abdullah's picture
Add files using upload-large-folder tool
b4e65c0 verified
raw
history blame
44.4 kB
1
00:00:22,350 --> 00:00:26,430
ุจู†ูƒู…ู„ ุจุฑู‡ุงู† ุงู„ู„ู…ุฉ ุงู„ู„ูŠ ุงุจุชุฏุฃู†ุง ููŠู‡ ุงู„ู…ุญุงุถุฑุฉ
2
00:00:26,430 --> 00:00:30,950
ุงู„ู…ุงุถูŠุฉ ุทุจุนู‹ุง ุงู„ู„ู…ุฉ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุซู…ุงู†ูŠ ู†ู‚ุงุท ุจุฑู‡ุงู†
3
00:00:30,950 --> 00:00:36,090
ู…ู†ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณ ู†ู‚ุงุท ุจู†ุฌูŠ ุงู„ุขู† ู„ู†ู‚ุทุฉ ุงู„ุณุงุฏุณุฉ
4
00:00:36,090 --> 00:00:43,270
ุงู„ู†ู‚ุทุฉ ุฑู‚ู… ุณุชุฉ ุจูŠู‚ูˆู„ ู„ูŠ ุฃู† ุงู„ order ู„ู„ู€ A H ูŠุณุงูˆูŠ ุงู„
5
00:00:43,270 --> 00:00:50,110
order ู„ู„ู€ B H ุงู„ู…ู‚ุตูˆุฏ ู…ู† ุฐู„ูƒ ุฃู†ู‡ ู„ูˆ ุนู…ู„ุช ุฃูŠ left
6
00:00:50,110 --> 00:00:54,430
coset ุฃูˆ right coset ู„ู€ subgroup ู…ู† ุงู„ู€ group
7
00:00:54,430 --> 00:00:59,690
ุงู„ุฃุณุงุณูŠุฉ ุจุฏูŠ ูŠุทู„ุน ููŠ ูƒู„ left coset ู†ูุณ ุงู„ุนุฏุฏ ู…ู†
8
00:00:59,690 --> 00:01:03,810
ุงู„ุนู†ุงุตุฑ ุฃูˆ ู„ูˆ ูƒุงู†ุช right cosets ุจุถุจุท ุจุฏูŠ ูŠุทู„ุน ููŠ
9
00:01:03,810 --> 00:01:09,290
ูƒู„ ุงุซู†ุชูŠู† ุฃูˆ ูƒู„ู‡ู… ู‡ูŠุทู„ุน ููŠ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ู†ูุณ ุงู„ุนุฏุฏ
10
00:01:09,290 --> 00:01:14,770
ู…ู† ุงู„ุนู†ุงุตุฑ ูŠุจู‚ู‰ order ู„ู„ู€ A H ูŠุณุงูˆูŠ order ู„ู„ู€ B H
11
00:01:14,770 --> 00:01:20,510
ู„ูƒู„ ุงู„ู€ A ูˆุงู„ู€ B ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ group G ูŠุจู‚ู‰ ู‡ุฐุง ุตุญูŠุญ
12
00:01:20,510 --> 00:01:27,460
ู„ูƒู„ ุงู„ู€ A ูˆุงู„ู€ B ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ group G ู…ุดุงู† ู†ุซุจุช ุฃู†
13
00:01:27,460 --> 00:01:30,700
ุงู„ order ู„ู€ group ูŠุณุงูˆูŠ ุงู„ order ู„ู€ group ู‚ูˆู„ู†ุง ูŠูƒููŠ
14
00:01:30,700 --> 00:01:33,940
ู†ุซุจุช ุฃู†ู‡ ููŠ function ู…ุง ุจูŠู† ุงู„ุงุชู†ูŠู† ูˆุงู„ู€ function
15
00:01:33,940 --> 00:01:38,000
ุชุจู‚ู‰ one to one and onto ู‡ุฐุง ุจูŠุนุทูŠู†ูŠ ุฃู† ุนุฏุฏ
16
00:01:38,000 --> 00:01:44,140
ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ุฃูˆู„ู‰ ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ุซุงู†ูŠุฉ ู„ุฐู„ูƒ
17
00:01:44,140 --> 00:01:47,940
ุจุฏูŠ ุฃุฌูŠ ุฃุจุฑู‡ู† ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุจู‚ูˆู„ู‡ define
18
00:01:51,950 --> 00:02:01,920
ููŠ ู…ู† ุงู„ู€ A H ุฅู„ู‰ ุงู„ู€ B H ุจุงู„ู€ Phi ู„ู…ุง ุชุฃุซุฑ ุนู„ู‰
19
00:02:01,920 --> 00:02:07,520
ุฃูŠ ุจุฏูŠ ุขุฎุฐ element ู…ู† H ูˆู„ูŠูƒู† A H ุจูˆุฏูŠู‡ุง ู„ู„ู€ B H
20
00:02:07,520 --> 00:02:15,440
ูŠุจู‚ู‰ ุจุฏู‡ ูŠุณุงูˆูŠ B H ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ ุงู„ู€ H ุงู„ู„ูŠ
21
00:02:15,440 --> 00:02:20,920
ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ู…ูˆุฌูˆุฏุฉ ููŠ H ุจุฏูŠ ู†ุซุจุช ู‡ุฐู‡ one to one and
22
00:02:20,920 --> 00:02:30,880
onto ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ Phi is one to
23
00:02:30,880 --> 00:02:39,040
one Assume ุจุฑูˆุญ ุขุฎุฐ ุตูˆุฑุชูŠู† ู…ุชุณุงูˆูŠุชูŠู† ุฃู† Phi of A
24
00:02:39,040 --> 00:02:48,390
H1 ูŠุณุงูˆูŠ Phi of A H2 ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุฃู† ุงู„ู€ A H1 ูŠุณุงูˆูŠ
25
00:02:48,390 --> 00:02:53,570
ุงู„ู€ PH1 ูŠุณุงูˆูŠ ุงู„ู€ PH2 ุฅู† ุชู… ุฐู„ูƒ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ PH1 to
26
00:02:53,570 --> 00:03:00,070
PH1 ุจู†ุงุก ุนู„ู‰ ุงู„ุชุนุฑูŠู ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุณุงูˆูŠ BH1 ูˆู‡ุฐุง
27
00:03:00,070 --> 00:03:08,310
ุจูŠุณุงูˆูŠ BH2 ุจุงู„ู€ left cancellation law ู‡ุฐู‡ ุจุชุนุทูŠู†ุง
28
00:03:15,660 --> 00:03:22,020
ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุชูŠ ุงู„ูŠุณุงุฑ ููŠ a ุจูŠุตูŠุฑ a h1
29
00:03:22,020 --> 00:03:27,420
ูŠุณุงูˆูŠ a h2 ูˆุจุงู„ุชุงู„ูŠ Phi is one to one
30
00:03:33,850 --> 00:03:41,170
ุจุชุฑูˆุญ ูˆุขุฎุฐ element ู…ู† ุงู„ู€ codomain ูˆุฃุซุจุช ุฅู†ู‡ ุฃุตู„ู‡
31
00:03:41,170 --> 00:03:45,590
ูˆูŠู† ููŠ ุงู„ู€ domain ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ุนู„ู‰ ุงู„ู€ BH ุจุฏูŠ ุขุฎุฐ
32
00:03:45,590 --> 00:03:50,430
element ู…ู†ู‡ุง ูˆุฃุซุจุช ุฅู† ู‡ุฐุง ุงู„ู€ element ู„ู‡ ุฃุตู„ ููŠ
33
00:03:50,430 --> 00:03:57,330
domain ููŠ ุงู„ู€ A H ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงูุชุฑุถ ุฅู† X ู…ูˆุฌูˆุฏ ูˆูŠู†
34
00:03:57,330 --> 00:04:03,350
ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ B H ุชู…ุงู…ุŸ
35
00:04:03,690 --> 00:04:13,470
ูŠุจู‚ู‰ then ุงู„ู€ X ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ B H for some H ุงู„ู„ูŠ
36
00:04:13,470 --> 00:04:22,190
belongs to domain to H ุทูŠุจ ู‡ุฐุง ุฃู„ูŠุณ ู‡ูˆ B H ุทุจู‚ุง ุงู„ู„ูŠ
37
00:04:22,190 --> 00:04:28,900
ุงู„ุชุนุฑูŠู ู‡ูˆ Phi of A H ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† Phi is on
38
00:04:28,900 --> 00:04:32,520
to ุฎู„ุงุต
39
00:04:32,520 --> 00:04:40,800
ู†ู†ุชู‡ูŠ ู‡ู†ุง ู…ู†ู‡ุง ูŠุจู‚ู‰ ู‡ู†ุง Sir Phi is one to one and
40
00:04:40,800 --> 00:04:50,090
on to ูˆู‡ุฐุง ูŠุชุทู„ุจ ุฃู† ุงู„ order ู„ู„ู€ A H ู‡ูˆ order ู„ู„ู€ B H
41
00:04:50,090 --> 00:04:55,610
ูŠุจู‚ู‰ ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง ู„ู…ุง ู†ุฃุฎุฐ subgroup ู…ู† ุงู„ู€ group
42
00:04:55,610 --> 00:05:00,970
ุฃุฌูŠ ูˆุงุถุฑุจ ุฃูŠ element ู…ู† G ููŠ ู‡ุฐุง ุงู„ู€ H ู…ู† ุฌู‡ุฉ
43
00:05:00,970 --> 00:05:05,690
ุงู„ุดู…ุงู„ ุฃูˆ ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠุทู„ุน ุนู†ุฏู‡ ู…ุงุฆุฉ
44
00:05:05,690 --> 00:05:11,030
cosets ูŠุจู‚ู‰ ุงู„ู…ุงุฆุฉ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ุง ู†ูุณ ุงู„ุนุฏุฏ ู…ู†
45
00:05:11,030 --> 00:05:15,210
ุงู„ุนู†ุงุตุฑ ููŠู‡ุง ุนุดุฑูŠู† ูŠุจู‚ู‰ ุงู„ุซุงู†ูŠุฉ ููŠู‡ุง ุนุดุฑูŠู† ุงู„ุซุงู„ุซุฉ
46
00:05:15,210 --> 00:05:20,010
ุนุดุฑูŠู† ุฅู„ู‰ ุขุฎุฑู‡ ูˆู‡ูƒุฐุง ู‡ุฐุง ุจุงู„ู†ุณุจุฉ ู„ู„ู†ู‚ุทุฉ ุฑู‚ู… ุณุชุฉ
47
00:05:20,010 --> 00:05:26,770
ุจู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ ุฑู‚ู… ุณุจุนุฉ ูŠุจู‚ู‰ ุงู„ู†ู‚ุทุฉ ุฑู‚ู… ุณุจุนุฉ ุจุชู‚ูˆู„ ุฅู†
48
00:05:26,770 --> 00:05:35,690
ุงู„ู€ A H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ H A if and only if ุงู„ู€ H ุจุฏู‡
49
00:05:35,690 --> 00:05:44,610
ูŠุณุงูˆูŠ A H A inverse ุจุฏู†ุง ู†ุจุฑู‡ู† ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ู€
50
00:05:44,610 --> 00:05:51,030
prove ุฎู„ู‘ูŠ ุฃุจู‚ู‰ ู„ูƒ ู‡ู†ุง ุงู„ุขู† ุงู„ูˆุถุน ุณูŠูƒูˆู† ููŠ ุงุชุฌุงู‡ูŠู†
51
00:05:51,030 --> 00:05:56,350
ู„ูƒู† ู…ู…ูƒู† ู†ุฌูŠุจ ุงู„ุงุชุฌุงู‡ูŠู† ู…ุน ุจุนุถ ู…ุฑุฉ ูˆุงุญุฏุฉ ุงู„ุขู†
52
00:05:56,350 --> 00:06:01,990
ุฅุฐุง ูƒู†ุช ู‚ุงุนุฏ ุฃู‚ูˆู„ ู„ู‡ A H ุณูŠูƒูˆู† H A if and only
53
00:06:01,990 --> 00:06:09,900
if ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุชูŠ ุงู„ูŠู…ูŠู† ููŠ ุงู„ู€ A
54
00:06:09,900 --> 00:06:17,600
inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุตูŠุฑ A H A inverse ุจุงู„ุดูƒู„
55
00:06:17,600 --> 00:06:24,720
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุณุงูˆูŠ H A ููŠ ุงู„ู€ A inverse ุจุงู„ุดูƒู„
56
00:06:24,720 --> 00:06:29,470
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… if and only if ู…ู†
57
00:06:29,470 --> 00:06:33,990
ุฎุงุตูŠุฉ ุงู„ู€ associativity ู…ู…ูƒู† ุฃุนู…ู„ ุฏู…ุฌ ู…ุง ุจูŠู†
58
00:06:33,990 --> 00:06:41,860
ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ูุจูŠุตูŠุฑ ุนู†ุฏูŠ A H A inverse ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐุง
59
00:06:41,860 --> 00:06:47,440
ุงู„ู€ H ูˆุฎุงุตูŠุฉ ุงู„ู€ associativity ูŠุจู‚ู‰ ุงู„ู€ A ููŠ ุงู„ู€ A
60
00:06:47,440 --> 00:06:52,760
inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุทุจ ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ
61
00:06:52,760 --> 00:07:01,200
if and only if ุงู„ู€ A H A inverse A H A inverse ุจุฏู‡
62
00:07:01,200 --> 00:07:02,680
ูŠุณุงูˆูŠ ุชู…ุงู…
63
00:07:09,090 --> 00:07:13,510
ูŠุจู‚ู‰ H ููŠ ุงู„ู€ identity element ุชุจุน ุงู„ู€ group ุงู„ู„ูŠ
64
00:07:13,510 --> 00:07:23,450
ู‡ูˆ G ู‡ุฐุง if and only if A H A inverse ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู†
65
00:07:23,450 --> 00:07:27,110
ู†ูุณู‡ ู„ุฃู† ุงู„ู€ identity element ุฃูˆ ุถุฑุจู‡ ููŠ ุฃูŠ
66
00:07:27,110 --> 00:07:31,930
element ุจูŠุทู„ุน ู†ูุณ ุงู„ู€ element ุงู„ู„ูŠ ู‡ูˆ ู‡ูˆ ุงู„ู…ุทู„ูˆุจ
67
00:07:32,700 --> 00:07:38,240
ุงู„ู†ู‚ุทุฉ ุงู„ุฃุฎูŠุฑุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู…ู†ุฉ ุจุชู‚ูˆู„ ...
