B ูˆ F ู…ู‚ุตุฏู‡ุง ุฃุตุบุฑ ู…ู† 100 ู…ู† ุฅุจุณู„ูˆู† ุฅูŠุด
379
00:31:36,380 --> 00:31:39,840
ู‡ุฐุงุŸ ุญู†ุง ุฃุซุจุชู†ุง ุงู†ู‡ integrable ู…ุฏุงู… ุงู†ุชุฌุฑุงุจู„ ุจุงู„ู„ูŠ
380
00:31:39,840 --> 00:31:44,100
ูƒุงุชุจูˆุง ู‡ู†ุงูˆุงู„ู„ูŠ ูƒุงุชุจูˆู‡ุง ู‡ูŠูƒูˆู† ุงู„ูุฑู‚ ุจูŠู† for every
381
00:31:44,100 --> 00:31:47,320
ฮต there exists ุจูŠ ุฅุจุณู„ูˆู† ูˆ ุงู„ู€ B ุชุญุชูˆู‰ 100 ุจูŠ
382
00:31:47,320 --> 00:31:50,040
ุฅุจุณู„ูˆู† ูˆุงุญุฏ ูŠู‚ูˆู„ ุทุจ ู…ุง ู‡ูˆ ุฎุงูŠููŠู† ุงู„ู€ ุจูŠ ุฅุจุณู„ูˆู†
383
00:31:50,040 --> 00:31:53,260
ุงู„ู„ูŠ ู„ุงุฌูŠู†ุงู‡ุง ููŠ ุงู„ุฃูˆู„ ุงู„ู…ุนุทู ููŠ ุงู„ู†ุธุฑูŠุฉ ุบูŠุฑ ุงู„ู€
384
00:31:53,260 --> 00:31:57,260
ุจูŠ ุฅุจุณู„ูˆู† ู‡ุฐู‡ ู…ุด ู…ุดูƒู„ุฉ ุงู„ู€ ุจูŠ ุฅุจุณู„ูˆู† ูุฑุทู†ุฉ ุชุจุนุฉ
385
00:31:57,260 --> 00:32:01,560
ุงู„ู†ุธุฑูŠุฉ ุจูŠ ุจุฑุงูŠู… of ุฅุจุณู„ูˆู†ูˆู‡ุฐู‡ ุงู„ู„ูŠ ูˆุฌุฏู†ุงู‡ุง ู…ู† ุงู„ู€
386
00:32:01,560 --> 00:32:05,660
Integrability ู„ู„ู€ P ู„ู„ู€ F ุงู„ู„ูŠ ุฃุซุจุชู†ุงู‡ุง ู†ุณู…ูŠู‡ุง ุจูŠ
387
00:32:05,660 --> 00:32:09,480
ุฅุจุณู„ูˆู† ุฏุงุจู„ ุจุฑุงูŠู† ุฎุฏ ุงู„ู€ ุจูŠ ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ุจุชุญูƒูŠ
388
00:32:09,480 --> 00:32:14,520
ุนู„ูŠู‡ุง ุงู„ุขู† ุนุดุงู† ุชู†ูุน ู„ู„ุฌู‡ุชูŠู† ุฎุฏู‡ุง ุจุณุงูˆูŠ ุจูŠ ุฅุจุณู„ูˆู†
389
00:32:14,520 --> 00:32:20,060
ุจุฑุงูŠู† ุงุชุญุงุฏ ุจูŠ ุฅุจุณู„ูˆู† ุฏุงุจู„ ุจุฑุงูŠู†ุจุตูŠุฑ ุงู„ุขู† ู‡ุฐู‡ ุงู„ู„ูŠ
390
00:32:20,060 --> 00:32:26,280
ู‡ูŠ ุชู†ูุน ุชู†ูุน ู„ู„ู…ุนุทูŠุงุช ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ุนุทูŠุงุช ุงู„ุชุงู†ูŠุฉ
391
00:32:26,280 --> 00:32:29,320
ู„ุฃู†ู‡ุง ุจูŠุตูŠุฑ refinement ู„ู„ุฃูˆู„ ูˆ refinement ู„ู…ู†ุŸ
