|
1 |
|
00:00:20,650 --> 00:00:25,190 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูู
ุฑุฉ ุงููู ูุงุชุช ุงูุชูููุง ู
ู |
|
|
|
2 |
|
00:00:25,190 --> 00:00:30,550 |
|
section 4.2 ุงููู ูู ุงู main value theorem ูุงูุงุณุฆูุฉ |
|
|
|
3 |
|
00:00:30,550 --> 00:00:35,510 |
|
ุงููู ุนูููุง ูุงูุงู ุจููุชูู ุงูู section 4.3 ููู ุงู |
|
|
|
4 |
|
00:00:35,510 --> 00:00:39,170 |
|
monotonic functions and the first derivative test |
|
|
|
5 |
|
00:00:39,170 --> 00:00:46,250 |
|
ูุนูู ุงูุฏูุงู ุงูุฑุชูุจุฉ ููุฐูู ุงููู ูู ุงุฎุชุจุงุฑ ุงูู
ุดุชูุฉ |
|
|
|
6 |
|
00:00:46,250 --> 00:00:50,770 |
|
ุงูุฃูููุชุนุฑูู ุงูู monotonic function ุฃู ุงูุฏุงูุฉ |
|
|
|
7 |
|
00:00:50,770 --> 00:00:55,610 |
|
ุงูุฑุชูุจุฉ ูุจุฌู ุจููู ุงูุฏุงูุฉ f of x ุงููู ุจุชุจูู ุชุฒุงูุฏูุฉ |
|
|
|
8 |
|
00:00:55,610 --> 00:01:00,990 |
|
ุฃู ุชูุงูุตูุฉ ุนูู ูุชุฑุฉ ู
ุง ุจุณู
ููุง monotonic function |
|
|
|
9 |
|
00:01:00,990 --> 00:01:05,260 |
|
ุนูู ุชูู ุงููุชุฑุฉูุจูู ุฃูุง ุจุฏู ุฃุญุฏ ุฃู
ุฑููุ ูุง ุฅู
ุง |
|
|
|
10 |
|
00:01:05,260 --> 00:01:11,340 |
|
ุชุฒุงูุฏูุฉุ ูุง ุฅู
ุง ู
ุด ุงูุฃุซููู ู
ุน ุจุนุถุ ูุงุญุฏ ุจุณุ ูุงุชุจ |
|
|
|
11 |
|
00:01:11,340 --> 00:01:18,240 |
|
or ุทูุน ูู orุ ูุฐู ุฃู ุชููุ ูุง ุฅู
ุง ุชุฒุงูุฏูุฉ ุนูู ูู |
|
|
|
12 |
|
00:01:18,240 --> 00:01:23,360 |
|
ุงููุชุฑุฉุ ูุจุฏุฃ ุจููู ุนูููุง monotonic ุฃู ุชูุงูุตูุฉ ุนูู |
|
|
|
13 |
|
00:01:23,360 --> 00:01:27,510 |
|
ูู ุงููุชุฑุฉุจููู ุนููุง monotonic ููู ุชุฒุงุฏูู ูุชููุตูู ูู |
|
|
|
14 |
|
00:01:27,510 --> 00:01:33,070 |
|
ููุณ ุงููุชุฑุฉ ููุณุช monotonic ูุนุทู ู
ุซุงู ุชูุถูุญ ุนูู ุฐูู |
|
|
|
15 |
|
00:01:33,070 --> 00:01:38,430 |
|
ูู ุฎุฏุช ุงูุฏุงูุฉ F of X ูุณุงูู ู
ู X ุชุฑุจูุฉ ุงูุฏุงูุฉ ูุฐู |
|
|
|
16 |
|
00:01:38,430 --> 00:01:43,470 |
|
ู
ุนุฑููุฉ ูุฑุณู
ูุงูุง ูุจู ุฐูู ุนุฏุฉ ู
ุฑุงุช ููู ููุช ูุฐุง ู
ุญูุฑ |
|
|
|
17 |
|
00:01:43,470 --> 00:01:51,000 |
|
X ููุฐุง ู
ุญูุฑ Y ูุฌูุช ุฑุณู
ุช ุงูุฏุงูุฉ Y ุชุณุงูู X ุชุฑุจูุฉูุฐุง |
|
|
|
18 |
|
00:01:51,000 --> 00:01:56,020 |
|
ุงูู Zero ูู ุฌูุช ู
ู ุณุงูุจ Infinity ูุบุงูุฉ Zero ุฏู |
|
|
|
19 |
|
00:01:56,020 --> 00:02:01,940 |
|
ูู
ุงููุง ูุฌุจ ูุฒูู ูุจูู Decreasing ูุจูู ุนูู ูุฐุง ุงูุฌุฒุก |
|
|
|
20 |
|
00:02:01,940 --> 00:02:07,660 |
|
ุฏู Decreasing ูุจูู ู
ุนูุงุชู Monotonic ุนูู ุงููุชุฑุฉ ู
ู |
|
|
|
21 |
|
00:02:07,660 --> 00:02:13,680 |
|
ุณุงูุจ Infinity ูุบุงูุฉุฒูุฑู ุจุนุฏ ุฐูู ุงูุงู ูู ุฌูุช ู
ู ุงู |
|
|
|
22 |
|
00:02:13,680 --> 00:02:19,600 |
|
zero ูุบุงูุฉ infinity ุจูุงุฌู ุงูุฏุงูุฉ ุชุฒุงูุฏูุฉ ูุจูู ููุง |
|
|
|
23 |
|
00:02:19,600 --> 00:02:24,440 |
|
increasing ูุจูู ุงูุฏุงูุฉ decreasing ุนูู ุงููุชุฑุฉ ู
ู |
|
|
|
24 |
|
00:02:24,440 --> 00:02:29,260 |
|
ุณูุจ infinity ุฅูู zero ู increasing ุนูู ุงููุชุฑุฉ ู
ู |
|
|
|
25 |
|
00:02:29,260 --> 00:02:34,220 |
|
zero ูุบุงูุฉ infinity ุงุฐุง ุนูู ุงููุชุฑุฉ ู
ู ุณูุจ infinity |
|
|
|
26 |
|
00:02:34,220 --> 00:02:38,280 |
|
ุฅูู zero ุจูุฏุฑ ุงููู ุนููุง monotonic functionุนูู |
|
|
|
27 |
|
00:02:38,280 --> 00:02:42,700 |
|
ุงููุชุฑุฉ ู
ู 0 ุฅูู infinity ุจูุฏุฑ ุฃููู ุนููุง monotonic |
|
|
|
28 |
|
00:02:42,700 --> 00:02:46,480 |
|
function ููู ุนูู ุงููุชุฑุฉ ูููุง ู
ู ุณูุจ infinity ุฅูู |
|
|
|
29 |
|
00:02:46,480 --> 00:02:51,980 |
|
infinity not monotonic ูุฃู ุดููุฉ ุนูููุง increasing ู |
|
|
|
30 |
|
00:02:51,980 --> 00:02:55,060 |
|
ุดููุฉ decreasing ุงุญูุง ูููู ุงููุง increasing ุนูู ุทูู |
|
|
|
31 |
|
00:02:55,060 --> 00:03:00,700 |
|
ุงู decreasing ุนูู ุทููุงูุฏุงูุฉ F of X ูุณุงูู ุชุฑุจูุฉ |
|
|
|
32 |
|
00:03:00,700 --> 00:03:04,980 |
|
ู
ูููุชููู ู
ู ุณุงูุจ Infinity ูุบุงูุฉ Zero ููุฐูู |
|
|
|
33 |
|
00:03:04,980 --> 00:03:09,000 |
|
ู
ูููุชููู ุนูู ุงููุชุฑุฉ ู
ู Zero ุฅูู Infinity ููููุง |
|
|
|
34 |
|
00:03:09,000 --> 00:03:13,340 |
|
ููุณุช ู
ูููุชููู ุนูู ุงููุชุฑุฉ ู
ู ููู ู
ู ุณุงูุจ Infinity |
|
|
|
35 |
|
00:03:13,340 --> 00:03:17,960 |
|
ุฅูู Infinity ูุจูู ูุฐุง ุชุนุฑูู ุงูู
ูููุชููู ุจ function |
|
|
|
36 |
|
00:03:17,960 --> 00:03:19,380 |
|
ูู
ุซุงู ุจุณูุท |
|
|
|
37 |
|
00:03:23,490 --> 00:03:27,090 |
|
ูุนูุฏ ูู Crawler ุงูุซูุงุซุฉ ุทุจุนุง ุงููู ุฎุฏูุง ุงูู
ุฑุฉ ุงููู |
|
|
|
38 |
|
00:03:27,090 --> 00:03:29,870 |
|
ูุงุช ูุธุฑูุฉ ุงู mean value theorem ู two crawlers |
|
|
|
39 |
|
00:03:29,870 --> 00:03:34,470 |
|
ุนูููุง ุชู
ุงู
ูุฐู ุงู crawlery ุฑูู
ุซูุงุซุฉ ู
ุดุงู ุทุจู ุงู |
|
|
|
40 |
|
00:03:34,470 --> 00:03:37,570 |
|
mean value theorem ูููุง ุจุฏูุง ุฏูุฉ ุชุจูู ุฏูุฉ ู
ุชุตูุฉ |
|
|
|
41 |
|
00:03:37,570 --> 00:03:40,910 |
|
ุนูู ุงู closed interval ู ูุจู ุงุดุชูุงู ุนูู ุงู open |
|
|
|
42 |
|
00:03:40,910 --> 00:03:44,720 |
|
interval a ู bู
ู ููุง ูุฌูู ููุงูุชุฑุงุถ ุฃู ุงูุฏุงูุฉ |
|
|
|
43 |
|
00:03:44,720 --> 00:03:49,680 |
|
ูุจุฅุณุชู
ุฑ ุนูู ุงููClosed Interval ููุงุจูุฉ ููุงุดุชูุงุก ุนูู |
|
|
|
44 |
|
00:03:49,680 --> 00:03:53,120 |
|
ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ุฃู ูุจููุง ุงูุดุฑูุท ุงููMean Value |
|
|
|
45 |
|
00:03:53,120 --> 00:03:59,150 |
|
Theoremุ ุฅู ุญุฏุซ ุฐูู ูุจูู ูู ูุฐู ุงูุญุงูุฉุฅุฐุง ุงูู F' |
|
|
|
46 |
|
00:03:59,490 --> 00:04:05,510 |
|
of X ุฃูุจุฑ ู
ู Zero ุนูู ูู ุงููุชุฑุฉ ุจููู ุงูุฏุงูุฉ ุฏุงูุฉ |
|
|
|
47 |
|
00:04:05,510 --> 00:04:09,590 |
|
ุชุฒุงูุฏูุฉ ูุจูู ุนูู ูู ุงู X ุงููู ู
ูุฌูุฏุฉ ูู ุงู |
|
|
|
48 |
|
00:04:09,590 --> 00:04:14,370 |
|
interval A ูB ูุจูู ุงู F ุฏุงูุฉ ุชุฒุงูุฏูุฉ ุนูู ูู closed |
|
|
|
49 |
|
00:04:14,370 --> 00:04:18,870 |
|
interval A ูB ูุนูู ูุฃู ุงู domain ุชุจุนูุงูู closed |
|
|
|
50 |
|
00:04:18,870 --> 00:04:24,010 |
|
interval ุงู continuous ุนูู ุงููุชุฑุฉ ุงูู
ุบููุฉ ุง ู ุจูู |
|
|
|
51 |
|
00:04:24,010 --> 00:04:26,370 |
|
differentiable ุนูู ุงู open interval |
|
|
|
52 |
|
00:04:35,010 --> 00:04:39,130 |
|
ูุฅุฐุง ูุงูุช f prime ุฃูู ู
ู 0 ูุจูู ุณุงูุจ ูุจูู ุงูุฏุงูุฉ |
|
|
|
53 |
|
00:04:39,130 --> 00:04:43,210 |
|
ู
ุงููุง ุชูุงูุตู ูุจูู decreasing function ุนูู ุงููุชุฑุฉ |
|
|
|
54 |
|
00:04:43,210 --> 00:04:49,510 |
|
ุงููู ููุง ู
ูุฉ a ูb ูุจูู ุฃูุง ุงูุขู ุฌูุจ ุชุนุฑูู ุฌุฏูุฏ ุบูุฑ |
|
|
|
55 |
|
00:04:49,510 --> 00:04:52,470 |
|
ุงููู ุฃุฎุฏูุงู ูู ุงู chapter ุงูุฃูู ูู ุงู chapter |
|
|
|
56 |
|
00:04:52,470 --> 00:04:55,450 |
|
ุงูุฃูู ู
ุด ููุฌูุจ ุงูุฏุงูุฉ increasing ุนูู ุงููุชุฑุฉ ุงููู |
|
|
|
57 |
|
00:04:55,450 --> 00:05:01,820 |
|
ุจุชุงุฎุฏ two elements ุนุดูุงุฆูุฉุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง |
|
|
|
58 |
|
00:05:01,820 --> 00:05:08,380 |
|
ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู |
|
|
|
59 |
|
00:05:08,380 --> 00:05:13,940 |
|
X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู |
|
|
|
60 |
|
00:05:13,940 --> 00:05:15,820 |
|
ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 |
|
|
|
61 |
|
00:05:15,820 --> 00:05:17,900 |
|
ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู |
|
|
|
62 |
|
00:05:17,900 --> 00:05:19,060 |
|
X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู |
|
|
|
63 |
|
00:05:19,060 --> 00:05:19,060 |
|
ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 |
|
|
|
64 |
|
00:05:19,060 --> 00:05:19,060 |
|
ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู |
|
|
|
65 |
|
00:05:19,060 --> 00:05:20,880 |
|
X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู |
|
|
|
66 |
|
00:05:20,880 --> 00:05:26,470 |
|
ู
ู X2 ุฅุฐุง ูุงู X1 ุฃูู ู
ู X2 ุฅุฐุง ูุงู Xุฃุฐุง ูู
ุง ุฌูุช |
|
|
|
67 |
|
00:05:26,470 --> 00:05:31,310 |
|
ุฃุณุชุฎุฏู
ุงูู
ุดุชูุฉ ูู ูุฐู ุงูุญุงูุฉ ุจููู ุฅุฐุง ุงูู
ุดุชูุฉ ู
ูุฌุจ |
|
|
|
68 |
|
00:05:31,310 --> 00:05:34,270 |
|
ูุจูู ุงูุฏุงูุฉ ุชุฒุงูุฏูุฉ ูุฅุฐุง ุงูู
ุดุชูุฉ ุณูุจ ูุจูู ูููู |
|
|
|
69 |
|
00:05:34,270 --> 00:05:39,870 |
|
ุงูุฏุงูุฉ ุชูุงูุตูุฉ ูุนุทู ู
ุซุงู ุชูุถูุญู ุจูููู ูู ูุงู f of |
|
|
|
70 |
|
00:05:39,870 --> 00:05:44,570 |
|
x ูุณุงูู x plus 4 ููุต 4x ุชููุจ ุฒู 4x ุชุฑุจูุฉ ุจุฏู |
|
|
|
71 |
|
00:05:44,570 --> 00:05:49,030 |
|
ุดุบูุชูู ุงูุดุบูุฉ ุงูุฃููู ุจุฏู ุงู critical points ููุฐู |
|
|
|
72 |
|
00:05:49,030 --> 00:05:53,970 |
|
ุงูุฏุงูุฉ f ุงูููุงุท ุงูุญุฑุฌุฉ ูุจุฏู ูุชุฑุงุช ุงูุชุฒูุฏ ูุงูุชูุงูุต |
|
|
|
73 |
|
00:05:53,970 --> 00:06:00,330 |
|
ูู
ููููุฐู ุงูุฏุงูุฉ ูุจูู ุงูุฏุงูุฉ ุงูุฃุณุงุณูุฉ ุงููู ุนูุฏูุง f |
|
|
|
74 |
|
00:06:00,330 --> 00:06:07,490 |
|
of x ูุณุงูู x to the power 4 minus 4x to the power |
|
|
|
75 |
|
00:06:07,490 --> 00:06:14,890 |
|
3 ุฒุงุฆุฏ 4x square ูู ุฌููุง ูุดุชู ูุฐู ุงูุฏุงูุฉ ูุจูู ุงู f |
|
|
|
76 |
|
00:06:14,890 --> 00:06:21,690 |
|
prime of x ูุณุงููุฃุฑุจุนุฉ ุฅูุณ ุชูููุจ ูุงูุต ุงุชูุงุดุฑ ุฅูุณ |
|
|
|
77 |
|
00:06:21,690 --> 00:06:27,270 |
|
ุชุฑุจูุฉ ุฒุงุฆุฏ ุชู
ุงููุฉ ุฅูุณ ูุฐู ุงูู
ุดุชูุฉ ุชุจุนุชูุง ููู ุจุฏู |
|
|
|
78 |
|
00:06:27,270 --> 00:06:31,870 |
|
ุฃุดูู ูู ุจูุฏุฑ ุฃุญูููุง ู ูุง ุจูุฏุฑุด ุชุนุงููุง ูุดูู ูุงุถุญ |
|
|
|
79 |
|
00:06:31,870 --> 00:06:36,290 |
|
ุฃูู ูู ุนุงู
ู ู
ุดุชุฑู ุงููู ูู
ูู ุฃุฑุจุนุฉ ุฅูุณ ุฅุฐุง ูู ุฌููุง |
|
|
|
80 |
|
00:06:36,290 --> 00:06:42,910 |
|
ุฃุฎุฏูุง ุฃุฑุจุนุฉ ุฅูุณ ุนุงู
ู ู
ุดุชุฑู ุจูุธู ุนูุฏู ุฅูุณ ุชุฑุจูุฉ |
|
|
|
81 |
|
00:06:42,910 --> 00:06:50,070 |
|
ูุงูุต ุชูุงุชุฉ ุฅูุณุฒุงุฆุฏ ุงุชููู ุงููู ุจูู ููุณูู ุฅุฐุง ู
ู
ูู |
|
|
|
82 |
|
00:06:50,070 --> 00:06:56,230 |
|
ูุญููู ุจูุฑูุญ ูุญููู ุงููู ุญุงุตู ุถุฑุจ ููุณูู ูุจูู ูุงู ุงูุณ |
|
|
|
83 |
|
00:06:56,230 --> 00:07:01,010 |
|
ูุงู ุงูุณ ูุงู ูุงุญุฏ ูุงู ุงุชููู ูุงู ูุงูุต ูุงูุต ุชูุงุชุฉ ุงูุณ |
|
|
|
84 |
|
00:07:01,010 --> 00:07:06,210 |
|
ูุจูู ุงูุชุญููู ุณููู
ู
ุงุฆุฉ ุจุงูู
ุงุฆุฉูุจูู ุงุดุชูุงูุงุ ู
ู |
|
|
|
85 |
|
00:07:06,210 --> 00:07:10,510 |
|
ุฎูุงู ูุฐุง ุงูุงุดุชูุงู ุจุฏุฃ ุฃุฌูุจ ุงู critical points ุงู |
|
|
|
86 |
|
00:07:10,510 --> 00:07:15,550 |
|
critical points ูู ููู
X ุงููู ุจุชุฎูู ุงูู
ุดุชูุฉ ุตูุฑ ุฃู |
|
|
|
87 |
|
00:07:15,550 --> 00:07:21,130 |
|
ุงูู
ุดุชูุฉ ุบูุฑ ู
ุนุฑูุฉุ ูุฐู ุงูู
ุดุชูุฉ polynomial ุฅุฐุง ูุง |
|
|
|
88 |
|
00:07:21,130 --> 00:07:25,960 |
|
ูู
ูู ุฃู ุชููู ุบูุฑ ู
ุนุฑูุฉ ูู ููู
ู
ู ุงูุฃูุงู
ุตุญูุญุ ุฅุฐุง |
|
|
|
89 |
|
00:07:25,960 --> 00:07:30,040 |
|
ู
ุง ุจุถูุด ุนูุฏู ุฅูุง ุฃุณูููุง ุจุงูู 0 ูุจุงูุชุงูู ุฃุทูุน ุงู |
|
|
|
90 |
|
00:07:30,040 --> 00:07:35,560 |
|
critical points ุฅุฐุง ูู ุฌูุช ุณููุช ูุฐู ุจุงูู 0 ุจุตูุฑ |
|
|
|
91 |
|
00:07:35,560 --> 00:07:43,100 |
|
ุนูุฏูุง ู
ูู
ุงู ุงู X ุชุณูู 0 ู X ูุณูู 1 ู X ูุณูู 2 |
|
|
|
92 |
|
00:07:43,100 --> 00:07:48,380 |
|
ูุฏูู ูู
ู
ู are the critical |
|
|
|
93 |
|
00:07:50,820 --> 00:07:56,420 |
|
ูุจูู ูุฐู ุงูููุงุท ุงูุญุฑุฌุฉ ูู
ูู ููุฐู ุงู function ููู |
|
|
|
94 |
|
00:07:56,420 --> 00:08:00,740 |
|
ุงูู
ุทููุจ ุงูุฃูู ู
ู ุงูู
ุณุฃูุฉ ุงููู ุนูุฏูุง ุจุนุฏูู ุฌููุชูู |
|
|
|
95 |
|
00:08:00,740 --> 00:08:05,560 |
|
ูุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต ู
ุดุงู ุฃุฌูุจ ูุชุฑุงุช ุงูุชุฒุงูุฏ |
|
|
|
96 |
|
00:08:05,560 --> 00:08:10,460 |
|
ูุงูุชูุงูุต ุจุฏู ุฃุฑูุญ ุฃุฏุฑุณ ุฅุดุงุฑุฉ ุงูู
ุดุชูุฉ ุงููู ุนูุฏูุง |
|
|
|
97 |
|
00:08:10,460 --> 00:08:14,640 |
|
ู
ุดุงู ุฃุฏุฑุณ ุฅุดุงุฑุฉ ุงูู
ุดุชูุฉ ุจุฏู ุฃุฑูุญ ุฃุฏุฑุณ ุฅุดุงุฑุฉ ูู |
|
|
|
98 |
|
00:08:14,640 --> 00:08:19,200 |
|
term ู
ู ุงู termุงุช ุงูุชูุงุชุฉุงููู ุนูุฏูุง ูุฐู ูุจูู ุจุชุฑูุญ |
|
|
|
99 |
|
00:08:19,200 --> 00:08:25,280 |
|
ูุงุฌู ุงูููู ุจุฏู ุฅุดุงุฑุฉ ุงู term ุงูุฃูู ุงููู ูู ูุฏุงุด 4x |
|
|
|
100 |
|
00:08:25,280 --> 00:08:31,320 |
|
ูุฐุง ุจูุงุฎุฏ ุงูุตูุฑ ููู ุนูุฏ x ุงูุณูุฑ ูุฏุงุดุ Zero ุจุนุฏ ุงู |
|
|
|
101 |
|
00:08:31,320 --> 00:08:36,090 |
|
