|
1 |
|
00:00:22,350 --> 00:00:26,430 |
|
ุจููู
ู ุจุฑูุงู ุงููู
ุฉ ุงููู ุงุจุชุฏุฃูุง ููู ุงูู
ุญุงุถุฑุฉ |
|
|
|
2 |
|
00:00:26,430 --> 00:00:30,950 |
|
ุงูู
ุงุถูุฉ ุทุจุนูุง ุงููู
ุฉ ูุฐู ุนุจุงุฑุฉ ุนู ุซู
ุงูู ููุงุท ุจุฑูุงู |
|
|
|
3 |
|
00:00:30,950 --> 00:00:36,090 |
|
ู
ููุง ุงููู ูู ุฎู
ุณ ููุงุท ุจูุฌู ุงูุขู ูููุทุฉ ุงูุณุงุฏุณุฉ |
|
|
|
4 |
|
00:00:36,090 --> 00:00:43,270 |
|
ุงูููุทุฉ ุฑูู
ุณุชุฉ ุจูููู ูู ุฃู ุงู order ููู A H ูุณุงูู ุงู |
|
|
|
5 |
|
00:00:43,270 --> 00:00:50,110 |
|
order ููู B H ุงูู
ูุตูุฏ ู
ู ุฐูู ุฃูู ูู ุนู
ูุช ุฃู left |
|
|
|
6 |
|
00:00:50,110 --> 00:00:54,430 |
|
coset ุฃู right coset ูู subgroup ู
ู ุงูู group |
|
|
|
7 |
|
00:00:54,430 --> 00:00:59,690 |
|
ุงูุฃุณุงุณูุฉ ุจุฏู ูุทูุน ูู ูู left coset ููุณ ุงูุนุฏุฏ ู
ู |
|
|
|
8 |
|
00:00:59,690 --> 00:01:03,810 |
|
ุงูุนูุงุตุฑ ุฃู ูู ูุงูุช right cosets ุจุถุจุท ุจุฏู ูุทูุน ูู |
|
|
|
9 |
|
00:01:03,810 --> 00:01:09,290 |
|
ูู ุงุซูุชูู ุฃู ูููู
ููุทูุน ูู ูู ูุงุญุฏุฉ ูููู
ููุณ ุงูุนุฏุฏ |
|
|
|
10 |
|
00:01:09,290 --> 00:01:14,770 |
|
ู
ู ุงูุนูุงุตุฑ ูุจูู order ููู A H ูุณุงูู order ููู B H |
|
|
|
11 |
|
00:01:14,770 --> 00:01:20,510 |
|
ููู ุงูู A ูุงูู B ุงูู
ูุฌูุฏุฉ ูู group G ูุจูู ูุฐุง ุตุญูุญ |
|
|
|
12 |
|
00:01:20,510 --> 00:01:27,460 |
|
ููู ุงูู A ูุงูู B ุงูู
ูุฌูุฏุฉ ูู group G ู
ุดุงู ูุซุจุช ุฃู |
|
|
|
13 |
|
00:01:27,460 --> 00:01:30,700 |
|
ุงู order ูู group ูุณุงูู ุงู order ูู group ููููุง ูููู |
|
|
|
14 |
|
00:01:30,700 --> 00:01:33,940 |
|
ูุซุจุช ุฃูู ูู function ู
ุง ุจูู ุงูุงุชููู ูุงูู function |
|
|
|
15 |
|
00:01:33,940 --> 00:01:38,000 |
|
ุชุจูู one to one and onto ูุฐุง ุจูุนุทููู ุฃู ุนุฏุฏ |
|
|
|
16 |
|
00:01:38,000 --> 00:01:44,140 |
|
ุงูุนูุงุตุฑ ูู ุงูุฃููู ูุณุงูู ุนุฏุฏ ุงูุนูุงุตุฑ ูู ุงูุซุงููุฉ ูุฐูู |
|
|
|
17 |
|
00:01:44,140 --> 00:01:47,940 |
|
ุจุฏู ุฃุฌู ุฃุจุฑูู ูุฐู ุงูููุทุฉ ุจูููู define |
|
|
|
18 |
|
00:01:51,950 --> 00:02:01,920 |
|
ูู ู
ู ุงูู A H ุฅูู ุงูู B H ุจุงูู Phi ูู
ุง ุชุฃุซุฑ ุนูู |
|
|
|
19 |
|
00:02:01,920 --> 00:02:07,520 |
|
ุฃู ุจุฏู ุขุฎุฐ element ู
ู H ููููู A H ุจูุฏููุง ููู B H |
|
|
|
20 |
|
00:02:07,520 --> 00:02:15,440 |
|
ูุจูู ุจุฏู ูุณุงูู B H ุงูููุงู
ูุฐุง ุตุญูุญ ููู ุงูู H ุงููู |
|
|
|
21 |
|
00:02:15,440 --> 00:02:20,920 |
|
ู
ูุฌูุฏุฉ ููู ู
ูุฌูุฏุฉ ูู H ุจุฏู ูุซุจุช ูุฐู one to one and |
|
|
|
22 |
|
00:02:20,920 --> 00:02:30,880 |
|
onto ูุจูู ุจุงุฌู ุจูููู ูู ูุฐู ุงูุญุงูุฉ Phi is one to |
|
|
|
23 |
|
00:02:30,880 --> 00:02:39,040 |
|
one Assume ุจุฑูุญ ุขุฎุฐ ุตูุฑุชูู ู
ุชุณุงููุชูู ุฃู Phi of A |
|
|
|
24 |
|
00:02:39,040 --> 00:02:48,390 |
|
H1 ูุณุงูู Phi of A H2 ุจุฏู ุฃุญุงูู ุฃุซุจุช ุฃู ุงูู A H1 ูุณุงูู |
|
|
|
25 |
|
00:02:48,390 --> 00:02:53,570 |
|
ุงูู PH1 ูุณุงูู ุงูู PH2 ุฅู ุชู
ุฐูู ูุจูู ุจูุตูุฑ PH1 to |
|
|
|
26 |
|
00:02:53,570 --> 00:03:00,070 |
|
PH1 ุจูุงุก ุนูู ุงูุชุนุฑูู ูุจูู ูุฐุง ุจูุณุงูู BH1 ููุฐุง |
|
|
|
27 |
|
00:03:00,070 --> 00:03:08,310 |
|
ุจูุณุงูู BH2 ุจุงูู left cancellation law ูุฐู ุจุชุนุทููุง |
|
|
|
28 |
|
00:03:15,660 --> 00:03:22,020 |
|
ูู ุถุฑุจุช ุงูุทุฑููู ู
ู ุฌูุชู ุงููุณุงุฑ ูู a ุจูุตูุฑ a h1 |
|
|
|
29 |
|
00:03:22,020 --> 00:03:27,420 |
|
ูุณุงูู a h2 ูุจุงูุชุงูู Phi is one to one |
|
|
|
30 |
|
00:03:33,850 --> 00:03:41,170 |
|
ุจุชุฑูุญ ูุขุฎุฐ element ู
ู ุงูู codomain ูุฃุซุจุช ุฅูู ุฃุตูู |
|
|
|
31 |
|
00:03:41,170 --> 00:03:45,590 |
|
ููู ูู ุงูู domain ูุจูู ุจุฏู ุฃุฌู ุนูู ุงูู BH ุจุฏู ุขุฎุฐ |
|
|
|
32 |
|
00:03:45,590 --> 00:03:50,430 |
|
element ู
ููุง ูุฃุซุจุช ุฅู ูุฐุง ุงูู element ูู ุฃุตู ูู |
|
|
|
33 |
|
00:03:50,430 --> 00:03:57,330 |
|
domain ูู ุงูู A H ูุจูู ุจุงุฌู ุจููู ุงูุชุฑุถ ุฅู X ู
ูุฌูุฏ ููู |
|
|
|
34 |
|
00:03:57,330 --> 00:04:03,350 |
|
ู
ูุฌูุฏ ูู ุงูู B H ุชู
ุงู
ุ |
|
|
|
35 |
|
00:04:03,690 --> 00:04:13,470 |
|
ูุจูู then ุงูู X ูุฐุง ุจุฏู ูุณุงูู B H for some H ุงููู |
|
|
|
36 |
|
00:04:13,470 --> 00:04:22,190 |
|
belongs to domain to H ุทูุจ ูุฐุง ุฃููุณ ูู B H ุทุจูุง ุงููู |
|
|
|
37 |
|
00:04:22,190 --> 00:04:28,900 |
|
ุงูุชุนุฑูู ูู Phi of A H ู
ุนูู ูุฐุง ุงูููุงู
ุฃู Phi is on |
|
|
|
38 |
|
00:04:28,900 --> 00:04:32,520 |
|
to ุฎูุงุต |
|
|
|
39 |
|
00:04:32,520 --> 00:04:40,800 |
|
ููุชูู ููุง ู
ููุง ูุจูู ููุง Sir Phi is one to one and |
|
|
|
40 |
|
00:04:40,800 --> 00:04:50,090 |
|
on to ููุฐุง ูุชุทูุจ ุฃู ุงู order ููู A H ูู order ููู B H |
|
|
|
41 |
|
00:04:50,090 --> 00:04:55,610 |
|
ูุจูู ู
ู ุงูุขู ูุตุงุนุฏูุง ูู
ุง ูุฃุฎุฐ subgroup ู
ู ุงูู group |
|
|
|
42 |
|
00:04:55,610 --> 00:05:00,970 |
|
ุฃุฌู ูุงุถุฑุจ ุฃู element ู
ู G ูู ูุฐุง ุงูู H ู
ู ุฌูุฉ |
|
|
|
43 |
|
00:05:00,970 --> 00:05:05,690 |
|
ุงูุดู
ุงู ุฃู ุฌูุฉ ุงููู
ูู ุฅู ุดุงุก ุงููู ูุทูุน ุนูุฏู ู
ุงุฆุฉ |
|
|
|
44 |
|
00:05:05,690 --> 00:05:11,030 |
|
cosets ูุจูู ุงูู
ุงุฆุฉ ูู ูุงุญุฏุฉ ูููุง ููุณ ุงูุนุฏุฏ ู
ู |
|
|
|
45 |
|
00:05:11,030 --> 00:05:15,210 |
|
ุงูุนูุงุตุฑ ูููุง ุนุดุฑูู ูุจูู ุงูุซุงููุฉ ูููุง ุนุดุฑูู ุงูุซุงูุซุฉ |
|
|
|
46 |
|
00:05:15,210 --> 00:05:20,010 |
|
ุนุดุฑูู ุฅูู ุขุฎุฑู ูููุฐุง ูุฐุง ุจุงููุณุจุฉ ููููุทุฉ ุฑูู
ุณุชุฉ |
|
|
|
47 |
|
00:05:20,010 --> 00:05:26,770 |
|
ุจูุฌู ููููุทุฉ ุฑูู
ุณุจุนุฉ ูุจูู ุงูููุทุฉ ุฑูู
ุณุจุนุฉ ุจุชููู ุฅู |
|
|
|
48 |
|
00:05:26,770 --> 00:05:35,690 |
|
ุงูู A H ุจุฏู ูุณุงูู ุงูู H A if and only if ุงูู H ุจุฏู |
|
|
|
49 |
|
00:05:35,690 --> 00:05:44,610 |
|
ูุณุงูู A H A inverse ุจุฏูุง ูุจุฑูู ุตุญุฉ ูุฐุง ุงูููุงู
ูู |
|
|
|
50 |
|
00:05:44,610 --> 00:05:51,030 |
|
prove ุฎููู ุฃุจูู ูู ููุง ุงูุขู ุงููุถุน ุณูููู ูู ุงุชุฌุงููู |
|
|
|
51 |
|
00:05:51,030 --> 00:05:56,350 |
|
ููู ู
ู
ูู ูุฌูุจ ุงูุงุชุฌุงููู ู
ุน ุจุนุถ ู
ุฑุฉ ูุงุญุฏุฉ ุงูุขู |
|
|
|
52 |
|
00:05:56,350 --> 00:06:01,990 |
|
ุฅุฐุง ููุช ูุงุนุฏ ุฃููู ูู A H ุณูููู H A if and only |
|
|
|
53 |
|