392
00:32:29,320 --> 00:32:35,980
ู„ู„ุซุงู†ูŠ ุฅุฐุง ูุด ููŠู‡ ู…ุดูƒู„ุฉ ุฅุฐุง ุงู„ุขู†then by hypothesis
393
00:32:35,980 --> 00:32:40,360
of theorem ุฃุฎุฏู†ุง ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฃุฑุจุน ุฅุจุณู„ูˆู† ุฅุฐุง ุณุจุจ
394
00:32:40,360 --> 00:32:43,840
ู„ู‡ ู‡ุฐุง ุฃู† ู‡ูˆ F is integrable ู…ุฏุงู… F is integrable
395
00:32:43,840 --> 00:32:48,620
ุฅุฐุง ุจุงู„ู†ุธุฑูŠุฉ ุจู†ู„ุงู‚ูŠ ุจูŠ ุฅุจุณู„ูˆู† ุจุญูŠุซ ุฃู†ู‡ ู„ูƒู„ ุจูŠ
396
00:32:48,620 --> 00:32:53,000
ุจูŠุญุชูˆูŠ ุจูŠ ุฅุจุณู„ูˆู† ุจูŠูƒูˆู† ู‡ุฐุง ู†ุงู‚ุต ู‡ุฐุง ุฃุตุบุฑ ู…ู† ู…ูŠู† ู…ู†
397
00:32:53,000 --> 00:32:58,890
ุฅุจุณู„ูˆู† ู‡ุฐุง ุฃุตุจุญ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†ุจุณ ุงู„ุขู† ุงุซุจุชู†ุง ุนู†ุฏ
398
00:32:58,890 --> 00:33:02,990
ุงู„ู€ F ุจูŠ ูˆ F ู†ุงู‚ุต ุงู„ู„ูŠ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ู…ู† ุงู„ู†ุธุฑูŠุฉ ูˆ
399
00:33:02,990 --> 00:33:06,570
ูˆุงุญุฏ ูŠู‚ูˆู„ ู„ูŠ ุชุจุนุช ุงู„ ุจูŠ ู‡ุงุฏูŠ ุจุชุฎุชู„ู ุนู† ุงู„ ุจูŠ ู‡ุงุฏูŠ
400
00:33:06,570 --> 00:33:10,450
ู‚ู„ุชู„ูƒ ุนู„ุฌุชู‡ุง ุงู„ ุจูŠ ู‡ุงุฏูŠ ูˆ ุงู„ ุจูŠ ู‡ุงุฏูŠ ุจุงุฎุฏ ุงู„ ุจูŠ
401
00:33:10,450 --> 00:33:13,730
ุฅุจุณู„ูˆู† ู„ุชุจุนุช ุงู„ู†ุธุฑูŠุฉ ูˆ ุงู„ ุจูŠ ุฅุจุณู„ูˆู† ุชุจุนุช ุงู„ู„ูŠ ู‡ูˆ
402
00:33:13,730 --> 00:33:17,690
ุงู„ integrability ูˆ ุจุงุฎุฏู‡ู† ุงุชุญุงุฏู‡ู† ุจูŠูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ ุงู„
403
00:33:17,690 --> 00:33:20,990
ุจูŠ ุฅุจุณู„ูˆู† ุงู„ู„ูŠ ู„ุฌูŠุชู‡ุง ู‡ู†ุงุงู„ู„ูŠ ุจุฏู‰ ุฃุณุชุฎุฏู… ุฅูŠู‡ ู„ู‡ุง
404
00:33:20,990 --> 00:33:24,770
ุงู„ุฌู‡ุชูŠู† ูˆ ุฃูŠ refinement ู„ู‡ุง ุจูŠู‡ ู„ู€ ุจูŠ ุฃุจุณู„ูˆู† ูˆ
405