zero positiveูุงููู ุฎููููุง ูุฌูุจ ุงู zero ุงููู ููุง |
|
|
|
102 |
|
00:08:36,090 --> 00:08:40,710 |
|
ุดููุฉ ุฎููู ูุฐุง ุงู zero ููุง ู ูุจู ุงู zero ู
ุงูู |
|
|
|
103 |
|
00:08:40,710 --> 00:08:46,710 |
|
negative ุจุนุฏ ููู ุจุฏุฃ ุฃุฑูุญ ุฃุฎุฏ ุฅุดุงุฑุฉ ุงู terminal x |
|
|
|
104 |
|
00:08:46,710 --> 00:08:52,210 |
|
ูุงูุต ูุงุญุฏ ุจูุงุฎุฏ ุงู zero ุชุจุน ูููุ ุนูุฏ ุงู ูุงุญุฏ ุจุนุฏ |
|
|
|
105 |
|
00:08:52,210 --> 00:08:57,310 |
|
ุงู ูุงุญุฏ ูุฐูู positive ู ูุจู ุงู ูุงุญุฏ ู
ุงูู negative |
|
|
|
106 |
|
00:08:57,790 --> 00:09:03,150 |
|
ูู ุฌูุช ุงุฎุฏ ุงุดุงุฑุฉ ุงูุฌูุณ ุงูุชุงูุช ููู ุงูุณ ูุงูุต ุงุชููู |
|
|
|
107 |
|
00:09:03,150 --> 00:09:08,690 |
|
ูุจูู ุจูุงุฎุฏ ุฒูุฑู ุชุจุน ููู ุนูุฏ ุงุชููู ุจุนุฏ ุงุชููู ุฒู |
|
|
|
108 |
|
00:09:08,690 --> 00:09:13,050 |
|
ุชูุงุชุฉ ุงุฑุจุนุฉ ุฎู
ุณุฉ ุจูุงูู ููู
ุฉ ุงูููุณ ุจุงูู
ูุฌุจ ููุจู |
|
|
|
109 |
|
00:09:13,050 --> 00:09:18,830 |
|
ุงุชููู ุจูุงูู ูู ููู
ุฉ ุงูุฌูุณ ู
ุงูู ุจุงูุณุงูุจ ุจุนุฏู ุจุฏุงุฌู |
|
|
|
110 |
|
00:09:18,830 --> 00:09:24,660 |
|
ุงุฎุฏ ุงุดุงุฑุฉ ุญุตู ุถุฑุจ ุงุฑุจุนุฉ ุงูุณูู ุงูุณ ูุงูุต ูุงุญุฏ ูู ุงูุณ |
|
|
|
111 |
|
00:09:24,660 --> 00:09:30,220 |
|
ูุงูุต ุงุชููู ูุงุฌู ุงููู ูุฐุง ุงู real line ูุงุฑูุญ ุงุญุฏุฏ |
|
|
|
112 |
|
00:09:30,220 --> 00:09:36,940 |
|
ุงูุญุฏูุฏ ุงูุฅูููู
ูุฉ ุงููู ู
ูุฌูุฏุฉ ุนูุฏูุง ูุจูู ูู ุฌูุช ูุฐุง |
|
|
|
113 |
|
00:09:36,940 --> 00:09:42,230 |
|
ุงูุฎุท ุงููู ูู ุงุชูููููุฐุง ุงูุฎุท ุงูุฑุงุณู ุงูู X ุนูุฏู |
|
|
|
114 |
|
00:09:42,230 --> 00:09:47,530 |
|
ุจูุงุญุฏ ููุฐุง ุงูุฎุท ุงููู ุนูุฏูุง ุงูู X ุนูุฏู ุจูุฏุงุด ุจุฒูุฑู |
|
|
|
115 |
|
00:09:47,530 --> 00:09:52,130 |
|
ุงูุซูุงุซุฉ ุชููุณ ู
ุถุฑูุจุฉ ูู ุจุนุถ ูุจูู ุจุฏู ุฃุถุฑุจ ุงูุฅุดุงุฑุงุช |
|
|
|
116 |
|
00:09:52,130 --> 00:09:59,710 |
|
ุงูุชูุงุชุฉ ูู ุจุนุถ ุถุฑุจ ูุจูู ููุง ุจุงูู
ูุฌุฉ ููุง ุณุงูู
ููุง |
|
|
|
117 |
|
00:09:59,710 --> 00:10:06,650 |
|
ู
ูุฌุฉ ููุง ุณุงูู
ูุจูู ุถุบุท ุงูุฅุดุงุฑุงุช ุณุงูุจ ูู ุณุงูุจ ุจู
ูุฌุจ |
|
|
|
118 |
|
00:10:06,650 --> 00:10:10,490 |
|
ูู ุณุงูุจ ุจุณุงูุจ ู
ูุฌุจ ูู ุณุงูุจ ุจุณุงูุจ ุณุงูุจ ูู ุณุงูุจ |
|
|
|
119 |
|
00:10:10,490 --> 00:10:15,570 |
|
ุจู
ูุฌุจ ู
ูุฌุจ ูู ู
ูุฌุจ ุจู
ูุฌุจ ูู ุณุงูุจ ุจุณุงูุจ ูู ู
ูุฌุจ |
|
|
|
120 |
|
00:10:15,570 --> 00:10:21,570 |
|
ูุจูู ูู ู
ูุฌุจุ ู
ู
ุชุงุฒุ ูุจูู ูุฐู ุฅุดุงุฑุฉ ู
ููุุฅุดุงุฑุฉ |
|
|
|
121 |
|
00:10:21,570 --> 00:10:27,050 |
|
ุงูู
ุดุชูุฉ ุทูุน ููุง ุงูู
ุดุชูุฉ ู
ุง ููุง ุณุงูู ุจูุจูู ุงูุฏุงูุฉ |
|
|
|
122 |
|
00:10:27,050 --> 00:10:34,010 |
|
ูุงูุช decreasing ุฏูุงูุตูุฉ ูุนูู ุงูุฏุงูุฉ ูุฒูุฉ ุฅูู ุฃุณูู |
|
|
|
123 |
|
00:10:34,010 --> 00:10:39,550 |
|
ุงูุฅุดุงุฑุฉ ุตุงุฑุช ู
ูุฌุฉ ุจูุจูู increasing ุงูุฏุงูุฉ ุตุนุฏุฉ ุฅูู |
|
|
|
124 |
|
00:10:39,550 --> 00:10:44,390 |
|
ุฃุนูู ุณุงูู ุจูุจูู decreasing ุฅูู ุฃุณูู ู
ูุฌุฉ ุจูุจูู |
|
|
|
125 |
|
00:10:44,390 --> 00:10:49,410 |
|
increasing ุฅูู ุฃุนููุฅุฐุง ุจูุฏุฑ ุฃุญุฏุฏ ูุชุฑุงุช ุงูุชุฒุงูุฏ |
|
|
|
126 |
|
00:10:49,410 --> 00:10:54,650 |
|
ูุงูุชูุงูุต ูู
ูู ูุฏุงูุฉ ุงูุนูู
ูุฏูู ุจุฑูุญ ุจููู ูู
ุง ูุงุชู |
|
|
|
127 |
|
00:10:54,650 --> 00:11:02,810 |
|
ุงู F is increasing ุฏุงูุฉ ุชุฒุงูุฏูุฉ on ุนูู ุงููุชุฑุฉ |
|
|
|
128 |
|
00:11:02,810 --> 00:11:11,650 |
|
ุงูุฃููู ู
ู ุตูุฑ ูุบุงูุฉ ูุงุญุฏ ููุฐูู ุนูู ุงููุชุฑุฉ ู
ู ุงูุฏู |
|
|
|
129 |
|
00:11:11,650 --> 00:11:18,650 |
|
ุงุชููู ูุบุงูุฉ ูุฏูุด infinity ุจุนุฏ ุงููุุงูู F is |
|
|
|
130 |
|
00:11:18,650 --> 00:11:25,630 |
|
decreasing ุฏุงูุฉ ุชูุงูุตูุฉ ุนูู ุงููุชุฑุฉ ู
ู ุณุงูุจ |
|
|
|
131 |
|
00:11:25,630 --> 00:11:33,430 |
|
infinity ูุบุงูุฉ ุงูู zero and on ูุนูู ุงููุชุฑุฉ ู
ู ุฃูุฏ |
|
|
|
132 |
|
00:11:33,430 --> 00:11:39,470 |
|
ุงููุงุญุฏ ูุบุงูุฉ ูุฏุงุด ูุบุงูุฉ ุงุชููู ูุจูู ูุฐุง ู
ุซุงู ุจุณูุท |
|
|
|
133 |
|
00:11:39,470 --> 00:11:44,460 |
|
ุญุณุจูุง ู
ู ุฎูุงูู ุงู critical points ูุฏุงูุฉ ูู
ููุญุณุจูุง |
|
|
|
134 |
|
00:11:44,460 --> 00:11:48,780 |
|
ูุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต ูุทุจููุง ุงูุชุนุฑูู ุงููู ููุง |
|
|
|
135 |
|
00:11:48,780 --> 00:11:55,660 |
|
ุชุทุจููุง ู
ุจุงุดุฑุง ูุนูู ุงูุฏุงูุฉ ุนูู ูุฐู ุงููุชุฑุฉ ูุงูุช |
|
|
|
136 |
|
00:11:55,660 --> 00:12:00,860 |
|
ู
ูููุชููู ุนูู ุงููุชุฑุฉ ูุฐู ู
ูููุชููู ุนูู ุงููุชุฑุฉ ูุฐู |
|
|
|
137 |
|
00:12:00,860 --> 00:12:04,640 |
|
ู
ูููุชููู ุนูู ุงููุชุฑุฉ ูุฐู ู
ูููุชููู ููู ุงู domain |
|
|
|
138 |
|
00:12:04,640 --> 00:12:12,850 |
|
ุชุจุนูุง ูููุง not monotonicููุชูู ุงูุฃู ุฅูู ููุทุฉ ุซุงููุฉ |
|
|
|
139 |
|
00:12:12,850 --> 00:12:15,630 |
|
ูุฃุฎูุฑุฉ ูู ูุฐุง ุงู section |
|
|
|
140 |
|
00:12:30,950 --> 00:12:34,330 |
|
ุงูููุทุฉ ุจูู ุญุฏุฏ ุงู first derivative test ูู local |
|
|
|
141 |
|
00:12:34,330 --> 00:12:43,810 |
|
extreme values ูุจูู ุงู first derivative test |
|
|
|
142 |
|
00:12:43,810 --> 00:12:57,150 |
|
for local extrema ูุนูู ุงู local extreme values |
|
|
|
143 |
|
00:13:02,410 --> 00:13:13,590 |
|
ุจูููู ูุฐุง ู
ุง ูุฃุชู suppose that ุงูุชุฑุถ ุงูู ุงู c is a |
|
|
|
144 |
|
00:13:13,590 --> 00:13:24,950 |
|
critical point ุงูุชุฑุถ ุงู ุงู c ูู ููุทุฉ ุญุฑูุฌุฉ of a |
|
|
|
145 |
|
00:13:24,950 --> 00:13:26,570 |
|
continuous |
|
|
|
146 |
|
00:13:28,780 --> 00:13:42,280 |
|
ูููุดู F ูุฏุงูุฉ F and ุงู F is differentiable |
|
|
|
147 |
|
00:13:42,280 --> 00:13:54,920 |
|
ุฏุงูุฉ ูุงุจูุฉ ุงูุงุดุชุฑุงู at every point ุนูุฏ ูู ููุทุฉ in |
|
|
|
148 |
|
00:13:54,920 --> 00:13:56,980 |
|
some |
|
|
|
149 |
|
00:13:59,100 --> 00:14:06,480 |
|
interval in some interval containing |
|
|
|
150 |
|
00:14:06,480 --> 00:14:20,040 |
|
C except possibly except |
|
|
|
151 |
|
00:14:20,040 --> 00:14:24,180 |
|
possibly at C itself |
|
|
|
152 |
|
00:14:30,630 --> 00:14:45,090 |
|
ู
ุฑุฉ ูุงุญุฏ if ุงู if prime it change from negative |
|
|
|
153 |
|
00:14:45,090 --> 00:14:54,470 |
|
to positive at c then |
|
|
|
154 |
|
00:14:56,470 --> 00:15:08,950 |
|
ุงูู F ูุฏูู ู
ูุงูู
ุฉ ู
ูุงูู
ุฉ ูู ุงูู C ูู
ุฑุฉ |
|
|
|
155 |
|
00:15:08,950 --> 00:15:15,030 |
|
ุงุชููู F F ุจุฑุงูู
ุชุชุบูุฑ ู
ู ู
ูุงูู
ุฉ ู
ูุงูู
ุฉ ู
ูุงูู
ุฉ |
|
|
|
156 |
|
00:15:15,030 --> 00:15:24,170 |
|
ู
ูุงูู
ุฉ ูู ุงูู C ูุงูู F ูุฏูู ู
ูุงูู
ุฉ ู
ูุงูู
ุฉ ู
ูุงูู
ุฉ |
|
|
|
157 |
|
00:15:24,170 --> 00:15:25,550 |
|
ูู ุงูู C |
|
|
|
158 |
|
00:15:28,460 --> 00:15:39,960 |
|
ููุทุฉ ุงูุซุงูุซุฉ ูุงูุงุฎูุฑุฉ F ุงู F prime does not change |
|
|
|
159 |
|
00:15:39,960 --> 00:15:46,980 |
|
does not change its |
|
|
|
160 |
|
00:15:46,980 --> 00:15:49,200 |
|
sign |
|
|
|
161 |
|
00:15:51,680 --> 00:16:08,920 |
|
at C then ุงู F has no local extrema at C |
|
|
|
162 |
|
00:16:57,180 --> 00:16:58,760 |
|
ุงูุณูุงู
ุนูููู
|
|
|
|
163 |
|
00:17:58,290 --> 00:17:59,310 |
|
ุญุณูุงู |
|
|
|
164 |
|
00:18:41,000 --> 00:18:47,160 |
|
ุนููู ุจุฑููุฉุจูุฌู ููู ุงู test derivative test ุงุฎุชุจุงุฑ |
|
|
|
165 |
|
00:18:47,160 --> 00:18:51,340 |
|
ุงูู
ุดุชูุฉ ุงูุฃููู ูู local extreme values ูู
ูุงูุน |
|
|
|
166 |
|
00:18:51,340 --> 00:18:57,600 |
|
ุงูููุงูุงุช ุงูุนุธู
ู ูุงูุตุบุฑู ุงูู
ุญููุฉ ุจููู ููุชุฑุถ ุงู C is |
|
|
|
167 |
|
00:18:57,600 --> 00:19:02,960 |
|
a critical point ูุจูู C ูุฐู ุงูููุทุฉ ุญุฑุฌุฉ ูุฏุงูุฉ ู
ู |
|
|
|
168 |
|
00:19:02,960 --> 00:19:08,160 |
|
ูุฏุงูุฉ ู
ุชุตูุฉ F ูููุชุฑุถ ุงู ุงูุฏุงูุฉ F ูุงุจู ุงุดุชุฑุงุก |
|
|
|
169 |
|
00:19:08,160 --> 00:19:17,050 |
|
ููุงุดุชูุงู ุนูุฏ ูู ููุทุฉ in someinterval containing z |
|
|
|
170 |
|
00:19:17,050 --> 00:19:21,130 |
|
ูุจูู ููุณ ุจุงูุถุฑูุฑุฉ ุนูู ูู ุงู domain ูุฅูู
ุง ุนุงูู
ูุง |
|
|
|
171 |
|
00:19:21,130 --> 00:19:26,870 |
|
ุนูู ุฌุฒุก ู
ู ุงู domain containing z except possibly |
|
|
|
172 |
|
00:19:26,870 --> 00:19:31,690 |
|
at z itself ู
ุนุฏู ุนูุฏ z itself ุฅูุด ูุนูู ู
ุนุฏู z |
|
|
|
173 |
|
00:19:31,690 --> 00:19:36,630 |
|
itself ูุนูู ุฏู ูู ู
ู
ูู ุชููู ุบูุฑ ูุงุจูุฉ ููุงุดุชูุงู ุนูุฏ |
|
|
|
174 |
|
00:19:36,630 --> 00:19:40,960 |
|
z ู
ู
ูู ุชููู ูุงุจูุฉ ููุงุดุชูุงูุฃู ู
ู
ูู ุชููู ุบูุฑ ูุงุจูุฉ |
|
|
|
175 |
|
00:19:40,960 --> 00:19:44,740 |
|
ูุฅุดุชูุงุก ุนูุฏ ุงููC ูุฃู ุงููcritical point ูู ุงูููุทุฉ |
|
|
|
176 |
|
00:19:44,740 --> 00:19:46,740 |
|
ุงูุชู ูู ุงููprime ู
ูุฌูุฏุฉ ุฃู ูุง ู
ูุฌูุฏุฉ ูู ุงููprime |
|
|
|
177 |
|
00:19:46,740 --> 00:19:52,620 |
|
ุจุณ ุจุญูุซ ุงูููุทุฉ ุชููู ู
ูุฌูุฏุฉ ูู ุฏู
ูุงู ุงูุฏุงูุฉ ูุจูู |
|
|
|
178 |
|
00:19:52,620 --> 00:19:56,380 |
|
ูุฐู ุงูู
ูุตูุฏ ู
ุง ุนุฏุง ุนูุฏ ุงููC itself ูุนูู ุนูุฏ ุงููC |
|
|
|
179 |
|
00:19:56,380 --> 00:20:00,480 |
|
itself ู
ู
ูู ุงูุฏุงูุฉ ุชููู ุบูุฑ ูุงุจูุฉ ููุฅุดุชูุงุก ุงุจู |
|
|
|
180 |
|
00:20:00,480 --> 00:20:06,000 |
|
ุฌูุงู ุฅุฐุง ูุงููู ุงูู
ุดุชูุฉ ุงูุฃููู ุบูุฑุช ุฅุดุงุฑุชูุง ู
ู ุณุงูุจ |
|
|
|
181 |
|
00:20:06,000 --> 00:20:11,930 |
|
ุฅูู ู
ูุฌุจู
ู negative ุฅูู positive ุนูุฏ ุงูููุทุฉ C ูุจูู |
|
|
|
182 |
|
00:20:11,930 --> 00:20:16,690 |
|
ุงู F has a local minimum ุชุนุงูู ูุดูู ูุฐุง ุนูู |
|
|
|
183 |
|
00:20:16,690 --> 00:20:20,090 |
|
ุงูุทุจูุนุฉ ูุจู ู
ุง ูุชูู ุฅูู ุงูููุทุฉ ุงูุซุงููุฉ ุงูุฏุงูุฉ |
|
|
|
184 |
|
00:20:20,090 --> 00:20:24,450 |
|
ุจุชุบูุฑ ุฅุดุงุฑุชูุง ู
ู negative ุฅูู positive ุจุนุฏูู ุจุชุทูุน |
|
|
|
185 |
|
00:20:24,450 --> 00:20:29,710 |
|
ุนูู ุงูุฏุงูุฉ ุงูุฏุงูุฉ ููุง ุชุฒุงูุฏูุฉ ุจูุช ููุง ูู
ุง ุงูู
ุงููุง |
|
|
|
186 |
|
00:20:29,710 --> 00:20:36,370 |
|
ุชุฒุงูุฏูุฉ ู
ุงุชุบูุฑุชุดูุจูู ููุง ูู ูุฐู ุงูู
ูุทูุฉ F ุฃูุจุฑ ู
ู |
|
|
|
187 |
|
00:20:36,370 --> 00:20:42,850 |
|
ุงูู 0 ู ููุง F ุฃูุจุฑ ู
ู ุงูู 0 ูู ุฌูุช ุนูู ุงูู
ูุทูุฉ ู
ู |
|
|
|
188 |
|
00:20:42,850 --> 00:20:50,330 |
|
ููุง ูุบุงูุฉ ููุง ูุจูู F ุฃูู ู
ู ุงูู 0ูุจูู ููุง ุงู F' |
|
|
|
189 |
|
00:20:51,130 --> 00:20:56,730 |
|
ุฃูู ู
ู ุงู 0 ูู ุฌูุช ุนูู ุงูู
ูุทูุฉ ูุฐู ุจูุงูู ุฃู F' |
|
|
|
190 |
|
00:20:57,350 --> 00:21:02,450 |
|
ุฃูุจุฑ ู
ู ุงู 0 ูู ุฌูุช ุนูู ุงูู
ูุทูุฉ ูุฐู ุจูุงูู F' ุฃูู |
|
|
|
191 |
|
00:21:02,450 --> 00:21:07,510 |
|
ู
ู ุงู 0 ูุฃูู ุชูุงูุตูุฉ ูู ุฌูุช ุนูู ุงูุฌุฒุก ู
ู ููุง ูููุง |
|
|
|
192 |
|
00:21:07,510 --> 00:21:13,570 |
|
ูู
ุงู F' ู
ุงููุง ุฃูู ู
ู ุงู 0 ุฅูุด ุจูููู ููุง ุฅุฐุง F' |
|
|
|
193 |
|
00:21:13,970 --> 00:21:18,800 |
|
ุบูุฑุช ุดุฑุทูุง ู
ู negative ุฅูู positiveูุงูุช ุฏุงูุฉ |
|
|
|
194 |
|
00:21:18,800 --> 00:21:25,660 |
|
ุชูุงูุตูุฉ ู ุฑุฌุนุฉ ุงูุทูุงูุฉ ุงูุชุฒุงูุฏูุฉ Local Minimum |
|
|
|
195 |
|
00:21:25,660 --> 00:21:32,260 |
|
ูุจูู Local Minimum ุนูุฏ ุงูู C ูุจูู ุนูุฏูุง Local |
|
|
|
196 |
|
00:21:32,260 --> 00:21:40,360 |
|
Minimum ูู ูุฐู ุงูุญุงูุฉ ุงูู F' of C ุชูุงุชุฉ ุจุฏู ูุณุงูู |
|
|
|
197 |
|
00:21:40,360 --> 00:21:46,330 |
|
ู
ููุ ุจุฏู ูุณุงูู Zero ูู ุนูุฏู ุบูุฑูุง Local Minimumุู
ู |
|
|
|
198 |
|
00:21:46,330 --> 00:21:52,150 |
|
ุฎูุงู ุงูุฑุณู
ูู local minimum ุงููู ูู ู
ูู ูุฐู ุงูููุทุฉ |
|
|
|
199 |
|
00:21:52,150 --> 00:21:58,450 |
|
ูุจูู ููุง ูุฐู ูู
ุงู local minimum ุจุณ ู
ุงููุด ุชุบููุฑ |
|
|
|
200 |
|
00:21:58,450 --> 00:22:04,930 |
|
ุนูุฏูุง ุชู
ุงู
ุ ูุจูู ุฑุบู
ุฃููุง ููุทุฉ ุจุฏุงูุฉ ู
ู ุงูุจุฏุงูุฉ |
|
|
|
201 |
|
00:22:04,930 --> 00:22:11,550 |
|
ูุจูู ูุฐู local minimum ุงุชุง ูููุณุ ููู ูุฐู ููุณุช ููุทุฉ |
|
|
|
202 |
|
00:22:11,550 --> 00:22:14,990 |
|
ู
ูุฌูุฏุฉ ูู ุงูุฏุงุฎู ุงูุช ุชููู ุบูุฑุช ุฅุดุฑุชูุง ู
ู ูุฐุง ุฅูู |
|
|
|
203 |
|
00:22:14,990 --> 00:22:19,570 |
|
ูุฐุงูุจูู ูู ูุงูุช ููุทุฉ ูู ุงูุฏุงุฎู ูุชุบูุฑุช ู
ู ุณุงูุจ ุฅูู |
|
|
|
204 |
|
00:22:19,570 --> 00:22:23,790 |
|
ู
ูุฌุฉ ุจููู ููุง local minimum ูุฐู local minimum ููุดุ |
|
|
|
205 |
|
00:22:23,790 --> 00:22:29,550 |
