abdullah's picture
Add files using upload-large-folder tool
bfbe24e verified
raw
history blame
88.2 kB
1
00:00:20,650 --> 00:00:25,190
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ู…ุฑุฉ ุงู„ู„ู‰ ูุงุชุช ุงู†ุชู‡ูŠู†ุง ู…ู†
2
00:00:25,190 --> 00:00:30,550
section 4.2 ุงู„ู„ู‰ ู‡ูˆ ุงู„ main value theorem ูˆุงู„ุงุณุฆู„ุฉ
3
00:00:30,550 --> 00:00:35,510
ุงู„ู„ู‰ ุนู„ูŠู‡ุง ูˆุงู„ุงู† ุจู†ู†ุชู‚ู„ ุงู„ู‰ section 4.3 ูˆู‡ูˆ ุงู„
4
00:00:35,510 --> 00:00:39,170
monotonic functions and the first derivative test
5
00:00:39,170 --> 00:00:46,250
ูŠุนู†ูŠ ุงู„ุฏูˆุงู„ ุงู„ุฑุชูŠุจุฉ ูˆูƒุฐู„ูƒ ุงู„ู„ู‰ ู‡ูˆ ุงุฎุชุจุงุฑ ุงู„ู…ุดุชู‚ุฉ
6
00:00:46,250 --> 00:00:50,770
ุงู„ุฃูˆู„ู‰ุชุนุฑูŠู ุงู„ู€ monotonic function ุฃูˆ ุงู„ุฏุงู„ุฉ
7
00:00:50,770 --> 00:00:55,610
ุงู„ุฑุชูŠุจุฉ ูุจุฌูŠ ุจู‚ูˆู„ ุงู„ุฏุงู„ุฉ f of x ุงู„ู„ู‰ ุจุชุจู‚ู‰ ุชุฒุงูŠุฏูŠุฉ
8
00:00:55,610 --> 00:01:00,990
ุฃูˆ ุชู†ุงู‚ุตูŠุฉ ุนู„ู‰ ูุชุฑุฉ ู…ุง ุจุณู…ูŠู‡ุง monotonic function
9
00:01:00,990 --> 00:01:05,260
ุนู„ู‰ ุชู„ูƒ ุงู„ูุชุฑุฉูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุญุฏ ุฃู…ุฑูŠู†ุŒ ูŠุง ุฅู…ุง
10
00:01:05,260 --> 00:01:11,340
ุชุฒุงูŠุฏูŠุฉุŒ ูŠุง ุฅู…ุง ู…ุด ุงู„ุฃุซู†ูŠู† ู…ุน ุจุนุถุŒ ูˆุงุญุฏ ุจุณุŒ ูƒุงุชุจ
11
00:01:11,340 --> 00:01:18,240
or ุทู„ุน ู‡ูŠ orุŒ ู‡ุฐู‡ ุฃูˆ ุชู„ูƒุŒ ูŠุง ุฅู…ุง ุชุฒุงูŠุฏูŠุฉ ุนู„ู‰ ูƒู„
12
00:01:18,240 --> 00:01:23,360
ุงู„ูุชุฑุฉุŒ ูŠุจุฏุฃ ุจู‚ูˆู„ ุนู„ูŠู‡ุง monotonic ุฃูˆ ุชู†ุงู‚ุตูŠุฉ ุนู„ู‰
13
00:01:23,360 --> 00:01:27,510
ูƒู„ ุงู„ูุชุฑุฉุจู‚ูˆู„ ุนู†ู‡ุง monotonic ู„ูƒู† ุชุฒุงุฏูŠู‡ ูˆุชู†ู‚ุตูŠู‡ ููŠ
14
00:01:27,510 --> 00:01:33,070
ู†ูุณ ุงู„ูุชุฑุฉ ู„ูŠุณุช monotonic ู†ุนุทูŠ ู…ุซุงู„ ุชูˆุถูŠุญ ุนู„ู‰ ุฐู„ูƒ
15
00:01:33,070 --> 00:01:38,430
ู„ูˆ ุฎุฏุช ุงู„ุฏุงู„ุฉ F of X ูŠุณุงูˆูŠ ู…ู† X ุชุฑุจูŠุฉ ุงู„ุฏุงู„ุฉ ู‡ุฐู‡
16
00:01:38,430 --> 00:01:43,470
ู…ุนุฑูˆูุฉ ูˆุฑุณู…ู†ุงู‡ุง ู‚ุจู„ ุฐู„ูƒ ุนุฏุฉ ู…ุฑุงุช ูู„ูˆ ู‚ู„ุช ู‡ุฐุง ู…ุญูˆุฑ
17
00:01:43,470 --> 00:01:51,000