00:06:01,990 --> 00:06:09,900 |
|
if ูู ุถุฑุจุช ุงูุทุฑููู ู
ู ุฌูุชู ุงููู
ูู ูู ุงูู A |
|
|
|
54 |
|
00:06:09,900 --> 00:06:17,600 |
|
inverse ูุจูู ูุฐุง ุงูููุงู
ุจูุตูุฑ A H A inverse ุจุงูุดูู |
|
|
|
55 |
|
00:06:17,600 --> 00:06:24,720 |
|
ุงููู ุนูุฏูุง ูุฐุง ูุณุงูู H A ูู ุงูู A inverse ุจุงูุดูู |
|
|
|
56 |
|
00:06:24,720 --> 00:06:29,470 |
|
ุงููู ุนูุฏูุง ูุฐุง ูุจูู ูุฐุง ุงูููุงู
if and only if ู
ู |
|
|
|
57 |
|
00:06:29,470 --> 00:06:33,990 |
|
ุฎุงุตูุฉ ุงูู associativity ู
ู
ูู ุฃุนู
ู ุฏู
ุฌ ู
ุง ุจูู |
|
|
|
58 |
|
00:06:33,990 --> 00:06:41,860 |
|
ุงูุงุซููู ูุฏูู ูุจูุตูุฑ ุนูุฏู A H A inverse ุจุฏู ูุณุงูู ูุฐุง |
|
|
|
59 |
|
00:06:41,860 --> 00:06:47,440 |
|
ุงูู H ูุฎุงุตูุฉ ุงูู associativity ูุจูู ุงูู A ูู ุงูู A |
|
|
|
60 |
|
00:06:47,440 --> 00:06:52,760 |
|
inverse ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ุทุจ ุงูููุงู
ูุฐุง ุตุญูุญ |
|
|
|
61 |
|
00:06:52,760 --> 00:07:01,200 |
|
if and only if ุงูู A H A inverse A H A inverse ุจุฏู |
|
|
|
62 |
|
00:07:01,200 --> 00:07:02,680 |
|
ูุณุงูู ุชู
ุงู
|
|
|
|
63 |
|
00:07:09,090 --> 00:07:13,510 |
|
ูุจูู H ูู ุงูู identity element ุชุจุน ุงูู group ุงููู |
|
|
|
64 |
|
00:07:13,510 --> 00:07:23,450 |
|
ูู G ูุฐุง if and only if A H A inverse ุจุฏู ูุณุงูู ู
ู |
|
|
|
65 |
|
00:07:23,450 --> 00:07:27,110 |
|
ููุณู ูุฃู ุงูู identity element ุฃู ุถุฑุจู ูู ุฃู |
|
|
|
66 |
|
00:07:27,110 --> 00:07:31,930 |
|
element ุจูุทูุน ููุณ ุงูู element ุงููู ูู ูู ุงูู
ุทููุจ |
|
|
|
67 |
|
00:07:32,700 --> 00:07:38,240 |
|
ุงูููุทุฉ ุงูุฃุฎูุฑุฉ ุงููู ูู ุงูููุทุฉ ุงูุซุงู
ูุฉ ุจุชููู ... |
|
|
|
68 |
|
00:07:38,240 --> 00:07:46,480 |
|
ุจุชููู ุฃู ุงูู A H is a subgroup ู
ู G if and only if |
|
|
|
69 |
|
00:07:46,480 --> 00:07:51,980 |
|
ุงูู A belongs to domain if and only if ุงูู A belongs |
|
|
|
70 |
|
00:07:51,980 --> 00:07:55,360 |
|
ูู
ูู ูู ุงูู H ุทูุจ ุชู
ุงู
|
|
|
|
71 |
|
00:07:59,780 --> 00:08:03,740 |
|
ุงูู
ุฑุฉ ุงูุณุงุจูุฉ ูููุง ุฃู ุงูู left cosets ูุฏ ุชููู |
|
|
|
72 |
|
00:08:03,740 --> 00:08:08,100 |
|
subgroup ููุฏ ูุง ุชููู subgroup ุชู
ุงู
ุ ููู in |
|
|
|
73 |
|
00:08:08,100 --> 00:08:12,760 |
|
general ู
ุงูู subgroup ููุง ุจูุญุท ูู ุงูู chart ุฅูุด |
|
|
|
74 |
|
00:08:12,760 --> 00:08:17,340 |
|
ุงููู ูุฎูู ุงูู left coset subgroup ูู ุฃู ุถุฑุจูุง ูู |
|
|
|
75 |
|
00:08:17,340 --> 00:08:24,600 |
|
ุนูุตุฑ ู
ู ุนูุงุตุฑ ู
ู ู
ู ุนูุงุตุฑ H itself ูุจูู ุงูู A H |
|
|
|
76 |
|
00:08:24,600 --> 00:08:29,140 |
|
ุนุจุงุฑุฉ ุนู subgroup ู
ู G ุฅุฐุง ูุงู ุงูู A ุงููู ุถุฑุจุชู ูุฐู |
|
|
|
77 |
|
00:08:29,140 --> 00:08:35,760 |
|
ู
ู H ููุณูุง ูููุณ ูููุณ ู
ู ุฎุงุฑุฌูุง ูุจูู ุงูุขู ุจุฏุงุฌู |
|
|
|
78 |
|
00:08:35,760 --> 00:08:44,660 |
|
ุฃูููู assume that ุงูุชุฑุถ ุฃู ุงูู A H is a subgroup ู
ู |
|
|
|
79 |
|
00:08:44,660 --> 00:08:50,820 |
|
G ุจูุญุงูู ูุซุจุช ุฃู ุงูู A ู
ูุฌูุฏ ูู ุงูู H ููุฐุง ูู ุงูุงุชุฌุงู |
|
|
|
80 |
|
00:08:50,820 --> 00:08:58,440 |
|
ุงูุฃูู ุทูุจ ุชู
ุงู
ุงูุณุคุงู ูู ูู ูุง ุดุจุงุจ ูุฐู ุชุญุชูู ุนูู |
|
|
|
81 |
|
00:08:58,440 --> 00:09:04,340 |
|
ุงูู identity elementุ ููุดุ ูุฃููุง subgroup ูุจูู ุจุงุฌู |
|
|
|
82 |
|
00:09:04,340 --> 00:09:12,640 |
|
ุจูููู ุงูู E ู
ูุฌูุฏุฉ ูู ุงูู H since ุงูู H is a subgroup |
|
|
|
83 |
|
00:09:12,640 --> 00:09:22,170 |
|
ู
ู G ุชู
ุงู
ุ ุทูุจ and ุงูู E ู
ูุฌูุฏุฉ ูู ุงูู H ููุง ูุงุ ูุฃู |
|
|
|
84 |
|
00:09:22,170 --> 00:09:27,890 |
|
ุงูู H ูุฐูู ูู subgroup ูุจูู ุงูู E ู
ูุฌูุฏุฉ ููุง ูุงูู E |
|
|
|
85 |
|
00:09:27,890 --> 00:09:35,600 |
|
ู
ูุฌูุฏุฉ ููุง ุทุจ ุงูู H ุฃููุณุช ูู E ูู Hุ ูุนูู ุตุงุฑุช ูุฐู |
|
|
|
86 |
|
00:09:35,600 --> 00:09:41,480 |
|
left coset ููุฐู left coset ูุฌูุฉ element ู
ูุฌูุฏุฉ |
|
|
|
87 |
|
00:09:41,480 --> 00:09:46,540 |
|
ูู ุงูุงุซููู ูุจูู ุงูู intersection ุชุจุนูู
ูุง ูู
ูู ุฃู |
|
|
|
88 |
|
00:09:46,540 --> 00:09:58,430 |
|
ูุณุงูู ูุงู ูุจูู A ุงููู ูู E belongs to A H ูุงูู E H |
|
|
|
89 |
|
00:09:58,430 --> 00:10:05,450 |
|
ูุฐุง ู
ุนูุงู ุฃู ุงูู E H ูุง |
|
|
|
90 |
|
00:10:05,450 --> 00:10:13,580 |
|
ูู
ูู ุฃู ูุณุงูู ูุงู ููู
ุง ุฏุงู
ูุง ูู
ูู ุฃู ูุณุงูู ูุงู ู
ุนูุงู |
|
|
|
91 |
|
00:10:13,580 --> 00:10:17,680 |
|
ุงูุงุซููู ูุฏูู are equal ู
ู ุงูููุทุฉ ู
ุง ุจุนุฑู ูุฏู ุฑูู
ูุง |
|
|
|
92 |
|
00:10:17,680 --> 00:10:22,200 |
|
ุฎู
ุณุฉ ุฃู ุซูุงุซุฉ ุนูุฏูุง ู
ู ุงููู ู
ูู
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูุจูู |
|
|
|
93 |
|
00:10:22,200 --> 00:10:29,120 |
|
ูุฐุง ู
ุนูุงู ุฃู ุงูู A H ุจุฏู ูุณุงูู ุงูู E H ูุนูู ุงูู A H |
|
|
|
94 |
|
00:10:29,120 --> 00:10:37,380 |
|
ุจุฏู ูุณุงูู ุงูู H itself ุทูุจ ุฅุฐุง ูุฏูู ุจุชุณุงููุง ุฃููุณุช ุงูู A |
|
|
|
95 |
|
00:10:37,380 --> 00:10:41,900 |
|
ู
ูุฌูุฏุฉ ูู H ุงูููุทุฉ ุจุฑูููุง ุจุฑุถู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ู
ุง |
|
|
|
96 |
|
00:10:41,900 --> 00:10:47,500 |
|
ุจุนุฑู ุงุซููู ุฃู ุซูุงุซุฉ ุจุงููุชูุฑ ู
ุงุฏุงู
ุงูู A H ูุณุงูู H |
|
|
|
97 |
|
00:10:47,500 --> 00:10:52,780 |
|
ูุฐุง ู
ุนูุงู ุฃู ุงูู A belongs to H ุงููู ูู ุงูุงุชุฌุงู |
|
|
|
98 |
|
00:10:52,780 --> 00:10:58,060 |
|
ุงูุฃูู ุจุฏูุง ููุฌู ููุงุชุฌุงู ุงูุซุงูู ูุจุงุฌู ุจูููู |
|
|
|
99 |
|
00:10:58,060 --> 00:11:00,080 |
|
conversely |
|
|
|
100 |
|
00:11:01,310 --> 00:11:09,050 |
|
ุจุงูุนูุณ ูุจูู assume ุงูุชุฑุถ ุฃู ุงูู A belongs to H ุจุฏุง |
|
|
|
101 |
|
00:11:09,050 --> 00:11:14,570 |
|
ุฃุญุงูู ุฃุซุจุช ุฃู ุงูู A H is a subgroup ู
ุฏุงู
ุงูู A |
|
|
|
102 |
|
00:11:14,570 --> 00:11:23,350 |
|
belongs to H then ุงูู A H ุจุฏู ูุณุงูู ุงูู H ู
ุธุจูุทุ |
|
|
|
103 |
|
00:11:25,320 --> 00:11:30,400 |
|
ุตุญ ุจุฑูุงู ู
ุฏุงู
ุงูู A belongs to H ูุฃู if and only if |
|
|
|
104 |
|
00:11:30,400 --> 00:11:34,280 |
|
ูุนูู ูุงูุช ุงูููุทุฉ ุนูุฏูุง ุจุชููู ุฃู ุงูู A H ุจุฏู ูุณุงูู H |
|
|
|
105 |
|