|
ูุฃููุง ุฃูู ููู
ุฉ ุจุชุงุฎุฏูุง ููุฏุงูุฉ ู
ู ุนูุฏ ุฃูู ููุทุฉ |
|
|
|
206 |
|
00:22:29,550 --> 00:22:35,310 |
|
ูุบุงูุฉ ู
ูู ูู ุฌูุช ููุช ูุฐู ุงูุชุฑุถ ุงู ูุฐู ุฃูู ููุทุฉ ูู |
|
|
|
207 |
|
00:22:35,310 --> 00:22:41,420 |
|
ุงู interval A ููุฐู ุฃุฎุฑ ููุทุฉ ูู ุงู interval Bูู ุฌูุช |
|
|
|
208 |
|
00:22:41,420 --> 00:22:45,880 |
|
ุญูุงููู ุงููA ูููุช ูุฐู ุฃูู ููู
ุฉ ูุฏู ุงููู ูุจูู ูุฐู |
|
|
|
209 |
|
00:22:45,880 --> 00:22:49,180 |
|
ุงููlocal minimum ู
ู ุฃูู section ุฃุฎุฏูุงู ุงููู ูู |
|
|
|
210 |
|
00:22:49,180 --> 00:22:54,820 |
|
section 4-1 ุทูุจ ูู ุนูุฏู ูู
ุงู local minimum ุชุงูู |
|
|
|
211 |
|
00:22:54,820 --> 00:23:02,940 |
|
ู
ุงุนูุฏูุด ููู ูุฐู ูู ูู
ุงู local minimum ุจุณ ุฅูุด ูุฐู |
|
|
|
212 |
|
00:23:02,940 --> 00:23:07,420 |
|
ููุทุฉ ุทุฑููุฉ in point ุชู
ุงู
ุ ุฃููุฉ |
|
|
|
213 |
|
00:23:10,080 --> 00:23:14,880 |
|
ูุง local minimum ููุง local maximumุ ูุง ุจูุฏุฑุด ููุง |
|
|
|
214 |
|
00:23:14,880 --> 00:23:18,960 |
|
ุญุงุฌุฉุ ุงููุฉ ููุฏุฑ ู
ู ูุฐุง ุงูุงุชุจุงู ูุนุฑู ุงู ูุงุญุฏุฉ ูู ุงู |
|
|
|
215 |
|
00:23:18,960 --> 00:23:22,220 |
|
absolute ู ุงู local minimumุ ููุฌู ูู absoluteุ ุจุณ |
|
|
|
216 |
|
00:23:22,220 --> 00:23:27,170 |
|
ุงุณุชุบููู ุดููุฉุ ูููููุ ูุดูุฑ ุฅูููุงุทูุจ ุจุณ ุฎูุต ุงู local |
|
|
|
217 |
|
00:23:27,170 --> 00:23:31,090 |
|
ุจุนุฏูู ุจุฑูุญ ูู absolute ูุณู ุงุญูุง ุงุชููู
ูุง ุนูู ุงูููุทุฉ |
|
|
|
218 |
|
00:23:31,090 --> 00:23:36,390 |
|
ุงูุฃููู ุจุฏูุง ูุฌู ุฃุนูู ู
ู ุฅุฐุง ุงู F prime ุบูุฑุช ุดุฑูุทูุง |
|
|
|
219 |
|
00:23:36,390 --> 00:23:40,910 |
|
ู
ู positive ุฅูู negative ูุนูู ูุงูุช ุงูุฏุงูุฉ ุชุฒุงูุฏูุฉ |
|
|
|
220 |
|
00:23:40,910 --> 00:23:47,850 |
|
ุซู
ุฑุงุฌุนุช ุฃุตุจุญุช ุชูุงูุตูุฉ ุจูู ููุง ุชุฒุงูุฏูุฉ ููุง ุชุฒุงูุฏูุฉ |
|
|
|
221 |
|
00:23:48,160 --> 00:23:52,720 |
|
ูุฐู ุงูุงุตุทูุงุนุงุช ุงูู
ูู
ุฉ ููููุง ููุณุช ูููุงู ู
ุงูุณูู
ู
ู
|
|
|
|
222 |
|
00:23:52,720 --> 00:23:58,360 |
|
ููุง ุญุชู ูููุงู ู
ูููู
ุง ูุจูู ุจูุฏุฑ ุฃููู ูุง ุฅูุณุชุฑูู
ุง |
|
|
|
223 |
|
00:23:58,360 --> 00:24:04,140 |
|
ู
ุงุนูุฏูุด ูู ูุฐู ูุจูู ูุฐู ุนูุฏ ูุฐู ุงูููุทุฉ ุจููู ูุง |
|
|
|
224 |
|
00:24:04,140 --> 00:24:07,460 |
|
ุฅูุณุชุฑูู
ุง |
|
|
|
225 |
|
00:24:23,260 --> 00:24:27,600 |
|
ุงูุฏุงูุฉ ูุงูุช ุชุฒุงูุฏูุฉ positive ู ุฑุฌุนุช negative |
|
|
|
226 |
|
00:24:31,460 --> 00:24:37,200 |
|
local maximum ุงุฐุง ูุฐู ุงูููุทุฉ ุงู local maximum |
|
|
|
227 |
|
00:24:37,200 --> 00:24:44,860 |
|
ุจูุญุตู ุนูุฏูุง ูุนูุฏู f prime of c2 ุจุฏู ูุณุงูู ูุฏุงุด ุจุฏู |
|
|
|
228 |
|
00:24:44,860 --> 00:24:51,340 |
|
ูุณุงูู zero ุชู
ุงู
ูู ูู
ุงู ุงู ูู ูู ุงูุฏุงูุฉ ุงูุชุฒุงูุฏูุฉ |
|
|
|
229 |
|
00:24:51,340 --> 00:24:55,840 |
|
ูุฑุฌุนุช ุตุงุฑุช ุชููุตูุฉ ูุงูุช positive ูุฑุฌุนุช negative |
|
|
|
230 |
|
00:24:55,840 --> 00:25:00,240 |
|
ูุจูู ุนูุฏ ุงูููุทุฉ ูุฐู ุงูุด ูู ุนูุฏู local |
|
|
|
231 |
|
00:25:02,020 --> 00:25:08,760 |
|
ุญุณุจ ุงูุชุนุฑูู ุงูููุทุฉ ูุฐู ูุงูุช ุชูุงูุตูุฉ ูุธูุช ุชูุงูุตูุฉ |
|
|
|
232 |
|
00:25:08,760 --> 00:25:12,680 |
|
ูุจูู ู
ุงุนูุฏูุด ูุง local maximum ููุง local minimum |
|
|
|
233 |
|
00:25:12,680 --> 00:25:17,700 |
|
ูุฌู ููููุทุฉ ุงูุชุงููุฉ ุฅุฐุง f prime ู
ุงุนูุฑุชุด ุฅุดุงุฑุชูุง ุนูุฏ |
|
|
|
234 |
|
00:25:17,700 --> 00:25:23,280 |
|
c ูุจูู ู
ุงุนูุฏูุด has no local extrema ูุนูู ู
ุงุนูุฏูุด |
|
|
|
235 |
|
00:25:23,280 --> 00:25:27,960 |
|
ูุง local maximum ููุง local minimum ุทุจ ุฅูุด ุฑุฃูู ุนูุฏ |
|
|
|
236 |
|
00:25:27,960 --> 00:25:39,230 |
|
ุงูููุทุฉ ูุฐูุุงูู F' of C4 is undefined ูุจูู ู
ุงููุงุด |
|
|
|
237 |
|
00:25:39,230 --> 00:25:45,410 |
|
ู
ุนุฑูุฉ ูุฃู ุนูุฏู ุฃูุงุณุจ ููุง ุทูุจ ุฅุฐุง ุงูููุทุฉ ูุฐู ุจูููู |
|
|
|
238 |
|
00:25:45,410 --> 00:25:50,690 |
|
ุฅุฐุง F ู
ุงุบูุฑุชุด ุฅุดุงุฑุชูุง ูุจูู no local extrema ูุจูู |
|
|
|
239 |
|
00:25:50,690 --> 00:25:58,170 |
|
ูุงู no local extrema ูููุง ูุฐูู no local extrema |
|
|
|
240 |
|
00:25:59,890 --> 00:26:05,890 |
|
ูุจูู ู
ุงุนูุฏูุด ูุฐุง ูู ุฑุบู
ุงูู f prime of c ุฎู
ุณุฉ ุจุฏู |
|
|
|
241 |
|
00:26:05,890 --> 00:26:11,030 |
|
ูุณุงูู ูุฏุงุด ุจุฏู ูุณุงูู zero ูุจูู ุตุงุฑ local minimum |
|
|
|
242 |
|
00:26:11,030 --> 00:26:16,310 |
|
local minimum local minimum local maximum local |
|
|
|
243 |
|
00:26:16,310 --> 00:26:22,750 |
|
maximum no local extrema no local extrema ุฎูุตูุง ู
ู |
|
|
|
244 |
|
00:26:22,750 --> 00:26:26,230 |
|
ูุตุฉ ุงู local ูุงุญุฏ ุณุฃู ูุงู ุทูุจ ุงู absolute ุจูููู |
|
|
|
245 |
|
00:26:26,230 --> 00:26:30,890 |
|
ุจุฏูุง ูุฑุฌุน ุจุงูุฐุงูุฑุฉ ุฅูู section 4-1ุจุชุฏุงุฌู ุนูู ุงูู |
|
|
|
246 |
|
00:26:30,890 --> 00:26:35,510 |
|
Interval ูููุง ู
ู A ุฅูู B ุฃูู ููู
ุฉ ุจูููู ุนููุง |
|
|
|
247 |
|
00:26:35,510 --> 00:26:40,830 |
|
Absolute minimum ุฃูุจุฑ ููู
ุฉ Absolute maximum ุฅุฐุง |
|
|
|
248 |
|
00:26:40,830 --> 00:26:47,290 |
|
ูุฐู ูู
ุงู ุฅูุด ุจูููู Absolute minimum ูุฅูุด ุฅู ูุฐู |
|
|
|
249 |
|
00:26:47,290 --> 00:26:53,330 |
|
ุฃูู ููู
ุฉุ ูุฐู ููุง ูู
ุงู ู
ุง ููุง Absolute maximum |
|
|
|
250 |
|
00:26:53,330 --> 00:26:58,860 |
|
ูุฅูุดุ ูุฃู ุฃูุจุฑ ููู
ุฉ ู
ูุฌูุฏุฉ ูููุง ููุฏุงูุฉุญุฏ ูู ุงู |
|
|
|
251 |
|
00:26:58,860 --> 00:27:03,040 |
|
ุชุณุงุคู ุงุฎุฑุ ุงููุฉ. ุงูุฏูุชูุฑ ุจุงููุณุจุฉ ููู ู
ุซู ุงูุชุนุฑูู |
|
|
|
252 |
|
00:27:03,040 --> 00:27:06,540 |
|
ุงูุฃููุ ู
ุด ูู ุญุงุฌุงุช ุงููู ููุชุฑุงููุงุ monotonic |
|
|
|
253 |
|
00:27:06,540 --> 00:27:10,560 |
|
ุงูุชุนุฑูู ุงูุฃูู. ูุฃ ูุฐุง ุงููู ู
ูุชูุจ ูุนูู. ูุฐุง ุงููู |
|
|
|
254 |
|
00:27:10,560 --> 00:27:14,220 |
|
ุงูุชุงูู ูุนูู. ุงููุฉุ ูุฐุงุ ุงููุฉ. ูุตุฏ ุงููู ูู ุงู |
|
|
|
255 |
|
00:27:14,220 --> 00:27:17,940 |
|
support ูุนูู ุงู .. ุงู support. ุทูุจ ุงูุง ููุช ุฑููุฒ |
|
|
|
256 |
|
00:27:17,940 --> 00:27:21,520 |
|
ุนูู ุงู closed ู differential ุนูู ุงู open. ุทุจ ููุด |
|
|
|
257 |
|
00:27:21,520 --> 00:27:25,080 |
|
ูุงู in some terms ู ูุง ููุชุงููุู
ุด ููููุงูุง ูุง ุดุจุงุจุ |
|
|
|
258 |
|
00:27:25,080 --> 00:27:29,500 |
|
ููููุงูุง ู ููููููุง ูู
ุงู ู
ุฑุฉ ู
ุด ุฃูุง ุฎุงุทุฑุ ุดู ุงุณู
ู |
|
|
|
259 |
|
00:27:29,500 --> 00:27:40,370 |
|
ุฃูุชุุชุจูู ุงุฏู
ุฒุงุฆุฏ ุงุฐุง ูุงู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
|
|
|
|
260 |
|
00:27:40,370 --> 00:27:43,970 |
|
ุฒุงุฆุฏ |
|
|
|
261 |
|
00:27:43,970 --> 00:27:47,870 |
|
ุงุฐุง ูุงู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุงุฐุง ูุงู ุงุฏู
ุฒุงุฆุฏ |
|
|
|
262 |
|
00:27:47,870 --> 00:27:48,590 |
|
ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุงุฐุง ูุงู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุงุฐุง |
|
|
|
263 |
|
00:27:48,590 --> 00:27:49,430 |
|
ูุงู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
|
|
|
|
264 |
|
00:27:49,430 --> 00:27:49,430 |
|
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ |
|
|
|
265 |
|
00:27:49,430 --> 00:27:49,430 |
|
ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
|
|
|
|
266 |
|
00:27:49,430 --> 00:27:54,190 |
|
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ |
|
|
|
267 |
|
00:27:54,190 --> 00:28:01,960 |
|
ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูู ุงุฏู
ุฒุงุฆุฏ ุชุจูููุงุถุญุฉ ูู ู
ูุชูุจุฉ |
|
|
|
268 |
|
00:28:01,960 --> 00:28:05,600 |
|
ู
ูุชูุจุฉ ุงูุง ุจุฏู ุงูุงูุง differentiable ุนูู ุงู open |
|
|
|
269 |
|
00:28:05,600 --> 00:28:10,340 |
|
interval ูุฐู ู
ูุนุฏุฉ ุนูุฏูุง C ุชุณูููู ู
ู
ูู ู
ุง ุชุจูุงุด |
|
|
|
270 |
|
00:28:10,340 --> 00:28:14,960 |
|
differentiable ูู ูู ุฌูุช ุญูููุง differentiable |
|
|
|
271 |
|
00:28:14,960 --> 00:28:19,100 |
|
ุงุชุฏุงูู ู
ูุนุฏุฉ ู
ู ู
ูุนุฏุฉ ุนูุฏ ุงู C4 ุนูุฏ ุงู C4 ุงุชุฏุงูู |
|
|
|
272 |
|
00:28:19,100 --> 00:28:23,340 |
|
ุบูุฑ ูุงุจู ุงูุงุดุชูุงู ูุงุถุญุฉ ุชู
ุงู
ุทูุจ ุญุงุฌุฉ ุถุงูุฉ ุจุฏู |
|
|
|
273 |
|
00:28:23,340 --> 00:28:28,880 |
|
ุงุณุฃู ุชุงูู ุทุจ ุจูุฑูุญ ุงูุขู ูุงูุงู
ุซูุฉ |
|
|
|
274 |
|
00:28:33,820 --> 00:28:37,440 |
|
ุทูุจ ูุจู ุงูุงู
ุซูุฉ ุดุงูุฉ ุงูููุงู
ุงููู ููุชู ููุง ุจุฏู ุฃุญุทู |
|
|
|
275 |
|
00:28:37,440 --> 00:28:41,740 |
|
ูู ููุง ุนูู ุงูุทุจูุนุฉ ุงูุณุคุงู ุฃูู ูุจููุ ุงุชุทูุน ููู ููุง |
|
|
|
276 |
|
00:28:41,740 --> 00:28:46,100 |
|
ุงูู
ุดุชูุฉ ูุงูุช ูุงุฒูู ุจุนุฏ ููู ุงุชุทูุนุชูู ุจูู ุนูุฏ ุงู |
|
|
|
277 |
|
00:28:46,100 --> 00:28:52,180 |
|
zero ุฅูุด ุจุฏู ุฃูููุ ุงูุงู ูุงูุช ุงูุตุนุงุฏุฉ ู
ุดุชูุฉ ุฃูุจุฑ ู
ู |
|
|
|
278 |
|
00:28:52,180 --> 00:28:55,520 |
|
zero ุตุงุฑุช ุฃูู ู
ู ุงู zero ูุจูู ุนูุฏ ุงููุงุญุฏ local |
|
|
|
279 |
|
00:28:55,520 --> 00:29:01,220 |
|
maximum ุงูุงู ุนูุฏ ุงุชูุงู ู
ุดุชูุฉ ูุงูุช ุณุงููุฉ ุตุงุฑุช ู
ูุฌุฉ |
|
|
|
280 |
|
00:29:01,220 --> 00:29:05,310 |
|
ุจูุจูู local minimum ู ููุฐุงูุจูู ูุงูู ุนูู ุงูุทุจูุนุฉ ู
ู |
|
|
|
281 |
|
00:29:05,310 --> 00:29:10,390 |
|
ุฎูุงู ุงูู
ุซุงู ุฃุณุฑุน ูุนูู ุฃูุง ู
ุงูุถูุด ุฃู
ุณุญูุง ู
ุชุนู
ุฏ ุญุชู |
|
|
|
282 |
|
00:29:10,390 --> 00:29:14,510 |
|
ุฃุญุงูู ุฃุฑุจุท ูู ูุฐู ูููุง ูุงูุขู ุจุฏูุง ูุนุทู ุฃู
ุซูุฉ |
|
|
|
283 |
|
00:29:14,510 --> 00:29:20,270 |
|
ู
ุฎุชููุฉ ุนูู ุงูููุงู
ุงูุฐู ุชุนุฑุถูุง ูู ูุถู |
|
|
|
284 |
|
00:29:28,700 --> 00:29:35,440 |
|
ู
ุด ุนูุฏู ููุทุฉ ูุงุฏูุ ุดุทุฉ ุงูู C4 ู
ุด ู
ุนุฑูุฉุ ู
ุด ู
ุนุฑูุฉ |
|
|
|
285 |
|
00:29:35,440 --> 00:29:40,240 |
|
ุงูู C4ุ ุงูู
ุดุชูุฉ ู
ุด ู
ุนุฑูุฉุ ุงูุฏุงูุฉ ู
ุนุฑูุฉุ ุงูุฏุงูุฉ |
|
|
|
286 |
|
00:29:40,240 --> 00:29:43,780 |
|
ู
ุชุตูุฉ ููู ุงูู
ุดุชูุฉ ุบูุฑ ู
ูุฌูุฏุฉ ุนุดุงู ููููู ุงู local |
|
|
|
287 |
|
00:29:43,780 --> 00:29:49,530 |
|
maximumุ ุงู local maximum ุทุจูุนู ูุฅููุง ู
ุนุฑูุฉุงูู
ุดุชูุฉ |
|
|
|
288 |
|
00:29:49,530 --> 00:29:54,350 |
|
ููู ู
ุด ู
ุนุฑูุฉ ุงูุฏุงูุฉ ู
ุนุฑูุฉ ูุนูู ุงูุฏุงูุฉ ุฏุงูุฉ ู
ุชุตูุฉ |
|
|
|
289 |
|
00:29:54,350 --> 00:30:00,550 |
|
ููููุง ุบูุฑ ูุงุจูุฉ ูุงุดุชูุงู ุจุณุจุจ ูุฌูุฏ ุงูุชุฃุณุจุงุจ ุฎูุงุตุ |
|
|
|
290 |
|
00:30:00,550 --> 00:30:07,190 |
|
ุญุฏ ุจูุณุฃู ุชุงููุ ูุฐู ุฑุณู
ุฉ |
|
|
|
291 |
|
00:30:07,190 --> 00:30:14,490 |
|
F of X ููู ูู ุฃุฎุฏุช ุงููุชุฑุฉ ูุฐู ุจููู ุงู F Prime ุฃูุจุฑ |
|
|
|
292 |
|
00:30:14,490 --> 00:30:18,930 |
|
ู
ู Zero ุนูููุงูู ุฃุฎุฏุช ุงููุชุฑุฉ ุงูุชุงููุฉ ูุฐู ุจูุงุฌ ุงู F' |
|
|
|
293 |
|
00:30:19,370 --> 00:30:23,290 |
|
ุฃูุจุฑ ู
ู ุงู zero ูู ุฃุฎุฏุช ุงููุชุฑุฉ ุงูุชุงูุชุฉ ุจูุงุฌ ุงู F' |
|
|
|
294 |
|
00:30:23,790 --> 00:30:28,230 |
|
ุฃูู ู
ู ุงู zero ูุนูู ููุด ุงู ุงูุฏุงูุฉ ุชูุงูุตูุฉ ุทุจู |
|
|
|
295 |
|
00:30:28,230 --> 00:30:33,810 |
|
ุงูุชุนุฑูู ุงููู ุงุญูุง ุฌุงู ูููู ุทุจุนุงุ ุทูุจ ูุฑุฌุน ุงูุขู |
|
|
|
296 |
|
00:30:33,810 --> 00:30:36,150 |
|
ูุงุฎุฏ ู
ุซุงู example |
|
|
|
297 |
|
00:30:41,420 --> 00:30:47,140 |
|
for the following functions for the following |
|
|
|
298 |
|
00:30:47,140 --> 00:30:59,360 |
|
functions ููู ู
ู ุงูุฏูุงูุฉ ุงูุชุงููุฉ ูู
ุฑุฃุฉ a find find |
|
|
|
299 |
|
00:30:59,360 --> 00:31:06,500 |
|
the intervals of |
|
|
|
300 |
|
00:31:06,500 --> 00:31:17,340 |
|
the intervalsin which the function in which the |
|
|
|
301 |
|
00:31:17,340 --> 00:31:24,660 |
|
function is increasing |
|
|
|
302 |
|
00:31:24,660 --> 00:31:28,180 |
|
and |
|
|
|
303 |
|
00:31:28,180 --> 00:31:35,500 |
|
decreasing ุจุฏูุง ูุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต |
|
|
|
304 |
|
00:31:43,000 --> 00:31:53,600 |
|
identify the local extreme values the |
|
|
|
305 |
|
00:31:53,600 --> 00:32:03,220 |
|
local extrema ูุฎูุตูุง ุจุงูุงุฎุชุตุงุฑ ูููุฏ if any if |
|
|
|
306 |
|
00:32:03,220 --> 00:32:05,680 |
|
any saying |
|
|
|
307 |
|
00:32:09,010 --> 00:32:14,710 |
|
saying where they |