X ูˆู‡ุฐุง ู…ุญูˆุฑ Y ูˆุฌูŠุช ุฑุณู…ุช ุงู„ุฏุงู„ุฉ Y ุชุณุงูˆูŠ X ุชุฑุจูŠุฉู‡ุฐุง
18
00:01:51,000 --> 00:01:56,020
ุงู„ู€ Zero ู„ูˆ ุฌูŠุช ู…ู† ุณุงู„ุจ Infinity ู„ุบุงูŠุฉ Zero ุฏู‡
19
00:01:56,020 --> 00:02:01,940
ู„ู…ุงู„ู‡ุง ูŠุฌุจ ู†ุฒูˆู„ ูŠุจู‚ู‰ Decreasing ูŠุจู‚ู‰ ุนู„ู‰ ู‡ุฐุง ุงู„ุฌุฒุก
20
00:02:01,940 --> 00:02:07,660
ุฏู‡ Decreasing ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ Monotonic ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
21
00:02:07,660 --> 00:02:13,680
ุณุงู„ุจ Infinity ู„ุบุงูŠุฉุฒูŠุฑูˆ ุจุนุฏ ุฐู„ูƒ ุงู„ุงู† ู„ูˆ ุฌูŠุช ู…ู† ุงู„
22
00:02:13,680 --> 00:02:19,600
zero ู„ุบุงูŠุฉ infinity ุจู„ุงุฌูŠ ุงู„ุฏุงู„ุฉ ุชุฒุงูŠุฏูŠุฉ ูŠุจู‚ู‰ ู‡ู†ุง
23
00:02:19,600 --> 00:02:24,440
increasing ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ decreasing ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
24
00:02:24,440 --> 00:02:29,260
ุณู„ุจ infinity ุฅู„ู‰ zero ูˆ increasing ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
25
00:02:29,260 --> 00:02:34,220
zero ู„ุบุงูŠุฉ infinity ุงุฐุง ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุณู„ุจ infinity
26
00:02:34,220 --> 00:02:38,280
ุฅู„ู‰ zero ุจู‚ุฏุฑ ุงู‚ูˆู„ ุนู†ู‡ุง monotonic functionุนู„ู‰
27
00:02:38,280 --> 00:02:42,700
ุงู„ูุชุฑุฉ ู…ู† 0 ุฅู„ู‰ infinity ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุนู†ู‡ุง monotonic
28
00:02:42,700 --> 00:02:46,480
function ู„ูƒู† ุนู„ู‰ ุงู„ูุชุฑุฉ ูƒู„ู‡ุง ู…ู† ุณู„ุจ infinity ุฅู„ู‰
29
00:02:46,480 --> 00:02:51,980
infinity not monotonic ู„ุฃู† ุดูˆูŠุฉ ุนู„ูŠู‡ุง increasing ูˆ
30
00:02:51,980 --> 00:02:55,060
ุดูˆูŠุฉ decreasing ุงุญู†ุง ู†ู‚ูˆู„ ุงู†ู‡ุง increasing ุนู„ู‰ ุทูˆู„
31
00:02:55,060 --> 00:03:00,700
ุงูˆ decreasing ุนู„ู‰ ุทูˆู„ุงู„ุฏุงู„ุฉ F of X ูŠุณุงูˆูŠ ุชุฑุจูŠุฉ
32
00:03:00,700 --> 00:03:04,980
ู…ูˆู†ูˆุชูˆู†ูƒ ู…ู† ุณุงู„ุจ Infinity ู„ุบุงูŠุฉ Zero ูˆูƒุฐู„ูƒ
33
00:03:04,980 --> 00:03:09,000
ู…ูˆู†ูˆุชูˆู†ูƒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† Zero ุฅู„ู‰ Infinity ู„ูƒู†ู‡ุง
34