68
00:07:38,240 --> 00:07:46,480
ุจุชู‚ูˆู„ ุฃู† ุงู„ู€ A H is a subgroup ู…ู† G if and only if
69
00:07:46,480 --> 00:07:51,980
ุงู„ู€ A belongs to domain if and only if ุงู„ู€ A belongs
70
00:07:51,980 --> 00:07:55,360
ู„ู…ูŠู† ู„ู€ ุงู„ู€ H ุทูŠุจ ุชู…ุงู…
71
00:07:59,780 --> 00:08:03,740
ุงู„ู…ุฑุฉ ุงู„ุณุงุจู‚ุฉ ู‚ู„ู†ุง ุฃู† ุงู„ู€ left cosets ู‚ุฏ ุชูƒูˆู†
72
00:08:03,740 --> 00:08:08,100
subgroup ูˆู‚ุฏ ู„ุง ุชูƒูˆู† subgroup ุชู…ุงู…ุŸ ู„ูƒู† in
73
00:08:08,100 --> 00:08:12,760
general ู…ุงู‡ูŠ subgroup ู‡ู†ุง ุจูŠุญุท ู„ูŠ ุงู„ู€ chart ุฅูŠุด
74
00:08:12,760 --> 00:08:17,340
ุงู„ู„ูŠ ูŠุฎู„ูŠ ุงู„ู€ left coset subgroup ู‡ูˆ ุฃู† ุถุฑุจู‡ุง ููŠ
75
00:08:17,340 --> 00:08:24,600
ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ู…ู† ู…ู† ุนู†ุงุตุฑ H itself ูŠุจู‚ู‰ ุงู„ู€ A H
76
00:08:24,600 --> 00:08:29,140
ุนุจุงุฑุฉ ุนู† subgroup ู…ู† G ุฅุฐุง ูƒุงู† ุงู„ู€ A ุงู„ู„ูŠ ุถุฑุจุชู‡ ู‡ุฐู‡
77
00:08:29,140 --> 00:08:35,760
ู…ู† H ู†ูุณู‡ุง ูˆู„ูŠุณ ูˆู„ูŠุณ ู…ู† ุฎุงุฑุฌู‡ุง ูŠุจู‚ู‰ ุงู„ุขู† ุจุฏุงุฌูŠ
78
00:08:35,760 --> 00:08:44,660
ุฃู‚ูˆู„ู‡ assume that ุงูุชุฑุถ ุฃู† ุงู„ู€ A H is a subgroup ู…ู†
79
00:08:44,660 --> 00:08:50,820
G ุจู†ุญุงูˆู„ ู†ุซุจุช ุฃู† ุงู„ู€ A ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ H ูˆู‡ุฐุง ู‡ูˆ ุงู„ุงุชุฌุงู‡
80
00:08:50,820 --> 00:08:58,440
ุงู„ุฃูˆู„ ุทูŠุจ ุชู…ุงู… ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ูŠุง ุดุจุงุจ ู‡ุฐู‡ ุชุญุชูˆูŠ ุนู„ู‰
81
00:08:58,440 --> 00:09:04,340
ุงู„ู€ identity elementุŸ ู„ูŠุดุŸ ู„ุฃู†ู‡ุง subgroup ูŠุจู‚ู‰ ุจุงุฌูŠ
82
00:09:04,340 --> 00:09:12,640
ุจู‚ูˆู„ู‡ ุงู„ู€ E ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ H since ุงู„ู€ H is a subgroup
83
00:09:12,640 --> 00:09:22,170
ู…ู† G ุชู…ุงู…ุŸ ุทูŠุจ and ุงู„ู€ E ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ H ูˆู„ุง ู„ุงุŸ ู„ุฃู†
84
00:09:22,170 --> 00:09:27,890
ุงู„ู€ H ูƒุฐู„ูƒ ู‡ูŠ subgroup ูŠุจู‚ู‰ ุงู„ู€ E ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆุงู„ู€ E
85
00:09:27,890 --> 00:09:35,600
ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ุทุจ ุงู„ู€ H ุฃู„ูŠุณุช ู‡ูŠ E ููŠ HุŸ ูŠุนู†ูŠ ุตุงุฑุช ู‡ุฐู‡
86
00:09:35,600 --> 00:09:41,480
left coset ูˆู‡ุฐู‡ left coset ู„ุฌู‡ุฉ element ู…ูˆุฌูˆุฏุฉ
87
00:09:41,480 --> 00:09:46,540
ููŠ ุงู„ุงุซู†ูŠู† ูŠุจู‚ู‰ ุงู„ู€ intersection ุชุจุนู‡ู… ู„ุง ูŠู…ูƒู† ุฃู†
88
00:09:46,540 --> 00:09:58,430
ูŠุณุงูˆูŠ ูุงูŠ ูŠุจู‚ู‰ A ุงู„ู„ูŠ ู‡ูˆ E belongs to A H ูˆุงู„ู€ E H
89
00:09:58,430 --> 00:10:05,450
ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ E H ู„ุง
90
00:10:05,450 --> 00:10:13,580
ูŠู…ูƒู† ุฃู† ูŠุณุงูˆูŠ ูุงูŠ ููŠู…ุง ุฏุงู… ู„ุง ูŠู…ูƒู† ุฃู† ูŠุณุงูˆูŠ ูุงูŠ ู…ุนู†ุงู‡
91
00:10:13,580 --> 00:10:17,680
ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ are equal ู…ู† ุงู„ู†ู‚ุทุฉ ู…ุง ุจุนุฑู ูƒุฏู‡ ุฑู‚ู…ู‡ุง
92
00:10:17,680 --> 00:10:22,200
ุฎู…ุณุฉ ุฃูˆ ุซู„ุงุซุฉ ุนู†ุฏู†ุง ู…ู† ุงู„ู„ูŠ ู…ู„ู… ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ูŠุจู‚ู‰
93
00:10:22,200 --> 00:10:29,120
ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ A H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ E H ูŠุนู†ูŠ ุงู„ู€ A H
94
00:10:29,120 --> 00:10:37,380
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ H itself ุทูŠุจ ุฅุฐุง ู‡ุฏูˆู„ ุจุชุณุงูˆูˆุง ุฃู„ูŠุณุช ุงู„ู€ A
95
00:10:37,380 --> 00:10:41,900
ู…ูˆุฌูˆุฏุฉ ููŠ H ุงู„ู†ู‚ุทุฉ ุจุฑู‡ู†ู‡ุง ุจุฑุถู‡ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู…ุง
96
00:10:41,900 --> 00:10:47,500
ุจุนุฑู ุงุซู†ูŠู† ุฃูˆ ุซู„ุงุซุฉ ุจุงู„ูƒุชูŠุฑ ู…ุงุฏุงู… ุงู„ู€ A H ูŠุณุงูˆูŠ H
97
00:10:47,500 --> 00:10:52,780
ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ A belongs to H ุงู„ู„ูŠ ู‡ูˆ ุงู„ุงุชุฌุงู‡
98
00:10:52,780 --> 00:10:58,060
ุงู„ุฃูˆู„ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ุงุชุฌุงู‡ ุงู„ุซุงู†ูŠ ูุจุงุฌูŠ ุจู‚ูˆู„ู‡
99
00:10:58,060 --> 00:11:00,080
conversely
100
00:11:01,310 --> 00:11:09,050
ุจุงู„ุนูƒุณ ูŠุจู‚ู‰ assume ุงูุชุฑุถ ุฃู† ุงู„ู€ A belongs to H ุจุฏุง
101
00:11:09,050 --> 00:11:14,570
ุฃุญุงูˆู„ ุฃุซุจุช ุฃู† ุงู„ู€ A H is a subgroup ู…ุฏุงู… ุงู„ู€ A
102
00:11:14,570 --> 00:11:23,350
belongs to H then ุงู„ู€ A H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ H ู…ุธุจูˆุทุŸ
103
00:11:25,320 --> 00:11:30,400
ุตุญ ุจุฑู‡ุงู† ู…ุฏุงู… ุงู„ู€ A belongs to H ู„ุฃู† if and only if
104
00:11:30,400 --> 00:11:34,280
ูŠุนู†ูŠ ูƒุงู†ุช ุงู„ู†ู‚ุทุฉ ุนู†ุฏู‡ุง ุจุชู‚ูˆู„ ุฃู† ุงู„ู€ A H ุจุฏูŠ ูŠุณุงูˆูŠ H
105
00:11:34,280 --> 00:11:38,420
if and only if ุงู„ู€ A belongs to H ุทุจ ุงุญู†ุง ูุฑุถูŠู† ุงู„ู€
106
00:11:38,420 --> 00:11:43,060
A belongs to H ุจุฌู‡ ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ุจูŠุณุงูˆูˆุง ุจุนุถ ุชู…ุงู…ู‹ุง ุทุจ
107
00:11:43,060 --> 00:11:49,000
ู‡ุฏุง subgroup ูˆู„ุง ู„ุฃ ุฅุฐุง ู‡ุฏุง ู…ู† subgroup ู‡ุฐุง ุจุฏูŠ
108
00:11:49,000 --> 00:11:57,220
ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ A H is a subgroup ู…ู† G because ุงู„ู€ H
109
00:11:57,220 --> 00:12:05,920
is a subgroup ู…ู† G ุนู„ู‰ ู‡ูŠูƒ ุจูŠูƒูˆู† ุจุฑู‡ู†ู†ุง ุงู„ู†ู‚ุงุท
110
00:12:05,920 --> 00:12:12,120
ุงู„ุซู…ุงู†ูŠุฉ ู„ู‡ุฐู‡ ุงู„ู„ู…ุฉ ูˆู‡ูŠ ุนู„ุงู‚ุฉ ุงู„ู€ cosets ู…ุน ุจุนุถู‡ุง
111
00:12:12,120 --> 00:12:18,280
ุฃูˆ ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถ ุทูŠุจ ููŠ ุนู†ุฏูŠ ู…ู„ุงุญุธุฉ ู‡ู†ุง ู…ู†ุญุจ ู†ุดูŠุฑ
112
00:12:18,280 --> 00:12:26,460
ุฅู„ูŠู‡ุง ุงู„ู€ remark ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุฅุฐุง ุงู„ู€ H ู‡ูŠ ุงู„ู€
113
00:12:26,460 --> 00:12:31,460
special linear group of two by two matrices over R
114
00:12:31,460 --> 00:12:35,720
ูˆู‡ุฐู‡ ุงู„ู€ subgroup ู…ู† ุงู„ู€ general linear group of
115
00:12:35,720 --> 00:12:43,560
two by two matrices over R ูู‡ุฐู‡ ุงู„ู€ subgroup ู…ู†