|
|
|
308 |
|
00:32:14,710 --> 00:32:20,910 |
|
occur ูู
ุฑุณู |
|
|
|
309 |
|
00:32:20,910 --> 00:32:31,450 |
|
which if any of |
|
|
|
310 |
|
00:32:31,450 --> 00:32:33,610 |
|
the |
|
|
|
311 |
|
00:32:51,100 --> 00:33:01,800 |
|
F of X ูุณุงูู 2X ุชูููุจ ูุงูุต 18X |
|
|
|
312 |
|
00:33:36,970 --> 00:33:41,970 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉ ูุนุทู ู
ุฌู
ูุนุฉ ู
ู ุงูุฏูุงู ุจุฏู ุงูุฏุงูุฉ |
|
|
|
313 |
|
00:33:41,970 --> 00:33:46,970 |
|
ุฃุฑุจุนุฉ ุฏูุงู ู ููู ุฏุงูุฉ ู
ู ูุฐู ุงูุฏูุงู ูุญุณุจ ุชูุช ุดุบูุงุช |
|
|
|
314 |
|
00:33:46,970 --> 00:33:52,390 |
|
ุงูุดุบูุฉ ุงูุฃููู ูุฌูุจ ูุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต ููู ุฏุงูุฉ |
|
|
|
315 |
|
00:33:52,390 --> 00:33:56,890 |
|
ู
ู ูุฐู ุงูุฏูุงู ุงูุดุบูุฉ ุงูู
ุทู
ูุจุฉ ุชุงููุฉ identified a |
|
|
|
316 |
|
00:33:56,890 --> 00:34:03,250 |
|
local extraุชุญุฏุฏูู ุงูููุงูุงุช ุงูุนุธู
ุฉ ูุงูุตุบุฑุฉ ุงูู
ุญููุฉ |
|
|
|
317 |
|
00:34:03,250 --> 00:34:09,750 |
|
ููุฐู ุงูุฏูุงู if any ุงู ูุฌุฏุช ู
ุด ู
ูุฌูุฏุฉ ู
ุณุงู
ุญููู ูููุง |
|
|
|
318 |
|
00:34:09,750 --> 00:34:13,830 |
|
saying where they occur ููู ุจุชุญุตู ูุฐู ูุนูู ุจุชูููู |
|
|
|
319 |
|
00:34:13,830 --> 00:34:18,610 |
|
ููุงูุฉ ุงูุนุธู
ุฉ ู
ุซูุง ูุฐุง ุนูุฏ ุงูููุทุฉ ุงูููุงููุฉ ุงูููุงูุฉ |
|
|
|
320 |
|
00:34:18,610 --> 00:34:21,570 |
|
ุงูุตุบุฑุฉ ูุฐุง ุนูุฏ ุงูููุทุฉ ุงูููุงููุฉ ูุนูู ุจูุญุฏุฏ ู
ูุงุถุน |
|
|
|
321 |
|
00:34:21,570 --> 00:34:28,070 |
|
ููุงูุงุช ุงูุนุธู
ุฉ ูุงูุตุบุฑุฉุจุนุฏ ุฐูู which if any in if |
|
|
|
322 |
|
00:34:28,070 --> 00:34:32,710 |
|
any ูุนูู ุฅูู ุงูููุฌุจุงุช of the extreme values are |
|
|
|
323 |
|
00:34:32,710 --> 00:34:35,430 |
|
absolute mean ู
ู ุงู extreme values ุงููู ุจุชุจูู |
|
|
|
324 |
|
00:34:35,430 --> 00:34:39,810 |
|
absolute maximum ุฃู absolute minimum ูุนุทููู ุฃูู |
|
|
|
325 |
|
00:34:39,810 --> 00:34:45,290 |
|
ุฏุงูุฉ ู
ู ูุฐู ุงูุฏูุงูุฉ ุงููู ูู 2x ูุจ ููุต 18x ูุฏุงุดุฉ ุงู |
|
|
|
326 |
|
00:34:45,290 --> 00:34:50,700 |
|
domain ุชุจุนูุง ูุฐููู real number ูุจูู ุฃูุง ุจูููู ููุง |
|
|
|
327 |
|
00:34:50,700 --> 00:34:57,080 |
|
domain ุงู F ูุณุงูู ู
ู ุณุงูุจ infinity ู infinity ูุนูู |
|
|
|
328 |
|
00:34:57,080 --> 00:35:02,720 |
|
ู
ุงุนูุฏูุด end points ุงู domain ููู ุนูู ุทุงูู
ุ ุจูููู |
|
|
|
329 |
|
00:35:02,720 --> 00:35:10,060 |
|
ูููุณูุจูู ุจุฏู ุงุจุฏุง ุจุงู F prime of X 6X ุชุฑุจูู ูุงูุต |
|
|
|
330 |
|
00:35:10,060 --> 00:35:17,440 |
|
ุชู
ุงูุชุงุด ูุนูู 6 ุจุถู X ุชุฑุจูู ูุงูุต ุชูุงุชุฉ ูุนูู 6 ูู X |
|
|
|
331 |
|
00:35:17,440 --> 00:35:24,210 |
|
ูุงูุต ุฌุฏุฑ ุชูุงุชุฉ ูู X ุฒุงุฆุฏ ุฌุฏุฑ ุชูุงุชุฉูุจูู ูุฐุง ุงูุดูู |
|
|
|
332 |
|
00:35:24,210 --> 00:35:29,430 |
|
ุงูู
ุดุชูุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุฑูุญูุง ุญูููุง ุญูููุง |
|
|
|
333 |
|
00:35:29,430 --> 00:35:33,690 |
|
ุฅูู ุญุงุตู ุถุฑุจ ููุณูู ุฒู ู
ุง ุงูุช ุดุงูู ุงูู
ุดุชูุฉ |
|
|
|
334 |
|
00:35:33,690 --> 00:35:37,810 |
|
polynomial ูุจูู ุงู domain ุชุจุนูุง ูู
ุงู ู
ูู ูู ุงู |
|
|
|
335 |
|
00:35:37,810 --> 00:35:42,810 |
|
real line ุจุงูุงุณุชุซูุงุก ุชู
ุงู
ูุจูู ุญูุงูุฉ ุงูุง ุบูุฑ ู
ุนุฑู |
|
|
|
336 |
|
00:35:42,810 --> 00:35:46,810 |
|
ุงุญุทูุง ุน ุดุฌุฑูุจูู ู
ุง ุฃูุฏุฑุด ุฃุฌูุจ ุงู critical points |
|
|
|
337 |
|
00:35:46,810 --> 00:35:51,130 |
|
ุฅูุง ุฅุฐุง ุณููุชูุง ุจุงูุตูุฑ ููุท ูุง ุบูุฑ ู
ุงุนูุฏูุด ุบูุฑ ููู |
|
|
|
338 |
|
00:35:51,130 --> 00:35:56,090 |
|
ูุจูู ุจุงูู ุจูููู ูุฐุง ุงูููุงู
ูุณุงูู Zero ุฅุฐุง ูู
ุง |
|
|
|
339 |
|
00:35:56,090 --> 00:36:02,090 |
|
ูุณุงูู Zero ูุฐุง ุจุฏู ูุนุทููู ุฅู X ูุณุงูู ุณุงูุจ ุฌุฐุฑ |
|
|
|
340 |
|
00:36:02,090 --> 00:36:10,990 |
|
ุชูุงุชุฉ and ุงู X ุจุฏู ูุณุงูู ุฌุฐุฑ ุชูุงุชุฉ are the only |
|
|
|
341 |
|
00:36:10,990 --> 00:36:12,850 |
|
critical |
|
|
|
342 |
|
00:36:17,890 --> 00:36:22,330 |
|
ูุจูู ุงูุง ุฌุจุชูู ุงูู critical ุจุณ ุญุชู ุงูุขู ู
ุงุฌุจุชููุด |
|
|
|
343 |
|
00:36:22,330 --> 00:36:27,610 |
|
ูุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต ูุจูู ุจุฏู ูุงุฎุฏ ุฅุดุงุฑุฉ ุงูุฃููุงุต |
|
|
|
344 |
|
00:36:27,610 --> 00:36:33,470 |
|
ุงููู ุนูุฏูุง ูุจูู ุจุฏู ูุฑูุญ ูููููู ุจุฏู ูุงุฎุฏ ุฅุดุงุฑุฉ 6 |
|
|
|
345 |
|
00:36:33,470 --> 00:36:39,790 |
|
ูู X ูุงูุต ุฌุฐุฑ 3 ููุบูุฑูู ุงููู ูุนูู ุจุชุงุฎุฏ ุงู zero |
|
|
|
346 |
|
00:36:39,790 --> 00:36:45,270 |
|
ุชุจุนูุง ูููุุนู ุฌุฐุฑ ุงูุชูุงุชุฉุ ูู ุฌูุช ุจุนุฏ ุฌุฐุฑ ุงูุชูุงุชุฉุ |
|
|
|
347 |
|
00:36:45,270 --> 00:36:50,410 |
|
ุงูุฌุซุฉ ุฏู ุจูููู ุจุนุฏ ุฌุฐุฑ ุงูุชูุงุชุฉุ ูุนูู ุฃูุจุฑ ู
ู ุฌุฐุฑ |
|
|
|
348 |
|
00:36:50,410 --> 00:36:59,670 |
|
ุงูุชูุงุชุฉ ุจูููู ู
ูุฌุจ ููุจูู ุจุตูุฑ ุณุงูู
ุงูุงู ูู ุฌูุช ุงุฎุฏุช |
|
|
|
349 |
|
00:36:59,670 --> 00:37:06,650 |
|
ุงุดุงุฑุฉ ุงู X ุฒุงุฆุฏ ุฌุฐุฑ ุชูุงุชุฉ ุจูุงุฎุฏ ุงู zero ุชุจุน ููู |
|
|
|
350 |
|
00:37:06,650 --> 00:37:15,210 |
|
ุนูุฏ ุณุงูุจ ุฌุฐุฑ ุชูุงุชุฉ ุจุนุฏูุง ู
ูุฌุจ ู ูุจููุง ุณุงูุจ ุงูุงู |
|
|
|
351 |
|
00:37:15,210 --> 00:37:21,940 |
|
ุงูุง ุจุฏู ุงุดุงุฑุฉ ุญุงุตู ุถุฑุจ ุงูููุณููX ูุงูุต ุฌุฏุฑ ุชูุงุชุฉ ูู |
|
|
|
352 |
|
00:37:21,940 --> 00:37:28,700 |
|
ุณุชุฉ ูู X ุฒุงุฆุฏ ุฌุฏุฑ ุชูุงุชุฉ ูุงุฏู ุงู real line ูุจุฏูุง |
|
|
|
353 |
|
00:37:28,700 --> 00:37:35,420 |
|
ููุฌู ูุญุฏุฏ ุงูุญุฏูุฏ ุงูุฅูููู
ูุฉ ูุจูู ุงููุณู
ุงู domain |
|
|
|
354 |
|
00:37:35,420 --> 00:37:42,280 |
|
ุฅูู ุซูุงุซุฉ ู
ูุงุทููุฐู ุฌุฐุฑูุฉ ุชูุงุชุฉ ูููุง ุณุงูุจ ุฌุฐุฑูุฉ |
|
|
|
355 |
|
00:37:42,280 --> 00:37:46,820 |
|
ุชูุงุชุฉ ุงูุฌุซูู ู
ุถุฑุจุงุช ูู ุจุนุถ ุถุฑุจ ูุจูู ูุถุฑุจ ุงูุฅุดุงุฑุงุช |
|
|
|
356 |
|
00:37:46,820 --> 00:37:53,380 |
|
ุถุฑุจ ุณุงูุจ ูู ุณุงูุจ ุจู
ูุฌุจ ุณุงูุจ ูู ู
ูุฌุจ ุจุณุงูุจ ู
ูุฌุจ ูู |
|
|
|
357 |
|
00:37:53,380 --> 00:37:59,380 |
|
ู
ูุฌุจ ุจู
ูุฌุจ ูุจูู ููุง ุงูุฏุงูุฉ ุงูู
ุดุชูุฉ ู
ูุฌุจุฉ ูุจูู |
|
|
|
358 |
|
00:37:59,380 --> 00:38:05,240 |
|
ุงูุฏุงูุฉ ูุงูุชincreasing ูุจูู ุชุฏูุน ุงูุตุนูุฏุฉ ุงูู ุงุนูู |
|
|
|
359 |
|
00:38:05,240 --> 00:38:10,720 |
|
ููุง ุงูุณุงูุจุฉ ูุจูู ุตุงุฑุช ู
ุงููุง decreasing ููุง ู
ูุฌุฉ |
|
|
|
360 |
|
00:38:10,720 --> 00:38:17,780 |
|
ุจูุจูู ุนุงุฏุฉ ุทูุนุช ุงูู ุงุนูู ุงุฐุง ุงูู
ุทููุจ ุงูุงูู ูู
ุฑ ุงูู |
|
|
|
361 |
|
00:38:17,780 --> 00:38:23,580 |
|
ุจููู ุงู F is increasing |
|
|
|
362 |
|
00:38:25,440 --> 00:38:30,480 |
|
on ุงููุชุฑุฉ ู
ู ุณุงูุจ infinity ูุฃู ุงู domain ูู ุงู |
|
|
|
363 |
|
00:38:30,480 --> 00:38:36,440 |
|
real line ุจููุงุณู ุงููุชุฑุฉ ูุฃู ู
ู ุณุงูุจ infinity ูุบุงูุฉ |
|
|
|
364 |
|
00:38:36,440 --> 00:38:45,060 |
|
ุณุงูุจ ุฌุฐุฑ ุชูุงุชุฉ and on ูุฐูู ุงููู ูู ุฌุฐุฑ ุชูุงุชุฉ |
|
|
|
365 |
|
00:38:45,060 --> 00:38:51,180 |
|
closed ูู
ู ููุง closed ู
ู ุฌุฐุฑ ุชูุงุชุฉ ูุบุงูุฉ infinity |
|
|
|
366 |
|
00:38:52,070 --> 00:38:57,710 |
|
ูุจูู ุญุฏุฏูุง ูุชุฑุฉ ุงูุชุฒุงูุฏ ุถุงููุฉ ูุชุฑุฉ ุงูุชูุงูุต ูุจูู |
|
|
|
367 |
|
00:38:57,710 --> 00:39:06,430 |
|
ุจุงุฌู ุจูููู ุงู ุงู F is decreasing ูุจูู ุฏุงูุฉ ุชูุงูุตูุฉ |
|
|
|
368 |
|
00:39:06,430 --> 00:39:13,410 |
|
ุนูู ุงููุชุฑุฉ ู
ู ุณุงูู ุฌุฐุฑ ุชูุงุชุฉ ุฅูู ุฌุฐุฑ ุชูุงุชุฉ ุจุงูุถุจุท |
|
|
|
369 |
|
00:39:13,410 --> 00:39:18,990 |
|
ุชู
ุงู
ุง ุฎูุตูุง ุงูู
ุทููุจ ุงูุฃูู ุจุฏูุง ููุฌู ูู
ุทููุจ ุงูุชุงูู |
|
|
|
370 |
|
00:39:18,990 --> 00:39:25,070 |
|
ูู
ุฑ ุจูููู ุญุฏุฏ ูู ุงู local extreme values ูุงุถุญ ุงูู |
|
|
|
371 |
|
00:39:25,070 --> 00:39:30,620 |
|
ุนูุฏู ููุง localุชุบูุฑุช ุงูุฅุดุงุฑุฉ ู
ู positive ุฅูู |
|
|
|
372 |
|
00:39:30,620 --> 00:39:35,500 |
|
negative ูุจูู maximum ููุง ุชุบูุฑุช ู
ู negative ุฅูู |
|
|
|
373 |
|
00:39:35,500 --> 00:39:43,420 |
|
positive ูุจูู minimum ุชู
ุงู
ุฅุฐุง ุจุฏูุง ูุญุณุจ F of ุณุงูุจ |
|
|
|
374 |
|
00:39:43,420 --> 00:39:51,380 |
|
ุฌุฐุฑ ุชูุงุชุฉ ููุณุงูู 2 ูู ุณุงูุจ ุฌุฐุฑ ุชูุงุชุฉ ููู ุชููุจ ุณุงูุจ |
|
|
|
375 |
|
00:39:51,380 --> 00:39:58,970 |
|
ุชู
ุงูุชุงุดุฑ ูู ุณุงูุจ ุฌุฐุฑ ุชูุงุชุฉ ููุณุงูููุฐู ุจุชุนุทููู ุงููู |
|
|
|
376 |
|
00:39:58,970 --> 00:40:06,230 |
|
ูู ุงูุณุงูุจ ุณุชุฉ ุฌุฐุฑ ุชูุงุชุฉ ููุฐู ุจุชุนุทููู ุชู
ุงูุชุงุดุฑ ุฌุฐุฑ |
|
|
|
377 |
|
00:40:06,230 --> 00:40:13,570 |
|
ุชูุงุชุฉ ููุณุงูู ุงุชูุงุดุฑ ุฌุฐุฑ ุชูุงุชุฉ ุจุฏูุง ูุญุณุจูู ุงู F of |
|
|
|
378 |
|
00:40:13,570 --> 00:40:20,330 |
|
ุฌุฐุฑ ุชูุงุชุฉ ูุจูู ูุฐู ุจุฏูุง ุชุณุงูู ุงุชููู ูู ุฌุฐุฑ ุชูุงุชุฉ |
|
|
|
379 |
|
00:40:20,330 --> 00:40:29,890 |
|
ููู ุชููุจ ููุต ุชู
ุงูุชุงุดุฑ ูู ุฌุฐุฑ ุชูุงุชุฉุงูุฌูุงุจ ูุณุงูู ุณุชุฉ |
|
|
|
380 |
|
00:40:29,890 --> 00:40:36,570 |
|
ุฌุฐุฑ ุชูุงุชุฉ ูุงูุต ุชู
ุงูุชุงุดุฑ ุฌุฐุฑ ุชูุงุชุฉ ููุณุงูู ูุงูุต |
|
|
|
381 |
|
00:40:36,570 --> 00:40:39,210 |
|
ุงุชูุงุดุฑ ุฌุฐุฑ ุชูุงุชุฉ |
|
|
|
382 |
|
00:40:44,240 --> 00:40:55,240 |
|
ุงูู F has a local maximum 12 ุฌุฏุฑ ุชูุงุชุฉ at x ูุณุงูู |
|
|
|
383 |
|
00:40:55,240 --> 00:40:57,280 |
|
ุณุงูู ุฌุฏุฑ ุชูุงุชุฉ |
|
|
|
384 |
|
00:41:05,890 --> 00:41:10,830 |
|
ุงูุฌุฐุฑ ุซูุงุซุฉ ุงูุชูููุง ู
ู ุงูู
ุทููุจ ุงูุซุงูู ูุจูู ูุง ุดุจุงุจ |
|
|
|
385 |
|
00:41:10,830 --> 00:41:15,630 |
|
ุฃูุง ุจูุชุจ ูุฐุง ุงููู ุจุงูุฃุญู
ุฑ ุจูุงุก ุนูู ุงููุชุงุฌ ุงููู |
|
|
|
386 |
|
00:41:15,630 --> 00:41:20,130 |
|
ุนูุฏู ู
ุด ุนูุฏ ุงูููู
ุฉ ุญุณุจ ู
ุง ูู ูู ุงูุฌุฏูู ููุง ูููุง |
|
|
|
387 |
|
00:41:20,130 --> 00:41:25,050 |
|
local maximum ููุง local minimum ูุจูุงุก ุนููู ููุช |
|
|
|
388 |
|
00:41:25,050 --> 00:41:29,110 |
|
local maximum ุนูุฏ ุงูุณุงูุจ ุชูุงุชุฉ ูlocal minimum ุนูุฏ |
|
|
|
389 |
|
00:41:29,110 --> 00:41:35,540 |
|
ุงูุฌุฐุฑ ุชูุงุชุฉุงูู
ุทููุจ ูู
ุฑู c ูุงู which if any of the |
|
|
|
390 |
|
00:41:35,540 --> 00:41:39,920 |
|
extreme values are absolute ูุจูู ุงูุง ุนูุฏู ููู
ุชูู |
|
|
|
391 |
|
00:41:39,920 --> 00:41:45,320 |
|
ู
ู
ู ูู
absolute ููุง ูุงุญุฏุฉ ูุฃูู ู
ุงุนูุฏูุด end points |
|
|
|
392 |
|
00:41:45,320 --> 00:41:50,020 |
|
interval ู
ุงุดูุฉ ูุบุงูุฉ ุณูุจ infinity ู ูุบุงูุฉ ู
ูุฌุฉ ุจ |
|
|
|
393 |
|
00:41:50,020 --> 00:42:00,320 |
|
infinity ูุจูู ูู
ุฑู c ุงู f has no absolute |
|
|
|
394 |
|
00:42:01,440 --> 00:42:06,540 |
|
extrema because |
|
|
|
395 |
|
00:42:06,540 --> 00:42:17,860 |
|
ุงู F has no end points ุงู ุงู domain ุชุจุน ุงู F has |
|
|
|
396 |
|
00:42:17,860 --> 00:42:24,800 |
|
no end points ุนููู ุงูุชูู ุงูุณุคุงู ูุฑูุญ ูุงุฎุฏ ุงูุณุคุงู |
|
|
|
397 |
|
00:42:24,800 --> 00:42:28,960 |
|
ุงูุซุงูู ุงูุณุคุงู |
|
|
|
398 |
|
00:42:28,960 --> 00:42:37,310 |
|
ุงูุซุงููุงูู F of X ุชุณุงูู ุงููู ูู ู
ููุ X ุชุฑุจูุน ูุงูุต |
|
|
|
399 |
|
00:42:37,310 --> 00:42:45,250 |
|
ุชูุงุชุฉ ุนูู X ูุงูุต ุงุชููู ูุงูู X ูุง ุชุณุงูู ุงุชููู |
|
|
|
400 |
|
00:42:58,950 --> 00:43:03,570 |
|
ุทุจุนุง ุงูุฏุงูุฉ ุบูุฑ ู
ุนุฑูุฉ ุนูุฏ ุงุชููู ููู ุงูุฏู
ูู ุจูุตูุฑ |
|
|
|
401 |
|
00:43:03,570 --> 00:43:07,630 |
|
ู
ู ุณุงูุจ infinity ูุบุงูุฉ ุงุชููู ู ู
ู ุงุชููู ู infinity |
|
|
|
402 |
|
00:43:07,630 --> 00:43:13,770 |
|
ูุจูู ุจุงุฌู ุจูููู domain ุงูุฏุงูุฉ F ู
ู ุณุงูุจ infinity |
|
|
|
403 |
|
00:43:13,770 --> 00:43:21,460 |
|
ูุบุงูุฉ ุงุชููู ุงุชุญุงุฏ ุงุชููู ู infinityุทุจ ุจูุฌูุจ ุงู |
|
|
|
404 |
|
00:43:21,460 --> 00:43:25,940 |
|
interval of increasing and decreasing ู
ู
ูู ุงุดุชู |
|
|
|
405 |
|
00:43:25,940 --> 00:43:29,900 |
|
ุงูู
ูุงู
ูู ู
ุดุชูุฉ ุงู bus ููู ูู ูุงุญุฏ ููููู ุงูุง ุจุณุด |
|
|
|
406 |
|
00:43:29,900 --> 00:43:34,900 |
|
ูุฃ ุงุณูู ู
ู ููุงู ุจูููุชูู ูุฏู ุจูุงูู ุจูุณู
ุฌุณู
ู ู
ุทููุฉ |
|
|
|
407 |
|
00:43:34,900 --> 00:43:38,660 |
|
ู ุจุนุฏ ููู ุจุฑูุญ ุจุดุชู ุจูููู ูุงููู ููุงู
ู ู
ุธูุฑ ุจูุณู
|
|
|
|
408 |
|
00:43:38,660 --> 00:43:43,500 |