00:33:24,770 --> 00:33:29,270
ู„ุฌุฏูŠุฏุฉ ุจูŠุทู„ุน ู‡ุฐุง ุตุญ ูˆู‡ุฐุง ุตุญ ุงุชุชูŠู† ู…ุน ุจุนุถ ุฏู„ูˆู‚ุชูŠ
406
00:33:29,270 --> 00:33:35,030
ุจุญุฌู„ ุงู„ู„ูŠ ุงุณุชุฎุฏู…ู‡ู… ูˆ ุฃู‚ูˆู„ ุฅุฐุง ุงู„ integration ู„ู„ F
407
00:33:35,030 --> 00:33:37,830
ู…ู† A ู„ B ู†ู‚ุต A ุฃุตุบุฑ ูˆ ุฃุณุงูˆูŠ ุงู„ integration ู„ู„ F
408
00:33:37,830 --> 00:33:41,990
ู†ู‚ุต ุงู„ S ุฒุงุฏ ุงู„ S ู†ู‚ุต ุงู„ Aุงู„ู„ูŠ ู‡ูˆ ุถูŠู ุงู„ term ูˆ
409
00:33:41,990 --> 00:33:46,750
ุทุฑุญุช ุงู„ term ู‡ุฐุง ู‡ูŠ ุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู† ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู†
410
00:33:46,750 --> 00:33:50,210
ุฅุจุณู„ูˆู† ุฅุฐุง ุตุงุฑ ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุงุชู†ูŠู† ุฅุจุณู„ูˆู† ุตุงุฑ ุนู†ุฏูŠ
411
00:33:50,210 --> 00:33:53,910
ููŠู‡ ุงู„ุนุฏุฏ ู‡ุฐุง ุจูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู† ุฅุจุณู„ูˆู† ูˆุฃูƒุจุฑ ุฃูˆ
412
00:33:53,910 --> 00:33:56,870
ุณุงูˆูŠ ุณูุฑ ูˆุฅุจุณู„ูˆู† arbitrary ุฅุฐุง ู‡ุฐุง ุงู„ู…ู‚ุฏุฑ ู„ุงุฒู…
413
00:33:56,870 --> 00:34:00,750
ุณุงูˆูŠ ุณูุฑ ุฅุฐุง ุงู„ integration ุจุณุงูˆูŠ ู…ูŠู† ุจุณุงูˆูŠ ู„ูŠู‡
414
00:34:00,750 --> 00:34:03,510
ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ุทูŠุจ
415
00:34:10,110 --> 00:34:17,630
ู†ุฌูŠ ู„ุฃ ุงู„ู„ูŠ ู‡ูˆ ุงู„ definition ุณุจุนุฉ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉ ุงู„
416
00:34:17,630 --> 00:34:23,270
definition ุจุณูŠุท ุจุฏู‡ ูŠุนุฑู ุญุงุฌุฉ ุงุณู…ู‡ุง ู…ุด ุฃูˆ norm ู‡ูˆ
417
00:34:23,270 --> 00:34:27,330
ุงู†ุง ุจุณู…ูŠู‡ุง ู…ุด ุนุงุฏุฉ ุงู„ู†ุงุณ ุจุชุณู…ูŠู‡ุง norm ุงูŠุด ุงู„ .. ุงู„
418
00:34:27,330 --> 00:34:31,550