116
00:12:43,560 --> 00:12:50,910
ุงู„ู€ general linear group of two by two matrices A
117
00:12:50,910 --> 00:12:59,170
and G the coset
118
00:12:59,170 --> 00:13:13,930
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ A H is the set of all two
119
00:13:13,930 --> 00:13:16,590
by two matrices
120
00:13:23,780 --> 00:13:30,740
with the same
121
00:13:30,740 --> 00:13:35,500
determinant
122
00:13:35,500 --> 00:13:42,860
as A for
123
00:13:42,860 --> 00:13:48,360
example ูƒู…ุซุงู„
124
00:13:48,360 --> 00:13:49,300
ุนู„ู‰ ุฐู„ูƒ
125
00:13:52,640 --> 00:14:01,220
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุชู„ุงุชุฉ ุตูุฑ ูˆุงุญุฏ ุงุซู†ูŠู† ู„ูˆ ุถุฑุจุชู‡ุง ููŠู‡
126
00:14:01,220 --> 00:14:16,280
H is the set of all two by two matrices with
127
00:14:16,280 --> 00:14:18,060
determinant
128
00:14:25,120 --> 00:14:30,420
ุณุชุฉ ุทูŠุจ ุจุฏู†ุง ู†ุณุฃู„ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ู„ูŠุด ู‡ุฐุง ุงู„ูƒู„ุงู…
129
00:14:30,420 --> 00:14:38,260
ุตุญูŠุญ ุทู„ุน ู„ูŠ ููŠู‡ุง ูƒูˆูŠุณ ุทู„ุน ู„ูŠ ููŠู‡ุง ูƒูˆูŠุณ ุญุชู‰ ู†ุญุงูˆู„ ุฃู†
130
00:14:38,260 --> 00:14:44,740
ู†ุตู„ ุฅู„ู‰ ุงู„ุฅุฌุงุจุฉ ู„ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ุฐูŠ ุฒุนู…ู†ุงู‡ ุฃู† ุงู„
131
00:14:44,740 --> 00:14:50,980
order ู„ู‡ุง ูŠุณุงูˆูŠ ุณุชุฉ ู‚ู„ูŠ ุจู„ุง ูƒุฏู‡ ุงู„ remark ุจุชู‚ูˆู„ ู…ุง
132
00:14:50,980 --> 00:14:55,170
ูŠุฃุชูŠู„ูˆ ูƒุงู†ุช ุงู„ู€ subgroup ู‡ูŠ ุงู„ู€ special linear
133
00:14:55,170 --> 00:14:59,270
group ู…ู„ูŠ ุฌุฑูˆุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ general linear group of
134
00:14:59,270 --> 00:15:04,470
two by two matrices over R ุทุจุนุง ู‡ุฐู‡ ูƒู„ ุงู„ู…ุตูˆูุงุช
135
00:15:04,470 --> 00:15:09,410
ุงู„ู„ูŠ determinant ู„ู‡ุง ู„ุง ูŠุณุงูˆูŠ zero ู‡ุฐู‡ ูƒู„ ุงู„ู…ุตูˆูุงุช
136
00:15:09,410 --> 00:15:13,670
ุงู„ู„ูŠ determinant ู„ู‡ุง ู„ุง ูŠุณุงูˆูŠ ู…ูŠู† ูˆุงุญุฏ ุตุญูŠุญ ุจู‚ูˆู„
137
00:15:13,670 --> 00:15:19,330
ู„ุฃูŠ matrix A ููŠ ุงู„ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ the coset
138
00:15:19,330 --> 00:15:26,270
of H ุฃู†ุง ุฃุฎุฏุช A ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ general ุถุฑุจุช ููŠ ู…ู†ุŸ
139
00:15:26,270 --> 00:15:29,730
ููŠ H ู„ู„ special linear group of two by two
140
00:15:29,730 --> 00:15:35,770
matrices overall ุจู‚ูˆู„ ุงู„ู€AH ู‡ุฐู‡ ูƒู„ ู…ุตุญูˆูุฉ ููŠู‡ุง
141
00:15:35,770 --> 00:15:41,030
ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ูŠุณูˆู‰ ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„ู…ุตุญูˆูุฉ ุงูŠู‡ ุจุงู„ุถุจุท
142
00:15:41,030 --> 00:15:48,750
ุชู…ุงู…ุงุŒ ู„ูŠุดุŸ ู„ุฅู† ู‡ุฐู‡ ุงู„ู…ุตุญูˆูุฉ ูƒู„ matrix ููŠู‡ุง ุงู„ู…ุญุฏุฏ
143
00:15:48,750 --> 00:15:52,830
ุฏูŠ ู„ู‡ุง ุจุฌุฏุงุด ูŠุจู‚ู‰ ู„ู…ุง ุชุฌูŠุจ ุงู„ determinant ู„ุฃูŠ
144
00:15:52,830 --> 00:15:57,640
ุฃู„ู…ุตูŠุฑ ุงู„ determinant ู„ุฅูŠู‡ ููŠ ุงู„ determinantู„ุฃ
145
00:15:57,640 --> 00:16:01,560
ุจูŠู‡ูŠุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุจูŠุธู„ู…ูŠู† ุงู„ determinant ู„ูŠู‡ ุจูŠุจู‚ู‰
146
00:16:01,560 --> 00:16:05,660
ูƒู„ ุนู†ุตุฑ ููŠู‡ุง ุจุฏูŠ ูŠูƒูˆู† ุงู„ determinant ู„ู‡ ูƒ
147
00:16:05,660 --> 00:16:11,580
determinant ู„ู…ูŠู† ู„ุฅูŠู‡ ู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ุงู„ู…ุตุญูˆูุฉ ุงู„ู„ูŠ
148
00:16:11,580 --> 00:16:15,840
ุนู†ุฏู‡ุง ุฏูŠ element ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ general linear
149
00:16:15,840 --> 00:16:22,400
group ู„ุฅู† ุงู„ู…ุญุฏุฏ ุชุจุนู‡ ุจู‚ุฏุงุด ุจุณุชุฉ ูŠุนู†ูŠ ู„ุง ูŠุณุงูˆูŠ
150
00:16:22,400 --> 00:16:26,520
ุฒูŠู†ูˆ ู…ุนู†ุงุชู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ general ูŠุจู‚ู‰ the set of
151
00:16:26,520 --> 00:16:30,160
all two by two matrices ุงู„ู„ูŠ ู‡ุฐุง ู…ุถุฑูˆุจุฉ ููŠู‡ with
152
00:16:30,160 --> 00:16:34,380
determinant ุณุชุฉ ุงู„ุณุจุจ ู„ุฅู†ู‡ ุจุฏูŠ ูŠูƒูˆู† ุงู„ determinant
153
00:16:34,830 --> 00:16:39,990
ู„ุฃ ุงู„ element ู‡ุฐุง ู…ุถุฑูˆุจ ููŠ ุฃูŠ element ุชุงู†ูŠ ูˆู„ูŠูƒู†
154
00:16:39,990 --> 00:16:43,770
ุจูŠุณูˆุก ุงู„ determinant ู„ู‡ุฐู‡ ููŠ ุงู„ determinant ุงู„ู„ูŠ
155
00:16:43,770 --> 00:16:46,450
ุจูŠุจู‚ู‰ ุงู„ determinant ุงู„ู„ูŠ ุจูŠุจู‚ู‰ ุจูˆุงุญุฏ ุตุญูŠุญ ุจูŠุจู‚ู‰
156
00:16:46,450 --> 00:16:50,550
ุงู„ determinant ู„ู‡ุฐู‡ ุจุณุชุฉ ููŠ ูˆุงุญุฏ ุงู„ู„ูŠ ุจุณุชุฉ ู‡ุฐู‡
157
00:16:50,550 --> 00:16:57,330
ู…ุฌุฑุฏ ู…ู„ุงุญุธุฉ ุทูŠุจ ู†ุฌูŠ ุงู„ุขู† ู„ู†ุธุฑูŠุฉ very important ููŠ
158
00:16:57,330 --> 00:17:04,130
ุงู„ุฌุจุฑ ูˆู‡ุฐู‡ ุฃุณุงุณูŠุฉ ูˆู„ุง ูƒุชุงุจ ุฌุจุฑ ุจูŠุฎู„ูˆุง ู…ู†ู‡ุง ู‡ุฐู‡
159
00:17:04,130 --> 00:17:07,910
ุงู„ู†ุธุฑูŠุฉ ุงุณู…ู‡ุง ู†ุธุฑูŠุฉ Lagrange Lagrange ู‡ูˆ ุงู„ู„ูŠ
160
00:17:07,910 --> 00:17:13,010
ุงูƒุชุดูู‡ุง ุจุงู„ุจู„ุฏ ู‡ูŠูƒ ุงู„ order ู„ูˆ ูƒุงู†ุช ุงู„ G finite
161
00:17:13,010 --> 00:17:19,400
ูุงู„ order ู„ู„ sub group ุจูŠู‚ุณู… ุงู„ order ู„ู„ group ูˆู‡ุฐู‡
162
00:17:19,400 --> 00:17:23,560
ุดุฑุทู‡ุง ู„ูƒู… ู…ู† ุฃูˆู„ ู…ุง ุจุฏุฃุช ุชู‚ูˆู„ูˆุง ุฏูŠุฑ ุจุงู„ูƒ ู‚ุฏุงู…
163
00:17:23,560 --> 00:17:26,960
ู‡ู†ุงุฎุฏ ุงู† ุงู„ order ู„ู„ element ุจุฏู‡ ูŠู‚ุณู… ุงู„ order ู„ู„
164
00:17:26,960 --> 00:17:30,960
group ูˆ ุงู„ order ู„ู„ sub group ุจุฏู‡ ูŠู‚ุณู… ุงู„ order ู„ู„
165
00:17:30,960 --> 00:17:36,980
group ูƒุฐู„ูƒ ูุจุฏู†ุง ู†ูŠุฌูŠ ู„ Lagrange theorem ูŠุจู‚ู‰ ู‡ู†ุง
166
00:17:36,980 --> 00:17:42,060
Lagrange theorem
167
00:17:44,840 --> 00:17:52,660
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุจุชู‚ูˆู„ ู…ุง ูŠุงุชูŠ if ุงู„ H is
168
00:17:52,660 --> 00:18:07,120
a subgroup of a finite group G then
169
00:18:07,120 --> 00:18:13,560
ุงู„ order ู„ H divides
170
00:18:15,730 --> 00:18:25,210
ุงู„ู€ order ู„ู€ G ูˆุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒ moreover ูˆ ุฃูƒุซุฑ ู…ู†