|
ุฌุณู
ู ู
ุทููุฉ ู
ุงุฌุชูุด ุงุฐุง ุฏุฑุฌุฉ ุงู bus ุงูุจุฑ ู
ู ุงู ุชุณุงูู |
|
|
|
409 |
|
00:43:43,500 --> 00:43:49,790 |
|
ุฏุฑุฌุงุชุฃุฐุง ูุฐู ุงูู
ุซุงูุฉ ุจูุฏุฑ ุฃููู x ุชุฑุจูุน ูุงูุต ุชูุงุชุฉ |
|
|
|
410 |
|
00:43:49,790 --> 00:43:56,630 |
|
ุจุฏู ุฃุฌุณู
ูุง ุนู
ููุง ุนูู x ูุงูุต ุงุชููู ูููุง x ุจx ุชุฑุจูุน |
|
|
|
411 |
|
00:43:56,630 --> 00:44:02,250 |
|
ูุงูุต ุงุชููู x ุฒุงุฏ ุจุตูุฑ ูุงูุต ููุฐู ุฒุงุฏ ูุฐู ู
ุน ุงูุณูุงู
ุฉ |
|
|
|
412 |
|
00:44:02,250 --> 00:44:07,810 |
|
ุจุถู ุงุชููู x ูุงูุต ุชูุงุชุฉุงูุจุงูู ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู |
|
|
|
413 |
|
00:44:07,810 --> 00:44:12,190 |
|
ูุงูู
ูุณู
ุนููู ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ุจููุงุตู ุนู
ููุฉ ุงููุณู
ุฉ |
|
|
|
414 |
|
00:44:12,190 --> 00:44:19,690 |
|
ูุจูู 2x ุนูู x ูููุง ุฌุฏุงุด 2 2 ูู x ุจ2x ููุงูุต ููุง |
|
|
|
415 |
|
00:44:19,690 --> 00:44:26,070 |
|
ุฌุฏุงุดุฃุฑุจุนุฉ ูุฐู ุฒุงุฏ ู ูุฐู ุฒุงุฏ ูุฐูู ู
ุน ุงูุณูุงู
ุฉ ุจูุธู |
|
|
|
416 |
|
00:44:26,070 --> 00:44:30,170 |
|
ุฌุฏุงุด ูุงุญุฏ ูุจูู ุฎูุงุต ุทุจ ุงููู ูุนุทูู ุงูุนุงููุฉ ูุฅู |
|
|
|
417 |
|
00:44:30,170 --> 00:44:33,530 |
|
ุงูุจุงูู ู
ู ุงูุฏุฑุฌุฉ ุงูุตูุฑูุฉ ู ุงูู
ูุตูู
ุนูููุง ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
418 |
|
00:44:33,530 --> 00:44:40,560 |
|
ุงูุซุงููุฉ ูุจูู ุจุงุฌู ุจูููู ุงู F of Xูููู ุงูุณ ุชุฑุจูู |
|
|
|
419 |
|
00:44:40,560 --> 00:44:46,280 |
|
ูุงูุต ุชูุงุชุฉ ุนูู ุงูุณ ูุงูุต ุงุชููู ุจุฏู ุงูุชุจูุง ุจุดูู ุงุฎุฑ |
|
|
|
420 |
|
00:44:46,280 --> 00:44:52,200 |
|
ุงูุณ ุฒุงุฆุฏ ุงุชููู ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุงูุณ ูุงูุต ุงุชููู ูุจูู |
|
|
|
421 |
|
00:44:52,200 --> 00:44:56,800 |
|
ูุฐู ุงุณููุฉ ูู ุงูุดุบู ู
ููู ู
ู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
422 |
|
00:44:56,800 --> 00:45:01,500 |
|
ูุจูู ุฎูุงุต ุจุงุดุชุบู ุฏูุฑู ุงูุญูู ุทุจุนุง ูุฐุง ุดุจุงุจ ุงูุด ููุง |
|
|
|
423 |
|
00:45:01,500 --> 00:45:10,750 |
|
ุจูุณู
ูู ุงุจูุงุฌ ุงูุณู
ุชุช ููุฐุง ุงูุด ููุง ุจูุณู
ููุฃูุณ ูุณุงูู |
|
|
|
424 |
|
00:45:10,750 --> 00:45:14,990 |
|
ุงุชูููุ Vertical ุจุณ ุจุนุฏ ู
ุง ุชูุญุตูุงุ ุทุจ ููู |
|
|
|
425 |
|
00:45:14,990 --> 00:45:19,970 |
|
horizontal ุฃุณู
ุชุ ูุฃ ูุฅู ุถุฑุฑูุฉ ุงู bus ุฃุนูู ู
ู ุถุฑุฑูุฉ |
|
|
|
426 |
|
00:45:19,970 --> 00:45:24,210 |
|
ุงูู
ูุงู
ุงู limit ุจุชุนุทููู infinity ูุจุงูุชุงูู ููุจููุ |
|
|
|
427 |
|
00:45:24,210 --> 00:45:28,410 |
|
ุทุจ ุงุญูุง ูุฐุง ุจุฏูุง ุฅูุด ูุฑุณู
ุงูููู
ุ ู
ุด ุดุบูุชูุง ุงูุฑุณู
|
|
|
|
428 |
|
00:45:28,410 --> 00:45:33,400 |
|
ุงูููู
ุ ุชู
ุงู
ุุดุบูุชูุง ุจุณ ุจูุฌู ูุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต |
|
|
|
429 |
|
00:45:33,400 --> 00:45:40,000 |
|
ุฅุฐุง ุจุฏู ุฃุฌู ููููุทุฉ A ุจุฏู ุงู F prime of X ู
ุดุชุงูุฉ |
|
|
|
430 |
|
00:45:40,000 --> 00:45:46,460 |
|
ูุฐู ุจูุงุญุฏ ูุงุชููู ู
ุน ุงูุณูุงู
ุฉ ููุฐู X ูุงูุต ุงุชููู ููู |
|
|
|
431 |
|
00:45:46,460 --> 00:45:56,370 |
|
ุชุฑุจูุฉุจููุญุฏ ุงูู
ูุงู
ุงุช ูุจูู x ูุงูุต ุงุชููู ููู ุชุฑุจูุฉ |
|
|
|
432 |
|
00:45:56,370 --> 00:46:04,770 |
|
ุจูุตูุฑ x ูุงูุต ุงุชููู ููู ุชุฑุจูุฉ ูุงูุต ูุงุญุฏ ุทูุจ ููู ูุฐุง |
|
|
|
433 |
|
00:46:04,770 --> 00:46:11,330 |
|
ุงูุจุต ุจูุตูุฑ x ุชุฑุจูุฉูุงูุต ุฃุฑุจุนุฉ X ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูุงูุต |
|
|
|
434 |
|
00:46:11,330 --> 00:46:18,210 |
|
ูุงุญุฏ ุนูู X ูุงูุต ุงุชููู ููู ุชุฑุจูุฉ ูุนูู X ุชุฑุจูุฉ ูุงูุต |
|
|
|
435 |
|
00:46:18,210 --> 00:46:25,450 |
|
ุฃุฑุจุนุฉ X ุฒุงุฆุฏ ุชูุงุชุฉ ุนูู X ูุงูุต ุงุชููู ููู ุชุฑุจูุฉ ูุฐู |
|
|
|
436 |
|
00:46:25,450 --> 00:46:32,710 |
|
ูู
ูู ุชุญููููุง ูุจูู ุตุงุฑ ุงู F prime of X ูู X ูุงูุต |
|
|
|
437 |
|
00:46:32,710 --> 00:46:41,310 |
|
ูุงุญุฏูู x ูุงูุต ุชูุงุชุฉ ุนูู x ูุงูุต ุงุชููู ุงููู ุชุฑุจูุน |
|
|
|
438 |
|
00:46:43,800 --> 00:46:49,360 |
|
ุงูุงู ุจุงุฌู ุจูููู ุงู X ุชุณุงูู ูุงุญุฏ ูุงู X ุชุณุงูู ุชูุงุชุฉ |
|
|
|
439 |
|
00:46:49,360 --> 00:46:52,820 |
|
ูู
ุง ู
ูู ุงู critical ุจุณ ู
ุงูุงูููุด ูุงุช ุงู critical |
|
|
|
440 |
|
00:46:52,820 --> 00:46:56,460 |
|
ูุงููู ูุงุชูู ุงู interval ุฅุฐุง ู
ุงููุด ุฏุงุนู ุฃููุจ ุญุงูู ู |
|
|
|
441 |
|
00:46:56,460 --> 00:46:59,020 |
|
ุฃููู ูู ูุฐุง ุงู critical ูู ูุฃ ุจุฏู ุฃุดูู ุฅุดุงุฑุงุช |
|
|
|
442 |
|
00:46:59,020 --> 00:47:04,620 |
|
ุงูุฃููุงุต ุฏุบุฑู ู
ุจุงุดุฑุฉ ุชู
ุงู
ุ ุฅุฐุง ุจุงุฌู ุจูููู ุจูุฏุงุฌู |
|
|
|
443 |
|
00:47:04,620 --> 00:47:12,060 |
|
ุฃุฎุฏ ุฅุดุงุฑุฉ ุงูููุณ ุงูุฃูู X ูุงูุต ูุงุญุฏูุฐุง ุงูู real line |
|
|
|
444 |
|
00:47:12,060 --> 00:47:17,720 |
|
ุจูุงุฎุฏ ุงูู zero ุชุจุนู ุนูุฏ ุงููุงุญุฏ ุจุนุฏ ุงููุงุญุฏ positive |
|
|
|
445 |
|
00:47:17,720 --> 00:47:25,980 |
|
ู ูุจู ุงููุงุญุฏ negative ุจุฏุง ูุงุฎุฏ ุฅุดุงุฑุฉ ุงููู ูู ุงู X |
|
|
|
446 |
|
00:47:25,980 --> 00:47:31,940 |
|
ูุงูุต ุชูุงุชุฉ ูุฐุง ุงูุฎุท ุงููู ุนูุฏูุง ูุฐุง ูู ุจูุงุฎุฏ ุงู |
|
|
|
447 |
|
00:47:31,940 --> 00:47:38,080 |
|
zero ุชุจุนู ุฃููุ ุนูุฏ ุงูุชูุงุชุฉ ุจุนุฏ ุงูุชูุงุชุฉ ู
ูุฌุจ ู ูุจูู |
|
|
|
448 |
|
00:47:38,080 --> 00:47:45,030 |
|
ู
ุง ุดุงุก ุงููู negativeุจุฏุฃ ูุงุฎุฏ ุฅุดุงุฑุฉ ุงู X ูุงูุต ุงุชููู |
|
|
|
449 |
|
00:47:45,030 --> 00:47:50,370 |
|
ููู ุชุฑุจูุนุ ุจุนุฏูู ุจููู ูู ูุฐุง ุจูุงุฎุฏ ุงู zero ุชุจูู |
|
|
|
450 |
|
00:47:50,370 --> 00:47:58,530 |
|
ูููุ ุนูุฏ ุงุชูููุ ุจุนุฏ ุงุชููู ู
ูุฌุจ ู ุฌุงุจููู
ูุฌุจ ูู
ุงู |
|
|
|
451 |
|
00:47:58,530 --> 00:48:05,690 |
|
ุงูู ูู
ูุฉ ู
ุฑุจุน ุชู
ุงู
ุ ุจุนุฏ ููู ุจุฏูุง ุฅุดุงุฑุฉ ุงููู ูู X |
|
|
|
452 |
|
00:48:05,690 --> 00:48:11,410 |
|
ูุงูุต ูุงุญุฏ ูู ุงู X ูุงูุต ุชูุงุชุฉ ุนูู X ูุงูุต ุงุชููู ููู |
|
|
|
453 |
|
00:48:11,410 --> 00:48:18,450 |
|
ุชุฑุจูุฉ ููุฐุง ุงู line ุงููู ุนูุฏูุง ู ุฌููุง ูุญุฏุฏ ุงูุญุฏูุฏ |
|
|
|
454 |
|
00:48:18,450 --> 00:48:26,870 |
|
ุงูุฅูููู
ูุฉ ููู
ุง ุจูููู
ุง ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุชู
ุงู
ุ |
|
|
|
455 |
|
00:48:26,870 --> 00:48:34,770 |
|
ุทูุจ ูู ุงูุชูุงุชุฉ ููู ุงุชููู ููู ุงููุงุญุฏ ุทูุนูู ููุง ูููุง |
|
|
|
456 |
|
00:48:34,770 --> 00:48:42,830 |
|
ู
ูุฌุจ ูููุง ุณุงูุจ ูููุง ุณุงูุจ ูููุง ู
ูุฌุจ ูุนูู ุงูุฏุงูุฉ |
|
|
|
457 |
|
00:48:42,830 --> 00:48:49,710 |
|
ูุงูุช increasing ุตุงุฑุช decreasing ุจููุช decreasing |
|
|
|
458 |
|
00:48:49,710 --> 00:48:53,970 |
|
ุตุงุฑุช increasing ุจุงูุดูู ุงููู ูุฏููุง ููุง |
|
|
|
459 |
|
00:49:15,640 --> 00:49:24,920 |
|
ูุจูู ุจุงุฌู ุจููููู ุงู F is increasing ุฏูุชุฉ ุฒููุฏูุฉ on |
|
|
|
460 |
|
00:49:24,920 --> 00:49:32,320 |
|
ุงููุชุฑุฉ ู
ู ุณุงูุจ infinity ูุบุงูุฉ ุงููุงุญุฏ ู closed ุนูุฏ |
|
|
|
461 |
|
00:49:32,320 --> 00:49:40,580 |
|
ุงููุงุญุฏ and on ู ูุฐูู ู
ู ุนูุฏ ุงูุชูุงุชุฉ ูุบุงูุฉ infinity |
|
|
|
462 |
|
00:49:41,780 --> 00:49:51,620 |
|
ุจุนุฏูุง ุงู F is decreasing on ุฏุงูุฉ ุชูุงูุตูุฉ ุนูู |
|
|
|
463 |
|
00:49:51,620 --> 00:49:55,960 |
|
ุงููุชุฑุฉ ู
ู ุนูุฏ ุงููุงุญุฏ ูุบุงูุฉ ุงุชููู ู
ูุชูุญุฉ ู
ู ุนูุฏ |
|
|
|
464 |
|
00:49:55,960 --> 00:50:01,440 |
|
ุงุชููู ููุด ุงู ุงูุฏุงูุฉ ุบูุฑ ู
ุนุฑูุฉ ุนูุฏ ุงุชููู ุงุชุญุงุฏ |
|
|
|
465 |
|
00:50:01,440 --> 00:50:10,000 |
|
ุงุชููู ู ุชูุงุชุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ู
ูู |
|
|
|
466 |
|
00:50:10,000 --> 00:50:10,680 |
|
ุงููู ุจูุญูู |
|
|
|
467 |
|
00:50:30,910 --> 00:50:34,090 |
|
ุทูุจ ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ |
|
|
|
468 |
|
00:50:34,090 --> 00:50:37,910 |
|
ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ |
|
|
|
469 |
|
00:50:37,910 --> 00:50:40,630 |
|
ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ |
|
|
|
470 |
|
00:50:40,630 --> 00:50:44,820 |
|
ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจูู ูู
ุฑ ุจููููุง ููู ูุฃ ููุง |
|
|
|
471 |
|
00:50:44,820 --> 00:50:50,860 |
|
local minimum ุฅุฐุง ุจุฏูุง ูุญุณุจูู ููุท F of ูุงุญุฏ ู F of |
|
|
|
472 |
|
00:50:50,860 --> 00:50:58,240 |
|
ุชูุงุชุฉ ูุจูู ุจุงุฏู ุจุงุฎุฏูู F of ูุงุญุฏ F of ูุงุญุฏ ูุณุงูู |
|
|
|
473 |
|
00:50:58,240 --> 00:51:04,180 |
|
ูุงู ูุงุญุฏ ุชุฑุจูุน ูุงูุต ุชูุงุชุฉ ุนูู ูุงุญุฏ ูุงูุต ุงุชููู |
|
|
|
474 |
|
00:51:04,180 --> 00:51:08,720 |
|
ุจูุจูู ููุง ูุงูุต ุงุชููู ุนูู ูุงูุต ูุงุญุฏ ูุณุงูู ุงุชููู |
|
|
|
475 |
|
00:51:09,070 --> 00:51:16,690 |
|
ูุจุฏูุง ุงู F of ุชูุงุชุฉ ููุณูู ุชูุงุชุฉ ุชุฑุจูุน ูุงูุต ุชูุงุชุฉ |
|
|
|
476 |
|
00:51:16,690 --> 00:51:23,510 |
|
ุนูู ุชูุงุชุฉ ูุงูุต ุงุชููู ูุจูู ุชุณุนุฉ ูุงูุต ุชูุงุชุฉ ููู ุณุชุฉ |
|
|
|
477 |
|
00:51:23,510 --> 00:51:33,830 |
|
ุนูู ูุงุญุฏ ููุณูู ุณุชุฉ ูุจูู ุงู F has local maximum |
|
|
|
478 |
|
00:51:35,620 --> 00:51:44,680 |
|
local maximum ูุชููู at x ูุณุงูู ูุงุญุฏ and local |
|
|
|
479 |
|
00:51:44,680 --> 00:51:52,340 |
|
minimum ุณุชุฉ at x ูุณุงูู ุชูุงุชุฉ ูุงุญุฏ ูููู ุทุจ ูู ุงู |
|
|
|
480 |
|
00:51:52,340 --> 00:51:58,300 |
|
minimum ุณุชุฉ ู ุงู maximum ุจููุน ูููู ุงุชูููุงูุง ูุฐู |
|
|
|
481 |
|
00:51:58,300 --> 00:52:03,600 |
|
ููู
ููุด ู
ูุญูุง ู
ู
ูู ูููู ุฌูุณ ุชุญุช ู ุฌูุณ ููู ุตุญูุญ ุงูุง |
|
|
|
482 |
|
00:52:03,600 --> 00:52:07,520 |
|
ุจูุจูู ุตุงุฑุช ุงููู ููู ูุฐู local maximum ู ูุฐู ุงููู |
|
|
|
483 |
|
00:52:07,520 --> 00:52:12,960 |
|
ุชุญุช local minimum ุจูู
ูุงุด ูุจูู ุงูุง ุจูุชุจ ูุชุงุฌ ู
ุซู ู
ุง |
|
|
|
484 |
|
00:52:12,960 --> 00:52:18,720 |
|
ุจุทูุนูุง ุงูู ุชู
ุงู
ุง ูุฌู ููู
ุฑู ุฏูุ ูู
ุฑู ุฏู ุจูููู ู
ูู |
|
|
|
485 |
|
00:52:18,720 --> 00:52:21,360 |
|
ู
ู ุงู local maximum ู ุงู local minimum ุชุจูู |
|
|
|
486 |
|
00:52:21,360 --> 00:52:26,340 |
|
absolute ุจูููููุง ุงููู ุชุนุงูู ููุง ุฌุงููู ู
ู ููู ุงุญูุงุ |
|
|
|
487 |
|
00:52:29,660 --> 00:52:32,740 |
|
ู
ุงุนูุฏูุด end pointุ ุณูุงุก ุนูุฏู ุงุชููู ุงูุฏุงูุฉ ุบูุฑ |
|
|
|
488 |
|
00:52:32,740 --> 00:52:42,820 |
|
ู
ุนุฑูุฉ ูุจูู ุจุงุฌู ุจููู ุงู F has no absolute extrema |
|
|
|
489 |
|
00:52:42,820 --> 00:52:49,380 |
|
because domain |
|
|
|
490 |
|
00:52:51,500 --> 00:53:03,500 |
|
ุงูู F has no end points ู
ุงุนูุฏูุด ุทุจ ุงูุณุคุงู ุงูุชุงูุช |
|
|
|
491 |
|
00:53:03,500 --> 00:53:12,620 |
|
ุงูุณุคุงู ุงูุชุงูุช ุจูููู F of X ูุณุงูู |
|
|
|
492 |
|
00:53:12,620 --> 00:53:20,140 |
|
X ุฃุณุทู ุชูู ูู
ูู ูู X ุฒุงุฆุฏ ุฎู
ุณุฉ |
|
|
|
493 |
|
00:53:24,460 --> 00:53:31,140 |
|
ูููุณ ุทุจ ุฅูู ุฅูุด ุฑุฃููุ ูุฐู ุจุฏู ู
ุง ูู ุญุงุตู ุถุฑุจ ุฏูุช |
|
|
|
494 |
|
00:53:31,140 --> 00:53:38,360 |
|
ุฎููุง ููููุง ูุฎูุงุต ูุนูู ูุฐู ุจูุตูุฑ X ุฃุณ ุฌุฏูุด ุฎู
ุณุฉ ุน |
|
|
|
495 |
|
00:53:38,360 --> 00:53:48,930 |
|
ุชูุงุชุฉ ุฒู ุฎู
ุณุฉ X ุฃุณ ุทููุชููุจุฏูุง ุงู F prime of X ูุจูู |
|
|
|
496 |
|
00:53:48,930 --> 00:53:59,530 |
|
ูุณุงูู ุฎู
ุณ ุฃุชูุงุช X ุฃุณ ุชูุชูู ุฒุงุฆุฏ ุนุดุฑ ุฃุชูุงุช X ุฃุณุงููุจ |
|
|
|
497 |
|
00:53:59,530 --> 00:54:05,890 |
|
ุชูุชู
ุธุจูุท ูููุ ุทุจ ุจุฏูุง ูุฌูุจ ุงู critical points ุงู |
|
|
|
498 |
|
00:54:05,890 --> 00:54:10,690 |
|
ุจุฏู ุงูุชุจ ูุฐู ุงูุดููุฉ ูููุณ ู
ุดุงู ุงูุฏุฑ ุงุญุฏุฏ ุงูุฅุดุงุฑุงุช |
|
|
|
499 |
|
00:54:10,690 --> 00:54:17,030 |
|
ุจููููุง ูุฐู ุจุณูุทุฉ ูุจูู ูุฐู ุฎู
ุณุฉ ุนูู ุชูุงุชุฉ X ุฃุณ |
|
|
|
500 |
|
00:54:17,030 --> 00:54:24,320 |
|
ุทููุชูู ุฒุงุฆุฏ ุนุดุฑุฉ ุนูู ุชูุงุชุฉ X ุฃุณ ุทููุชููุฃูุณ ุฃุณ ุณุงูุจ |
|
|
|
501 |
|
00:54:24,320 --> 00:54:30,920 |
|
ุชูุช ูุฒูุชูุง ุชุญุช ุตุงุฑุช ู
ูู ุจุงูู
ุนุฌุจ ุฅุฐุง ูุฐุง ููู ุจูุฏุฑ |
|
|
|
502 |
|
00:54:30,920 --> 00:54:37,440 |
|
ุฃููู ุชูุงุชุฉ ุฃูุณ ุฃุณ ุชูุช ุนุงู
ู ู
ุดุชุฑู ู
ู ุงููู ุนูู ุชูุงุชุฉ |
|
|
|
503 |
|
00:54:37,440 --> 00:54:43,060 |
|
ุจุถูุด ุงููู ุนูุฏู ุฎู
ุณุฉ ุฃูุณ ุฃุณ ุชูุช ูู ุฃูุณ ุฃุณ ุชูุชูู ุจุถู |
|
|
|
504 |
|