00:03:09,000 --> 00:03:13,340
ู„ูŠุณุช ู…ูˆู†ูˆุชูˆู†ูƒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ูˆูŠู† ู…ู† ุณุงู„ุจ Infinity
35
00:03:13,340 --> 00:03:17,960
ุฅู„ู‰ Infinity ูŠุจู‚ู‰ ู‡ุฐุง ุชุนุฑูŠู ุงู„ู…ูˆู†ูˆุชูˆู†ูƒ ุจ function
36
00:03:17,960 --> 00:03:19,380
ูˆู…ุซุงู„ ุจุณูŠุท
37
00:03:23,490 --> 00:03:27,090
ู†ุนูˆุฏ ู„ู€ Crawler ุงู„ุซู„ุงุซุฉ ุทุจุนุง ุงู„ู„ู‰ ุฎุฏู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ู‰
38
00:03:27,090 --> 00:03:29,870
ูุงุช ู†ุธุฑูŠุฉ ุงู„ mean value theorem ูˆ two crawlers
39
00:03:29,870 --> 00:03:34,470
ุนู„ูŠู‡ุง ุชู…ุงู… ู‡ุฐู‡ ุงู„ crawlery ุฑู‚ู… ุซู„ุงุซุฉ ู…ุดุงู† ุทุจู‚ ุงู„
40
00:03:34,470 --> 00:03:37,570
mean value theorem ู‚ู„ู†ุง ุจุฏู†ุง ุฏู„ุฉ ุชุจู‚ู‰ ุฏู„ุฉ ู…ุชุตู„ุฉ
41
00:03:37,570 --> 00:03:40,910
ุนู„ู‰ ุงู„ closed interval ูˆ ู‚ุจู„ ุงุดุชู‚ุงู‚ ุนู„ู‰ ุงู„ open
42
00:03:40,910 --> 00:03:44,720
interval a ูˆ bู…ู† ู‡ู†ุง ู†ุฌูˆู‰ ู„ู„ุงูุชุฑุงุถ ุฃู† ุงู„ุฏุงู„ุฉ
43
00:03:44,720 --> 00:03:49,680
ูุจุฅุณุชู…ุฑ ุนู„ู‰ ุงู„ู€Closed Interval ูˆู‚ุงุจู„ุฉ ู„ู„ุงุดุชู‚ุงุก ุนู„ู‰
44
00:03:49,680 --> 00:03:53,120
ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ุฃูŠ ูˆุจูŠู‡ุง ุงู„ุดุฑูˆุท ุงู„ู€Mean Value
45
00:03:53,120 --> 00:03:59,150
TheoremุŒ ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉุฅุฐุง ุงู„ู€ F'
46
00:03:59,490 --> 00:04:05,510
of X ุฃูƒุจุฑ ู…ู† Zero ุนู„ู‰ ูƒู„ ุงู„ูุชุฑุฉ ุจู‚ูˆู„ ุงู„ุฏุงู„ุฉ ุฏุงู„ุฉ
47
00:04:05,510 --> 00:04:09,590
ุชุฒุงูŠุฏูŠุฉ ูŠุจู‚ู‰ ุนู„ู‰ ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„
48
00:04:09,590 --> 00:04:14,370
interval A ูˆB ูŠุจู‚ู‰ ุงู„ F ุฏุงู„ุฉ ุชุฒุงูŠุฏูŠุฉ ุนู„ู‰ ูƒู„ closed
49
00:04:14,370 --> 00:04:18,870
interval A ูˆB ูŠุนู†ูŠ ูƒุฃู† ุงู„ domain ุชุจุนู‡ุงู„ู€ closed
50
00:04:18,870 --> 00:04:24,010
interval ุงูˆ continuous ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ ุง ูˆ ุจูŠูˆ
51
00:04:24,010 --> 00:04:26,370
differentiable ุนู„ู‰ ุงู„ open interval
52
00:04:35,010 --> 00:04:39,130