171
00:18:25,210 --> 00:18:35,810
ุฐู„ูƒ the number of this connect the number of
172
00:18:35,810 --> 00:18:43,010
this connect the number of this connect left ุฃูˆ
173
00:18:43,010 --> 00:18:50,370
right left ุฃูˆ right ู‡ุฏู‰ ูˆุงู„ู„ู‡ ู‡ุฏู‰ ุงู„ุงุชู†ูŠู† are the
174
00:18:50,370 --> 00:19:03,570
same left ุฃูˆ right cassettes of H in G is ุงู„ order
175
00:19:03,570 --> 00:19:11,110
ู„ G ุนู„ู‰ ุงู„ order ุงู„ main ู„ู„ H ุจู†ุจุฑู‡ู†
176
00:19:11,110 --> 00:19:13,510
ุตุญุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ approve
177
00:19:29,970 --> 00:19:35,150
ุฎู„ู‘ูŠ ุจุงู„ูƒ ูƒุฏุง ุงู„ุขู† H sub group ู…ู† ู…ูŠู†ุŸ ู…ู† finite
178
00:19:35,150 --> 00:19:44,050
group G ูˆ ุงู„ H ู‡ูŠ ุงู„ sub group ู…ู† ู„ group G ุจุฏูŠ
179
00:19:44,050 --> 00:19:49,370
ุฃุซุจุช ุฃู† ุงู„ order ู„ G ุจูŠู‚ุณู… ุงู„ order ุงู„ order ู„ H
180
00:19:49,370 --> 00:19:55,210
ุจูŠู‚ุณู… ุงู„ order ู„ G ูŠุนู†ูŠ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ H ูŠู‚ุณู… ุนุฏุฏ
181
00:19:55,210 --> 00:20:01,370
ุงู„ุนู†ุงุตุฑ ููŠ ู…ู† ููŠ G ูˆ ุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒ ุนุฏุฏ ุงู„ left ุฃูˆ
182
00:20:01,370 --> 00:20:07,310
right destined cosets ููŠ H and G ุจูŠุณูˆูŠ ุงู„ order ู„ู„
183
00:20:07,310 --> 00:20:13,330
H ุนู„ู‰ ุงู„ order ู„ู…ูŠู† ู„ู„ G ู‡ุฐุง ุงู„ู„ูŠ ุนุงูŠุฒูŠู† ู†ุชุจุชู‡ ููŠ
184
00:20:13,330 --> 00:20:14,650
ุงู„ุนุฏุฏ
185
00:20:19,350 --> 00:20:24,070
ุงู„ู€ order ุงู„ู„ู‰ ุฌู‰ ุนู„ู‰ ุงู„ order ู„ู„ H ุจูŠุนุทูŠู†ู‰ ุนุฏุฏ ุงู„
186
00:20:24,070 --> 00:20:27,210
left cosets ูˆู‡ู†ุง ูƒุงุชุจูŠู† ุงู„ order ุงู„ู„ู‰ ุฌู‰ ุนู„ู‰ ุงู„
187
00:20:27,210 --> 00:20:31,810
order ุงู„ู„ู‰ H ุชู…ุงู… ุทุจ ุฎู„ู‘ูŠู†ู‰ ู†ุซุจุช ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
188
00:20:31,810 --> 00:20:37,710
ุจูŠู‚ูˆู„ ู„ูŠ ู‡ู†ุง ุนุฏุฏ ุงู„ left .. destined left cosets ุฃูˆ
189
00:20:37,710 --> 00:20:41,970
right cosets ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุงุฑูˆุญ ุงุฌูŠุจ ูƒู„ ุงู„ left
190
00:20:41,970 --> 00:20:47,250
cosets ุงู„ู„ู‰ ู…ูˆุฌูˆุฏุงุช ุนู„ู‰ ุงู„ู„ู‰ ู‡ูˆ ุงู„ sub group ู…ู† ุงู„
191
00:20:47,250 --> 00:20:50,460
group ุงู„ู„ู‰ ุนู†ุฏู†ุง ู„ู…ุง ุฃุฎุฏู†ุง ุงู„ุฃู…ุซู„ุฉ ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช
192
00:20:50,460 --> 00:20:56,520
ู„ุฌูŠู†ุง ุงู†ู‡ ุฃุญูŠุงู†ุง ุงู„ lift corsets ุจุชุณุงูˆูŠ ู…ุธุจูˆุท ูŠุจู‚ู‰
193
00:20:56,520 --> 00:21:00,220
ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ูƒู„ ุงู„ lift corsets ุงู„ู„ู‰ ุจูŠูƒูˆู† ูˆู„ุง
194
00:21:00,220 --> 00:21:05,300
ูˆุงุญุฏุฉ ููŠู‡ู… ุจุชุณุงูˆูŠ ุงุช ุชุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฌูŠ ุฃู‚ูˆู„ู‡ let
195
00:21:05,300 --> 00:21:15,620
a1h a2h ูˆู†ุธู„ ู…ุงุดูŠูŠู† the arh ุจ the
196
00:21:18,560 --> 00:21:24,940
Left Destinate Cosets
197
00:21:24,940 --> 00:21:28,780
of
198
00:21:28,780 --> 00:21:38,760
H and G ุจุฏุฃ ุงูุชุฑุถ ุฃู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงูŠุดุŸ ุนุจุงุฑุฉ ุนู† ูƒู„
199
00:21:38,760 --> 00:21:42,720
Destinate Left Cosets ุงู„ู„ูŠ ูˆู„ุง ูˆุงุญุฏุฉ ุจุชุณุงูˆูŠ
200
00:21:42,720 --> 00:21:53,010
ุงู„ุชุงู†ูŠุฉ ุทูŠุจุŒ ุงู„ุขู† ุจุฏุงุฌูŠ ุฃู‚ูˆู„ let ุงู„ A belongs to G
201
00:21:53,010 --> 00:22:06,300
then ุงู„ A H is a left cassette ุตุญูŠุญ ูˆู„ุง ู„ุฃ ูŠุนู†ูŠ
202
00:22:06,300 --> 00:22:11,740
ู…ุนู†ุงุชู‡ ุฃู† ุงู„ a h ู‡ุณุงูˆูŠ ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„ ู‡ุชูƒูˆู† ูˆุงุญุฏุฉ
203
00:22:11,740 --> 00:22:23,580
ู…ู†ู‡ู… ุตุญ ูŠุจู‚ู‰ ุงู„ุขู† ุณุงุนุฉ ุงู„ a h ู‡ุฐู‡ ุจุฏู‡ุง ุณุงูˆูŠ a i h
204
00:22:23,580 --> 00:22:27,420
ุชู…ุงู…
205
00:22:27,420 --> 00:22:39,760
ุทูŠุจ ูƒูˆูŠุณ but we know that ุงุญู†ุง ุจู†ุนุฑู ุฃู† ุงู„ a ู…ูˆุฌูˆุฏุฉ
206
00:22:39,760 --> 00:22:45,800
ููŠ ุงู„ a h ูู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ a h ู…ุธุจูˆุท
207
00:22:47,230 --> 00:22:51,190
ุจุงุฑู‡ู†ู‡ุง ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ู…ุฏุงู… ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆู‡ุฐู‡
208
00:22:51,190 --> 00:22:55,490
ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูŠุจู‚ู‰ ุงู„ element ูˆูŠู† ู…ูˆุฌูˆุฏุŸ ููŠ ุงู„ A I H
209
00:22:55,490 --> 00:23:05,750
ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุฃู† ุงู„ A belongs to A I H ุทุจ
210
00:23:05,750 --> 00:23:09,830
ุฃู†ุง ู„ู…ุง ุฃุฎุฏุช ุงู„ A ููŠ G ุฃุฎุฏุช ุนู†ุตุฑ ุนุดูˆุงุฆูŠ ูˆู„ุง ุนู†ุตุฑ
211
00:23:09,830 --> 00:23:16,430
ู…ุญุฏุฏุนุดูˆุงุฆูŠ ู…ุฏุงู… ุนุดูˆุงุฆูŠ ูŠู†ุทุจู‚ ุนู„ู‰ ุฃูŠ ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ
212
00:23:16,430 --> 00:23:23,210
ุงู„ group G ุจูู‡ู… ู…ู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ูƒู„ ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ
213
00:23:23,210 --> 00:23:28,910
ุฌูŠ ุญุงู„ุฉ ุฌูŠ ููŠ ูˆุงุญุฏุฉ ู…ู† ุงู„ lift cassettes ุตุญ ูˆู„ุง ู„ุฃ
214
00:23:28,910 --> 00:23:35,440
ุณูƒุช ุงู„ุดุนุจ ู…ุฑุฉ ุชุงู†ูŠุฉ ุฃู†ุง ุงุฎุฏุช a ุนุดูˆุงุฆูŠุง ู…ู† g ุชู…ุงู…
215
00:23:35,440 --> 00:23:40,820
ู„ุฌูŠุช ุงู„ a ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„ ุงูŠู‡ ู…ูˆุฌูˆุฏ ููŠ
216
00:23:40,820 --> 00:23:48,340
ุงู„ aiH ู…ุธุจูˆุท ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ูƒู„ ุนู†ุตุฑ
217
00:23:48,340 --> 00:23:52,740
ุจุชุงุฎุฏู‡ ู…ู† G ู„ุงุฒู… ุชู„ุงู‚ูŠู‡ ููŠ main ููŠ ูˆุงุญุฏุฉ ู…ู† ุงู„
218
00:23:52,740 --> 00:23:58,120
left distant cosets ู…ุธุจูˆุท ูŠุจู‚ู‰ this means that
219
00:23:58,120 --> 00:24:06,280
this means that any element
220
00:24:09,860 --> 00:24:17,240
in G belongs to
221
00:24:17,240 --> 00:24:24,440
one coset of
222
00:24:24,440 --> 00:24:32,280
A1H A2H ูˆ ู„ุบุงูŠุฉ ARH
223
00:24:35,230 --> 00:24:42,990
ุฅุฐุง ูƒู„ ุนู†ุตุฑ ุจุงุฎุฏู‡ ู…ู† ุฌูŠู‡ ู„ู…ุง ุฃุฎุฏู‡ ู…ู† ุฌูŠู‡ ุจู„ุงู‚ูŠู‡ ููŠ