00:54:43,060 --> 00:54:50,950 |
|
ุฎู
ุณุฉ ุฃูุณููุท ูุบุงูุฉ ุชูุชูู ุฒุงุฆุฏ ุชูุช ุชูุงุชุฉ ุน ุชูุงุชุฉ |
|
|
|
505 |
|
00:54:50,950 --> 00:54:59,550 |
|
ูุนูู ูุงุญุฏ ุตุญูุญ ูููุง ุฒุงุฆุฏ ุนุดุฑุฉ ุงู ุฎู
ุณุฉ ูู X ุฒุงุฆุฏ |
|
|
|
506 |
|
00:54:59,550 --> 00:55:07,750 |
|
ุงุชููู ุนูู ุชูุงุชุฉ X ูุต ุชูุช ุทุจ ูุจูู ุงู critical |
|
|
|
507 |
|
00:55:07,750 --> 00:55:14,060 |
|
points ู
ู ู ู
ูุุณุงูู ุจุงุชููู ูู
ููุ ู Zero ูุฃู ุนูุฏ ุงู |
|
|
|
508 |
|
00:55:14,060 --> 00:55:18,780 |
|
Zero ุงูู
ุดุชูุฉ ุบูุฑ ู
ุนุฑูุฉ ูุจูู ูู ุณููุช ุจุงู Zero ุงูุจุต |
|
|
|
509 |
|
00:55:18,780 --> 00:55:21,660 |
|
ูู ุจุงูุณุงูู Zero ูุจุงูุชุงูู ุงู critical point CX ุณุงูู |
|
|
|
510 |
|
00:55:21,660 --> 00:55:28,660 |
|
ุณุงูู ุจุงุชููู ููุฐูู X ูุณุงูู Zero ุฃูุถุง ู
ุงุญุทูุชุด ุงู ูุฐุง |
|
|
|
511 |
|
00:55:28,660 --> 00:55:34,050 |
|
ุงูุณุคุงู ุงููู ุฌุงุจูู ุงูุง ููุช ุงู A6 local maximumุฃูุง |
|
|
|
512 |
|
00:55:34,050 --> 00:55:39,410 |
|
ููุช ู ุญููุชูุง ุจุณ ุฃูุช ููุช ูู ู
ุฌุงู ุขุฎุฑ ู ุจุฏู ุฃุนูุฏูุง |
|
|
|
513 |
|
00:55:39,410 --> 00:55:44,330 |
|
ุจุฑุถู ู
ุด ูุงูุฎุทูุ ุดู ุงุณู
ู ุฃูุชุ ุชุงู
ุฑ ุฌุฑุงุฏุฉุ ุงุญูุง ูู |
|
|
|
514 |
|
00:55:44,330 --> 00:55:48,670 |
|
ุงูุณุคุงู ุงูุณุงุจู ู ููุณ ูู ุงูุณุคุงู ูุฐุง ุทูุจุ ุนูู ุฃู ุญุงูุ |
|
|
|
515 |
|
00:55:48,670 --> 00:55:53,710 |
|
ุดููุช ุงูุฑุณู
ุฉ ุฅูุด ูุงูุช ุนูุฏู ููุงุ ุฅูุด ูู ุนูุฏ ุงููุงุญุฏุ |
|
|
|
516 |
|
00:55:53,710 --> 00:56:01,500 |
|
F' ุบูุฑุช ุฅุดุฑุชูุง ู
ู ู
ูุฌุฉ ุจููุง ุงูุณูุจูุฉุ ุฅูุด ุนูุฏูุููุง |
|
|
|
517 |
|
00:56:01,500 --> 00:56:07,580 |
|
ูู ููุฑุด ู
ู ุณุงูุจ ูุฃ ู
ูุฌุฉ ุจูุจูุงุด ุนูุฏู ุนูุฏู ุชูุงุชุฉ |
|
|
|
518 |
|
00:56:07,580 --> 00:56:12,500 |
|
ุทูุนุช ุณุชุฉ ู
ุธุจูุท ููุง ู
ู ุนุดุงู ูุฐู ุงุชููู ู ูุฐู ุณุชุฉ ุณุชุฉ |
|
|
|
519 |
|
00:56:12,500 --> 00:56:17,460 |
|
ู
ุณุชููุฉ ู
ุด ุฌุฒูู ูุฐุง ูู ุนูุฏู ุฃุจูุฌุฒ ุณู
ุชุทูุน ูุฑุง ุณู
|
|
|
|
520 |
|
00:56:17,460 --> 00:56:21,460 |
|
ุชุฌูุฒ ุจุชุทูุน ูููู ุฌูุณ ุจูุทูุน ุชุญุช ูุจูู ูุฐู local |
|
|
|
521 |
|
00:56:21,460 --> 00:56:25,500 |
|
maximum ู ูุฐู ุงููู ููู ุจูุตูุฑ local minimum |
|
|
|
522 |
|
00:56:25,500 --> 00:56:30,180 |
|
ูุงุนุฏูุงูุง ูู
ุงู ู
ุฑุฉ ุนูููุง ุงููู ุนูุฏ ุงูุฑุณู
ุจุฑุถู ูู ุงู |
|
|
|
523 |
|
00:56:30,180 --> 00:56:34,280 |
|
section ุงููุงุฏู
ุงููู ุณูุจุฏุฃู ุจุนุฏ ูููู ูุชุดูู ุดุบูุงุช ุฒู |
|
|
|
524 |
|
00:56:34,280 --> 00:56:38,670 |
|
ูุฏูุชุดูู ุดุบูุงุช ุนู
ููุฉ ูุฑุฌุน ูุณุคุงููุง ูุง ุดุจุงุจ ุงุญูุง |
|
|
|
525 |
|
00:56:38,670 --> 00:56:42,350 |
|
ุฌูุจูุง ุงูู
ุดุชูุฉ ุงูุฃููู ู ุฃุตุจุญุช ุงูู
ุดุชูุฉ ุงูุฃููู ุนูู |
|
|
|
526 |
|
00:56:42,350 --> 00:56:46,850 |
|
ุงูุดูู ุฎู
ุณุฉ ูู X ุฒุงุฆุฏ ุงุชููู ุนูู ุชูุงุชุฉ X ุฃุณ ุทูู ุชุจูู |
|
|
|
527 |
|
00:56:46,850 --> 00:56:51,130 |
|
ุงู critical point ูุณุงูุจ ุงุชููู ู Zero ุฅุฐุง ุจุชุดูู |
|
|
|
528 |
|
00:56:51,130 --> 00:56:57,170 |
|
ุฅุดุงุฑุฉ ูู term ู
ู ูุฏูู ุงู termููุฅุฐุง ูู ุฌูุช Gulf ุจุฏู |
|
|
|
529 |
|
00:56:57,170 --> 00:57:04,210 |
|
ุฃุฎุฏ ุฅุดุงุฑุฉ ุฎู
ุณุฉ ูู X ุฒุงุฆุฏ ุงุชููู ูุฐุง ุงู real line |
|
|
|
530 |
|
00:57:04,210 --> 00:57:10,270 |
|
ุจูุงุฎุฏ ุงู zero ุชุจุน ูููุ ุนูุฏ ุงูุณุงูุจ ุงุชููู ุจุนุฏ ุงูุณุงูุจ |
|
|
|
531 |
|
00:57:10,270 --> 00:57:19,050 |
|
ุงุชููู ุงูุด ุจุชููู ุงูููู
ุฉุ ู ูุจููุุทูุจ ุจุฏู ูุงุฎุฏ ุฅุดุงุฑุฉ |
|
|
|
532 |
|
00:57:19,050 --> 00:57:26,050 |
|
ุงููู ูู ุชูุงุชุฉ ุฅูุณูุณ ุทูู ุจูุงุฎุฏ ุงู zero ุชุจุน ูููุ ุนูุฏ |
|
|
|
533 |
|
00:57:26,050 --> 00:57:31,710 |
|
ุงู zero ุจุนุฏ ุงู zero ู ูุจู ุงู zero ุทูุจ ุงูุฏู
ูู ุชุจุน |
|
|
|
534 |
|
00:57:31,710 --> 00:57:37,560 |
|
ุฏู ุงููู ูุฏ ู
ููุูู ุงูุงุฑ ุจูุง ุงุณุชุซูุงุก ูุจูู ูุง ุนูุฏู |
|
|
|
535 |
|
00:57:37,560 --> 00:57:43,820 |
|
ู
ุดููุฉ ูู ูุฐู ุงูุญุงูุฉ ุฅุฐุง ุจุฏู ุฅุดุงุฑุฉ ุฎู
ุณุฉ ูู ุฅูุณ ุฒุงุฆุฏ |
|
|
|
536 |
|
00:57:43,820 --> 00:57:49,860 |
|
ุงุชููู ุนูู ุชูุงุชุฉ ุฅูุณ ุฃุณ ุทูู ู ูุฐุง ุงู real line ู |
|
|
|
537 |
|
00:57:49,860 --> 00:57:57,480 |
|
ุจุฏู ููุฌู ูุญุฏุฏ ุงูุญุฏูุฏ ุงูุฅูููู
ูุฉ ุฃู ุณุงูุจ ุงุชููู ุฃู ุฃู |
|
|
|
538 |
|
00:57:57,480 --> 00:58:04,780 |
|
ุฒูุฑู ููุง ู
ูุฌุจ ููุง ุณุงูุจ ููุง ู
ูุฌุจุณุงูุจ ุนูู ุณุงูุจ |
|
|
|
539 |
|
00:58:04,780 --> 00:58:09,340 |
|
ุจู
ูุฌุจุ ู
ูุฌุจ ุนูู ุณุงูุจ ุจุณุงูุจุ ู
ูุฌุจ ุนูู ู
ูุฌุจ ุจู
ูุฌุจ. |
|
|
|
540 |
|
00:58:09,760 --> 00:58:16,640 |
|
ูุจูู ุงูุฏุงูุฉ ูุงูุช increasing. ุฅูุด ุตุงุฑุชุ decreasing. |
|
|
|
541 |
|
00:58:17,020 --> 00:58:23,320 |
|
ุฅูุด ุฑุฌุนุชุ increasing. ูุจูู ูุง ุชู
ุฑ ูุง ุฌุฑุงุฏุฉ ุฅูุด |
|
|
|
542 |
|
00:58:23,320 --> 00:58:28,910 |
|
ุฑุฃููุ ุนูุฏู ุงูุณุงูุจ ุงุชููู ููุงุ ุฅูุด ูููุูุนูุฏู zero |
|
|
|
543 |
|
00:58:28,910 --> 00:58:34,710 |
|
ุจุฏูุง ูุญุณุจ ููู
ุฉ ุฏู ูู ุฌุฏ ู
ุง ุชุทูุน ุชุทูุน ุจูู
ูุงุด ุทุจุนุง |
|
|
|
544 |
|
00:58:34,710 --> 00:58:40,310 |
|
ุงุฐุง ุจุฏูุง ูุฑูุญ ูุญุณุจ F of ุณุงูู ุจุงุชููู ูุจูู ุจุฏูุง ููุฌู |
|
|
|
545 |
|
00:58:40,310 --> 00:58:45,790 |
|
ูุงุฎุฏ F of ุณุงูู ุจุงุชููู ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
546 |
|
00:58:45,790 --> 00:58:53,400 |
|
ุณุงูู ุจุงุชููู ุฃุณ ุชูุชูู ูู ุณุงูู ุจุงุชููู ุฒุงุฆุฏ ุฎู
ุณุฉุทุจ |
|
|
|
547 |
|
00:58:53,400 --> 00:58:59,780 |
|
ูููุณ ูุฐุง ุจุฏู ูุนุทููุง ู
ููุ ุจุฏู ูุนุทููุง ุชูุงุชุฉ ูุฐุง |
|
|
|
548 |
|
00:58:59,780 --> 00:59:05,400 |
|
ุงูุฌุฐุฑ ุงูุชุงูุช ูุณูุจ ุงุชููู ุชุฑุจูุฉ ุณูุจ ุงุชููู ุชุฑุจูุฉ |
|
|
|
549 |
|
00:59:05,400 --> 00:59:10,940 |
|
ู
ุงููุฏุงุดุ ูุจูู ุงูุฌุฐุฑ ุงูุชุงูุช ูุงุฑุจุนุฉุ ูุจูู ุชูุงุชุฉ |
|
|
|
550 |
|
00:59:10,940 --> 00:59:21,340 |
|
ุงูุฌุฐุฑ ุชูุงุชุฉ ุงูุฌุฐุฑ ุชุงูุชูุฃุฑุจุนุฉ ุชู
ุงู
ุจุฏูุง ููุฌู ูุญุณุจ F |
|
|
|
551 |
|
00:59:21,340 --> 00:59:28,480 |
|
of Zero Background Zero ูุจูู ุจุนุฏู ุจูููู ุงู F has |
|
|
|
552 |
|
00:59:28,480 --> 00:59:37,480 |
|
local maximum ุชูุงุชุฉ ุงูุฌุฏุฑู ุงูุชุงูุช ูุฃุฑุจุนุฉ X ูุณุงูู |
|
|
|
553 |
|
00:59:37,480 --> 00:59:43,100 |
|
ุณุงูู ุจุงุชููู ุงู F has local minimum Zero |
|
|
|
554 |
|
00:59:46,710 --> 00:59:53,870 |
|
ุงูุณุคุงู ูู ูู ุนูุฏู absolute maximum ุงู minimumุ ูุฃ |
|
|
|
555 |
|
00:59:53,870 --> 00:59:55,990 |
|
ูุงู ู
ุงุนูุฏูุด end points |
|
|
|
556 |
|
01:00:13,680 --> 01:00:26,240 |
|
ุทูุจ ูุฌูุน ูู
ุณู if has no absolute extrema because |
|
|
|
557 |
|
01:00:26,240 --> 01:00:37,040 |
|
ุงู domain ุจุชุจุน ุงู if has no end points |
|
|
|
558 |
|
01:00:39,260 --> 01:00:45,260 |
|
ุทูุจ ููุฌู ูุฐุง ุงูุณุคุงู ุงูุชุงูุช ููุฌู ููุฐุง ุงูุณุคุงู ุงูุฑุงุจุน |
|
|
|
559 |
|
01:00:45,260 --> 01:00:52,060 |
|
ูุงูุงุฎูุฑ ูู ูุฐุง ุงู section ุงูู ุงูุณุคุงูุ ุทูุจ ู
ุซูุง ูู |
|
|
|
560 |
|
01:00:52,060 --> 01:00:55,700 |
|
ุงูุง ุงูุชุฑุงุถ ุงู minimum ุงู ุงู maximum ุณุงุนุฏูุง ูู ุฃูุถู |
|
|
|
561 |
|
01:00:55,700 --> 01:01:01,420 |
|
ุญุงุฌุฉุ ูููุ ูู ุงููุ ุงู minimum ุงูููู
ุฉ ุงู minimum |
|
|
|
562 |
|
01:01:01,420 --> 01:01:04,400 |
|
value ุฃู ุงู absolute ู
ุซูุง |
|
|
|
563 |
|
01:01:12,440 --> 01:01:17,400 |
|
ู
ุด ุฑุงูู ุชุตุจุฑ ุดููุฉ ุจุณ ูุงุฎุฏ ุงูู
ุซุงู ุงูุฃุฎูุฑ ูุฐุงุ ุจุณ |
|
|
|
564 |
|
01:01:17,400 --> 01:01:20,500 |
|
ุฎููู ู
ุญุชูุธ ุจุงูุณุคุงูุ ูู
ูู ูุฌุงูุจ ุนููู ูู ุงูุณุคุงู |
|
|
|
565 |
|
01:01:20,500 --> 01:01:29,410 |
|
ุงูุฃุฎูุฑูุจู ุงูุชูู
ู ูุงูุง ุงูุชุจูู ูุฐุง f of x ุจุฏู ูุณุงูู |
|
|
|
566 |
|
01:01:29,410 --> 01:01:38,490 |
|
ุงููู ูู ุงู X ุชููุจ ูุงูุต ุชูุงุชุฉ X ุชุฑุจูุน ู ุณุงูุจ |
|
|
|
567 |
|
01:01:38,490 --> 01:01:44,770 |
|
infinity ุงูู ู
ู ุงู X ุงูู ู
ู ุงู ูุณุงูู ุชูุงุชุฉ |
|
|
|
568 |
|
01:01:51,740 --> 01:01:59,800 |
|
ุจูุฌูุจ ุงูู f prime of x ูุจูู ุชูุงุชุฉ x ุชุฑุจูู ูุงูุต ุณุชุฉ |
|
|
|
569 |
|
01:01:59,800 --> 01:02:07,180 |
|
x ูู ุนูุฏู ุนุงู
ู ู
ุดุชุฑู ุงููู ูู ูุฏุงุด ุชูุงุชุฉ x ุจูุธู x |
|
|
|
570 |
|
01:02:07,180 --> 01:02:15,700 |
|
ูุงูุต ุงุชููู ูุจูู ุงู critical points ูู zero ู ุงุชููู |
|
|
|
571 |
|
01:02:15,700 --> 01:02:21,930 |
|
ููุท ูุง ุบูุฑ ู
ุธุจูุท ูุจูู ุงุญูุง ุจุฏูุง ูุจุญุซ ุงูุฅุดุงุฑุงุชูุจูู |
|
|
|
572 |
|
01:02:21,930 --> 01:02:30,330 |
|
ุจุฏ ุฅุดุงุฑุฉ 3x ุจูููู ุจุชุงุฎุฏ ุงู zero ุชุจุนู ุฃููุ ุนูุฏ ุงู |
|
|
|
573 |
|
01:02:30,330 --> 01:02:35,990 |
|
zero ู ุจุนุฏ ุงู zeroุ ู
ูุฌุจ ู ูุจู ุงู zeroุ ุทุจ ุนูู |
|
|
|
574 |
|
01:02:35,990 --> 01:02:42,140 |
|
ุฅุทูุงู ูู ุงููู ู
ุญุฏูุฏุฉุจุฏู ุงูุถู ูุนูุฏู ุงูุชูุงุชุฉ ู
ู
ููุน |
|
|
|
575 |
|
01:02:42,140 --> 01:02:47,240 |
|
ุชุชุญุฏู ุงูุชูุงุชุฉ ุชุชุนุฏู ู
ุงุนูุฏูุด ุจุนุฏ ุงูุชูุงุชุฉ ุฏููุง ุชู
ุงู
|
|
|
|
576 |
|
01:02:47,240 --> 01:02:52,100 |
|
ุจุฌูุฉ ุฏู ููุณุช ุทุจุนุง ุจุณ ู
ู ุนู ุฌูุฉ ุงูุดู
ุงู ุนูู ุฅุทูุงููุง |
|
|
|
577 |
|
01:02:52,100 --> 01:02:55,640 |
|
ุงููู ุณูู ุนูููุง ูุฌูุจ ู
ู ุณุงูุจ infinity ูุบุงูุฉ ู
ูู |
|
|
|
578 |
|
01:02:55,640 --> 01:03:03,140 |
|
ูุบุงูุฉ ุงูุชูุงุชุฉ ุจุนุฏ ููู ุจุฏู ุฅุดุงุฑุฉ X ูุงูุต 2 ุชุงุฎุฏ ุงู |
|
|
|
579 |
|
01:03:03,140 --> 01:03:10,490 |
|
zero ุชุจุนูุง ููู ุนูุฏ 2 ุจุนุฏ 2ู ุชูุงุชุฉ ุจุฏู ุงููู ู ูุจู |
|
|
|
580 |
|
01:03:10,490 --> 01:03:16,970 |
|
ูู set ุจุงูุดูู ุงููู ุงููุง ุฏู ุจุนุฏ ููู ุจุฏู ุงุดุงุฑุฉ ุชูุงุชุฉ |
|
|
|
581 |
|
01:03:16,970 --> 01:03:24,410 |
|
x ูู x ูุงูุต ุงุชููู ู ุจููุฌู ุงูู ุงูุญุฏูุฏ ุงูุงูููู
ูุฉ |
|
|
|
582 |
|
01:03:24,410 --> 01:03:31,950 |
|
ูุจูู ูู zeroูู ุงู ุงุชููู ููู ุงู ู
ูู ุชูุงุชุฉ ุจุนุฏ |
|
|
|
583 |
|
01:03:31,950 --> 01:03:36,550 |
|
ุงูุชูุงุชุฉ ู
ุงุนูุฏูุด ูุจูู ูุฐุง ุงูุฌุซูู
ู
ุถุฑุจุงุช ูู ุจุนุถ ุถุฑุจ |
|
|
|
584 |
|
01:03:36,550 --> 01:03:42,770 |
|
ูุจูู ุณุงูุจ ูุจูู ู
ูุฌุจ ุงุชุฏุงูุฉ increasing ุตุงุฑุช |
|
|
|
585 |
|
01:03:42,770 --> 01:03:48,650 |
|
decreasing ุฑุฌุนุช increasing ูุจูู ุจูุฏุฑ ุงููู ู
ุงุชู |
|
|
|
586 |
|
01:03:48,650 --> 01:03:58,850 |
|
ูู
ุฑุฉ ุงูู ุงู F is increasing onู
ู ุณุงูุจ infinity |
|
|
|
587 |
|
01:03:58,850 --> 01:04:07,150 |
|
ูุบุงูุฉ ู
ู ุงู zero and on ููุฐูู ู
ู ุงูุงุชููู ูุบุงูุฉ |
|
|
|
588 |
|
01:04:07,150 --> 01:04:07,950 |
|
ุงูุชูุงุชุฉ |
|
|
|
589 |
|
01:04:11,680 --> 01:04:20,360 |
|
ุงูุขู ุงู F is decreasing ุฏู ูุชูุงูุตูุฉ ุนูู ุงููุชุฑุฉ ู
ู |
|
|
|
590 |
|
01:04:20,360 --> 01:04:24,940 |
|
Zero ูุบุงูุฉ ูุฏู ุงุด ูุบุงูุฉ ุงุชููู ุฎูุตูุง ุงูู
ุทููุจ ุงูุฃูู |
|
|
|
591 |
|
01:04:24,940 --> 01:04:32,160 |
|
ุจูุงูู ุฌู ูุญุณุจูู ุงู F of ูู
ุฑุฉ ุจู ุงู F of Zero ุงู F |
|
|
|
592 |
|
01:04:32,160 --> 01:04:39,120 |
|
of Zero ุชุณุงูู Zero ูุงูุชุงููุฉ ุงู F of ุงุชูููF of |
|
|
|
593 |
|
01:04:39,120 --> 01:04:46,560 |
|
ุงุชููู ูุณุงูู ุงุชููู ุชูุนูุจ ูุงูุต ุชูุงุชุฉ ูู ุงุชููู ุชุฑุงุจูุน |
|
|
|
594 |
|
01:04:48,150 --> 01:04:54,550 |
|
ุชู
ุงู
ุ ุทูุจ ูุฐู ุจุชุตูุฑ ุชู
ุงููุฉ ูุงูุต ุงุชูุงุดุฑ ู ูุณุงูู |
|
|
|
595 |
|
01:04:54,550 --> 01:05:03,110 |
|
ูุฏุงุดุฑุ ูุงูุต ุงุฑุจุน ุงุฐุง ุนูุฏู zero ูู ุนูุฏู ุงูุดุ ูู |
|
|
|
596 |
|
01:05:03,110 --> 01:05:09,430 |
|
ุนูุฏู zero ูู local maximum ูุจูู if has local |
|
|
|
597 |
|
01:05:09,430 --> 01:05:19,510 |
|
maximum0 at x ูุณุงูู 0 ุชู
ุงู
ุ ุทุจ ุฅูุด ุฑุฃูู ุนูุฏ |
|
|
|
598 |
|
01:05:19,510 --> 01:05:28,290 |
|
ุงูุชูุงุชุฉุ ุทูุจ ุนูุฏ ุงูุชูุงุชุฉ ุจุฏูุง ูุฌูุจูู ูู
ุงู F of |
|
|
|
599 |
|
01:05:28,290 --> 01:05:34,390 |
|
ุชูุงุชุฉ ูุจูู ุจุตูุฑ ุนูุฏู ูุณุงูู ุชูุงุชุฉ |
|
|
|
600 |
|
01:05:40,050 --> 01:05:49,440 |
|
ุชูุงุชุฉ ูู ุชูุงุชุฉ ุชููุจ ูุงูุต ุชูุงุชุฉ ูู ุชูุงุชุฉ ุชุฑุจูุนูู |
|
|
|
601 |
|
01:05:49,440 --> 01:05:57,400 |
|
ุงุดุชูุงุชูุง ุงูุตุญูุฉ ูุจูู ุงููุชูุฌุฉ ูุฏูุ Zero ูุฐูู ูุจูู |
|
|
|
602 |
|
01:05:57,400 --> 01:06:01,140 |
|