.. ุงู„ ู…ุด ุงู„ู„ูŠ ุจุฏู‡ ูŠุนุฑูู‡ุŸ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏูƒ
419
00:34:31,550 --> 00:34:38,910
partition B ุจุณุงูˆูŠ X0 ูˆ X1 ู„ุนู†ุฏูŠ XNุงู„ุงู† ูƒู„ sub
420
00:34:38,910 --> 00:34:46,970
interval ู„ู‡ุง ุทูˆู„ ุงู„ norm ู„ ุงู„ B ุงูˆ ู…ุด ู„ ุงู„ B ู‡ูˆ
421
00:34:46,970 --> 00:34:51,920
ุนุจุงุฑุฉ ุนู† ุงู„ maximumุฃูˆ ุงู„ู€ Supremum Maximum ู„ุฃู† ุงู„ู€
422
00:34:51,920 --> 00:34:53,860
Supremum ุญุงุณุจ Maximum ู„ุฅู†ู‡ ุงู„ู€ finite ุฏูˆู„
423
00:34:53,860 --> 00:34:59,480
ุงู„ู…ุงูƒุณูŠู…ู… ู„ุง X1 ู†ุงู‚ุต X0 ูˆ X2 ู†ุงู‚ุต X1 ู„ุฃุทูˆุงู„
424
00:34:59,480 --> 00:35:03,140
ุงู„ูุชุฑุงุช ูŠุนู†ูŠ sub interval ู„ุนู†ุฏ ุงู„ XN ู†ุงู‚ุต XN ู†ุงู‚ุต
425
00:35:03,140 --> 00:35:07,880
1 ุงู„ู…ุงูƒุณูŠู…ู… ุงู„ู‡ู† ู‡ุฏูˆู„ ุฃุทูˆุงู„ ุงู„ูุชุฑุงุช ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡
426
00:35:07,880 --> 00:35:14,000
ู…ูŠู† ุงู„ู†ูˆุฑู… ู„ู„ู€ B ู‡ูˆ ุงู„ู†ูˆุฑู… ู„ู„ู€ B ุงู„ุขู† ูŠุนู†ูŠ ูŠุนู†ูŠ ู„ูˆ
427
00:35:14,000 --> 00:35:20,670
ูƒุงู† ุนู†ุฏูƒ ู„ูˆ ูƒุงู† ุนู†ุฏูƒ ู‡ูŠ ุนู†ุฏ ุงู„ูุชุฑุฉู…ู† ุตูุฑ ู„ุนูŠู†
428
00:35:20,670 --> 00:35:31,410
ุชู„ุงุชุฉ ู…ุซู„ุง ู‡ุงูŠ ุนู†ุฏ ุจูŠ ุจุชุณุงูˆูŠ ุตูุฑ ู†ุต ูˆุงุญุฏ ุงุชู†ูŠู†
429
00:35:31,410 --> 00:35:37,970
ุชู„ุงุชุฉ ู…ุซู„ุง ุจูƒูˆู† ุงู„ normal ุจูŠ ุงูŠุด ู‡ูŠุณุงูˆูŠ ุงูŠุด ุงู„
430
00:35:37,970 --> 00:35:41,510
normal ุจูŠ ุงูƒูŠุฏ ู‡ุชู‚ูˆู„ูˆุง ูƒู„ูƒู… ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ูˆุงุญุฏ
431
00:35:41,510 --> 00:35:44,710
ุงุชู†ูŠู† ู†ุงู‚ุต ูˆุงุญุฏ ูˆุงุญุฏ ูˆุงุญุฏ ู†ุงู‚ุต ู†ุต ู†ุต ูˆุงุญุฏ ุงุฐุง ุงูŠุด
432
00:35:44,710 --> 00:35:49,110