224
00:24:42,990 --> 00:24:48,390
ูˆุงุญุฏุฉ ู…ู† ู‡ุฏูˆู„ ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู‡ุฏูˆู„ ุจูŠุณูˆูˆุง ุจุนุถู‡ู…
225
00:24:48,390 --> 00:24:54,110
ูŠุจู‚ู‰ ุงู„ intersection five ู…ู…ุชุงุฒ ุฌุฏุง ูˆ ู„ูˆ ูˆุงุญุฏุฉ ุฌุงู„
226
00:24:54,110 --> 00:24:57,230
ุจูŠุณูˆู‰ ุชุงู†ูŠ ู†ุฌุงู„ ุนู„ูŠู‡ู… this and that ูŠุจู‚ู‰ ุงู„
227
00:24:57,230 --> 00:25:01,990
intersection ุชุจุนู‡ู… ูŠุณูˆู‰ five ุฅุฐุง ู„ุง ูŠู…ูƒู† ู„ุนู†ุตุฑ
228
00:25:01,990 --> 00:25:09,190
ูŠูƒูˆู† confidentูŠู† ู…ู†ู‡ู… ุตุญ ูˆู„ุง ู„ุง ูŠุจู‚ู‰ ู‡ู†ุง ุจู‚ูˆู„ ู‡ู†ุง
229
00:25:09,190 --> 00:25:22,110
but ูˆู„ูƒู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ aih ู„ุง ูŠุณุงูˆูŠ ุงู„ ajh for ุงู„ู„ูŠ
230
00:25:22,110 --> 00:25:29,290
ู‡ูˆ ุงู„ I ู„ุง ูŠุณุงูˆูŠ ุงู„ j ู„ู…ุง ู‡ุคู„ุงุก ู…ุง ูŠุชุณุงูˆูˆุด ูŠุจู‚ู‰
231
00:25:29,290 --> 00:25:33,530
ู‡ุคู„ุงุก ู…ุง ูŠุชุณุงูˆูˆุด ุจุนุถ ุฅุฐุง ุงู„ู€I ูˆุงู„ู€J ู„ุง ูŠุชุณุงูˆูˆุด ุจุนุถ
232
00:25:33,530 --> 00:25:40,090
ุฅุฐุง ูƒู„ element ู…ูˆุฌูˆุฏ ุจุงู„ุถุจุท ููŠ ูˆุงุญุฏุฉ ู…ู† ู…ู† ู‡ุคู„ุงุก
233
00:25:40,090 --> 00:25:45,350
ุทูŠุจ ุฅุฐุง ุงู„ู€G ู…ุด ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ union ุชุจุน ู‡ุคู„ุงุก
234
00:25:45,350 --> 00:25:47,170
ูƒู„ู‡ู… ูˆู„ุง ู„ุฃุŸ
235
00:25:56,620 --> 00:26:08,300
ู„ุฌุฑูˆุจ G ู‡ูŠ ุนุจุงุฑุฉ ุนู† A1H ุงุชุญุงุฏ A2H ุงุชุญุงุฏ ุงุชุญุงุฏ ARH
236
00:26:08,300 --> 00:26:18,180
ูƒูˆูŠุณ ูŠุนู†ูŠ ู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ order ู„ G ุงู„ order ู„ G
237
00:26:18,180 --> 00:26:26,120
ุจุฏูŠ ุณูˆู‰ ุงู„ order ู„ A1H ุฒุงุฆุฏ ุงู„ order ู„ A2H
238
00:26:28,500 --> 00:26:39,220
ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ุงู„ order ู„ู„ ARH ุทูŠุจ
239
00:26:39,220 --> 00:26:45,760
ุณุคุงู„ ุฃู†ุง H ููŠู‡ุง ุนุดุฑุฉ elements ู…ุซู„ุง ูˆ ุฌูŠุช ุถุฑุจุช ุงู„ H
240
00:26:45,760 --> 00:26:51,380
ููŠ ุฃูŠ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ G ุจูŠุทู„ุน ุนู†ุฏูŠ ุนุดุฑุฉ elements ูˆู„ุง
241
00:26:51,380 --> 00:26:55,920
ุฃูƒุชุฑ ูˆู„ุง ุฃู‚ู„ ุนุดุฑุฉ ุจุงู„ุถุจุท ู„ู…ุง ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ sub
242
00:26:55,920 --> 00:27:00,120
group ูˆ ุงุถุฑุจู‡ุง ููŠ ุฃูŠ element ู…ู† ุงู„ group ุจูŠุถู„ูˆุง
243
00:27:00,120 --> 00:27:04,460
ุงู„ุนุดุฑุฉ ุงู„ุนุฏุฏู‡ู… ุนุดุฑุฉ ุตุญูŠุญ ุจูŠุฎุชู„ููˆุง ู„ูƒู† ุจูŠุถู„ูˆุง ุนุดุฑุฉ
244
00:27:04,460 --> 00:27:09,780
ู…ู† ู†ุงุญูŠุฉ ุงู„ุนุฏุฏ ู…ุนู†ุงุชู‡ ุงู„ order ู„ู„ a1h ูŠุณุงูˆูŠ ุงู„
245
00:27:09,780 --> 00:27:15,730
order ู„ู„ h ูˆ ุงู„ order ู„ A to H ู‡ูˆ ุงู„ order ู„ H ูˆ ุงู„
246
00:27:15,730 --> 00:27:22,130
order ู„ A RH ู‡ูˆ ุงู„ order ู„ H ูŠุนู†ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุนู†ูŠ
247
00:27:22,130 --> 00:27:28,770
ุฃู† ุงู„ order ู„ G ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ order ู„ H ุฒุงุฆุฏ ุงู„
248
00:27:28,770 --> 00:27:36,690
order ู„ H ุฒุงุฆุฏ ุฒุงุฆุฏ ุงู„ order ู„ H ูƒู… ู…ุฑุฉ ู‡ุฏูˆู„ุŸ R
249
00:27:37,380 --> 00:27:46,440
ู„ุฃู† ุนุฏุฏู‡ู… R ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุนู†ุงุชู‡ R times ูŠุจู‚ู‰ R
250
00:27:46,440 --> 00:27:52,500
ู…ู† ุงู„ู…ุฑุงุช ูŠุจู‚ู‰ ุฃุตุจุญ ุงู„ุขู† ุงู„ order ุงู„ู„ูŠ ุฌูŠู‡ ุจุฏู‡
251
00:27:52,500 --> 00:27:58,900
ูŠุณุงูˆูŠ ุงู„ู€ R ููŠ ุงู„ู€ order ุงู„ู€ H ู„ุฃู† ุนุฏุฏู‡ู… R ุทุจ ุฅูŠุด
252
00:27:58,900 --> 00:28:06,300
ุชูุณูŠุฑูƒ ู„ู‡ุฐู‡ ุฃู† ุงู„ู€ order ู„ู„ู€ H ุจูŠู‚ุณู… ุงู„ู€ order ู„ู€ G
253
00:28:06,300 --> 00:28:15,420
ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ order ู„ู€ H divides ุงู„ู€ order ู„ู€ G
254
00:28:15,420 --> 00:28:23,410
ูˆุจุงู„ุชุงู„ูŠ ุฃู†ุช ู‡ู†ุง ู…ู† ู†ุธุฑูŠุฉ Lagrange ุฑุงุญ ูŠู‚ูˆู„ูŠ ูˆ ุฃูƒุซุฑ ู…ู†
255
00:28:23,410 --> 00:28:27,050
ุฐู„ูƒ the number of distinct left cosets ุฃูˆ right
256
00:28:27,050 --> 00:28:31,570
cosets of H and G ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู„ู€ G ุนู„ู‰ ุงู„ู€ order
257
00:28:31,570 --> 00:28:41,810
ู„ู…ูŠู†ุŸ ู„ู„ู€ H ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง ูƒู…
258
00:28:41,810 --> 00:28:52,620
ูˆุงุญุฏุฉ left cosets ุนู†ุฏู†ุง ู‡ู†ุง are ูŠุจู‚ู‰ ู‡ู†ุง the number
259
00:28:52,620 --> 00:29:05,780
of left ุฃูˆ ุญุชู‰ right cosets of H the number
260
00:29:05,780 --> 00:29:07,460
of distinct
261
00:29:11,540 --> 00:29:19,860
Left or Right Cosets of H in G is R ุทุจ ุงู„ู€ R ู‚ุฏ
262
00:29:19,860 --> 00:29:28,080
ูŠุณุงูˆูŠ ู‡ู†ุง ู…ุด ู‡ูˆ ุงู„ู€ order ู„ู€ G ุนู„ู‰ ุงู„ู€ order ู„ู„ู€ H
263
00:29:28,080 --> 00:29:38,160
ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ G ุนู„ู‰ ุงู„ู€ order ู„ู„ู€ H ุทุจ ูƒูˆูŠุณ ุดูˆููˆุง
264
00:29:38,160 --> 00:29:46,030
ุดูˆููˆุง ุจุนุฏ ู‡ุฐุง ุงู„ุจุฑู‡ุงู† ุนู†ุฏูŠ ุชุนุฑูŠู ู…ุชุนู„ู‚ ุจุงู„ู†ุชูŠุฌุฉ
265
00:29:46,030 --> 00:29:50,550
ุงู„ู„ูŠ ุชูˆุตู„ู†ุง ุฅู„ูŠู‡ุง ู…ู† ู†ุธุฑูŠุฉ ู„ุงุฌุฑุงู†ุฌ ุงู„ุชุนุฑูŠู ู‡ุฐุง
266
00:29:50,550 --> 00:30:00,170
ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ the number of left the number of
267
00:30:00,170 --> 00:30:12,050
distinct left ุฃูˆ right ู‡ุฐุง ุฃูˆ ู‡ุฐุง left distinct
268
00:30:12,050 --> 00:30:21,410
right ุฃูˆ left cosets of H in G
269
00:30:21,410 --> 00:30:32,370
of H in G is called ู‡ุฐุง ุจู†ุณู…ูŠู‡ ุงู„ู€ index is called the
270
00:30:32,370 --> 00:30:38,490
index of
271
00:30:41,030 --> 00:30:47,870
a subgroup a subgroup
272
00:30:47,870 --> 00:30:54,070
H in G and
273
00:30:54,070 --> 00:31:05,130
denoted by ูˆุจู†ุนุทูŠู„ู‡ ุงู„ุฑู…ุฒ ุงู„ุชุงู„ูŠ ุงู„ู€ G ู…ู‚ุทุนุชูŠู† ููˆู‚
274
00:31:05,130 --> 00:31:09,090
ุจุนุถ ูˆ H ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
275
00:31:14,520 --> 00:31:18,480
ุทูŠุจ ู‡ุฐุง ุจูŠู‚ูˆู„ูŠ ุนุฏุฏ ุงู„ู€ distinct left ุฃูˆ right