00:11:34,280 --> 00:11:38,420 |
|
if and only if ุงูู A belongs to H ุทุจ ุงุญูุง ูุฑุถูู ุงูู |
|
|
|
106 |
|
00:11:38,420 --> 00:11:43,060 |
|
A belongs to H ุจุฌู ุงูุงุซููู ูุฏูู ุจูุณุงููุง ุจุนุถ ุชู
ุงู
ูุง ุทุจ |
|
|
|
107 |
|
00:11:43,060 --> 00:11:49,000 |
|
ูุฏุง subgroup ููุง ูุฃ ุฅุฐุง ูุฏุง ู
ู subgroup ูุฐุง ุจุฏู |
|
|
|
108 |
|
00:11:49,000 --> 00:11:57,220 |
|
ูุนุทููุง ุฃู ุงูู A H is a subgroup ู
ู G because ุงูู H |
|
|
|
109 |
|
00:11:57,220 --> 00:12:05,920 |
|
is a subgroup ู
ู G ุนูู ููู ุจูููู ุจุฑูููุง ุงูููุงุท |
|
|
|
110 |
|
00:12:05,920 --> 00:12:12,120 |
|
ุงูุซู
ุงููุฉ ููุฐู ุงููู
ุฉ ููู ุนูุงูุฉ ุงูู cosets ู
ุน ุจุนุถูุง |
|
|
|
111 |
|
00:12:12,120 --> 00:12:18,280 |
|
ุฃู ู
ุน ุจุนุถูู
ุงูุจุนุถ ุทูุจ ูู ุนูุฏู ู
ูุงุญุธุฉ ููุง ู
ูุญุจ ูุดูุฑ |
|
|
|
112 |
|
00:12:18,280 --> 00:12:26,460 |
|
ุฅูููุง ุงูู remark ุจุชููู ู
ุง ูุฃุชู ุฅุฐุง ุงูู H ูู ุงูู |
|
|
|
113 |
|
00:12:26,460 --> 00:12:31,460 |
|
special linear group of two by two matrices over R |
|
|
|
114 |
|
00:12:31,460 --> 00:12:35,720 |
|
ููุฐู ุงูู subgroup ู
ู ุงูู general linear group of |
|
|
|
115 |
|
00:12:35,720 --> 00:12:43,560 |
|
two by two matrices over R ููุฐู ุงูู subgroup ู
ู |
|
|
|
116 |
|
00:12:43,560 --> 00:12:50,910 |
|
ุงูู general linear group of two by two matrices A |
|
|
|
117 |
|
00:12:50,910 --> 00:12:59,170 |
|
and G the coset |
|
|
|
118 |
|
00:12:59,170 --> 00:13:13,930 |
|
ุงููู ูู ุงูู A H is the set of all two |
|
|
|
119 |
|
00:13:13,930 --> 00:13:16,590 |
|
by two matrices |
|
|
|
120 |
|
00:13:23,780 --> 00:13:30,740 |
|
with the same |
|
|
|
121 |
|
00:13:30,740 --> 00:13:35,500 |
|
determinant |
|
|
|
122 |
|
00:13:35,500 --> 00:13:42,860 |
|
as A for |
|
|
|
123 |
|
00:13:42,860 --> 00:13:48,360 |
|
example ูู
ุซุงู |
|
|
|
124 |
|
00:13:48,360 --> 00:13:49,300 |
|
ุนูู ุฐูู |
|
|
|
125 |
|
00:13:52,640 --> 00:14:01,220 |
|
ุงูู
ุตูููุฉ ุงููู ุชูุงุชุฉ ุตูุฑ ูุงุญุฏ ุงุซููู ูู ุถุฑุจุชูุง ููู |
|
|
|
126 |
|
00:14:01,220 --> 00:14:16,280 |
|
H is the set of all two by two matrices with |
|
|
|
127 |
|
00:14:16,280 --> 00:14:18,060 |
|
determinant |
|
|
|
128 |
|
00:14:25,120 --> 00:14:30,420 |
|
ุณุชุฉ ุทูุจ ุจุฏูุง ูุณุฃู ุงูุณุคุงู ุงูุชุงูู ููุด ูุฐุง ุงูููุงู
|
|
|
|
129 |
|
00:14:30,420 --> 00:14:38,260 |
|
ุตุญูุญ ุทูุน ูู ูููุง ูููุณ ุทูุน ูู ูููุง ูููุณ ุญุชู ูุญุงูู ุฃู |
|
|
|
130 |
|
00:14:38,260 --> 00:14:44,740 |
|
ูุตู ุฅูู ุงูุฅุฌุงุจุฉ ููุฐุง ุงูุณุคุงู ุงูุฐู ุฒุนู
ูุงู ุฃู ุงู |
|
|
|
131 |
|
00:14:44,740 --> 00:14:50,980 |
|
order ููุง ูุณุงูู ุณุชุฉ ููู ุจูุง ูุฏู ุงู remark ุจุชููู ู
ุง |
|
|
|
132 |
|
00:14:50,980 --> 00:14:55,170 |
|
ูุฃุชููู ูุงูุช ุงูู subgroup ูู ุงูู special linear |
|
|
|
133 |
|
00:14:55,170 --> 00:14:59,270 |
|
group ู
ูู ุฌุฑูุจ ุงููู ูู ุงู general linear group of |
|
|
|
134 |
|
00:14:59,270 --> 00:15:04,470 |
|
two by two matrices over R ุทุจุนุง ูุฐู ูู ุงูู
ุตููุงุช |
|
|
|
135 |
|
00:15:04,470 --> 00:15:09,410 |
|
ุงููู determinant ููุง ูุง ูุณุงูู zero ูุฐู ูู ุงูู
ุตููุงุช |
|
|
|
136 |
|
00:15:09,410 --> 00:15:13,670 |
|
ุงููู determinant ููุง ูุง ูุณุงูู ู
ูู ูุงุญุฏ ุตุญูุญ ุจููู |
|
|
|
137 |
|
00:15:13,670 --> 00:15:19,330 |
|
ูุฃู matrix A ูู ุงู group ุงููู ุนูุฏูุง ูุฐู the coset |
|
|
|
138 |
|
00:15:19,330 --> 00:15:26,270 |
|
of H ุฃูุง ุฃุฎุฏุช A ู
ู ูููุ ู
ู ุงู general ุถุฑุจุช ูู ู
ูุ |
|
|
|
139 |
|
00:15:26,270 --> 00:15:29,730 |
|
ูู H ูู special linear group of two by two |
|
|
|
140 |
|
00:15:29,730 --> 00:15:35,770 |
|
matrices overall ุจููู ุงููAH ูุฐู ูู ู
ุตุญููุฉ ูููุง |
|
|
|
141 |
|
00:15:35,770 --> 00:15:41,030 |
|
ุงูู
ุญุฏุฏ ุชุจุนูุง ูุณูู ุงูู
ุญุฏุฏ ุชุจุน ุงูู
ุตุญููุฉ ุงูู ุจุงูุถุจุท |
|
|
|
142 |
|
00:15:41,030 --> 00:15:48,750 |
|
ุชู
ุงู
ุงุ ููุดุ ูุฅู ูุฐู ุงูู
ุตุญููุฉ ูู matrix ูููุง ุงูู
ุญุฏุฏ |
|
|
|
143 |
|
00:15:48,750 --> 00:15:52,830 |
|
ุฏู ููุง ุจุฌุฏุงุด ูุจูู ูู
ุง ุชุฌูุจ ุงู determinant ูุฃู |
|
|
|
144 |
|
00:15:52,830 --> 00:15:57,640 |
|
ุฃูู
ุตูุฑ ุงู determinant ูุฅูู ูู ุงู determinantูุฃ |
|
|
|
145 |
|
00:15:57,640 --> 00:16:01,560 |
|
ุจูููุจ ูุงุญุฏ ูุจูู ุจูุธูู
ูู ุงู determinant ููู ุจูุจูู |
|
|
|
146 |
|
00:16:01,560 --> 00:16:05,660 |
|
ูู ุนูุตุฑ ูููุง ุจุฏู ูููู ุงู determinant ูู ู |
|
|
|
147 |
|
00:16:05,660 --> 00:16:11,580 |
|
determinant ูู
ูู ูุฅูู ู
ุซุงู ุนูู ุฐูู ุงูู
ุตุญููุฉ ุงููู |
|
|
|
148 |
|
00:16:11,580 --> 00:16:15,840 |
|
ุนูุฏูุง ุฏู element ูุฐุง ู
ูุฌูุฏ ูู ุงู general linear |
|
|
|
149 |
|
00:16:15,840 --> 00:16:22,400 |
|
group ูุฅู ุงูู
ุญุฏุฏ ุชุจุนู ุจูุฏุงุด ุจุณุชุฉ ูุนูู ูุง ูุณุงูู |
|
|
|
150 |
|
00:16:22,400 --> 00:16:26,520 |
|
ุฒููู ู
ุนูุงุชู ู
ูุฌูุฏ ูู ุงู general ูุจูู the set of |
|
|
|
151 |
|
00:16:26,520 --> 00:16:30,160 |
|
all two by two matrices ุงููู ูุฐุง ู
ุถุฑูุจุฉ ููู with |
|
|
|
152 |
|
00:16:30,160 --> 00:16:34,380 |
|
determinant ุณุชุฉ ุงูุณุจุจ ูุฅูู ุจุฏู ูููู ุงู determinant |
|
|
|
153 |
|
00:16:34,830 --> 00:16:39,990 |
|
ูุฃ ุงู element ูุฐุง ู
ุถุฑูุจ ูู ุฃู element ุชุงูู ููููู |
|
|
|
154 |
|
00:16:39,990 --> 00:16:43,770 |
|
ุจูุณูุก ุงู determinant ููุฐู ูู ุงู determinant ุงููู |
|
|
|
155 |
|
00:16:43,770 --> 00:16:46,450 |
|
ุจูุจูู ุงู determinant ุงููู ุจูุจูู ุจูุงุญุฏ ุตุญูุญ ุจูุจูู |
|
|
|
156 |
|
00:16:46,450 --> 00:16:50,550 |
|
ุงู determinant ููุฐู ุจุณุชุฉ ูู ูุงุญุฏ ุงููู ุจุณุชุฉ ูุฐู |
|
|
|
157 |
|
00:16:50,550 --> 00:16:57,330 |
|
ู
ุฌุฑุฏ ู
ูุงุญุธุฉ ุทูุจ ูุฌู ุงูุขู ููุธุฑูุฉ very important ูู |
|
|
|
158 |
|
00:16:57,330 --> 00:17:04,130 |
|
ุงูุฌุจุฑ ููุฐู ุฃุณุงุณูุฉ ููุง ูุชุงุจ ุฌุจุฑ ุจูุฎููุง ู
ููุง ูุฐู |
|
|
|
159 |
|
00:17:04,130 --> 00:17:07,910 |
|
ุงููุธุฑูุฉ ุงุณู
ูุง ูุธุฑูุฉ Lagrange Lagrange ูู ุงููู |
|
|
|
160 |
|
00:17:07,910 --> 00:17:13,010 |
|