ู‡ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงูƒุจุฑ ุงูƒุจุฑ ุทูˆู„ sub interval ูˆุงุญุฏู„ูˆ ุฌูŠู†ุง
433
00:35:49,110 --> 00:36:00,350
ุฃุฎุฏู†ุง ุงู„ู€ Q ู…ุซู„ุง ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ Zero ู†ุต ูˆุงุญุฏ ูˆุงุญุฏ ูˆ
434
00:36:00,350 --> 00:36:08,890
ุชู„ุช ุงุชู†ูŠู† ุงุชู†ูŠู† ูˆ ู†ุต ูˆ ุชู„ุงุชุฉ ูˆู‚ู„ู†ุง ู„ูƒู… ุงูˆุฌุฏ ุงู„ู€ Q
435
00:36:09,620 --> 00:36:13,420
ุฃูƒูŠุฏ ูƒู„ูƒู… ุญุฏู‚ูˆู„ ุงู„ู€ Q ุฃุดู…ุงู„ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุจูŠู† ุงู„ูˆุงุญุฏ ูˆ
436
00:36:13,420 --> 00:36:17,420
ุชู„ุช ูˆุงู„ุชุงู†ูŠู† ู‡ูŠ ุฃูƒุจุฑ ุฃูƒุจุฑ ู…ุณุงูุฉ ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
437
00:36:17,420 --> 00:36:23,060
ุฅูŠู‡ุŸ ุชู„ุชูŠู† ู„ุงุญุธูˆุง ุฃู† ุงู„ู€ B ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู† ู…ูŠู†ุŸ ู…ู†
438
00:36:23,060 --> 00:36:33,810
ุงู„ู€ Q ู„ู…ุง .. ู„ู…ุง ุงู„ุขู† ุงู„ู€ Q ูƒุจุฑุช ู†ูˆุฑู…ู‡ุงู‡ูŠูƒูˆู† ุฃุตุบุฑ
439
00:36:33,810 --> 00:36:37,590
ุฃูˆ ูŠุณุงูˆูŠ norm ู…ู† ุงู„ู€ B ุทุจูŠุนูŠ ู„ุฃู†ู‡ ุฏุฎู„ุช ู†ู‚ุทุฉ ุฌุฏูŠุฏุฉ
440
00:36:37,590 --> 00:36:43,690
ู…ู…ูƒู† ุชุฒุฎุฑ ุงู„ู…ุณุงูุฉ ู„ูƒู† ู…ุด ู…ู…ูƒู† ุชุฒูŠุฏู‡ุง ุทูŠุจ ูˆู‡ุฐู‡ ุงู„ู„ูŠ
441
00:36:43,690 --> 00:36:47,810
ู‡ูŠ ุจุนุถ ุงู„ู…ู„ุงุญุธุงุช ุงู„ู„ูŠ ู‡ู†ุง ุนู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุงู„ norm ุฃูˆ
442
00:36:47,810 --> 00:36:55,800
ุงู„ mesh ุงู„ู„ูŠ ุงู„ุขู† ุจุนุถ ุงู„ู„ูŠ ู‡ูˆุงู„ู…ู„ุงุญุธุงุช ุงู„ู„ูŠ ู‡ูˆ
443
00:36:55,800 --> 00:37:00,780
different partition of I can have the same ู…ุด ุจู‚ูˆู„
444
00:37:00,780 --> 00:37:03,280
ูŠุนู†ูŠ ู…ู…ูƒู† different partition ู„ู„ .. ู„ู„ .. ู„ู„ ..