276
00:31:18,480 --> 00:31:23,880
cosets of H and G ุจุณู…ูŠู‡ ุงู„ู€ index ุชุจุน ุงู„ู€ subgroup H
277
00:31:23,880 --> 00:31:30,220
ููŠ ู…ู† ููŠ ุงู„ู€ group G ุทุจ ู‚ุฏุงุด ุนุฏุฏู‡ู… ู‡ุฏูˆู„ุŸ R ูŠุจู‚ู‰
278
00:31:30,220 --> 00:31:35,400
ุงุญู†ุง ุนู†ุฏู†ุง ู…ู„ุงุญุธุฉ ุจุณูŠุทุฉ ุฌุฏุง ู…ู† ุงู„ู€ grand theorem
279
00:31:35,400 --> 00:31:42,190
ู‚ู„ู†ุง ุงู„ู€ order ู„ู€ G ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู€ R ููŠ ุงู„ู€ order ู„ู€ H ุตุญ
280
00:31:42,190 --> 00:31:48,330
ูˆู„ุง ู„ุงุŸ ุฅุฐุง ุจู‚ุฏุฑ ุฃูƒุชุจ ู†ุธุฑูŠุฉ Lagrange ุจุทุฑูŠู‚ุฉ ุฃุฎุฑู‰
281
00:31:48,330 --> 00:31:53,110
ุฅู† ุงู„ู€ order ู„ู€ G ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ R ู‡ูˆ ุนุฏุฏ ุงู„ู€ left
282
00:31:53,110 --> 00:31:59,050
coset ุงู„ู„ูŠ ุฃุนุทูŠุชู‡ ุงู„ุฑู…ุฒ ุงู„ู€ index ุชุจุน ุงู„ู€ H in G ููŠ
283
00:31:59,050 --> 00:32:06,870
ุงู„ู€ order ู„ู€ H ูŠุจู‚ู‰ ุจุตูŠุบุฉ ู†ุชูŠุฌุฉ ู†ุธุฑูŠุฉ ู„ุงุฌุฑุงู†ุฌ ุจุงู„ุตูŠุบุฉ
284
00:32:06,870 --> 00:32:11,050
ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ุชูˆุตู„ู†ุง ู„ู‡ุง ู‡ุฐู‡ ุฃู† ุงู„ู€ order ู„ู€ G ุจุฏู‡
285
00:32:11,050 --> 00:32:15,590
ูŠุณุงูˆูŠ R ููŠ ุงู„ู€ order ู„ู€ H ูŠุง ุจู‚ูˆู„ ุงู„ู€ order ู„ู€ G ุจุฏู‡
286
00:32:15,590 --> 00:32:19,890
ูŠุณุงูˆูŠ ุงู„ู€ index ุชุจุน ุงู„ู€ subgroup H ููŠ ุงู„ู€ group G
287
00:32:19,890 --> 00:32:26,210
ู…ุถุฑูˆุจ ููŠ ุงู„ู€ order ุชุจุน ู…ู†ุŸ ุชุจุน ุงู„ู€ H ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
288
00:32:26,210 --> 00:32:34,150
ู‡ุฐุง ุชู…ุงู… ุจุฏู†ุง ู†ุจุฏุฃ ู†ุนุทูŠ ุฃู…ุซู„ุฉ ุนู„ู‰ ุฐู„ูƒ ุฃูˆู„ ู…ุซุงู„
289
00:32:34,150 --> 00:32:46,610
example ุจู‚ูˆู„ let ุงู„ู€ G ุชุณุงูˆูŠ S4 and
290
00:32:48,180 --> 00:32:54,280
ุงู„ู€ H ู‡ูŠ ุงู„ู€ sub group generated by ุงู„ู€ permutation
291
00:32:54,280 --> 00:33:00,660
ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ูˆุงุญุฏ
292
00:33:00,660 --> 00:33:03,720
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง find
293
00:33:26,290 --> 00:33:27,690
S4 S4 S4 S4 S4 S4 S4 S4 S4 S4
294
00:33:38,910 --> 00:33:44,450
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ ุงุญู†ุง ุนู†ุฏู†ุง G S4 ุงู„ู„ูŠ
295
00:33:44,450 --> 00:33:50,650
ููŠู‡ุง ุฃุฑุจุนุฉ ูˆุนุดุฑูŠู† ุนู†ุตุฑ ุฃุฎุฐู†ุง ู…ู†ู‡ุง subgroup H ู…ูŠู†
296
00:33:50,650 --> 00:33:54,650
ู‡ูŠ ุงู„ู€ subgroup ู‡ุฐุง ุงู„ู€ subgroup ุงู„ู„ูŠ ุชุชูˆู„ุฏ ุจุงู„
297
00:33:54,650 --> 00:34:00,390
permutation ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‚ุฏุงุด ุงู„ู€ index ุชุจุน ุงู„ู€ H in
298
00:34:00,390 --> 00:34:01,430
S4
299
00:34:05,930 --> 00:34:09,950
ุงู„ุงู†ุฏูƒุณ ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู„ู€ group ุนู„ู‰ ุงู„ู€ order ู„ู„ู€
300
00:34:09,950 --> 00:34:13,690
subgroup ุงู„ู€ order ุชุจุน ุงู„ู€ group ู†ุนุฑูู‡ 24 ู„ูƒู† ุงู„ู€
301
00:34:13,690 --> 00:34:18,460
order ุชุจุน ุงู„ู€ subgroup ู…ุด ุนุงุฑููŠู†ู‡ ู…ุด ุนุงุฑูู‡ุง ู„ูƒู† ู„ุงุฒู…
302
00:34:18,460 --> 00:34:23,280
ุชุนุฑูู‡ ุฅุฐุง ุจุฏูŠ ุฃุจุฏุฃ ุฃุถุฑุจ ู‡ุฐู‡ ููŠ ู†ูุณู‡ุง ู…ุฑุฉ ู…ุง ุทู„ุนุด ุงู„ู€
303
00:34:23,280 --> 00:34:27,780
identity ูƒู…ุงู† ู…ุฑุฉ ู…ุง ุทู„ุนุด ู„ุบุงูŠุฉ ู…ุง ูŠุทู„ุน ู…ู† ุงู„ู€
304
00:34:27,780 --> 00:34:32,020
identity ูˆุจุงู„ุชุงู„ูŠ ุจูŠูƒูˆู† ุงู„ุฃุณ ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ูˆ ู…ู† ุงู„ู€
305
00:34:32,020 --> 00:34:37,430
order ุชุจุน ุงู„ู€ group ู‡ุฐู‡ ูˆุฌู‡ุฉ ู†ุธุฑ ู‚ุฏูŠู…ุฉ ู‡ูˆ ุฅูŠุด ูˆุฌู‡ุฉ
306
00:34:37,430 --> 00:34:43,230
ุงู„ู†ุธุฑ ุงู„ุฌุฏูŠุฏุฉ ุฃู† ุฃู†ุช ู‡ุฐู‡ ุฃุฌูŠุจ ู„ู„ู€ order ุชุจุนู‡ุง ุจูƒู„
307
00:34:43,230 --> 00:34:50,570
ุจุณุงุทุฉ ุจูƒู„ ุจุณุงุทุฉ ูƒุฏู‡ ุจู‚ูˆู„ู‡ ุฃู†ุง ู‡ุฐุง let alpha ุชุณุงูˆูŠ
308
00:34:50,570 --> 00:34:55,390
ุงู„ู€ permutation ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุงุซู†ูŠู† ุซู„ุงุซุฉ
309
00:34:55,390 --> 00:35:04,550
ุฃุฑุจุนุฉ ูˆุงุญุฏ then ุงู„ู€ alpha ุชุณุงูˆูŠ ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰ ุงู„ู€
310
00:35:04,550 --> 00:35:09,210
cycle form ุฃู…ุง ุงู„ู€ cycle ูˆุงุญุฏุฉ ุฃูˆ product of two
311
00:35:09,210 --> 00:35:14,270
cycles ุญุณุจ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ุชู…ุงู… ุฅุฐุง ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุจุฏูŠ
312
00:35:14,270 --> 00:35:17,390
ุฃูƒุชุจ ุนู„ู‰ ุดูƒู„ cycle ุงู„ูˆุงุญุฏ ู…ูŠู† ุตูˆุจุชู‡ ูŠุง ุดุจุงุจ
313
00:35:17,390 --> 00:35:25,230
ูˆุงู„ุงุซู†ูŠู† ูˆุงู„ุซู„ุงุซุฉ ูˆุงู„ุฃุฑุจุนุฉ ู‚ูู„ุช ุฅุฐุง ุจู‚ุฏุฑ ุฃุฌูŠุจ ุงู„ู€
314
00:35:25,230 --> 00:35:31,250
order ู„ู€ alpha ูˆู„ุงุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ order ู„ู€
315
00:35:31,250 --> 00:35:35,990
alpha ุจุฏู‡ ูŠุณุงูˆูŠ ุทูˆู„ ุงู„ู€ cycle ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ูˆ ู‚ุฏุงุด
316
00:35:35,990 --> 00:35:41,530
ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ alpha ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุทูŠุจ
317
00:35:41,530 --> 00:35:46,040
ู„ู…ุง ูŠูƒูˆู† ุนู†ุฏู†ุง ุงู„ู€ cycle ูƒู€ group ุดูˆ ุงู„ุนู„ุงู‚ุฉ ุจูŠู†
318
00:35:46,040 --> 00:35:50,740
order ู„ู„ู€ group ูˆ order ู„ู„ู€ generatorุŸ ุงุซู†ูŠู† ู†ูุณ
319
00:35:50,740 --> 00:35:56,040
ุงู„ุดูŠุก ูŠุนู†ูŠ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู† ุงู„ู€ order ู„ู„ู€ H ูŠุณุงูˆูŠ
320
00:35:56,040 --> 00:36:01,220
ุงู„ู€ order ู„ู€ alpha ูˆู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ ู…ู†ุŸ ุจุฏูŠ ูŠุนุทูŠู†ูŠ
321
00:36:01,220 --> 00:36:07,280
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ู‡ูˆ ุฃุฑุจุนุฉ ู‡ุฐุง ุณูŠุนุทูŠู†ูŠ ุฃู† ุงู„ู€
322
00:36:07,280 --> 00:36:16,060
order ู„ู€ H ู‡ูˆ order ู„ู€ alpha ุฃุฑุจุนุฉ ู„ูŠุดุŸ ู„ุฃู† H ู‡ูŠ
323
00:36:16,060 --> 00:36:20,720
ุงู„ู€ cyclic subgroup generated by ุงู„ู€ permutation
324