ุจุนุฏ ูุจูู ูููู ุงูู F has a local maximum Zero at X |
|
|
|
603 |
|
01:06:01,140 --> 01:06:08,440 |
|
ูุณุงูู Zero and ุงู X ูุณุงูู ุชูุงุชุฉ ูุจูู ู
ููุนูู ูููู
|
|
|
|
604 |
|
01:06:08,440 --> 01:06:15,060 |
|
local maximum ุทูุจ ุงู F has local |
|
|
|
605 |
|
01:06:21,070 --> 01:06:30,110 |
|
ูููุงู ู
ูููู
ู
ุนูุฏู ุงุชููู ุณุงูุจ ุงุฑุจุน ุงุช ุงูุณ ูุณู
ู |
|
|
|
606 |
|
01:06:30,110 --> 01:06:35,550 |
|
ููุฏุงุด ุงุชููู ูุจูู ุฌูุจูุง ุงู local maximum ูุจูู ูู |
|
|
|
607 |
|
01:06:35,550 --> 01:06:43,090 |
|
absolute ูู
ุฑุณู ูู absolute maximumุ ููู |
|
|
|
608 |
|
01:06:44,640 --> 01:06:51,120 |
|
ุชูุงุชุฉ ููุง ูุงุ ูุฃู ูุฐู ุงูุฏูุฌุฉ ู
ู ุชุญุช increasing |
|
|
|
609 |
|
01:06:51,120 --> 01:06:58,600 |
|
ุตุนุฏุช ูุบุงูุฉ zero ูุฒูุช ุนูุฏ ุงุชููู ูู
ูู ูุณุงูุจ ุงุฑุจุนุฉ |
|
|
|
610 |
|
01:06:58,600 --> 01:07:04,540 |
|
ุชุญุช ุฑุฌุนุช ุทูุนุช ูู
ููุ ุงูุด ุฑุงูู ุจุงู zero ูุฐู ุจุงูุตูุฑุ |
|
|
|
611 |
|
01:07:05,680 --> 01:07:11,240 |
|
absolute maximum ูุจูู ุนูุฏู ู
ููุนูู ูู absolute |
|
|
|
612 |
|
01:07:11,240 --> 01:07:20,160 |
|
maximum ุจุฑุถู ุจุฌู ุจููู ุงู F has absolute maximum |
|
|
|
613 |
|
01:07:21,920 --> 01:07:29,900 |
|
ุฃุช ุงูุณ ูุณุงูู ุฒูุฑู and ุงู X ูุณุงูู ุชูุงุชุฉ ููู ุนูุฏู |
|
|
|
614 |
|
01:07:29,900 --> 01:07:34,620 |
|
absolute minimum ูุฅูู ุฌุงู ู
ู ููู ู
ู ุชุญุช ู
ู ุณุงูุจ |
|
|
|
615 |
|
01:07:34,620 --> 01:07:38,820 |
|
infinity ูุถูู ุทุงูุน ุนูู ุงู zero ูุฒูุช ูุณุงูุจ ุฃุฑุจุน |
|
|
|
616 |
|
01:07:38,820 --> 01:07:42,880 |
|
ูุฑุฌุน ุทุงูุน ูุชูุชุฑ ูุนูู ุนูุฏู absolute maximum ููุง |
|
|
|
617 |
|
01:07:42,880 --> 01:07:49,080 |
|
ููุฌุฏ absolute minimum ูุจูู ุงู F has |
|
|
|
618 |
|
01:08:10,240 --> 01:08:17,420 |
|
ุฃุฌุงุจูุง ุณุคุงููุ ู ูุง ูุณูุ ูุตูุชุ ุงูุญู
ุฏ ููู ุฐูู ู
ุง ููุง |
|
|
|
619 |
|
01:08:17,420 --> 01:08:17,920 |
|
ูุจุบู |
|
|
|
620 |
|
01:08:46,510 --> 01:08:50,450 |
|
ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู ูุจุฑูุงุชู |
|
|
|
621 |
|
01:08:55,470 --> 01:08:59,330 |
|
ุจุนุฏูุง ูุฌู ู exercises ุฃุฑุจุนุฉ ุชูุงุชุฉ ููุชุจ ุนููู ููู |
|
|
|
622 |
|
01:08:59,330 --> 01:09:07,750 |
|
ููุง ูุจูู exercises ุฃุฑุจุนุฉ ุชูุงุชุฉ ุงูู
ุณุงุฆู ุงูุชุงููุฉ |
|
|
|
623 |
|
01:09:07,750 --> 01:09:13,350 |
|
ุงููู ู
ู ูุงุญุฏ ูุชุณุนุฉ ูุชูุงุชูู ุงูุฃุฏ ู
ู ูุงุญุฏ ูุชุณุนุฉ |
|
|
|
624 |
|
01:09:13,350 --> 01:09:21,500 |
|
ูุชูุงุชูู ุงูุฃุฏู ู
ู ูุงุญุฏ ู ุฃุฑุจุนูู ููุงุญุฏ ู ุฎู
ุณูู ู
ู |
|
|
|
625 |
|
01:09:21,500 --> 01:09:29,260 |
|
ูุงุญุฏ ู ุฃุฑุจุนูู ููุงุญุฏ ู ุฎู
ุณูู ูู
ุงู ุงู odd ู part |
|
|
|
626 |
|
01:09:29,260 --> 01:09:39,660 |
|
part a ู b a ู b ููุท ูุง ุบูุฑู ู
ู ุชูุงุชุฉ ู ุฎู
ุณูู |
|
|
|
627 |
|
01:09:39,660 --> 01:09:49,320 |
|
ูุชุณุนุฉ ู ุฎู
ุณูู ู
ู ุชูุงุชุฉ ู ุฎู
ุณูู ูุชุณุนุฉ ู ุฎู
ุณูู ุงูุงุฏ |
|
|
|
628 |
|
01:09:49,320 --> 01:09:59,220 |
|
part F ููุท ูุบูุฑ ู ู
ู ูุงุญุฏ ู ุณุชูู ูุณุจุนูู ู
ู ูุงุญุฏ ู |
|
|
|
629 |
|
01:09:59,220 --> 01:10:03,580 |
|
ุณุชูู ูุณุจุนูู ูููู
ุจูุง ุงุณุชุซูุงุก |
|
|
|
630 |
|
01:10:06,940 --> 01:10:15,120 |
|
ุทูุจ ููุชูู ุงูุงู ุงูู ุงู section ุงููู ูููู ููู |
|
|
|
631 |
|
01:10:15,120 --> 01:10:22,660 |
|
section ุงุฑุจุนุฉ ุงุฑุจุนุฉ ูุจูู section ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุจุชุญุฏุซ |
|
|
|
632 |
|
01:10:22,660 --> 01:10:33,760 |
|
ุนู ุดุบูุชูู ุงู concavity concavity and ุงู curve |
|
|
|
633 |
|
01:10:33,760 --> 01:10:35,280 |
|
sketching |
|
|
|
634 |
|
01:10:37,400 --> 01:10:45,260 |
|
ุงูุฑุณู
ุงูุจูุงูู ููู
ูุญููุงุช ูุนุทู ุชุนุฑูู ูู Concavity ูู |
|
|
|
635 |
|
01:10:45,260 --> 01:10:53,240 |
|
ุงูุฃูู ูุจุนุฏ ุฐูู ุจุฑูุญ ููุจุงูู The graph of |
|
|
|
636 |
|
01:10:53,240 --> 01:11:04,200 |
|
a differentiable function Y ุชุณุงูู F of X is |
|
|
|
637 |
|
01:11:06,500 --> 01:11:23,060 |
|
ุงูู
ุฑุฉ ูุงุญุฏ Concave up on an open interval I |
|
|
|
638 |
|
01:11:23,060 --> 01:11:35,980 |
|
if ุงู F' is increasing on I |
|
|
|
639 |
|
01:11:38,360 --> 01:11:47,100 |
|
ูู
ุฑู ุงุชููู concave down ุนูู ุงู open interval I ูุงู |
|
|
|
640 |
|
01:11:47,100 --> 01:11:56,440 |
|
F' is decreasing on I that |
|
|
|
641 |
|
01:11:56,440 --> 01:12:03,160 |
|
is I N ูู
ุฑู |
|
|
|
642 |
|
01:12:03,160 --> 01:12:13,020 |
|
ุงุญุฏ Fุงูู F double prime greater than zero on I |
|
|
|
643 |
|
01:12:13,020 --> 01:12:17,400 |
|
then |
|
|
|
644 |
|
01:12:17,400 --> 01:12:37,610 |
|
the graph of Fุซู
graph of F over I is concave up |
|
|
|
645 |
|
01:12:37,610 --> 01:12:40,670 |
|
ูู
ุฑู |
|
|
|
646 |
|
01:12:40,670 --> 01:12:48,890 |
|
ุงุชููู F ุงู F double prime ุงูู ู
ู ุงู zero on I ุซู
|
|
|
|
647 |
|
01:12:48,890 --> 01:12:55,710 |
|
graph of F is concave |
|
|
|
648 |
|
01:12:55,710 --> 01:12:56,490 |
|
down |
|
|
|
649 |
|
01:13:14,380 --> 01:13:24,560 |
|
if ุงู F is continuous on an open interval |
|
|
|
650 |
|
01:13:24,560 --> 01:13:28,680 |
|
containing |
|
|
|
651 |
|
01:13:28,680 --> 01:13:31,900 |
|
X |
|
|
|
652 |
|
01:13:31,900 --> 01:13:39,440 |
|
node and if ุงู F |
|
|
|
653 |
|
01:13:44,090 --> 01:13:51,790 |
|
ุชุชุบูุฑ ุงูุงุชุฌุงู ู
ู |
|
|
|
654 |
|
01:13:51,790 --> 01:13:54,930 |
|
ุงูููุฆุฉ |
|
|
|
655 |
|
01:13:54,930 --> 01:14:03,330 |
|
ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ |
|
|
|
656 |
|
01:14:03,330 --> 01:14:08,750 |
|
ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ ุงูููุฆุฉ |
|
|
|
657 |
|
01:14:12,330 --> 01:14:26,770 |
|
ู F of X0 is called an inflection |
|
|
|
658 |
|
01:14:26,770 --> 01:14:30,610 |
|
point |
|
|
|
659 |
|
01:14:30,610 --> 01:14:34,010 |
|
of F |
|
|
|
660 |
|
01:15:17,390 --> 01:15:20,190 |
|
ู
ุงุฐุง ุจุญู ุงูุฌุญูู
|
|
|
|
661 |
|
01:15:30,110 --> 01:15:30,750 |
|
ูุง ุฑุฌู .. |
|
|
|
662 |
|
01:17:57,300 --> 01:18:01,760 |
|
ุงูุฌุฏ ูู ูุจูู ุงุชุฑุงู ูุชุฑุฉ ูููู ู
ู ูู
ูู ู ู
ู ุงููุณุงุฑุ |
|
|
|
663 |
|
01:18:01,760 --> 01:18:04,840 |
|
ุงู ุฌุฏ ูููู ู
ู ูู
ูู ู ู
ู ุงููุณุงุฑุ ููู ูููู closed |
|
|
|
664 |
|
01:18:16,440 --> 01:18:23,340 |
|
ูุฐุง ุงูู
ุชูุจู ุฏุงูุฉ ู
ุฌุฒุฉ ุตุญ ููุง ูุฃุ ุงู ูุฃุ ุงูู
ุชูุจู |
|
|
|
665 |
|
01:18:23,340 --> 01:18:27,900 |
|
ุฏุงูุฉ ู
ุฌุฒุฉ ุฅูู ุฌุฒุฆููุ ุงูู
ุชูุจู ุฏุงูุฉ ู
ุฌุฒุฉ ุฅูู ุฌุฒุฆููุ |
|
|
|
666 |
|
01:18:27,900 --> 01:18:33,440 |
|
ู
ูููู ุนู ุทุฑููู ุงููุชุฑุฉ ุงูุฏุงูุฉ ุบูุฑ ู
ุนุฑูุฉุ ุตุญูุญ ููุง |
|
|
|
667 |
|
01:18:33,440 --> 01:18:37,960 |
|
ูุฃุ ู
ูููู ู
ุดุชูุฉุ ุงูู
ุดุชูุฉ ุบูุฑ ู
ุนุฑูุฉุ ู
ุธุจูุทุ ู
ู |
|
|
|
668 |
|
01:18:37,960 --> 01:18:42,860 |
|
ุงุณุชุจุนุฏ ุงูุทุฑูููุ ูุฃูู ูู
ุง ุฃููู ุนูุฏู ุงุญุชู
ุงู ูููู |
|
|
|
669 |
|
01:18:42,860 --> 01:18:47,100 |
|
ูุจูุฑ ููู discontinuityุนู ุทุฑููู ุงููุชุฑุฉ ุงุญุชู
ุงููุง |
|
|
|
670 |
|
01:18:47,100 --> 01:18:50,980 |
|
ุชู
ุงู
ูุจุงูุชุงูู ุงูุง ุจุงุณุชุจุนุฏ ุงูุทุฑููู ุญุชู ู
ุงูุฌุนุด ูู |
|
|
|
671 |
|
01:18:50,980 --> 01:18:57,000 |
|
ู
ุดุงูู ู
ุธุจูุท ุงุณู
ู |
|
|
|
672 |
|
01:18:57,000 --> 01:18:57,440 |
|
ูุง ุฑุงุฌู |
|
|
|
673 |
|
01:19:05,870 --> 01:19:10,990 |
|
ูู ูุงูุช ุฏุงูุฉ ุนุฒูุฒู polynomial ูู
ุนุฑูุฉ ุนูููุง ูู real |
|
|
|
674 |
|
01:19:10,990 --> 01:19:14,710 |
|
line ุฏุฎูุช ุงูุทุฑููู ู ุงููู ููุช ุงูุทุฑููู ู
ุด ุณุจุจุด ุนูุฏู |
|
|
|
675 |
|
01:19:14,710 --> 01:19:19,730 |
|
ู
ุดููุฉ ุฎุงูุต ุจุณ ูู
ุง ุชุจูู ุฏุงูุฉ ู
ุฌุฒูุฉ ุงุญุชู
ุงู ุงูู
ุดููุฉ |
|
|
|
676 |
|
01:19:19,730 --> 01:19:21,790 |
|
ุชููู ู
ูุฌูุฏุฉ ุงุญุชู
ุงู ูุจูุฑ ูู
ุงู |
|
|
|
677 |
|
01:19:25,440 --> 01:19:29,400 |
|
ุฃู ู ููุณ ูุณุงูู ูุฏูุ ุฃู ู ููุณ ูุณุงูู ุงูุณ ุชุฑุจูุน ุงูุณ |
|
|
|
678 |
|
01:19:29,400 --> 01:19:33,780 |
|
ุชุฑุจูุน ู
ุงุดูุฉ ุงููู ูุงู ุจูุง ุงู domain ูู ุงู real line |
|
|
|
679 |
|
01:19:33,780 --> 01:19:37,080 |
|
ูุงููู ุงูุช ุญุฌุฒุช ุนูุฏ ุงููุงุญุฏ ู ุงุชููู ุนูุฏ ุงููุงุญุฏ ู |
|
|
|
680 |
|
01:19:37,080 --> 01:19:39,660 |
|
ุงุชููู ุนูุฏ ุงููุงุญุฏ ู ุงุชููู ู
ู
ุชุงุฒ ุฌุฏุง ูุจูู ุงูุณุงุฑุงุช |
|
|
|
681 |
|
01:19:39,660 --> 01:19:42,620 |
|
ุชูุงุชุฉ ุงูุณ ุชุฑุจูุน ุชูุงุชุฉ ุงูุณ ุชุฑุจูุน ูุจูู ุงูุณุงุฑุฉ ุนูุฏ |
|
|
|
682 |
|
01:19:42,620 --> 01:19:46,260 |
|
ุงููุงุญุฏ ู
ุนุฑูุฉ ู ุนูุฏ ุงุชููู ู
ุนุฑูุฉ ูุจุงูุชุงูู ุฏุฎูุช ูู ุงู |
|
|
|
683 |
|
01:19:46,260 --> 01:19:50,240 |
|
interview ูุงููู ูุงููู ูุฑุฑุชูุง ูุง ูุคุซุฑ ุนูุฏู ุจุตูุฑ |
|
|
|
684 |
|
01:19:50,240 --> 01:19:54,640 |
|
ุงูู
ุดุชูุฉ ู
ุนุฑูุฉ ุนูุฏ ุงููุงุญุฏ ู ุนูุฏ ุงุชููููุฐุง ููู ู
ุซูุง |
|
|
|
685 |
|
01:19:54,640 --> 01:19:58,720 |
|
ู
ุงุนูุฏูุด ู
ุดููุฉ ุจุณ ูู
ุง ุชุจูู ุฏุงูุฉ ู
ุฌุฒุฉ ุฅูู ุฌุฒุกูู ุจุตูุฑ |
|
|
|
686 |
|
01:19:58,720 --> 01:20:01,400 |
|
ุงููู ุงุญุชู
ุงู ุงูู
ุดุงูู ุงู ุซูุงุซุฉ ุฌุฒุก ุงู ุงุฑุจุน ุชุตูุฑ |
|
|
|
687 |
|
01:20:01,400 --> 01:20:05,240 |
|
ุงูู
ุดุงูู ุนูุฏ ุงูุฃุทุฑุงู ู
ู
ููู ูุงูุณุชุจุนุฏ ุงูุฃุทุฑุงู ูุฑุงูุง |
|
|
|
688 |
|
01:20:05,240 --> 01:20:12,020 |
|
ุฏู
ุงุบู ูุฐุง ูู ู
ุง ูู ุงูุฃู
ุฑ ุทุจ ูุฑุฌุน ูุณุคุงููุง ูุฐุง ุงู |
|
|
|
689 |
|
01:20:12,020 --> 01:20:16,180 |
|
section ุงููู ุจูู ุงุฏููุง ุงููู ูู section 4 4 con kvt |
|
|
|
690 |
|
01:20:16,180 --> 01:20:24,250 |
|
ุงููู ูู mainุงูุชูุงุนุฑ ุงู ุงูุชุญุฏุจ ููู
ูุญูุฉ ุชู
ุงู
ุ and ุงู |
|
|
|
691 |
|
01:20:24,250 --> 01:20:28,550 |
|
curve sketching ูุฑุณู
ุงูู
ูุญููุงุช ูุจูู ุงุญูุง ูู ูุฐุง |
|
|
|
692 |
|
01:20:28,550 --> 01:20:34,190 |
|
section ุจูุณุชุฎุฏู
ูู ู
ุง ุณุจู ุงูุฏุฑุงุณุฉ ููู section 4.1 |
|
|
|
693 |
|
01:20:34,190 --> 01:20:41,210 |
|
ู4.2 ู4.3 ูู ุฑุณู
ุงูู
ูุญููุงุช ูุฎุงุตุฉูู critical points |
|
|
|
694 |
|
01:20:41,210 --> 01:20:48,290 |
|
ููุชุฑุงุช ุงูุชุฒุงูุฏ ูุงูุชูุงูุต ููุฐูู ุงู local maximum ู |
|
|
|
695 |
|
01:20:48,290 --> 01:20:53,490 |
|
ุงู local minimum ูุจูู ุงุญูุง ุจูุณุชุฎุฏู
ูู ู
ุง ุณุจู |
|
|
|
696 |
|
01:20:53,490 --> 01:20:59,450 |
|
ุฏุฑุงุณุชู ูู ุงูุฑุณู
ุจูุฐูุจ ููุท ููุฃูู ููุนุฑู ุงูู Concavity |
|
|
|
697 |
|
01:20:59,450 --> 01:21:03,950 |
|
ูู
ูุญูุฉ ููู ุจุฏู ุฃุญุตู ุนููู ูุจุนุฏ ุฐูู ูุดูู ููู ุจุฏูุง |
|
|
|
698 |
|
01:21:03,950 --> 01:21:07,150 |
|
ูุนู
ููุง ูุจุนุฏูู ุจููู graph of a differentiable |
|
|
|
699 |
|
01:21:07,150 --> 01:21:14,200 |
|
function y ุชุณุงูู f of x isconcave up ุนูู ูุชุฑุฉ I |
|
|
|
700 |
|
01:21:14,200 --> 01:21:19,500 |
|
ููู
ุงููู ุงููุง ู
ูููุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ |
|
|
|
701 |
|
01:21:19,500 --> 01:21:19,780 |
|
ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ |
|
|
|
702 |
|
01:21:19,780 --> 01:21:21,340 |
|
ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ |
|
|
|
703 |
|
01:21:21,340 --> 01:21:22,920 |
|
ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ |
|
|
|
704 |
|
01:21:22,920 --> 01:21:24,760 |
|
ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ |
|
|
|
705 |
|
01:21:24,760 --> 01:21:33,120 |
|
ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูุญุฉ ุงู ู
ูุชูู ุจููู ูู ุฏู ููู cave |
|
|
|
706 |
|
01:21:33,120 --> 01:21:37,640 |
|
up if ุงู if increasing ุจุญุงุฌุฉ ุชุถูู ุงูู
ุดุชูุฉ ูุจูู |
|
|
|
707 |
|
01:21:37,640 --> 01:21:42,120 |
|
ููุงู
ู ุตุญ ููุง ุบูุทุ ุบูุท ูุจูู ุตุญ ุตุญ ูุฎุฏ ุจุงูู ู
ู |
|
|
|
708 |
|
01:21:42,120 --> 01:21:47,280 |
|
ุงูููุทุฉ ูุฐู ุฅุฐุง ุงูู
ุดุชูุฉ ูุงูุช ุชุฒุงูุฏูุฉ ูุนูู ุฅูุดุ ูุนูู |
|
|
|
709 |
|
01:21:47,280 --> 01:21:51,080 |
|
ุงูู
ุดุชูุฉ ุงูุซุงููุฉ ุจุชููู ุฃูุจุฑ ู
ู ุงู zero ุตุญ ููุง .. |
|
|
|
710 |
|
01:21:51,080 --> 01:21:55,120 |
|
ุจููู ูู ุฏู ูุง increasing ุฅุฐุง ุงูู
ุดุชูุฉ ุชุจุนุชูุง ูุงูุช |
|
|
|
711 |
|
01:21:55,120 --> 01:21:57,960 |
|
ุฃูุจุฑ ู