445
00:37:03,280 --> 00:37:06,140
ู„ู„interval ุงู„ู„ูŠ ุฏู‡ same ู…ุด ุงู‡ ุจู‚ุฏุฑ ู‡ุงุฏ ุงู†ุง ุงุฌูŠุจู„ูƒ
446
00:37:06,140 --> 00:37:12,200
ูƒู…ุงู† ูˆุงุญุฏ ุฒูŠ ู‡ุฏูˆู„ ุฎุฏ ูƒู…ุงู† ุจูŠ ุจุฑุงูŠู… ุจุณุงูˆูŠ ุณูุฑ ูˆ ู†ุต
447
00:37:12,200 --> 00:37:20,030
ูˆ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ูˆ ู†ุต ูˆ ุชู„ุงุชุฉู‡ุฐุง ุงู„ู€ B'
448
00:37:20,270 --> 00:37:25,170
ูŠุฎุชู„ู ุนู† ุงู„ู€ B ู„ูƒู† ู†ูˆุฑู…ู‡ ุงู„ุชุงู†ูŠ ุงู„ูˆุงุด ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
449
00:37:25,170 --> 00:37:30,530
ูŠุนู†ูŠ ุงู„ different partitions ู…ู…ูƒู† ูŠูƒูˆู† ู„ู‡ุง ู†ูุณ
450
00:37:30,530 --> 00:37:34,730
ู†ูˆุฑู… ูˆ ู‡ุงูŠ ู…ุซุงู„ ูˆ ูƒุชูŠุฑ ููŠู‡ ุฒูŠ ุฐู„ูƒ ู„ุฃู† ู„ูˆ ูƒุงู†ุช B
451
00:37:34,730 --> 00:37:39,730
subset ู…ู† Q ู†ูˆุฑู… ู„ู€ Q ุฃุธู‡ุฑ ูŠุณุงูˆูŠ ู†ูˆุฑู… ู„ู…ู†ุŸ ู„ู€ B ูˆ
452
00:37:39,730 --> 00:37:43,720
ุงุชุจุนุช ุงู„ุณู‡ู„ ู‡ุฐุงุฎุฏ ุงู„ู€ B subset ุฅุฐุง ู‡ูŠูƒูˆู† ุนู†ุฏู‡ ุงู„ู„ูŠ
453
00:37:43,720 --> 00:37:47,080
ู‡ูˆ ุนุฏุฏ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ููŠ Q ุฃูƒุชุฑ ู…ู† ุนุฏุฏ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ููŠ
454
00:37:47,080 --> 00:37:53,780
B ู‡ูƒูˆู† ุงู„ maximum ุนู„ู‰ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ ุฃูˆ ุดุงูˆูŠ
455
00:37:53,780 --> 00:37:56,720
ุงู„ maximum ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุชุงู†ูŠ ู„ุฅู†ู‡ ุงู„ู„ูŠ ุตุงุฑ ููŠู‡ุง
456
00:37:56,720 --> 00:38:02,070
ุฒูŠุงุฏุงุช ุตุงุฑ ููŠู‡ ุฅู…ูƒุงู†ูŠุฉ ุฅู†ู‡ุง ุชู‚ุตุฑ ุงู„ูุชุฑุงุชุทูŠุจ ู„ูƒู† ู„ูˆ
457
00:38:02,070 --> 00:38:05,330
ูƒุงู† ุงู„ normal ุงู„ Q ุฃุตุบุฑ ุดูˆูŠู‡ ุงู„ normal ุงู„ B ู…ุด ุดุฑุท
458
00:38:05,330 --> 00:38:10,110
ุฃู† ูŠูƒูˆู† B subset ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ Q ุฃูˆ ูƒุชูŠุฑ ุจุชู„ุงู‚ูŠ
459
00:38:10,110 --> 00:38:16,910
ุฃู…ุซู„ุฉ ุฒูŠ ู‡ูŠ ุงู„ normal
460
00:38:16,910 --> 00:38:25,160
B ู‡ุฐุง ุฅูŠุด ุจูŠุณุงูˆูŠุŸ normal B ุจูŠุณุงูˆูŠ ูˆุงุญุฏุงู„ุงู† ุนู†ุฏูŠ ..