00:36:20,720 --> 00:36:24,100
alpha ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุฅุซุงุฑ ุงู„ู€ order ู„ู€ alpha ู‡ูˆ
325
00:36:24,100 --> 00:36:29,790
order ู„ู€ H ู…ุง ุฏุงู… ู‡ูŠูƒ ุจู‚ู‰ ุตุงุฑุช ู‚ุตุชู†ุง ุจุณูŠุทุฉ ู‚ุงู„ ู„ูŠ
326
00:36:29,790 --> 00:36:36,210
ู‡ุงุชู„ูŠ ุงู„ู€ index ุจู‚ูˆู„ู‡ ุงู„ุขู† ุงู„ู€ index ู„ู€ ุงู„ู€ subgroup H
327
00:36:36,210 --> 00:36:43,450
ููŠ ุงู„ู€ group S4 ูŠุณุงูˆูŠ ุงู„ู€ order ู„ู„ู€ S4 ุนู„ู‰ ุงู„ู€ order
328
00:36:43,450 --> 00:36:49,530
ู„ู„ู€ H ุงู„ู€ order ู„ู„ู€ S4 ุงู„ู„ูŠ ู‡ูˆ ุฃุฑุจุนุฉ factorial ูˆู‡ุฐู‡
329
00:36:49,530 --> 00:36:58,980
ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู†ู‚ูˆู„ ุฃุฑุจุนุฉ ููŠ ุซู„ุงุซุฉ factorial ุนู„ู‰
330
00:36:58,980 --> 00:37:04,460
ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุซู„ุงุซุฉ factorial ุซู„ุงุซุฉ factorial ูŠุณุงูˆูŠ
331
00:37:04,460 --> 00:37:09,860
ูƒุฏู‡ุŸ ูŠุณุงูˆูŠ ุณุชุฉ ุฅุฐุงู‹ ุงู„ู€ index ุชุจุน ุงู„ู€ subgroup ุงู„ู„ูŠ
332
00:37:09,860 --> 00:37:15,920
ุนู†ุฏู†ุง ู‡ุฐู‡ ููŠ ุงู„ู€ group G ุงู„ุฃุตู„ูŠุฉ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุณุชุฉุŒ
333
00:37:15,920 --> 00:37:21,520
ุฅูŠุด ูŠุนู†ูŠ ุณุชุฉุŸ ูŠุนู†ูŠ ุฃู†ุง ุถู…ู†ุช ุนุฏุฏ ุงู„ู€ left distinct
334
00:37:21,520 --> 00:37:28,080
cosets ู„ู„ู€ S4 ู„ู…ุง ู†ุถุฑุจู‡ู… ููŠ ุงู„ู€ .. ู„ู…ุง ูŠู†ุถุฑุจูˆุง ููŠ ุงู„ู€
335
00:37:28,080 --> 00:37:31,140
permutation ุงู„ู„ูŠ ููŠ ุงู„ู€ .. ููŠ ุงู„ู€ H ุงู„ู„ูŠ ุนู†ุฏ ุงู„ู€
336
00:37:31,140 --> 00:37:36,870
subgroup ุจูŠุทู„ุน ุนู†ุฏูŠ ุจุณ ุณุชุฉ left distinct cosets ูŠุนู†ูŠ
337
00:37:36,870 --> 00:37:42,830
ู…ุนู†ุงู‡ ูƒู„ ุฃุฑุจุนุฉ ู‡ูŠุชุณุงูˆูˆุง ุนุดุงู† ูŠุทู„ุน ุนู†ุฏูŠ ุณุชุฉ ุตุญ ูˆู„ุง
338
00:37:42,830 --> 00:37:47,950
ู„ุง ูŠุนู†ูŠ ูƒู„ ุฃุฑุจุนุฉ left cosets ู‡ูŠุทู„ุนูˆุง ู†ูุณ ุงู„ุดูŠุก
339
00:37:47,950 --> 00:37:52,530
ูˆุจุงู„ุชุงู„ูŠ ุถู…ู†ุช ุนุฏุฏ ุงู„ู€ left cosets ูŠุณุงูˆูŠ ุณุชุฉ ูƒุงู†
340
00:37:52,530 --> 00:37:56,810
ุจูŠู…ูƒู†ูŠ ุฃุตูŠุบ ู†ูุณ ุงู„ุณุคุงู„ ูˆ ุจุฏู„ ู…ุง ุฃู‚ูˆู„ ู‡ุงุชู„ูŠ ุงู„ู€ index
341
00:37:56,810 --> 00:38:02,950
ุฃู‚ูˆู„ find the number of left cosets of H in S4
342
00:38:02,950 --> 00:38:07,970
ูˆุฃุณูƒุช ู…ุด ู‡ูˆ ู†ูุณ ุงู„ุณุคุงู„ ู†ูุณ ุงู„ุณุคุงู„ ุญุฑููŠุฉ ู„ูƒู† ู‚ุนุฏุช
343
00:38:07,970 --> 00:38:20,270
ุฃุตูŠุบู‡ ุจุทุฑูŠู‚ุฉ ุฃุฎุฑู‰ ู†ุนุทูŠ ู…ุซุงู„ ุขุฎุฑ ูƒู…ุงู† example ุงู„ู€
344
00:38:20,270 --> 00:38:26,370
example ูŠุง ุดุจุงุจ ู‡ุฐุง ุณุคุงู„ 14 ู…ู† ุงู„ูƒุชุงุจ ุจู‚ูˆู„ suppose
345
00:38:26,370 --> 00:38:27,030
that
346
00:38:30,100 --> 00:38:40,900
suppose that ุงูุชุฑุถ ุฃู† ุงู„ู€ K is a proper subgroup
347
00:38:40,900 --> 00:38:44,540
of
348
00:38:44,540 --> 00:38:48,720
H and
349
00:38:48,720 --> 00:38:56,380
ุงู„ู€ H is a proper subgroup
350
00:38:59,010 --> 00:39:04,150
of G if
351
00:39:04,150 --> 00:39:18,050
ุงู„ู€ order ู„ู„ู€ K ู‡ูˆ ุงุซู†ูŠู† ูˆุฃุฑุจุนูŠู† and ุงู„ู€ order ู„ู„ู€ G
352
00:39:18,050 --> 00:39:23,150
ู‡ูˆ ุฃุฑุจุน ู…ุฆุฉ ูˆุนุดุฑูŠู† what
353
00:39:24,410 --> 00:39:35,730
are the possible orders of
354
00:39:35,730 --> 00:39:37,190
H
355
00:40:06,270 --> 00:40:10,790
ู…ุฑุฉ ุซุงู†ูŠุฉ ุฃู†ุง ุนู†ุฏูŠ K proper subgroup ู…ู† H ุฅูŠุด ูŠุนู†ูŠ
356
00:40:10,790 --> 00:40:15,890
proper subgroupุŸ ู„ุง ุชุณุงูˆูŠ H subset ู…ู†ู‡ุง ู„ูƒู† ู„ุง
357
00:40:15,890 --> 00:40:21,350
ุชุณุงูˆูŠู‡ุง ูˆุนู†ุฏูŠ ููŠ ู†ูุณ ุงู„ูˆู‚ุช ุงู„ู€ H proper subgroup ู…ู†
358
00:40:21,350 --> 00:40:26,850
G ูŠุนู†ูŠ K subgroup ู…ู† H ูˆ ุงู„ู€ H subgroup ู…ู† G ูˆูƒู„
359
00:40:26,850 --> 00:40:31,110
ูˆุงุญุฏุฉ ููŠู‡ู… ุนุจุงุฑุฉ ุนู† ุงู„ู€ proper ูŠุนู†ูŠ ู„ุง ุชุณุงูˆูŠ ุงู„ุฌุฑูˆุจ
360
00:40:31,110 --> 00:40:35,940
ุงู„ุซุงู†ูŠ ู‚ุงู„ ู„ูˆ ูƒุงู† ุงู„ู€ order ู„ู€ K ุงู„ุฃูˆู„ู‰ ู‡ูˆ ุงุซู†ูŠู†
361
00:40:35,940 --> 00:40:40,500
ูˆุฃุฑุจุนูŠู† ูˆุงู„ู€ order ู„ู„ู€ ุฃุฎุฑู‰ ุฃุฑุจุน ู…ุฆุฉ ูˆุนุดุฑูŠู† ู…ุง ู‡ูŠ
362
00:40:40,500 --> 00:40:47,100
ุงู„ุงุญุชู…ุงู„ุงุช ุงู„ู…ู…ูƒู†ุฉ ู„ู„ู€ order ุชุจุน ุงู„ู€ H ูู†ู‚ูˆู„ู‡ ู…ุงุดูŠ
363
00:40:47,100 --> 00:40:49,160
ูŠุจู‚ู‰ ู‡ู†ุง solution
364
00:40:54,430 --> 00:41:02,450
ุงู„ุขู† ู†ุญู† ู„ุฏูŠู†ุง K subgroup ูŠุจู‚ู‰ K subgroup ู…ู† H ู‡ุฐุง
365
00:41:02,450 --> 00:41:12,730
ู…ุนู†ุงุชู‡ ุฃู† ุงู„ู€ order ู„ู„ู€ K ุจูŠู‚ุณู… ุงู„ู€ order ู„ู„ู€ H ู…ุธุจูˆุทุŸ
366
00:41:12,730 --> 00:41:19,150
ุทุจ ุงู„ู€ order ู„ู„ู€ H ูƒุฏู‡ ุฃู†ุง ู…ุด ุนุงุฑู ูŠุจู‚ู‰ ู‡ู†ุง ูƒุฏู‡
367
00:41:21,550 --> 00:41:27,510
K subgroup ู…ู† H ู‡ูŠ K proper subgroup ู…ู† H K
368
00:41:27,510 --> 00:41:31,830
subgroup ู…ู† H ูŠุจู‚ู‰ ุงู„ู€ order ู„ู€ K ุจุฏู‡ ูŠู‚ุณู… ุงู„ู€ order
369
00:41:31,830 --> 00:41:38,370
ู„ู€ H ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุง assume ุงูุชุฑุถ ุฃู† ุงู„ู€ order
370
00:41:38,370 --> 00:41:47,080
ู„ู€ H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ M ู…ุซู„ุง ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ order ู„ู€
371
00:41:47,080 --> 00:41:55,440
K ู…ุนุทูŠู†ูŠ ุฅูŠุงู‡ ู‚ุฏุงุดุŸ 42 ุชู‚ุณู… ู…ู† ุงู„ู€ M ูŠุนู†ูŠ ู…ุนู†ุงุชู‡
372
00:41:55,440 --> 00:42:06,600
ู‡ุฐุง ุงู„ู€ M ุชุณุงูˆูŠ ู…ุถุงุนูุงุช 42 ูŠุณุงูˆูŠ ู‡ุฐุง S ู…ุซู„ุง ููŠ ููŠู„
373
00:42:06,600 --> 00:42:13,080
42 ูˆ ู‡ู†ุง for some
374
00:42:25,520 --> 00:42:31,280
ูŠุจู‚ู‰ ูƒุชุงุจุฉ ุงู„ู€ M ู…ุฌู‡ูˆู„ุฉ ุนู„ู‰ ุดูƒู„ ุฑู‚ู… ู…ุถุฑูˆุจ ู‚ุฏุงุด
375
00:42:31,280 --> 00:42:40,090
ุงุซู†ูŠู† ุฃูˆ ุฃุฑุจุนูŠู† ุงู„ุขู† ุฃู†ุง ุนู†ุฏูŠ ูƒุฐู„ูƒ ุงู„ู€ order ู„ู€ ุงู„ู€ H
376
00:42:40,090 --> 00:42:46,930
ุฃูˆ ุงู„ู€ H ู‡ุฐู‡ ุงู„ู€ sub group ู…ู† G sub group ู…ู† G ู‡ุฐุง
377
00:42:46,930 --> 00:42:53,390
ู…ุนู†ุงุชู‡ ุฃู† ุงู„ู€ order ู„ู€ H ูŠูŽู‚ู’ุณูู… ุงู„ู€ order ู„ู€ G ุทุจู‚ุง
378
00:42:53,390 --> 00:43:00,760
ู„ู†ุธุฑูŠุฉ Lagrange ู…ุฏุงู… ู‡ูŠูƒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ order ู„ู„ู€