ุงูุชุดููุง ุจุงูุจูุฏ ููู ุงู order ูู ูุงูุช ุงู G finite |
|
|
|
161 |
|
00:17:13,010 --> 00:17:19,400 |
|
ูุงู order ูู sub group ุจููุณู
ุงู order ูู group ููุฐู |
|
|
|
162 |
|
00:17:19,400 --> 00:17:23,560 |
|
ุดุฑุทูุง ููู
ู
ู ุฃูู ู
ุง ุจุฏุฃุช ุชููููุง ุฏูุฑ ุจุงูู ูุฏุงู
|
|
|
|
163 |
|
00:17:23,560 --> 00:17:26,960 |
|
ููุงุฎุฏ ุงู ุงู order ูู element ุจุฏู ููุณู
ุงู order ูู |
|
|
|
164 |
|
00:17:26,960 --> 00:17:30,960 |
|
group ู ุงู order ูู sub group ุจุฏู ููุณู
ุงู order ูู |
|
|
|
165 |
|
00:17:30,960 --> 00:17:36,980 |
|
group ูุฐูู ูุจุฏูุง ููุฌู ู Lagrange theorem ูุจูู ููุง |
|
|
|
166 |
|
00:17:36,980 --> 00:17:42,060 |
|
Lagrange theorem |
|
|
|
167 |
|
00:17:44,840 --> 00:17:52,660 |
|
ุงููุธุฑูุฉ ูุฐู ุจุชููู ู
ุง ูุงุชู if ุงู H is |
|
|
|
168 |
|
00:17:52,660 --> 00:18:07,120 |
|
a subgroup of a finite group G then |
|
|
|
169 |
|
00:18:07,120 --> 00:18:13,560 |
|
ุงู order ู H divides |
|
|
|
170 |
|
00:18:15,730 --> 00:18:25,210 |
|
ุงูู order ูู G ูุฒูุงุฏุฉ ุนูู ุฐูู moreover ู ุฃูุซุฑ ู
ู |
|
|
|
171 |
|
00:18:25,210 --> 00:18:35,810 |
|
ุฐูู the number of this connect the number of |
|
|
|
172 |
|
00:18:35,810 --> 00:18:43,010 |
|
this connect the number of this connect left ุฃู |
|
|
|
173 |
|
00:18:43,010 --> 00:18:50,370 |
|
right left ุฃู right ูุฏู ูุงููู ูุฏู ุงูุงุชููู are the |
|
|
|
174 |
|
00:18:50,370 --> 00:19:03,570 |
|
same left ุฃู right cassettes of H in G is ุงู order |
|
|
|
175 |
|
00:19:03,570 --> 00:19:11,110 |
|
ู G ุนูู ุงู order ุงู main ูู H ุจูุจุฑูู |
|
|
|
176 |
|
00:19:11,110 --> 00:19:13,510 |
|
ุตุญุฉ ูุฐุง ุงูููุงู
ุงู approve |
|
|
|
177 |
|
00:19:29,970 --> 00:19:35,150 |
|
ุฎููู ุจุงูู ูุฏุง ุงูุขู H sub group ู
ู ู
ููุ ู
ู finite |
|
|
|
178 |
|
00:19:35,150 --> 00:19:44,050 |
|
group G ู ุงู H ูู ุงู sub group ู
ู ู group G ุจุฏู |
|
|
|
179 |
|
00:19:44,050 --> 00:19:49,370 |
|
ุฃุซุจุช ุฃู ุงู order ู G ุจููุณู
ุงู order ุงู order ู H |
|
|
|
180 |
|
00:19:49,370 --> 00:19:55,210 |
|
ุจููุณู
ุงู order ู G ูุนูู ุนุฏุฏ ุงูุนูุงุตุฑ ูู H ููุณู
ุนุฏุฏ |
|
|
|
181 |
|
00:19:55,210 --> 00:20:01,370 |
|
ุงูุนูุงุตุฑ ูู ู
ู ูู G ู ุฒูุงุฏุฉ ุนูู ุฐูู ุนุฏุฏ ุงู left ุฃู |
|
|
|
182 |
|
00:20:01,370 --> 00:20:07,310 |
|
right destined cosets ูู H and G ุจูุณูู ุงู order ูู |
|
|
|
183 |
|
00:20:07,310 --> 00:20:13,330 |
|
H ุนูู ุงู order ูู
ูู ูู G ูุฐุง ุงููู ุนุงูุฒูู ูุชุจุชู ูู |
|
|
|
184 |
|
00:20:13,330 --> 00:20:14,650 |
|
ุงูุนุฏุฏ |
|
|
|
185 |
|
00:20:19,350 --> 00:20:24,070 |
|
ุงูู order ุงููู ุฌู ุนูู ุงู order ูู H ุจูุนุทููู ุนุฏุฏ ุงู |
|
|
|
186 |
|
00:20:24,070 --> 00:20:27,210 |
|
left cosets ูููุง ูุงุชุจูู ุงู order ุงููู ุฌู ุนูู ุงู |
|
|
|
187 |
|
00:20:27,210 --> 00:20:31,810 |
|
order ุงููู H ุชู
ุงู
ุทุจ ุฎููููู ูุซุจุช ุงูููุทุฉ ุงูุฃููู |
|
|
|
188 |
|
00:20:31,810 --> 00:20:37,710 |
|
ุจูููู ูู ููุง ุนุฏุฏ ุงู left .. destined left cosets ุฃู |
|
|
|
189 |
|
00:20:37,710 --> 00:20:41,970 |
|
right cosets ุฅุฐุง ุฃูุง ุจุฏู ุงุฑูุญ ุงุฌูุจ ูู ุงู left |
|
|
|
190 |
|
00:20:41,970 --> 00:20:47,250 |
|
cosets ุงููู ู
ูุฌูุฏุงุช ุนูู ุงููู ูู ุงู sub group ู
ู ุงู |
|
|
|
191 |
|
00:20:47,250 --> 00:20:50,460 |
|
group ุงููู ุนูุฏูุง ูู
ุง ุฃุฎุฏูุง ุงูุฃู
ุซูุฉ ุงูู
ุฑุฉ ุงููู ูุงุชุช |
|
|
|
192 |
|
00:20:50,460 --> 00:20:56,520 |
|
ูุฌููุง ุงูู ุฃุญูุงูุง ุงู lift corsets ุจุชุณุงูู ู
ุธุจูุท ูุจูู |
|
|
|
193 |
|
00:20:56,520 --> 00:21:00,220 |
|
ุฃูุง ุจุฏู ุฃุฌูุจ ูู ุงู lift corsets ุงููู ุจูููู ููุง |
|
|
|
194 |
|
00:21:00,220 --> 00:21:05,300 |
|
ูุงุญุฏุฉ ูููู
ุจุชุณุงูู ุงุช ุชุงููุฉ ูุจูู ุจุฏู ุฃุฌู ุฃูููู let |
|
|
|
195 |
|
00:21:05,300 --> 00:21:15,620 |
|
a1h a2h ููุธู ู
ุงุดููู the arh ุจ the |
|
|
|
196 |
|
00:21:18,560 --> 00:21:24,940 |
|
Left Destinate Cosets |
|
|
|
197 |
|
00:21:24,940 --> 00:21:28,780 |
|
of |
|
|
|
198 |
|
00:21:28,780 --> 00:21:38,760 |
|
H and G ุจุฏุฃ ุงูุชุฑุถ ุฃู ูุฐุง ุนุจุงุฑุฉ ุนู ุงูุดุ ุนุจุงุฑุฉ ุนู ูู |
|
|
|
199 |
|
00:21:38,760 --> 00:21:42,720 |
|
Destinate Left Cosets ุงููู ููุง ูุงุญุฏุฉ ุจุชุณุงูู |
|
|
|
200 |
|
00:21:42,720 --> 00:21:53,010 |
|
ุงูุชุงููุฉ ุทูุจุ ุงูุขู ุจุฏุงุฌู ุฃููู let ุงู A belongs to G |
|
|
|
201 |
|
00:21:53,010 --> 00:22:06,300 |
|
then ุงู A H is a left cassette ุตุญูุญ ููุง ูุฃ ูุนูู |
|
|
|
202 |
|
00:22:06,300 --> 00:22:11,740 |
|
ู
ุนูุงุชู ุฃู ุงู a h ูุณุงูู ูุงุญุฏุฉ ู
ู ูุฏูู ูุชููู ูุงุญุฏุฉ |
|
|
|
203 |
|
00:22:11,740 --> 00:22:23,580 |
|
ู
ููู
ุตุญ ูุจูู ุงูุขู ุณุงุนุฉ ุงู a h ูุฐู ุจุฏูุง ุณุงูู a i h |
|
|
|
204 |
|
00:22:23,580 --> 00:22:27,420 |
|
ุชู
ุงู
|
|
|
|
205 |
|
00:22:27,420 --> 00:22:39,760 |
|
ุทูุจ ูููุณ but we know that ุงุญูุง ุจูุนุฑู ุฃู ุงู a ู
ูุฌูุฏุฉ |
|
|
|
206 |
|
00:22:39,760 --> 00:22:45,800 |
|
ูู ุงู a h ูู
ูุฌูุฏุฉ ูู ุงู a h ู
ุธุจูุท |
|
|
|
207 |
|
00:22:47,230 --> 00:22:51,190 |
|
ุจุงุฑูููุง ุงูู
ุฑุฉ ุงููู ูุงุชุช ู
ุฏุงู
ู
ูุฌูุฏุฉ ููุง ููุฐู |
|
|
|
208 |
|
00:22:51,190 --> 00:22:55,490 |
|
ุจุชุณุงูู ูุฐู ูุจูู ุงู element ููู ู
ูุฌูุฏุ ูู ุงู A I H |
|
|
|
209 |
|
00:22:55,490 --> 00:23:05,750 |
|
ูุจูู ูุฐุง ุจุฏู ูุนุทููุง ุฃู ุงู A belongs to A I H ุทุจ |
|
|
|
210 |
|
00:23:05,750 --> 00:23:09,830 |
|
ุฃูุง ูู
ุง ุฃุฎุฏุช ุงู A ูู G ุฃุฎุฏุช ุนูุตุฑ ุนุดูุงุฆู ููุง ุนูุตุฑ |
|
|
|
211 |
|
00:23:09,830 --> 00:23:16,430 |
|
ู
ุญุฏุฏุนุดูุงุฆู ู
ุฏุงู
ุนุดูุงุฆู ููุทุจู ุนูู ุฃู ุนูุตุฑ ู
ูุฌูุฏ ูู |
|
|
|
212 |
|
00:23:16,430 --> 00:23:23,210 |
|
ุงู group G ุจููู
ู
ู ูุฐุง ุงูููุงู
ุฃู ูู ุนูุตุฑ ู
ูุฌูุฏ ูู |
|
|
|
213 |
|
00:23:23,210 --> 00:23:28,910 |
|
ุฌู ุญุงูุฉ ุฌู ูู ูุงุญุฏุฉ ู
ู ุงู lift cassettes ุตุญ ููุง ูุฃ |
|
|
|
214 |
|
00:23:28,910 --> 00:23:35,440 |
|
ุณูุช ุงูุดุนุจ ู
ุฑุฉ ุชุงููุฉ ุฃูุง ุงุฎุฏุช a ุนุดูุงุฆูุง ู
ู g ุชู
ุงู
|
|
|
|
215 |
|
00:23:35,440 --> 00:23:40,820 |
|
ูุฌูุช ุงู a ูุฐุง ู