461
00:38:25,160 --> 00:38:32,320
ู…ุด ุดุฑุท .. ูŠุนู†ูŠ ู‡ุฏูŠู„ูƒ ุงู„ู„ูŠ ู‡ูˆ Normal Q ุฃุตุบุฑ ุฃูˆูŠ
462
00:38:32,320 --> 00:38:40,040
ุณุงูˆูŠ Normal B ู„ูƒู† ุงู„ู€ B ุงู„ู„ูŠ ู‡ูˆ ู„ูŠุณ ุดุฑุทุง ุฃู†ู‡ุง ุชูƒูˆู†
463
00:38:40,040 --> 00:38:47,500
subset ู…ู† ู…ูŠู†ุŸ ู…ู† ุฅูŠุดุŸ ู…ู† ุงู„ู€ Q Normal B ูˆุงุญุฏ ุฎุฏ
464
00:38:47,500 --> 00:38:48,060
ุงู„ู€ Q
465
00:38:53,000 --> 00:39:03,100
ุจุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุณูุฑ ูˆ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุงุชู†ูŠู† ูˆ ู†ุต ูˆ
466
00:39:03,100 --> 00:39:07,180
ุชู„ุงุชุฉ ู†ูˆุฑู…ุงู„
467
00:39:07,180 --> 00:39:12,100
ูƒูŠูˆู‡ ุจุฏูŠู‡ ุงู„
468
00:39:12,100 --> 00:39:19,920
gate
469
00:39:19,920 --> 00:39:22,280
ูˆุงุญุฏ ูˆ ูˆุงุญุฏ ูˆ ู†ุต
470
00:39:25,990 --> 00:39:34,190
ูˆู‡ูŠ ู†ุต ูƒู…ุงู† ุณูุฑ ูˆ ู†ุต Normal Q ุจุณุงูˆุฉ ู†ุต ู…ุธุจูˆุท
471
00:39:34,190 --> 00:39:45,650
Normal Q ุจุณุงูˆุฉ ู†ุต ู„ูƒู† ุงู„ B ุงู„ B ุฎู„ูŠ ู‡ุฐุง ุชู„ุช ู…ุงุดูŠ
472
00:39:45,650 --> 00:39:51,220
ุฎู„ูŠ ู‡ุฐุง ุชู„ุช ุตุงุฑุช ุงู„ B ู…ุด subset ู…ู† ู…ูŠู†ู…ู† ุงู„ู€ Q
473
00:39:51,220 --> 00:39:54,420
ู…ู…ูƒู† ุชู„ุงู‚ูŠ ุงูุถู„ ุงูƒุชูŠุฑ ู‡ุฐู‡ ุงู„ู€ B ุฃูƒูŠุฏ ู…ุด subset ู…ู†
474
00:39:54,420 --> 00:40:00,460
ุงู„ู€ Q Normal B ุจูŠุจู‚ู‰ ูˆุงุญุฏ ุตุญุŸ Normal B ูˆุงุญุฏ ูˆ
475
00:40:00,460 --> 00:40:06,160
Normal Q ุงูŠุด ุจูŠุณุงูˆูŠ ู†ุต ู„ุฃู† ุงู„ูุฑู‚ ุจูŠู†ู‡ู… ุงู†ุตุงุต ู‡ุฐู‡
476
00:40:06,160 --> 00:40:12,340
ุนู†ุฏูƒ Normal Q ุฃุตุบุฑ ุงูˆ ูŠุณุงูˆูŠ Normal B ู„ุฃู† ู‡ุฐุง ู†ุต
477
00:40:12,340 --> 00:40:14,420
ูˆู‡ุฐุง ูˆุงุญุฏ but
478
00:40:17,620 --> 00:40:22,380
ูˆุงุถุญ ุงู„ู€ B ู‡ูŠ ุณูุฑ ูˆ ุชู„ุช ูˆ ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ู„ูŠุณ
479
00:40:22,380 --> 00:40:26,100
subset ู…ู† ุงู„ู€ Q ุตูุฑ ูˆ ู†ุต ูˆ ูˆุงุญุฏ ูˆ ู†ุต ูˆ .. ูˆ .. ูˆ
480
00:40:26,100 --> 00:40:27,400
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
481
00:40:27,400 --> 00:40:28,940
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
482
00:40:28,940 --> 00:40:29,640
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
483
00:40:29,640 --> 00:40:30,360
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
484
00:40:30,360 --> 00:40:30,380
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
485
00:40:30,380 --> 00:40:34,960
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ
486
00:40:34,960 --> 00:40:36,340
.. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ .. ูˆ ..