ู ุงู zero ูุจูู ุงู if prime increasing ุฅุฐุง |
|
|
|
712 |
|
01:21:57,960 --> 01:22:02,590 |
|
ู
ุดุชูุชูุงุงููู ุตุงุฑุช ุงูู
ุดุชูุฉ ุงูุซุงููุฉ ุจุชุจูู ุฃูุจุฑ ู
ู ู
ูู |
|
|
|
713 |
|
01:22:02,590 --> 01:22:07,150 |
|
ู
ู ุงู zero ูุจูู ุงูุฏุงูุฉ ุจูููู ููููู curve up |
|
|
|
714 |
|
01:22:07,150 --> 01:22:12,890 |
|
ุงูู
ูุญูุฉ ู
ูุชูุญ ุฅูู ุฃุนูู ุฅุฐุง ูุงูุช ุงู F prime |
|
|
|
715 |
|
01:22:12,890 --> 01:22:17,410 |
|
increasing ุฅุฐุง ูุงูุช ุงูุฏุงูุฉ ุฅุฐุง ูุงูุช ู
ุดุชูุฉ ูุฐู |
|
|
|
716 |
|
01:22:17,410 --> 01:22:21,630 |
|
ุงูุฏุงูุฉ ุฎูุงู ูุฐู ุงููุชุฑุฉ ูุงูุช ุงูู
ุดุชูุฉ ุชุฒุงูุฏ ู
ุด |
|
|
|
717 |
|
01:22:21,630 --> 01:22:28,220 |
|
ุงูุฏุงูุฉ ู
ุดุชูุฉ ุงูุฏุงูุฉ ูุงูุช ุชุฒุงูุฏูุงconcave down ูุนูู |
|
|
|
718 |
|
01:22:28,220 --> 01:22:34,740 |
|
ุฅูู ุฃุณูู ุฅุฐุง ูุงูุช ุงูู
ุดุชูุฉ ุฎูุงููุง decreasing ูุจูู |
|
|
|
719 |
|
01:22:34,740 --> 01:22:40,920 |
|
ุฅุฐุง ูุงูุช ู
ุดุชูุฉ ุงูุฏุงูุฉ ุชูุงูุตูุฉ ูููุณุช ุงูุฏุงูุฉ ู
ุดุชูุฉ |
|
|
|
720 |
|
01:22:40,920 --> 01:22:46,180 |
|
ุงูุฏุงูุฉ ุชูุงูุตูุฉ ุทูุจ ุจุฏู ุฃุนูุฏ ุตูุงุบุฉ ุงูููุงู
ุงููู ููุชู |
|
|
|
721 |
|
01:22:46,180 --> 01:22:50,960 |
|
ุจูุงุญูุฉ ุฑูุงุถูุฉ ุซุงููุฉูุจุนุฏูู ุจููู ุงูู ุฏู ุงููู ุจุชุจูู |
|
|
|
722 |
|
01:22:50,960 --> 01:22:56,140 |
|
cone curve up ุงุฐุง ุงูู
ุดุชู ุงูุซุงูู ุงูุจุฑ ู
ู ู
ูู ู
ู ุงู |
|
|
|
723 |
|
01:22:56,140 --> 01:23:00,380 |
|
zero ู
ุง ูู ูุฐู ุงูุชุฑุฌู
ุฉ ุงู ุงู F prime increasing ุตุญ |
|
|
|
724 |
|
01:23:00,380 --> 01:23:05,200 |
|
ููุง ูุฃ ู
ุด ูุจู ุดููุฉ ุงุฎุฏูุง ุงุฐุง ุงูู
ุด F prime ุงูุจุฑ ู
ู |
|
|
|
725 |
|
01:23:05,200 --> 01:23:10,030 |
|
ุงู zero ูุจูู ุงู F increasingููุง ุฅุฐุง ุงูู f double |
|
|
|
726 |
|
01:23:10,030 --> 01:23:14,730 |
|
prime ุฃูุจุฑ ู
ู 0 ูุจูู ุงูู f prime increasing ูุจูู |
|
|
|
727 |
|
01:23:14,730 --> 01:23:19,710 |
|
ุฃูุจุฑ ู
ู ุงูู 0 ุงูู graph of f over a is concave up |
|
|
|
728 |
|
01:23:19,710 --> 01:23:24,930 |
|
ูุจูู ู
ูุชูุญ ุฅูู ุฃุนูู ุงูุขู ูู ูุงูุช ุงูู
ุดุชูุฉ ุงูุซุงููุฉ |
|
|
|
729 |
|
01:23:24,930 --> 01:23:29,090 |
|
ุฃูู ู
ู ุงูู 0 ุนูู ุงููุชุฑุฉ I ูุจูู ุงู graph of it |
|
|
|
730 |
|
01:23:29,090 --> 01:23:35,600 |
|
ุจุฏูููู ู
ุงูู concave downุงููุชุงุจ ุจูุณู
ู ุงูุดุฑุทูู ูุฏูู |
|
|
|
731 |
|
01:23:35,600 --> 01:23:41,760 |
|
ููู ุจูุณู
ููู
second derivative |
|
|
|
732 |
|
01:23:41,760 --> 01:23:44,820 |
|
test |
|
|
|
733 |
|
01:23:44,820 --> 01:23:49,340 |
|
for concavity |
|
|
|
734 |
|
01:23:53,590 --> 01:23:59,170 |
|
ูุจูู ุงูู
ุดุชุงูุฉ ุงูุซุงููุฉ ูููุงุณ ุชูุงุฑ ู ุชุญุฏุจ ุงูู
ูุญูุฉ |
|
|
|
735 |
|
01:23:59,170 --> 01:24:03,910 |
|
ููู ุงู first derivative ุชุณุชุฎุฏู
ูู
ูุ ูุชุญุฏูุฏ ุงู |
|
|
|
736 |
|
01:24:03,910 --> 01:24:07,710 |
|
local maximum ู ุงู local ู
ู ููู ุงู local extreme |
|
|
|
737 |
|
01:24:07,710 --> 01:24:13,150 |
|
value ุฃูู ุงููุฑู ูู ู
ุง ุจูููู
ุงุ ุทูุจ ุฅุฐุง ุงูู
ูุญูุฉ |
|
|
|
738 |
|
01:24:13,150 --> 01:24:19,450 |
|
ุจุงูุดูู ุฅู ูุฐุง ุทูุน ุฅู ูุฐุง ููู ูุงุจููููุฐุง concave |
|
|
|
739 |
|
01:24:19,450 --> 01:24:25,810 |
|
ูููุ ูุนูุฏู ุงูููุทุฉ ุงููู ุนูุฏูุง ูุฐู ุงูุชูู ู
ู concave |
|
|
|
740 |
|
01:24:25,810 --> 01:24:30,490 |
|
up ุฅูู concave ู
ู concave down ุฅูู concave up |
|
|
|
741 |
|
01:24:30,490 --> 01:24:36,710 |
|
ุงูููุทุฉ ุงููู ูุฐู ุจูุณู
ููุง ููุทุฉ ุงูููุงุจ ููู
ูุญูุฉูุจูู |
|
|
|
742 |
|
01:24:36,710 --> 01:24:40,330 |
|
inflection point ูุจูู ุงู inflection point ุจุฏู |
|
|
|
743 |
|
01:24:40,330 --> 01:24:46,790 |
|
ุดุฑุทูู ููุง ุญุชู ุชุชุญูู ุฃูู ุดู ุจุฏู ุชุจูู ุฏุงูุฉ ู
ุชุงุตูุฉ |
|
|
|
744 |
|
01:24:46,790 --> 01:24:51,550 |
|
ุนูุฏ ูุฐู ุงูููุทุฉ ุงูุดุฑุท ุงูุซุงูู ุจุฏู ุงุชุฌุงู ุงู concavity |
|
|
|
745 |
|
01:24:51,550 --> 01:24:56,850 |
|
ูุชุบูุฑ ู
ู down ุฅูู up ุฃู ู
ู up ุฅูู down ุทูุน ุนูุฏ |
|
|
|
746 |
|
01:24:56,850 --> 01:25:02,330 |
|
ุงูููุทุฉ ุงูุซุงููุฉ ูุฐู ูุงู concave up ุตุงุฑ concave down |
|
|
|
747 |
|
01:25:02,590 --> 01:25:06,690 |
|
ูุจูู ุจุงุฏูุฉ ุชุงูู ุจูููู ุฅุฐุง ุงู F ูุงูุช ุฏุงูุฉ ู
ุชุงุตูุฉ |
|
|
|
748 |
|
01:25:06,690 --> 01:25:12,230 |
|
ุนูู ุงู open interval ุงูุชู ุชุญุชูู ุนูู ู
ููุ ุนูู X0 |
|
|
|
749 |
|
01:25:12,230 --> 01:25:17,590 |
|
ูุจูู ุฃูุง ุนูุฏู ูู ูุชุฑุฉ ุชุญุชูู ุนูู ููุทุฉ ุฒู ุงูููุทุฉ |
|
|
|
750 |
|
01:25:17,590 --> 01:25:23,510 |
|
ูุฐูุ ูููุณุ ุชู
ุงู
ุ ุฅูุด ุญุตูุ ุฏุงูุฉ ุฏุงูุฉ ู
ุชุงุตูุฉand if |
|
|
|
751 |
|
01:25:23,510 --> 01:25:28,130 |
|
it changes the direction of its concavity under X0 |
|
|
|
752 |
|
01:25:28,130 --> 01:25:33,470 |
|
ุนูุฏ X0 ุงูุฏุงูุฉ ุบูุฑุช ุงุชุฌุงู ุงูconcavity ุชุจุนูุง ูุจูู ูู |
|
|
|
753 |
|
01:25:33,470 --> 01:25:36,970 |
|
ูุฐู ุงูุญุงูุฉ ุจููู ุงูููุทุฉ X0 ู F of X0 ุจุณู
ููุง |
|
|
|
754 |
|
01:25:36,970 --> 01:25:40,870 |
|
inflection point ุฏู ู
ุง ูุงู ู
ู
ูู ู
ุงุชูุงููุด ุงูุชุนุฑูู |
|
|
|
755 |
|
01:25:40,870 --> 01:25:43,750 |
|
ุชุจุนู ูู ุงููู ู
ูุตูุต ุนุงูู ูู ุงููุชุงุจ ูููู ุงููุชุงุจ |
|
|
|
756 |
|
01:25:43,750 --> 01:25:48,250 |
|
ู
ุงุชูุงูู ูุชุจู ู
ู ูุต ุขุฎุฑ ููู ูุฐุง ุฃุฏู ูุต ูุงูู
ูู ูุฎุฑ |
|
|
|
757 |
|
01:25:48,250 --> 01:25:52,600 |
|
ู
ูู ุงูู
ูู ุฒู ู
ุง ุจูููููุจูู ุงูุง ุนุดุงู ูููู ุนูุฏู |
|
|
|
758 |
|
01:25:52,600 --> 01:25:56,060 |
|
inflection point ุนูู ุงูู
ูุญูุฉ ุจุฏู ุงุชุญูู ุดุฑุทูู |
|
|
|
759 |
|
01:25:56,060 --> 01:26:00,320 |
|
ุงูุงุชุตุงู ุชุจุน ุงูุฏูุฉ ุนูุฏ ูุฐู ุงูููุทุฉ ุงุชููู ุจุฏู ุงุชุบูุฑ |
|
|
|
760 |
|
01:26:00,320 --> 01:26:05,040 |
|
ุงุชุฌุงู ุงู connectivity ููุฐู ุงูุฏูุฉ ุงู inflection |
|
|
|
761 |
|
01:26:05,040 --> 01:26:11,240 |
|
point ุจุชุญุตู ูููุุจุชุฏูุฑ ุนูููุง ููู ูุนููุ ูู ู
ูุงููู |
|
|
|
762 |
|
01:26:11,240 --> 01:26:14,760 |
|
ุงููู ุงูู
ุดุชูุฉ ุงูุซุงูู ุนูุฏู ูุณุงูู zero ุงู ุงูู
ุดุชูุฉ |
|
|
|
763 |
|
01:26:14,760 --> 01:26:18,460 |
|
ุงูุซุงููุฉ ุชุจูู ุบูุฑ ู
ุนุฑูุฉ ุฒู ุงู local maximum ู ุงู |
|
|
|
764 |
|
01:26:18,460 --> 01:26:23,720 |
|
local minimum ุจุฏูุฑ ุนูููุง ูููุ ุงุฐุง ุงูู
ุดุชูุฉ ุงูุฃููู |
|
|
|
765 |
|
01:26:23,720 --> 01:26:26,860 |
|
ุตูุฑ ุงู ุงูู
ุดุชูุฉ ุงูุฃููู ุบูุฑ ู
ุนุฑูุฉุ ุงุฐุง ุงูู
ุดุชูุฉ |
|
|
|
766 |
|
01:26:26,860 --> 01:26:32,550 |
|
ุงูุซุงููุฉ ุจุฏู ู
ู ุงูู
ุดุชูุฉ ุงูุฃููู ุทูุจ ุงูุณุคุงู ูููู ูุงูุช |
|
|
|
767 |
|
01:26:32,550 --> 01:26:37,150 |
|
ุงูู
ุดุชูุฉ ุซุงููุฉ ุชุณุงูู zero ุงู ุงูู
ุดุชูุฉ ุงูุซุงููุฉ ู
ุง ูู |
|
|
|
768 |
|
01:26:37,150 --> 01:26:45,850 |
|
ู
ุนุฑููุฉ ูุนูู ุถุฑูุฑู ุงูุงูู inflection point ูุฃ ูุฃ ููุณ |
|
|
|
769 |
|
01:26:45,850 --> 01:26:50,890 |
|
ุจุงูุถุฑูุฑุฉ ูุจูู ููุณ ุจุงูุถุฑูุฑุฉ ุงุฐุง ุจุชุทูุน ุจูู ูุจู ู
ุง |
|
|
|
770 |
|
01:26:50,890 --> 01:26:56,370 |
|
ููู
ู ููุงูู ุฌูุช ุงููุชุฑุฉ ู
ู ููุง ูููุง ุงููุชุฑุฉ ุงููู |
|
|
|
771 |
|
01:26:56,370 --> 01:27:01,830 |
|
ุนูุฏูุง ูุฐู ู
ูุชูุญ ุงูู ุฃุนูู ูุงููู ุงูู ุฃุณูู ุงูู ุฃุนูู |
|
|
|
772 |
|
01:27:01,830 --> 01:27:07,710 |
|
ูุจูู ูุฐู ุงูู
ุฑุญูุฉ ุจููู ุนูููุง ูู ูุจุท |
|
|
|
773 |
|
01:27:08,580 --> 01:27:15,640 |
|
ุทูุจ ูุฐู ู
ู ููุง ูุบุงูุฉ ููุง concave down ูุจูู ู
ูุชูุญ |
|
|
|
774 |
|
01:27:15,640 --> 01:27:24,540 |
|
ููุง ููุชุฑุฉ ูุฐู concave up ูุฐู concave down |
|
|
|
775 |
|
01:27:28,820 --> 01:27:34,660 |
|
ูุฐู ุงูููุทุฉ ููุฐู ุงูููุทุฉ ููุฐู ุงูููุทุฉ ุงูุณ ูุงุญุฏ ู ุงูุณ |
|
|
|
776 |
|
01:27:34,660 --> 01:27:39,040 |
|
ุงุชููู ู ุงูุณ ุชูุงุชุฉ ุนูุฏูู
ูู ุงูููููุดู point ูุจูู ูุฐู |
|
|
|
777 |
|
01:27:44,070 --> 01:27:49,890 |
|
point ูุจูู ูุฏูู ููุงุท ุงูููุงุจ ููู
ูุญูู ู
ูู ูู
ุง ุงููู |
|
|
|
778 |
|
01:27:49,890 --> 01:27:56,230 |
|
ูู ุงูููุทุฉ ุงููู ุนูุฏู ูุฐู ู ุงูููุทุฉ ูุฐู ู ุงูููุทุฉ ูุฐู |
|
|
|
779 |
|
01:27:56,230 --> 01:28:04,050 |
|
ู ูุฐูู ุงูููุทุฉ ุงููู ุนูุฏู ู
ูู ุงูููุทุฉ ูุฐู ุทุจุนุง ูุฐู |
|
|
|
780 |
|
01:28:04,050 --> 01:28:09,770 |
|
ุจูุฏุฑุด ุฃุชุฃูุฏ ู
ููุง ูุฃู ู
ุงุนูุฏูุด ู
ูุญูู ุจุนุฏูุง ูุจูู ูุฐู |
|
|
|
781 |
|
01:28:09,770 --> 01:28:15,680 |
|
ุจูุฏุฑุด ุฃุชุฃูุฏ ู
ููุง ุจุงูุถุจุท ุงูุขูุฅูุง ุฅุฐุง ุฎูููุช ุงูููุณ |
|
|
|
782 |
|
01:28:15,680 --> 01:28:18,780 |
|
ููุฒู ุดููุฉ ู
ุงุดู ุงูุญุงูุ ููู ุฃูุง ุจููู ูุงู ูู ุงููู |
|
|
|
783 |
|
01:28:18,780 --> 01:28:22,420 |
|
ุจูุฏุฑ ุฃููููุ ูุฏูู ูุงุญุฏุฉุ ุงุชููุ ุงุชููุ ุชูุงุชุฉ ู
ุชุฃูุฏ |
|
|
|
784 |
|
01:28:22,420 --> 01:28:25,860 |
|
ู
ููู
ุ ูุฏ ู
ุด ู
ุชุฃูุฏ ู
ููุงุ ูุจูู ุจููู ุนูุฏู ุงูููุทุฉ |
|
|
|
785 |
|
01:28:25,860 --> 01:28:30,300 |
|
ุงูุชูุงุชุฉ ูุฏูู ูููุง ุนูุฏู main inflection pointูู |
|
|
|
786 |
|
01:28:30,300 --> 01:28:34,720 |
|
concave upุ concave downุ concave upุ concave down |
|
|
|
787 |
|
01:28:34,720 --> 01:28:38,800 |
|
ูุจูู ูุฐู ุงููุชุฑุฉ ุฌุณู
ุช ุนูููุง ุงูุชูุณูู
ุงุช ูุฐู ุงูุณุคุงู ูู |
|
|
|
788 |
|
01:28:38,800 --> 01:28:45,340 |
|
ูู ูุงูุช ุงูู
ุดุชูุฉ ุชุณุงูู zero ุงูู
ุดุชูุฉ ุงูุซุงููุฉ ูู ู
ู |
|
|
|
789 |
|
01:28:45,340 --> 01:28:50,300 |
|
ุงูุถุฑูุฑู ูููู ูู ุนูุฏู inflection point ุงูุฅุฌุงุจุฉ ููุณ |
|
|
|
790 |
|
01:28:50,300 --> 01:28:56,080 |
|
ุจุงูุถุฑูุฑุฉ ูุนุทูู ูุงูู
ูุงุญุธุฉ ูุฐู ูุจูุง ูููู ุงูู
ุญุงุถุฑุฉ |
|
|
|
791 |
|
01:28:56,080 --> 01:28:57,680 |
|
ุงูู
ูุงุญุธุฉ ุจุชููู ู
ุง ูุฃุชู |
|
|
|
792 |
|
01:29:07,390 --> 01:29:15,890 |
|
ุฅุฐุง yw' ุชุณุงูู 0 ููู |
|
|
|
793 |
|
01:29:15,890 --> 01:29:20,430 |
|
ููุณ ุตุญูุญ |
|
|
|
794 |
|
01:29:22,840 --> 01:29:33,260 |
|
through that must there is |
|
|
|
795 |
|
01:29:33,260 --> 01:29:42,260 |
|
an inflection point |
|
|
|
796 |
|
01:29:42,260 --> 01:29:48,160 |
|
there is an inflection point for example |
|
|
|
797 |
|
01:29:50,680 --> 01:29:57,540 |
|
ูุดุบูุฉ ุชูุถูุญูุฉ ุนูู ุฐูู ุงู Y ุชุณุงูู X ุฃูุต ุฃุฑุจุนุฉ ูู |
|
|
|
798 |
|
01:29:57,540 --> 01:30:03,580 |
|
ุจุฏู ุชุฌูุจ ุงูู
ุดุชูุฉ ุงูุฃููู ุจุชุนุทูู ุฃุฑุจุนุฉ X ุชููุจ ู
ุดุชูุฉ |
|
|
|
799 |
|
01:30:03,580 --> 01:30:12,360 |
|
ุซุงููุฉ ุจุชุณุงูู ุงุชูุงุดุฑ X ุชุฑุจูุน ููุฐู ุชุณุงูู Zero at X |
|
|
|
800 |
|
01:30:12,360 --> 01:30:20,620 |
|
ูุณุงูู Zeroูู ุฌููุง ุฑุณู
ูุง ูุฐู ุจููู ูู ุงูู
ูุญูุฉ ูููุณ |
|
|
|
801 |
|
01:30:20,620 --> 01:30:25,960 |
|
ูุจูู ูุฐุง ู
ุญูุฑ X ู ูุฐุง Y ุทุจุนุง ุฑุณู
ูุงูุง ูุจู ููู ูุจูู |
|
|
|
802 |
|
01:30:25,960 --> 01:30:33,780 |
|
ุงูู
ูุญูุฉ ุจุฏู ุฃุฌููู ููู ูุฐุง Y ุชุณุงูู X ุฃูุต ุฃุฑุจุน |
|
|
|
803 |
|
01:30:33,780 --> 01:30:40,220 |
|
ุงูู
ุดููุฉ ุนู ููู ุนูุฏ ุงู zero ุงูุขู ูุจู ุงู zero |
|
|
|
804 |
|
01:30:40,220 --> 01:30:46,530 |
|
ุงูู
ูุญูุฉ ูุงูุช ููู ูููุุจุนุฏ ุงูู zero ู
ุบูุฑุด ูุจูู ูุฐู |
|
|
|
805 |
|
01:30:46,530 --> 01:30:52,150 |
|
ูุฐุง ุงูุฌุฒุก ู
ูุชูุญ |
|
|
|
806 |
|
01:30:52,150 --> 01:30:57,850 |
|
ุงูู ุฃุนูู ู ูุฐุง ูู
ุงู concave up ูุนูู ุงูุฏุงูุฉ ุนูุฏ ุงู |
|
|
|
807 |
|
01:30:57,850 --> 01:31:01,990 |
|
zero ุตุญูุญ ุฏุงูุฉ ู
ุชุตูุฉ ุจุณ ูู
ุชุบูุฑ ุงุชุฌุงู ุงู concavity |
|
|
|
808 |
|
01:31:01,990 --> 01:31:08,190 |
|
ูุจูู ูุจุงูุชุงูู ููุณุช inflection point ูุจูู ุณุงูู zero |
|
|
|
809 |
|
01:31:08,190 --> 01:31:19,830 |
|
butุงูุงูุณ ุชุณุงูู ุฒูุฑู ู
ุงููุง |
|
|
|
810 |
|
01:31:19,830 --> 01:31:25,490 |
|
is |
|
|
|
811 |
|
01:31:25,490 --> 01:31:30,550 |
|
not |
|
|
|
812 |
|
01:31:30,550 --> 01:31:38,370 |
|
an inflection point |
|
|
|
813 |
|
01:31:44,950 --> 01:31:55,090 |
|
ูุฃู ุงูู wireprime ูุง ูุชุบูุฑ |
|
|
|
814 |
|
01:31:55,090 --> 01:31:56,570 |
|
ุตูุฑุชูุง |
|
|
|
815 |
|
01:32:06,310 --> 01:32:10,870 |
|
ูุจูู ู
ููุด handy inflection point ูุตููุง ู ุงูุฃู
ุซูุฉ |
|
|
|
816 |
|
01:32:10,870 --> 01:32:14,990 |
|
ุฎููู ุงูุฃู
ุซูุฉ ููู
ุฑุฉ ุงููุงุฏู
ุฉ ุงู ุดุงุก ุงููู |
|
|
|
|