ูุฌูุฏ ูู ูุงุญุฏุฉ ู
ู ูุฏูู ุงูู ู
ูุฌูุฏ ูู |
|
|
|
216 |
|
00:23:40,820 --> 00:23:48,340 |
|
ุงู aiH ู
ุธุจูุท ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ูุฐุง ูุนูู ุฃู ูู ุนูุตุฑ |
|
|
|
217 |
|
00:23:48,340 --> 00:23:52,740 |
|
ุจุชุงุฎุฏู ู
ู G ูุงุฒู
ุชูุงููู ูู main ูู ูุงุญุฏุฉ ู
ู ุงู |
|
|
|
218 |
|
00:23:52,740 --> 00:23:58,120 |
|
left distant cosets ู
ุธุจูุท ูุจูู this means that |
|
|
|
219 |
|
00:23:58,120 --> 00:24:06,280 |
|
this means that any element |
|
|
|
220 |
|
00:24:09,860 --> 00:24:17,240 |
|
in G belongs to |
|
|
|
221 |
|
00:24:17,240 --> 00:24:24,440 |
|
one coset of |
|
|
|
222 |
|
00:24:24,440 --> 00:24:32,280 |
|
A1H A2H ู ูุบุงูุฉ ARH |
|
|
|
223 |
|
00:24:35,230 --> 00:24:42,990 |
|
ุฅุฐุง ูู ุนูุตุฑ ุจุงุฎุฏู ู
ู ุฌูู ูู
ุง ุฃุฎุฏู ู
ู ุฌูู ุจูุงููู ูู |
|
|
|
224 |
|
00:24:42,990 --> 00:24:48,390 |
|
ูุงุญุฏุฉ ู
ู ูุฏูู ุทุจ ุงูุณุคุงู ูู ูู ูุฏูู ุจูุณููุง ุจุนุถูู
|
|
|
|
225 |
|
00:24:48,390 --> 00:24:54,110 |
|
ูุจูู ุงู intersection five ู
ู
ุชุงุฒ ุฌุฏุง ู ูู ูุงุญุฏุฉ ุฌุงู |
|
|
|
226 |
|
00:24:54,110 --> 00:24:57,230 |
|
ุจูุณูู ุชุงูู ูุฌุงู ุนูููู
this and that ูุจูู ุงู |
|
|
|
227 |
|
00:24:57,230 --> 00:25:01,990 |
|
intersection ุชุจุนูู
ูุณูู five ุฅุฐุง ูุง ูู
ูู ูุนูุตุฑ |
|
|
|
228 |
|
00:25:01,990 --> 00:25:09,190 |
|
ูููู confidentูู ู
ููู
ุตุญ ููุง ูุง ูุจูู ููุง ุจููู ููุง |
|
|
|
229 |
|
00:25:09,190 --> 00:25:22,110 |
|
but ูููู ุงููู ูู ุงู aih ูุง ูุณุงูู ุงู ajh for ุงููู |
|
|
|
230 |
|
00:25:22,110 --> 00:25:29,290 |
|
ูู ุงู I ูุง ูุณุงูู ุงู j ูู
ุง ูุคูุงุก ู
ุง ูุชุณุงููุด ูุจูู |
|
|
|
231 |
|
00:25:29,290 --> 00:25:33,530 |
|
ูุคูุงุก ู
ุง ูุชุณุงููุด ุจุนุถ ุฅุฐุง ุงููI ูุงููJ ูุง ูุชุณุงููุด ุจุนุถ |
|
|
|
232 |
|
00:25:33,530 --> 00:25:40,090 |
|
ุฅุฐุง ูู element ู
ูุฌูุฏ ุจุงูุถุจุท ูู ูุงุญุฏุฉ ู
ู ู
ู ูุคูุงุก |
|
|
|
233 |
|
00:25:40,090 --> 00:25:45,350 |
|
ุทูุจ ุฅุฐุง ุงููG ู
ุด ูู ุนุจุงุฑุฉ ุนู ุงู union ุชุจุน ูุคูุงุก |
|
|
|
234 |
|
00:25:45,350 --> 00:25:47,170 |
|
ูููู
ููุง ูุฃุ |
|
|
|
235 |
|
00:25:56,620 --> 00:26:08,300 |
|
ูุฌุฑูุจ G ูู ุนุจุงุฑุฉ ุนู A1H ุงุชุญุงุฏ A2H ุงุชุญุงุฏ ุงุชุญุงุฏ ARH |
|
|
|
236 |
|
00:26:08,300 --> 00:26:18,180 |
|
ูููุณ ูุนูู ูุฐุง ูุนูู ุฃู ุงู order ู G ุงู order ู G |
|
|
|
237 |
|
00:26:18,180 --> 00:26:26,120 |
|
ุจุฏู ุณูู ุงู order ู A1H ุฒุงุฆุฏ ุงู order ู A2H |
|
|
|
238 |
|
00:26:28,500 --> 00:26:39,220 |
|
ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ุงู order ูู ARH ุทูุจ |
|
|
|
239 |
|
00:26:39,220 --> 00:26:45,760 |
|
ุณุคุงู ุฃูุง H ูููุง ุนุดุฑุฉ elements ู
ุซูุง ู ุฌูุช ุถุฑุจุช ุงู H |
|
|
|
240 |
|
00:26:45,760 --> 00:26:51,380 |
|
ูู ุฃู ุนูุตุฑ ู
ู ุนูุงุตุฑ G ุจูุทูุน ุนูุฏู ุนุดุฑุฉ elements ููุง |
|
|
|
241 |
|
00:26:51,380 --> 00:26:55,920 |
|
ุฃูุชุฑ ููุง ุฃูู ุนุดุฑุฉ ุจุงูุถุจุท ูู
ุง ูููู ุนูุฏู ุงู sub |
|
|
|
242 |
|
00:26:55,920 --> 00:27:00,120 |
|
group ู ุงุถุฑุจูุง ูู ุฃู element ู
ู ุงู group ุจูุถููุง |
|
|
|
243 |
|
00:27:00,120 --> 00:27:04,460 |
|
ุงูุนุดุฑุฉ ุงูุนุฏุฏูู
ุนุดุฑุฉ ุตุญูุญ ุจูุฎุชูููุง ููู ุจูุถููุง ุนุดุฑุฉ |
|
|
|
244 |
|
00:27:04,460 --> 00:27:09,780 |
|
ู
ู ูุงุญูุฉ ุงูุนุฏุฏ ู
ุนูุงุชู ุงู order ูู a1h ูุณุงูู ุงู |
|
|
|
245 |
|
00:27:09,780 --> 00:27:15,730 |
|
order ูู h ู ุงู order ู A to H ูู ุงู order ู H ู ุงู |
|
|
|
246 |
|
00:27:15,730 --> 00:27:22,130 |
|
order ู A RH ูู ุงู order ู H ูุนูู ูุฐุง ุงูููุงู
ูุนูู |
|
|
|
247 |
|
00:27:22,130 --> 00:27:28,770 |
|
ุฃู ุงู order ู G ุจุฏู ูุณุงูู ุงู order ู H ุฒุงุฆุฏ ุงู |
|
|
|
248 |
|
00:27:28,770 --> 00:27:36,690 |
|
order ู H ุฒุงุฆุฏ ุฒุงุฆุฏ ุงู order ู H ูู
ู
ุฑุฉ ูุฏููุ R |
|
|
|
249 |
|
00:27:37,380 --> 00:27:46,440 |
|
ูุฃู ุนุฏุฏูู
R ูุจูู ูุฐุง ุงูููุงู
ู
ุนูุงุชู R times ูุจูู R |
|
|
|
250 |
|
00:27:46,440 --> 00:27:52,500 |
|
ู
ู ุงูู
ุฑุงุช ูุจูู ุฃุตุจุญ ุงูุขู ุงู order ุงููู ุฌูู ุจุฏู |
|
|
|
251 |
|
00:27:52,500 --> 00:27:58,900 |
|
ูุณุงูู ุงูู R ูู ุงูู order ุงูู H ูุฃู ุนุฏุฏูู
R ุทุจ ุฅูุด |
|
|
|
252 |
|
00:27:58,900 --> 00:28:06,300 |
|
ุชูุณูุฑู ููุฐู ุฃู ุงูู order ููู H ุจููุณู
ุงูู order ูู G |
|
|
|
253 |
|
00:28:06,300 --> 00:28:15,420 |
|
ูุฐุง ู
ุนูุงู ุฃู ุงูู order ูู H divides ุงูู order ูู G |
|
|
|
254 |
|
00:28:15,420 --> 00:28:23,410 |
|
ูุจุงูุชุงูู ุฃูุช ููุง ู
ู ูุธุฑูุฉ Lagrange ุฑุงุญ ููููู ู ุฃูุซุฑ ู
ู |
|
|
|
255 |
|
00:28:23,410 --> 00:28:27,050 |
|
ุฐูู the number of distinct left cosets ุฃู right |
|
|
|
256 |
|
00:28:27,050 --> 00:28:31,570 |
|
cosets of H and G ูุณุงูู ุงูู order ููู G ุนูู ุงูู order |
|
|
|
257 |
|
00:28:31,570 --> 00:28:41,810 |
|
ูู
ููุ ููู H ุจุงุฌู ุจูููู ููุง ูู
|
|
|
|
258 |
|
00:28:41,810 --> 00:28:52,620 |
|
ูุงุญุฏุฉ left cosets ุนูุฏูุง ููุง are ูุจูู ููุง the number |
|
|
|
259 |
|
00:28:52,620 --> 00:29:05,780 |
|
of left ุฃู ุญุชู right cosets of H the number |
|
|
|
260 |
|
00:29:05,780 --> 00:29:07,460 |
|
of distinct |
|
|
|
261 |
|
00:29:11,540 --> 00:29:19,860 |
|
Left or Right Cosets of H in G is R ุทุจ ุงูู R ูุฏ |
|
|
|
262 |
|
00:29:19,860 --> 00:29:28,080 |
|
ูุณุงูู ููุง ู
ุด ูู ุงูู order ูู G ุนูู ุงูู order ููู H |
|
|
|
263 |
|
00:29:28,080 --> 00:29:38,160 |
|
ูุจูู ุงูู order ูู G ุนูู ุงูู order ููู H ุทุจ ูููุณ ุดูููุง |
|
|
|
264 |
|
00:29:38,160 --> 00:29:46,030 |
|
ุดูููุง ุจุนุฏ ูุฐุง ุงูุจุฑูุงู ุนูุฏู ุชุนุฑูู ู
ุชุนูู ุจุงููุชูุฌุฉ |
|
|
|
265 |
|
00:29:46,030 --> 00:29:50,550 |
|
ุงููู ุชูุตููุง ุฅูููุง ู
ู ูุธุฑูุฉ ูุงุฌุฑุงูุฌ ุงูุชุนุฑูู ูุฐุง |
|
|
|
266 |
|
00:29:50,550 --> 00:30:00,170 |
|
ุจูููู ู
ุง ูุฃุชู the number of left the number of |
|
|
|
267 |
|
00:30:00,170 --> 00:30:12,050 |
|
distinct left ุฃู right ูุฐุง ุฃู ูุฐุง left distinct |
|
|
|
268 |
|
00:30:12,050 --> 00:30:21,410 |
|
right ุฃู left cosets of H in G |
|
|
|
269 |
|