ูˆุฅุฐุง ูƒุงู†ุช f prime ุฃู‚ู„ ู…ู† 0 ูŠุจู‚ู‰ ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ
53
00:04:39,130 --> 00:04:43,210
ู…ุงู„ู‡ุง ุชู†ุงู‚ุตูŠ ูŠุจู‚ู‰ decreasing function ุนู„ู‰ ุงู„ูุชุฑุฉ
54
00:04:43,210 --> 00:04:49,510
ุงู„ู„ูŠ ู„ู†ุง ู…ูŠุฉ a ูˆb ูŠุจู‚ู‰ ุฃู†ุง ุงู„ุขู† ุฌูŠุจ ุชุนุฑูŠู ุฌุฏูŠุฏ ุบูŠุฑ
55
00:04:49,510 --> 00:04:52,470
ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡ ููŠ ุงู„ chapter ุงู„ุฃูˆู„ ููŠ ุงู„ chapter
56
00:04:52,470 --> 00:04:55,450
ุงู„ุฃูˆู„ ู…ุด ู‡ู†ุฌูŠุจ ุงู„ุฏุงู„ุฉ increasing ุนู„ู‰ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ
57
00:04:55,450 --> 00:05:01,820
ุจุชุงุฎุฏ two elements ุนุดูˆุงุฆูŠุฉุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง
58
00:05:01,820 --> 00:05:08,380
ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู†
59
00:05:08,380 --> 00:05:13,940
X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„
60
00:05:13,940 --> 00:05:15,820
ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2
61
00:05:15,820 --> 00:05:17,900
ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู†
62
00:05:17,900 --> 00:05:19,060
X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„
63
00:05:19,060 --> 00:05:19,060
ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2
64
00:05:19,060 --> 00:05:19,060
ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู†
65
00:05:19,060 --> 00:05:20,880
X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„
66
00:05:20,880 --> 00:05:26,470
ู…ู† X2 ุฅุฐุง ูƒุงู† X1 ุฃู‚ู„ ู…ู† X2 ุฅุฐุง ูƒุงู† Xุฃุฐุง ู„ู…ุง ุฌูŠุช
67
00:05:26,470 --> 00:05:31,310
ุฃุณุชุฎุฏู… ุงู„ู…ุดุชู‚ุฉ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ูˆู„ ุฅุฐุง ุงู„ู…ุดุชู‚ุฉ ู…ูˆุฌุจ
68
00:05:31,310 --> 00:05:34,270
ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ ุชุฒุงูŠุฏูŠุฉ ูˆุฅุฐุง ุงู„ู…ุดุชู‚ุฉ ุณู„ุจ ูŠุจู‚ู‰ ูŠู‚ูˆู„
69
00:05:34,270 --> 00:05:39,870
ุงู„ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ู†ุนุทูŠ ู…ุซุงู„ ุชูˆุถูŠุญูŠ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† f of