379
00:43:00,760 --> 00:43:09,980
G ู‡ู†ุง ุจุฏูŠ ุฃุณุงูˆูŠ ุงู„ู€ R ููŠ ุงู„ู€ order ู„ู€ H ู…ุซู„ุง ูŠุจู‚ู‰ ู‡ุฐุง
380
00:43:09,980 --> 00:43:15,340
ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ order ุงู„ู„ูŠ ุฌุงูŠ ู„ูŠู‡ ุฃุฑุจุนู…ูŠุฉ ูˆุนุดุฑูˆู†
381
00:43:15,340 --> 00:43:22,540
ุชุณุงูˆูŠ R ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ M ู„ุฃู† ุฃู†ุง ูุฑุถุช ุงู„ู€ order ู„ู€ H
382
00:43:22,540 --> 00:43:27,440
ูŠุณุงูˆูŠ M ูƒุฏู‡ุŸ ูŠุณุงูˆูŠ M ุฃุทู„ูŽุนู’ ู„ูŠ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ
383
00:43:27,440 --> 00:43:33,640
ุนู†ุฏู†ุง ู‡ุฐู‡ ูˆุฃุทู„ูŽุนู’ ู„ูŠ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฅุฐุง
384
00:43:33,640 --> 00:43:40,320
ุฃู†ุง ุจู‚ุฏุฑ ุฃูŽุฎู’ู„ูู‚ ู…ู† ุงู„ู…ุนุงุฏู„ุชูŠู† ู…ุนุงุฏู„ุฉ ู…ุง ู‡ูŠ ู‡ุฐู‡
385
00:43:40,320 --> 00:43:48,720
ุงู„ู…ุนุงุฏู„ุฉุŸ ุงู„ู„ูŠ ู‡ูŠ ุฃุฑุจุนู…ูŠุฉ ูˆุนุดุฑูˆู† ุจุฏู‡ุง ุชุณุงูˆูŠ R S ููŠ
386
00:43:48,720 --> 00:43:54,940
ู…ู†ุŸ ููŠ ุงุซู†ูŠู† ูˆุฃุฑุจุนูŠู† ูŠุนู†ูŠ ุดููŠู„ุชู ุงู„ู€ M ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
387
00:43:54,940 --> 00:44:00,240
ูˆุฑุงุญูŽุช ุดููŠู„ุชู ุงู„ู€ M ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ูˆูƒุชุจุช ุจุฏู„ู‡ุง S ููŠ
388
00:44:00,240 --> 00:44:07,430
ุงุซู†ูŠู† ูˆุฃุฑุจุนูŠู† ุชู…ุงู… ุทูŠุจ ููŠ ู‚ุณู…ุฉ ู…ุง ุจูŠู† ุงู„ุทุฑููŠู† ุงู‡
389
00:44:07,430 --> 00:44:12,430
ูŠุจู‚ู‰ ู„ูˆ ู‚ูŽุณูŽู…ู’ุชู ูƒู„ู‡ ุนู„ู‰ ุงุซู†ูŠู† ูˆุฃุฑุจุนูŠู† ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ
390
00:44:12,430 --> 00:44:20,590
R S ุชุณุงูˆูŠ ุนุดุฑุฉ ู…ุฏุงู… ุนุดุฑุฉ ุงุญุชู…ุงู„ ุงู„ู€ R ุจูˆุงุญุฏ ูˆุงู„ู€ S
391
00:44:20,590 --> 00:44:31,920
ุจุนุดุฑุฉ ุงุญุชู…ุงู„ ุฃู† S ุจูˆุงุญุฏ ูˆR ุจุนุดุฑุฉ ุงุญุชู…ุงู„ R ุจุฎู…ุณุฉ ูˆS
392
00:44:31,920 --> 00:44:36,280
ุจุงุชู†ูŠู† ุงุญุชู…ุงู„ R ุจุงุชู†ูŠู† ูˆS ุจุฎู…ุณุฉ ู‡ูŠ ุงู„ุงุญุชู…ุงู„ุงุช
393
00:44:36,280 --> 00:44:48,040
ุงู„ุฃุฑุจุนุฉ ููŠ ุบูŠุฑู‡ู…ุŸ ู„ุง ูŠุจู‚ู‰ ู‡ู†ุง so we have four
394
00:44:48,040 --> 00:44:50,280
possibilities four
395
00:44:57,390 --> 00:45:05,110
ุฃุฑุจุนุฉ ุงุญุชู…ุงู„ุงุช ุงู„ุงุญุชู…ุงู„ ุงู„ุฃูˆู„ ุฃู† ุงู„ู€ R ุชุณุงูˆูŠ ูˆุงุญุฏ
396
00:45:05,110 --> 00:45:12,510
ูˆุงู„ู€ S ุชุณุงูˆูŠ ุนุดุฑุฉ ู‡ู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ู…ูƒู†ุŸ ูˆุงู„ู„ู‡ ู…ุด ู…ู…ูƒู†
397
00:45:12,510 --> 00:45:20,310
ุงู„ุญูŠู† ู„ูˆ ุงู„ู€ S ูˆุนุดุฑุฉ ูŠุจู‚ู‰ ุงู„ู€ M ูƒุฏู‡ุŸ 420 ู…ู…ูƒู† ู‡ุฐุง
398
00:45:20,310 --> 00:45:27,730
ุงู„ูƒู„ุงู…ุŸ ูŠุชู†ุงู‚ุถ ู…ุน ูƒู„ู…ุฉ proper ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง this
399
00:45:27,730 --> 00:45:31,310
is impossible
400
00:45:33,850 --> 00:45:43,190
ู‡ุฐุง ุบูŠุฑ ู…ู…ูƒู† ุงู„ุณุจุจ because ุฃู† ุงู„ู€ H is proper
401
00:45:43,190 --> 00:45:49,210
subgroup ู…ู† G ู„ุฃู† ุนู„ู‰ ุงู„ุฌู‡ุฉ ุฏู‡ ู…ุด ู…ู…ูƒู† ู…ู…ูƒู† ุงู„ุนูƒุณ
402
00:45:49,210 --> 00:45:57,130
ู†ู‚ุทุฉ ุซุงู†ูŠุฉ ุฃู† ุงู„ู€ R ุชุณุงูˆูŠ ุนุดุฑุฉ ูˆุงู„ู€ S ุชุณุงูˆูŠ ูˆุงุญุฏ
403
00:45:58,440 --> 00:46:04,560
ุชู…ุงู…ุŸ ุทุจ ุจุฏู†ุง ู†ุฃุชูŠ ุฅู„ู‰ ุงู„ู€ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู„ูˆ ุงู„ู€ S ุตุงุฑูŽุช
404
00:46:04,560 --> 00:46:12,060
ูˆุงุญุฏ ูŠุจู‚ู‰ ุงู„ู€ M ู‚ุฏุงุดุŸ ูŠุนู†ูŠ ู‚ุฏ ู…ูŠู†ุŸ ู‚ุฏ K ุงู„ู€ H ุตุงุฑุช
405
00:46:12,060 --> 00:46:16,760
ู‚ุฏ K ู…ุธุจูˆุท ูˆู‡ุฐุง ูƒู„ุงู… ุบู„ุท ู„ุฃู† ุงุญู†ุง ู†ู‚ูˆู„ูŠู† K proper
406
00:46:16,760 --> 00:46:24,020
ูŠุจู‚ู‰ ุจุฑุถู‡ ู‡ุฐุง this is impossible because capital K
407
00:46:24,020 --> 00:46:25,680
is proper
408
00:46:28,120 --> 00:46:33,920
ูŠุจู‚ู‰ ู‡ุฐุง ู„ุง ูŠู…ูƒู† ูŠุญุตู„ ุจุงู„ู…ุฑุฉ ุทุจ ู†ุฌูŠ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ
409
00:46:33,920 --> 00:46:40,460
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ ู…ู…ูƒู† ุงู„ู€ R ูŠุณุงูˆูŠ ุงุซู†ูŠู† ูˆุงู„ู€ S ูŠุณุงูˆูŠ
410
00:46:40,460 --> 00:46:48,020
ุฎู…ุณุฉ ุทูŠุจ ู„ูˆ ุญุทูŠุช ุงู„ู€ S ู‡ู†ุง ุจุฎู…ุณุฉ ุจุตูŠุฑ ู‡ุฏูˆู„ ูƒุฏู‡ุŸ 210
411
00:46:48,020 --> 00:46:55,520
ู…ู…ูƒู†ุŸ ุงู‡ ู…ู…ูƒู† ู…ุง ููŠุด ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ R ุณูˆุงุก S
412
00:46:55,520 --> 00:47:03,540
then ุงู„ู€ M ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ู€ S ู„ุฎู…ุณุฉ ููŠ ุงุซู†ูŠู† ูˆุฃุฑุจุนูŠู†
413
00:47:03,540 --> 00:47:08,540
ูˆุงู„ู„ูŠ ู‡ูˆ ุจุฏูˆ ูŠุณุงูˆูŠ ู…ุชูŠู† ูˆุนุดุฑุฉ ุฎู…ุณุฉ ููŠ ุงุซู†ูŠู† ุจุนุดุฑุฉ
414
00:47:08,540 --> 00:47:13,880
ูˆุฎู…ุณุฉ ููŠ ุฃุฑุจุน ุจุงุดุฑูŠู† ูˆุงุญุฏ ูˆุงุญุฏุฉ ูˆุนุดุฑูŠู† ุชู…ุงู… ู‡ุฐุง ู„ูˆ
415
00:47:13,880 --> 00:47:21,260
ูƒุงู†ุช ุงู„ู€ S ุจุฎู…ุณุฉ ูˆุงู„ู€ R ุจุงุซู†ูŠู† ุงู„ุงุญุชู…ุงู„ ุงู„ุฑุงุจุน ุฃู† ุงู„ู€
416
00:47:21,260 --> 00:47:30,930
R ุชุณุงูˆูŠ ุฎู…ุณุฉ ูˆุงู„ู€ S ุชุณุงูˆูŠ ุงุซู†ูŠู† ุงู„ู€ M ูŠุณุงูˆูŠ ุงู„ู€ M
417
00:47:30,930 --> 00:47:37,050
ูŠุณุงูˆูŠ S ููŠ ุงุซู†ูŠู† ูˆุฃุฑุจุนูŠู† ุงู„ู€ S ุนู†ุฏูŠ ุจุงุซู†ูŠู† ููŠ ุงุซู†ูŠู†
418
00:47:37,050 --> 00:47:42,830
ูˆุฃุฑุจุนูŠู† ูˆูŠุณุงูˆูŠ ู‚ุฏุงุดุŸ ุฃุฑุจุนุฉ ูˆุซู…ุงู†ูŠู† ู…ู…ูƒู† ูˆู„ุง ู…ุด
419
00:47:42,830 --> 00:47:49,570
ู…ู…ูƒู† ุจุฑุถู‡ ู…ู…ูƒู† ูŠุจู‚ู‰ ุจุงุฌูŠ ู‡ู†ุง ุจู‚ูˆู„ู‡ the possible
420
00:47:49,570 --> 00:47:52,290
orders
421
00:47:54,230 --> 00:48:06,190
of H are ุฃุฑุจุนุฉ ูˆุซู…ุงู†ูŠู† or ู…ุชูŠู† ูˆุนุดุฑุฉ ูŠุจู‚ู‰ ูƒู„ู‡
422
00:48:06,190 --> 00:48:11,170
ุงุนุชู…ุฏู†ุง ููŠู‡ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ Lagrange theorem ุงู„ุขู†
423
00:48:11,170 --> 00:48:16,170
ูˆุตู„ู†ุง ู„ู†ุชุงุฆุฌ ุนู„ู‰ ู†ุธุฑูŠุฉ Lagrange ุญุตู„ู†ุง ุญูˆุงู„ูŠ ุฃุฑุจุน
424
00:48:16,170 --> 00:48:21,830
ู†ุชุงุฆุฌ ูˆุจูƒู„ู‡ู… ุจูŠููŠุฏูˆู†ุง ูƒุชูŠุฑ ููŠ ุญู„ ุงู„ู…ุณุงุฆู„ ุงู„ู…ุฑุฉ
425
00:48:21,830 --> 00:48:23,330
ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