00:30:21,410 --> 00:30:32,370 |
|
of H in G is called ูุฐุง ุจูุณู
ูู ุงูู index is called the |
|
|
|
270 |
|
00:30:32,370 --> 00:30:38,490 |
|
index of |
|
|
|
271 |
|
00:30:41,030 --> 00:30:47,870 |
|
a subgroup a subgroup |
|
|
|
272 |
|
00:30:47,870 --> 00:30:54,070 |
|
H in G and |
|
|
|
273 |
|
00:30:54,070 --> 00:31:05,130 |
|
denoted by ูุจูุนุทููู ุงูุฑู
ุฒ ุงูุชุงูู ุงูู G ู
ูุทุนุชูู ููู |
|
|
|
274 |
|
00:31:05,130 --> 00:31:09,090 |
|
ุจุนุถ ู H ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
275 |
|
00:31:14,520 --> 00:31:18,480 |
|
ุทูุจ ูุฐุง ุจููููู ุนุฏุฏ ุงูู distinct left ุฃู right |
|
|
|
276 |
|
00:31:18,480 --> 00:31:23,880 |
|
cosets of H and G ุจุณู
ูู ุงูู index ุชุจุน ุงูู subgroup H |
|
|
|
277 |
|
00:31:23,880 --> 00:31:30,220 |
|
ูู ู
ู ูู ุงูู group G ุทุจ ูุฏุงุด ุนุฏุฏูู
ูุฏููุ R ูุจูู |
|
|
|
278 |
|
00:31:30,220 --> 00:31:35,400 |
|
ุงุญูุง ุนูุฏูุง ู
ูุงุญุธุฉ ุจุณูุทุฉ ุฌุฏุง ู
ู ุงูู grand theorem |
|
|
|
279 |
|
00:31:35,400 --> 00:31:42,190 |
|
ูููุง ุงูู order ูู G ุจุฏู ูุณุงูู ุงูู R ูู ุงูู order ูู H ุตุญ |
|
|
|
280 |
|
00:31:42,190 --> 00:31:48,330 |
|
ููุง ูุงุ ุฅุฐุง ุจูุฏุฑ ุฃูุชุจ ูุธุฑูุฉ Lagrange ุจุทุฑููุฉ ุฃุฎุฑู |
|
|
|
281 |
|
00:31:48,330 --> 00:31:53,110 |
|
ุฅู ุงูู order ูู G ุจุฏู ูุณุงูู ุงูู R ูู ุนุฏุฏ ุงูู left |
|
|
|
282 |
|
00:31:53,110 --> 00:31:59,050 |
|
coset ุงููู ุฃุนุทูุชู ุงูุฑู
ุฒ ุงูู index ุชุจุน ุงูู H in G ูู |
|
|
|
283 |
|
00:31:59,050 --> 00:32:06,870 |
|
ุงูู order ูู H ูุจูู ุจุตูุบุฉ ูุชูุฌุฉ ูุธุฑูุฉ ูุงุฌุฑุงูุฌ ุจุงูุตูุบุฉ |
|
|
|
284 |
|
00:32:06,870 --> 00:32:11,050 |
|
ุงููู ุนูุฏูุง ุงููู ุชูุตููุง ููุง ูุฐู ุฃู ุงูู order ูู G ุจุฏู |
|
|
|
285 |
|
00:32:11,050 --> 00:32:15,590 |
|
ูุณุงูู R ูู ุงูู order ูู H ูุง ุจููู ุงูู order ูู G ุจุฏู |
|
|
|
286 |
|
00:32:15,590 --> 00:32:19,890 |
|
ูุณุงูู ุงูู index ุชุจุน ุงูู subgroup H ูู ุงูู group G |
|
|
|
287 |
|
00:32:19,890 --> 00:32:26,210 |
|
ู
ุถุฑูุจ ูู ุงูู order ุชุจุน ู
ูุ ุชุจุน ุงูู H ุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
288 |
|
00:32:26,210 --> 00:32:34,150 |
|
ูุฐุง ุชู
ุงู
ุจุฏูุง ูุจุฏุฃ ูุนุทู ุฃู
ุซูุฉ ุนูู ุฐูู ุฃูู ู
ุซุงู |
|
|
|
289 |
|
00:32:34,150 --> 00:32:46,610 |
|
example ุจููู let ุงูู G ุชุณุงูู S4 and |
|
|
|
290 |
|
00:32:48,180 --> 00:32:54,280 |
|
ุงูู H ูู ุงูู sub group generated by ุงูู permutation |
|
|
|
291 |
|
00:32:54,280 --> 00:33:00,660 |
|
ูุงุญุฏ ุงุซููู ุซูุงุซุฉ ุฃุฑุจุนุฉ ุงุซููู ุซูุงุซุฉ ุฃุฑุจุนุฉ ูุงุญุฏ |
|
|
|
292 |
|
00:33:00,660 --> 00:33:03,720 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ููุง find |
|
|
|
293 |
|
00:33:26,290 --> 00:33:27,690 |
|
S4 S4 S4 S4 S4 S4 S4 S4 S4 S4 |
|
|
|
294 |
|
00:33:38,910 --> 00:33:44,450 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉ ุงูุณุคุงู ุจูููู ุงุญูุง ุนูุฏูุง G S4 ุงููู |
|
|
|
295 |
|
00:33:44,450 --> 00:33:50,650 |
|
ูููุง ุฃุฑุจุนุฉ ูุนุดุฑูู ุนูุตุฑ ุฃุฎุฐูุง ู
ููุง subgroup H ู
ูู |
|
|
|
296 |
|
00:33:50,650 --> 00:33:54,650 |
|
ูู ุงูู subgroup ูุฐุง ุงูู subgroup ุงููู ุชุชููุฏ ุจุงู |
|
|
|
297 |
|
00:33:54,650 --> 00:34:00,390 |
|
permutation ุงููู ุนูุฏูุง ูุฏุงุด ุงูู index ุชุจุน ุงูู H in |
|
|
|
298 |
|
00:34:00,390 --> 00:34:01,430 |
|
S4 |
|
|
|
299 |
|
00:34:05,930 --> 00:34:09,950 |
|
ุงูุงูุฏูุณ ูุณุงูู ุงูู order ููู group ุนูู ุงูู order ููู |
|
|
|
300 |
|
00:34:09,950 --> 00:34:13,690 |
|
subgroup ุงูู order ุชุจุน ุงูู group ูุนุฑูู 24 ููู ุงูู |
|
|
|
301 |
|
00:34:13,690 --> 00:34:18,460 |
|
order ุชุจุน ุงูู subgroup ู
ุด ุนุงุฑูููู ู
ุด ุนุงุฑููุง ููู ูุงุฒู
|
|
|
|
302 |
|
00:34:18,460 --> 00:34:23,280 |
|
ุชุนุฑูู ุฅุฐุง ุจุฏู ุฃุจุฏุฃ ุฃุถุฑุจ ูุฐู ูู ููุณูุง ู
ุฑุฉ ู
ุง ุทูุนุด ุงูู |
|
|
|
303 |
|
00:34:23,280 --> 00:34:27,780 |
|
identity ูู
ุงู ู
ุฑุฉ ู
ุง ุทูุนุด ูุบุงูุฉ ู
ุง ูุทูุน ู
ู ุงูู |
|
|
|
304 |
|
00:34:27,780 --> 00:34:32,020 |
|
identity ูุจุงูุชุงูู ุจูููู ุงูุฃุณ ุงููู ุนูุฏู ูู ู
ู ุงูู |
|
|
|
305 |
|
00:34:32,020 --> 00:34:37,430 |
|
order ุชุจุน ุงูู group ูุฐู ูุฌูุฉ ูุธุฑ ูุฏูู
ุฉ ูู ุฅูุด ูุฌูุฉ |
|
|
|
306 |
|
00:34:37,430 --> 00:34:43,230 |
|
ุงููุธุฑ ุงูุฌุฏูุฏุฉ ุฃู ุฃูุช ูุฐู ุฃุฌูุจ ููู order ุชุจุนูุง ุจูู |
|
|
|
307 |
|
00:34:43,230 --> 00:34:50,570 |
|
ุจุณุงุทุฉ ุจูู ุจุณุงุทุฉ ูุฏู ุจูููู ุฃูุง ูุฐุง let alpha ุชุณุงูู |
|
|
|
308 |
|
00:34:50,570 --> 00:34:55,390 |
|
ุงูู permutation ูุงุญุฏ ุงุซููู ุซูุงุซุฉ ุฃุฑุจุนุฉ ุงุซููู ุซูุงุซุฉ |
|
|
|
309 |
|
00:34:55,390 --> 00:35:04,550 |
|
ุฃุฑุจุนุฉ ูุงุญุฏ then ุงูู alpha ุชุณุงูู ุจูุฏุฑ ุฃูุชุจูุง ุนูู ุงูู |
|
|
|
310 |
|
00:35:04,550 --> 00:35:09,210 |
|
cycle form ุฃู
ุง ุงูู cycle ูุงุญุฏุฉ ุฃู product of two |
|
|
|
311 |
|
00:35:09,210 --> 00:35:14,270 |
|
cycles ุญุณุจ ุงููู ู
ูุฌูุฏ ุนูุฏู ุชู
ุงู
ุฅุฐุง ุจุงุฌู ุจูููู ุจุฏู |
|
|
|
312 |
|
00:35:14,270 --> 00:35:17,390 |
|
ุฃูุชุจ ุนูู ุดูู cycle ุงููุงุญุฏ ู
ูู ุตูุจุชู ูุง ุดุจุงุจ |
|
|
|
313 |
|
00:35:17,390 --> 00:35:25,230 |
|
ูุงูุงุซููู ูุงูุซูุงุซุฉ ูุงูุฃุฑุจุนุฉ ูููุช ุฅุฐุง ุจูุฏุฑ ุฃุฌูุจ ุงูู |
|
|
|
314 |
|
00:35:25,230 --> 00:35:31,250 |
|
order ูู alpha ููุงุ ูุจูู ูุฐุง ุจูุนุทููุง ุฃู ุงูู order ูู |
|
|
|
315 |
|
00:35:31,250 --> 00:35:35,990 |
|
alpha ุจุฏู ูุณุงูู ุทูู ุงูู cycle ุงููู ุนูุฏูุง ูู ูุฏุงุด |
|
|
|
316 |
|
00:35:35,990 --> 00:35:41,530 |
|
ุฃุฑุจุนุฉ ูุจูู ุงูู order ูู alpha ุจุฏู ูุณุงูู ุฃุฑุจุนุฉ ุทูุจ |
|
|
|
317 |
|
00:35:41,530 --> 00:35:46,040 |
|
ูู
ุง ูููู ุนูุฏูุง ุงูู cycle ูู group ุดู ุงูุนูุงูุฉ ุจูู |
|
|
|
318 |
|
00:35:46,040 --> 00:35:50,740 |
|
order ููู group ู order ููู generatorุ ุงุซููู ููุณ |
|
|
|
319 |
|
00:35:50,740 --> 00:35:56,040 |
|
ุงูุดูุก ูุนูู ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ุงูู order ููู H ูุณุงูู |
|
|
|
320 |
|
00:35:56,040 --> 00:36:01,220 |
|
ุงูู order ูู alpha ููุฐุง ุจุฏู ูุนุทููู ู
ูุ ุจุฏู ูุนุทููู |
|
|
|
321 |
|
00:36:01,220 --> 00:36:07,280 |
|
ุงููู ูู ุงููุชูุฌุฉ ุงููู ูู ุฃุฑุจุนุฉ ูุฐุง ุณูุนุทููู ุฃู ุงูู |
|
|
|
322 |
|
00:36:07,280 --> 00:36:16,060 |
|
order ูู H ูู order ูู alpha ุฃุฑุจุนุฉ ููุดุ ูุฃู H ูู |
|
|
|
323 |
|
00:36:16,060 --> 00:36:20,720 |
|
ุงูู cyclic subgroup generated by ุงูู permutation |
|
|
|
324 |
|
00:36:20,720 --> 00:36:24,100 |
|
alpha ุงููู ุนูุฏูุง ูุจูู ุฅุซุงุฑ ุงูู order ูู alpha ูู |
|
|
|
325 |
|
00:36:24,100 --> 00:36:29,790 |
|
order ูู H ู
ุง ุฏุงู
ููู ุจูู ุตุงุฑุช ูุตุชูุง ุจุณูุทุฉ ูุงู ูู |
|
|
|
326 |
|
00:36:29,790 --> 00:36:36,210 |
|
ูุงุชูู ุงูู index ุจูููู ุงูุขู ุงูู index ูู ุงูู subgroup H |
|
|
|
327 |
|
00:36:36,210 --> 00:36:43,450 |
|
ูู ุงูู group S4 ูุณุงูู ุงูู order ููู S4 ุนูู ุงูู order |
|
|
|
328 |
|
00:36:43,450 --> 00:36:49,530 |
|
ููู H ุงูู order ููู S4 ุงููู ูู ุฃุฑุจุนุฉ factorial ููุฐู |
|
|
|
329 |
|
00:36:49,530 --> 00:36:58,980 |
|
ุฃุฑุจุนุฉ ูุจูู ูุฐู ุจูููู ุฃุฑุจุนุฉ ูู ุซูุงุซุฉ factorial ุนูู |
|
|
|
330 |
|
00:36:58,980 --> 00:37:04,460 |
|
ุฃุฑุจุนุฉ ูุจูู ุซูุงุซุฉ factorial ุซูุงุซุฉ factorial ูุณุงูู |
|
|
|
331 |
|
00:37:04,460 --> 00:37:09,860 |
|
ูุฏูุ ูุณุงูู ุณุชุฉ ุฅุฐุงู ุงูู index ุชุจุน ุงูู subgroup ุงููู |
|
|
|
332 |
|
00:37:09,860 --> 00:37:15,920 |
|
ุนูุฏูุง ูุฐู ูู ุงูู group G ุงูุฃุตููุฉ ูู ุนุจุงุฑุฉ ุนู ุณุชุฉุ |
|
|
|
333 |
|
00:37:15,920 --> 00:37:21,520 |
|
ุฅูุด ูุนูู ุณุชุฉุ ูุนูู ุฃูุง ุถู
ูุช ุนุฏุฏ ุงูู left distinct |
|
|
|
334 |
|
00:37:21,520 --> 00:37:28,080 |
|
cosets ููู S4 ูู
ุง ูุถุฑุจูู
ูู ุงูู .. ูู
ุง ููุถุฑุจูุง ูู ุงูู |
|
|
|
335 |
|
00:37:28,080 --> 00:37:31,140 |
|
permutation ุงููู ูู ุงูู .. ูู ุงูู H ุงููู ุนูุฏ ุงูู |
|
|
|
336 |
|
00:37:31,140 --> 00:37:36,870 |
|
subgroup ุจูุทูุน ุนูุฏู ุจุณ ุณุชุฉ left distinct cosets ูุนูู |
|
|
|
337 |
|
00:37:36,870 --> 00:37:42,830 |
|
ู
ุนูุงู ูู ุฃุฑุจุนุฉ ููุชุณุงููุง ุนุดุงู ูุทูุน ุนูุฏู ุณุชุฉ ุตุญ ููุง |
|
|
|
338 |
|
00:37:42,830 --> 00:37:47,950 |
|
ูุง ูุนูู ูู ุฃุฑุจุนุฉ left cosets ููุทูุนูุง ููุณ ุงูุดูุก |
|
|
|
339 |
|
00:37:47,950 --> 00:37:52,530 |
|
ูุจุงูุชุงูู ุถู
ูุช ุนุฏุฏ ุงูู left cosets ูุณุงูู ุณุชุฉ ูุงู |
|
|
|
340 |
|
00:37:52,530 --> 00:37:56,810 |
|
ุจูู
ููู ุฃุตูุบ ููุณ ุงูุณุคุงู ู ุจุฏู ู
ุง ุฃููู ูุงุชูู ุงูู index |
|
|
|
341 |
|
00:37:56,810 --> 00:38:02,950 |
|
ุฃููู find the number of left cosets of H in S4 |
|
|
|
342 |
|
00:38:02,950 --> 00:38:07,970 |
|
ูุฃุณูุช ู
ุด ูู ููุณ ุงูุณุคุงู ููุณ ุงูุณุคุงู ุญุฑููุฉ ููู ูุนุฏุช |
|
|
|
343 |
|
00:38:07,970 --> 00:38:20,270 |
|
ุฃุตูุบู ุจุทุฑููุฉ ุฃุฎุฑู ูุนุทู ู
ุซุงู ุขุฎุฑ ูู
ุงู example ุงูู |
|
|
|
344 |
|
00:38:20,270 --> 00:38:26,370 |
|
example ูุง ุดุจุงุจ ูุฐุง ุณุคุงู 14 ู
ู ุงููุชุงุจ ุจููู suppose |
|
|
|
345 |
|
00:38:26,370 --> 00:38:27,030 |
|
that |
|
|
|
346 |
|
00:38:30,100 --> 00:38:40,900 |
|
suppose that ุงูุชุฑุถ ุฃู ุงูู K is a proper subgroup |
|
|
|
347 |
|
00:38:40,900 --> 00:38:44,540 |
|
of |
|
|
|
348 |
|
00:38:44,540 --> 00:38:48,720 |
|
H and |
|
|
|
349 |
|
00:38:48,720 --> 00:38:56,380 |
|
ุงูู H is a proper subgroup |
|
|
|
350 |
|
00:38:59,010 --> 00:39:04,150 |
|
of G if |
|
|
|
351 |
|
00:39:04,150 --> 00:39:18,050 |
|
ุงูู order ููู K ูู ุงุซููู ูุฃุฑุจุนูู and ุงูู order ููู G |
|
|
|
352 |
|
00:39:18,050 --> 00:39:23,150 |
|
ูู ุฃุฑุจุน ู
ุฆุฉ ูุนุดุฑูู what |
|
|
|
353 |
|
00:39:24,410 --> 00:39:35,730 |
|
are the possible orders of |
|
|
|
354 |
|
00:39:35,730 --> 00:39:37,190 |
|
H |
|
|
|
355 |
|
00:40:06,270 --> 00:40:10,790 |
|
ู
ุฑุฉ ุซุงููุฉ ุฃูุง ุนูุฏู K proper subgroup ู
ู H ุฅูุด ูุนูู |
|
|
|
356 |
|
00:40:10,790 --> 00:40:15,890 |
|
proper subgroupุ ูุง ุชุณุงูู H subset ู
ููุง ููู ูุง |
|
|
|
357 |
|
00:40:15,890 --> 00:40:21,350 |
|
ุชุณุงูููุง ูุนูุฏู ูู ููุณ ุงูููุช ุงูู H proper subgroup ู
ู |
|
|
|
358 |
|
00:40:21,350 --> 00:40:26,850 |
|
G ูุนูู K subgroup ู
ู H ู ุงูู H subgroup ู
ู G ููู |
|
|
|
359 |
|
00:40:26,850 --> 00:40:31,110 |
|
ูุงุญุฏุฉ ูููู
ุนุจุงุฑุฉ ุนู ุงูู proper ูุนูู ูุง ุชุณุงูู ุงูุฌุฑูุจ |
|
|
|
360 |
|
00:40:31,110 --> 00:40:35,940 |
|
ุงูุซุงูู ูุงู ูู ูุงู ุงูู order ูู K ุงูุฃููู ูู ุงุซููู |
|
|
|
361 |
|
00:40:35,940 --> 00:40:40,500 |
|
ูุฃุฑุจุนูู ูุงูู order ููู ุฃุฎุฑู ุฃุฑุจุน ู
ุฆุฉ ูุนุดุฑูู ู
ุง ูู |
|
|
|
362 |
|
00:40:40,500 --> 00:40:47,100 |
|
ุงูุงุญุชู
ุงูุงุช ุงูู
ู
ููุฉ ููู order ุชุจุน ุงูู H ูููููู ู
ุงุดู |
|
|
|
363 |
|
00:40:47,100 --> 00:40:49,160 |
|
ูุจูู ููุง solution |
|
|
|
364 |
|
00:40:54,430 --> 00:41:02,450 |
|
ุงูุขู ูุญู ูุฏููุง K subgroup ูุจูู K subgroup ู
ู H ูุฐุง |
|
|
|
365 |
|
00:41:02,450 --> 00:41:12,730 |
|
ู
ุนูุงุชู ุฃู ุงูู order ููู K ุจููุณู
ุงูู order ููู H ู
ุธุจูุทุ |
|
|
|
366 |
|
00:41:12,730 --> 00:41:19,150 |
|
ุทุจ ุงูู order ููู H ูุฏู ุฃูุง ู
ุด ุนุงุฑู ูุจูู ููุง ูุฏู |
|
|
|
367 |
|
00:41:21,550 --> 00:41:27,510 |
|
K subgroup ู
ู H ูู K proper subgroup ู
ู H K |
|
|
|
368 |
|
00:41:27,510 --> 00:41:31,830 |
|
subgroup ู
ู H ูุจูู ุงูู order ูู K ุจุฏู ููุณู
ุงูู order |
|
|
|
369 |
|
00:41:31,830 --> 00:41:38,370 |
|
ูู H ูุจูู ุจุฏุงุฌู ุฃูููู ููุง assume ุงูุชุฑุถ ุฃู ุงูู order |
|
|
|
370 |
|
00:41:38,370 --> 00:41:47,080 |
|
ูู H ุจุฏู ูุณุงูู ุงูู M ู
ุซูุง ูุจูู ุจูุงุก ุนููู ุงูู order ูู |
|
|
|
371 |
|
00:41:47,080 --> 00:41:55,440 |
|
K ู
ุนุทููู ุฅูุงู ูุฏุงุดุ 42 ุชูุณู
ู
ู ุงูู M ูุนูู ู
ุนูุงุชู |
|
|
|
372 |
|
00:41:55,440 --> 00:42:06,600 |
|
ูุฐุง ุงูู M ุชุณุงูู ู
ุถุงุนูุงุช 42 ูุณุงูู ูุฐุง S ู
ุซูุง ูู ููู |
|
|
|
373 |
|
00:42:06,600 --> 00:42:13,080 |
|
42 ู ููุง for some |
|
|
|
374 |
|
00:42:25,520 --> 00:42:31,280 |
|
ูุจูู ูุชุงุจุฉ ุงูู M ู
ุฌูููุฉ ุนูู ุดูู ุฑูู
ู
ุถุฑูุจ ูุฏุงุด |
|
|
|
375 |
|
00:42:31,280 --> 00:42:40,090 |
|
ุงุซููู ุฃู ุฃุฑุจุนูู ุงูุขู ุฃูุง ุนูุฏู ูุฐูู ุงูู order ูู ุงูู H |
|
|
|
376 |
|
00:42:40,090 --> 00:42:46,930 |
|
ุฃู ุงูู H ูุฐู ุงูู sub group ู
ู G sub group ู
ู G ูุฐุง |
|
|
|
377 |
|
00:42:46,930 --> 00:42:53,390 |
|
ู
ุนูุงุชู ุฃู ุงูู order ูู H ููููุณูู
ุงูู order ูู G ุทุจูุง |
|
|
|
378 |
|
00:42:53,390 --> 00:43:00,760 |
|
ููุธุฑูุฉ Lagrange ู
ุฏุงู
ููู ูุฐุง ู
ุนูุงู ุฃู ุงูู order ููู |
|
|
|
379 |
|
00:43:00,760 --> 00:43:09,980 |
|
G ููุง ุจุฏู ุฃุณุงูู ุงูู R ูู ุงูู order ูู H ู
ุซูุง ูุจูู ูุฐุง |
|
|
|
380 |
|
00:43:09,980 --> 00:43:15,340 |
|
ู
ุนูุงู ุฃู ุงูู order ุงููู ุฌุงู ููู ุฃุฑุจุนู
ูุฉ ูุนุดุฑูู |
|
|
|
381 |
|
00:43:15,340 --> 00:43:22,540 |
|
ุชุณุงูู R ูู ู
ููุ ูู ุงูู M ูุฃู ุฃูุง ูุฑุถุช ุงูู order ูู H |
|
|
|
382 |
|
00:43:22,540 --> 00:43:27,440 |
|
ูุณุงูู M ูุฏูุ ูุณุงูู M ุฃุทููุนู ูู ูู ุงูู
ุนุงุฏูุฉ ุงููู |
|
|
|
383 |
|
00:43:27,440 --> 00:43:33,640 |
|
ุนูุฏูุง ูุฐู ูุฃุทููุนู ูู ูู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏูุง ูุฐู ุฅุฐุง |
|
|
|
384 |
|
00:43:33,640 --> 00:43:40,320 |
|
ุฃูุง ุจูุฏุฑ ุฃูุฎูููู ู
ู ุงูู
ุนุงุฏูุชูู ู
ุนุงุฏูุฉ ู
ุง ูู ูุฐู |
|
|
|
385 |
|
00:43:40,320 --> 00:43:48,720 |
|
ุงูู
ุนุงุฏูุฉุ ุงููู ูู ุฃุฑุจุนู
ูุฉ ูุนุดุฑูู ุจุฏูุง ุชุณุงูู R S ูู |
|
|
|
386 |
|
00:43:48,720 --> 00:43:54,940 |
|
ู
ูุ ูู ุงุซููู ูุฃุฑุจุนูู ูุนูู ุดูููุชู ุงูู M ุงููู ุนูุฏูุง ูุฐู |
|
|
|
387 |
|
00:43:54,940 --> 00:44:00,240 |
|
ูุฑุงุญูุช ุดูููุชู ุงูู M ุงููู ุนูุฏูุง ูุฐู ููุชุจุช ุจุฏููุง S ูู |
|
|
|
388 |
|
00:44:00,240 --> 00:44:07,430 |
|
ุงุซููู ูุฃุฑุจุนูู ุชู
ุงู
ุทูุจ ูู ูุณู
ุฉ ู
ุง ุจูู ุงูุทุฑููู ุงู |
|
|
|
389 |
|
00:44:07,430 --> 00:44:12,430 |
|
ูุจูู ูู ููุณูู
ูุชู ููู ุนูู ุงุซููู ูุฃุฑุจุนูู ูุฐุง ุจุฏู ูุนุทููู |
|
|
|
390 |
|
00:44:12,430 --> 00:44:20,590 |
|
R S ุชุณุงูู ุนุดุฑุฉ ู
ุฏุงู
ุนุดุฑุฉ ุงุญุชู
ุงู ุงูู R ุจูุงุญุฏ ูุงูู S |
|
|
|
391 |
|
00:44:20,590 --> 00:44:31,920 |
|
ุจุนุดุฑุฉ ุงุญุชู
ุงู ุฃู S ุจูุงุญุฏ ูR ุจุนุดุฑุฉ ุงุญุชู
ุงู R ุจุฎู
ุณุฉ ูS |
|
|
|
392 |
|
00:44:31,920 --> 00:44:36,280 |
|
ุจุงุชููู ุงุญุชู
ุงู R ุจุงุชููู ูS ุจุฎู
ุณุฉ ูู ุงูุงุญุชู
ุงูุงุช |
|
|
|
393 |
|
00:44:36,280 --> 00:44:48,040 |
|
ุงูุฃุฑุจุนุฉ ูู ุบูุฑูู
ุ ูุง ูุจูู ููุง so we have four |
|
|
|
394 |
|
00:44:48,040 --> 00:44:50,280 |
|
possibilities four |
|
|
|
395 |
|
00:44:57,390 --> 00:45:05,110 |
|
ุฃุฑุจุนุฉ ุงุญุชู
ุงูุงุช ุงูุงุญุชู
ุงู ุงูุฃูู ุฃู ุงูู R ุชุณุงูู ูุงุญุฏ |
|
|
|
396 |
|
00:45:05,110 --> 00:45:12,510 |
|
ูุงูู S ุชุณุงูู ุนุดุฑุฉ ูู ูุฐุง ุงูููุงู
ู
ู
ููุ ูุงููู ู
ุด ู
ู
ูู |
|
|
|
397 |
|
00:45:12,510 --> 00:45:20,310 |
|
ุงูุญูู ูู ุงูู S ูุนุดุฑุฉ ูุจูู ุงูู M ูุฏูุ 420 ู
ู
ูู ูุฐุง |
|
|
|
398 |
|
00:45:20,310 --> 00:45:27,730 |
|
ุงูููุงู
ุ ูุชูุงูุถ ู
ุน ููู
ุฉ proper ุชู
ุงู
ูุจูู ูุฐุง this |
|
|
|
399 |
|
00:45:27,730 --> 00:45:31,310 |
|
is impossible |
|
|
|
400 |
|
00:45:33,850 --> 00:45:43,190 |
|
ูุฐุง ุบูุฑ ู
ู
ูู ุงูุณุจุจ because ุฃู ุงูู H is proper |
|
|
|
401 |
|
00:45:43,190 --> 00:45:49,210 |
|
subgroup ู
ู G ูุฃู ุนูู ุงูุฌูุฉ ุฏู ู
ุด ู
ู
ูู ู
ู
ูู ุงูุนูุณ |
|
|
|
402 |
|
00:45:49,210 --> 00:45:57,130 |
|
ููุทุฉ ุซุงููุฉ ุฃู ุงูู R ุชุณุงูู ุนุดุฑุฉ ูุงูู S ุชุณุงูู ูุงุญุฏ |
|
|
|
403 |
|
00:45:58,440 --> 00:46:04,560 |
|
ุชู
ุงู
ุ ุทุจ ุจุฏูุง ูุฃุชู ุฅูู ุงูู S ุชุณุงูู ูุงุญุฏ ูู ุงูู S ุตุงุฑูุช |
|
|
|
404 |
|
00:46:04,560 --> 00:46:12,060 |
|
ูุงุญุฏ ูุจูู ุงูู M ูุฏุงุดุ ูุนูู ูุฏ ู
ููุ ูุฏ K ุงูู H ุตุงุฑุช |
|
|
|
405 |
|
00:46:12,060 --> 00:46:16,760 |
|
ูุฏ K ู
ุธุจูุท ููุฐุง ููุงู
ุบูุท ูุฃู ุงุญูุง ูููููู K proper |
|
|
|
406 |
|
00:46:16,760 --> 00:46:24,020 |
|
ูุจูู ุจุฑุถู ูุฐุง this is impossible because capital K |
|
|
|
407 |
|
00:46:24,020 --> 00:46:25,680 |
|
is proper |
|
|
|
408 |
|
00:46:28,120 --> 00:46:33,920 |
|
ูุจูู ูุฐุง ูุง ูู
ูู ูุญุตู ุจุงูู
ุฑุฉ ุทุจ ูุฌู ุงูููุทุฉ ุงูุซุงูุซุฉ |
|
|
|
409 |
|
00:46:33,920 --> 00:46:40,460 |
|
ุงูููุทุฉ ุงูุซุงูุซุฉ ู
ู
ูู ุงูู R ูุณุงูู ุงุซููู ูุงูู S ูุณุงูู |
|
|
|
410 |
|
00:46:40,460 --> 00:46:48,020 |
|
ุฎู
ุณุฉ ุทูุจ ูู ุญุทูุช ุงูู S ููุง ุจุฎู
ุณุฉ ุจุตูุฑ ูุฏูู ูุฏูุ 210 |
|
|
|
411 |
|
00:46:48,020 --> 00:46:55,520 |
|
ู
ู
ููุ ุงู ู
ู
ูู ู
ุง ููุด ู
ุดููุฉ ูุจูู ููุง ุงูู R ุณูุงุก S |
|
|
|
412 |
|
00:46:55,520 --> 00:47:03,540 |
|
then ุงูู M ุจุฏูุง ุชุณุงูู ุงูู S ูุฎู
ุณุฉ ูู ุงุซููู ูุฃุฑุจุนูู |
|
|
|
413 |
|
00:47:03,540 --> 00:47:08,540 |
|
ูุงููู ูู ุจุฏู ูุณุงูู ู
ุชูู ูุนุดุฑุฉ ุฎู
ุณุฉ ูู ุงุซููู ุจุนุดุฑุฉ |
|
|
|
414 |
|
00:47:08,540 --> 00:47:13,880 |
|
ูุฎู
ุณุฉ ูู ุฃุฑุจุน ุจุงุดุฑูู ูุงุญุฏ ูุงุญุฏุฉ ูุนุดุฑูู ุชู
ุงู
ูุฐุง ูู |
|
|
|
415 |
|
00:47:13,880 --> 00:47:21,260 |
|
ูุงูุช ุงูู S ุจุฎู
ุณุฉ ูุงูู R ุจุงุซููู ุงูุงุญุชู
ุงู ุงูุฑุงุจุน ุฃู ุงูู |
|
|
|
416 |
|
00:47:21,260 --> 00:47:30,930 |
|
R ุชุณุงูู ุฎู
ุณุฉ ูุงูู S ุชุณุงูู ุงุซููู ุงูู M ูุณุงูู ุงูู M |
|
|
|
417 |
|
00:47:30,930 --> 00:47:37,050 |
|
ูุณุงูู S ูู ุงุซููู ูุฃุฑุจุนูู ุงูู S ุนูุฏู ุจุงุซููู ูู ุงุซููู |
|
|
|
418 |
|
00:47:37,050 --> 00:47:42,830 |
|
ูุฃุฑุจุนูู ููุณุงูู ูุฏุงุดุ ุฃุฑุจุนุฉ ูุซู
ุงููู ู
ู
ูู ููุง ู
ุด |
|
|
|
419 |
|
00:47:42,830 --> 00:47:49,570 |
|
ู
ู
ูู ุจุฑุถู ู
ู
ูู ูุจูู ุจุงุฌู ููุง ุจูููู the possible |
|
|
|
420 |
|
00:47:49,570 --> 00:47:52,290 |
|
orders |
|
|
|
421 |
|
00:47:54,230 --> 00:48:06,190 |
|
of H are ุฃุฑุจุนุฉ ูุซู
ุงููู or ู
ุชูู ูุนุดุฑุฉ ูุจูู ููู |
|
|
|
422 |
|
00:48:06,190 --> 00:48:11,170 |
|
ุงุนุชู
ุฏูุง ููู ุนูู ู
ููุ ุนูู Lagrange theorem ุงูุขู |
|
|
|
423 |
|
00:48:11,170 --> 00:48:16,170 |
|
ูุตููุง ููุชุงุฆุฌ ุนูู ูุธุฑูุฉ Lagrange ุญุตููุง ุญูุงูู ุฃุฑุจุน |
|
|
|
424 |
|
00:48:16,170 --> 00:48:21,830 |
|
ูุชุงุฆุฌ ูุจูููู
ุจูููุฏููุง ูุชูุฑ ูู ุญู ุงูู
ุณุงุฆู ุงูู
ุฑุฉ |
|
|
|
425 |
|
00:48:21,830 --> 00:48:23,330 |
|
ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู |
|
|