70
00:05:39,870 --> 00:05:44,570
x ูŠุณุงูˆูŠ x plus 4 ู†ู‚ุต 4x ุชูƒูŠุจ ุฒูŠ 4x ุชุฑุจูŠุฉ ุจุฏู‰
71
00:05:44,570 --> 00:05:49,030
ุดุบู„ุชูŠู† ุงู„ุดุบู„ุฉ ุงู„ุฃูˆู„ู‰ ุจุฏู‰ ุงู„ critical points ู„ู‡ุฐู‡
72
00:05:49,030 --> 00:05:53,970
ุงู„ุฏุงู„ุฉ f ุงู„ู†ู‚ุงุท ุงู„ุญุฑุฌุฉ ูˆุจุฏู‰ ูุชุฑุงุช ุงู„ุชุฒูŠุฏ ูˆุงู„ุชู†ุงู‚ุต
73
00:05:53,970 --> 00:06:00,330
ู„ู…ูŠู†ู„ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ ุงู„ุฃุณุงุณูŠุฉ ุงู„ู„ู‰ ุนู†ุฏู†ุง f
74
00:06:00,330 --> 00:06:07,490
of x ูŠุณุงูˆูŠ x to the power 4 minus 4x to the power
75
00:06:07,490 --> 00:06:14,890
3 ุฒุงุฆุฏ 4x square ู„ูˆ ุฌูŠู†ุง ู†ุดุชู‚ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ูŠุจู‚ู‰ ุงู„ f
76
00:06:14,890 --> 00:06:21,690
prime of x ูŠุณุงูˆูŠุฃุฑุจุนุฉ ุฅูƒุณ ุชูƒูŠูŠุจ ู†ุงู‚ุต ุงุชู†ุงุดุฑ ุฅูƒุณ
77
00:06:21,690 --> 00:06:27,270
ุชุฑุจูŠุฉ ุฒุงุฆุฏ ุชู…ุงู†ูŠุฉ ุฅูƒุณ ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ ุชุจุนุชู‡ุง ู„ูƒู† ุจุฏูŠ
78
00:06:27,270 --> 00:06:31,870
ุฃุดูˆู ู‡ู„ ุจู‚ุฏุฑ ุฃุญู„ู„ู‡ุง ูˆ ู„ุง ุจู‚ุฏุฑุด ุชุนุงู„ูˆุง ู†ุดูˆู ูˆุงุถุญ
79
00:06:31,870 --> 00:06:36,290
ุฃู†ู‡ ููŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ุงู„ู„ูŠ ู‡ู…ูŠู† ุฃุฑุจุนุฉ ุฅูƒุณ ุฅุฐุง ู„ูˆ ุฌูŠู†ุง
80
00:06:36,290 --> 00:06:42,910
ุฃุฎุฏู†ุง ุฃุฑุจุนุฉ ุฅูƒุณ ุนุงู…ู„ ู…ุดุชุฑูƒ ุจูŠุธู„ ุนู†ุฏูŠ ุฅูƒุณ ุชุฑุจูŠุฉ
81
00:06:42,910 --> 00:06:50,070
ู†ุงู‚ุต ุชู„ุงุชุฉ ุฅูƒุณุฒุงุฆุฏ ุงุชู†ูŠู† ุงู„ู„ูŠ ุจูŠู† ู‚ูˆุณูŠู† ุฅุฐุง ู…ู…ูƒู†
82
00:06:50,070 --> 00:06:56,230
ู†ุญู„ู„ู‡ ุจู†ุฑูˆุญ ู†ุญู„ู„ู‡ ุงู„ู„ูŠ ุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ูŠุจู‚ู‰ ู‡ุงูŠ ุงูƒุณ
83
00:06:56,230 --> 00:07:01,010
ู‡ุงูŠ ุงูƒุณ ู‡ุงูŠ ูˆุงุญุฏ ู‡ุงูŠ ุงุชู†ูŠู† ู‡ุงูŠ ู†ุงู‚ุต ู†ุงู‚ุต ุชู„ุงุชุฉ ุงูƒุณ
84
00:07:01,010 --> 00:07:06,210
ูŠุจู‚ู‰ ุงู„ุชุญู„ูŠู„ ุณู„ูŠู… ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉูŠุจู‚ู‰ ุงุดุชู‚ุงู†ุงุŒ ู…ู†
85
00:07:06,210 --> 00:07:10,510
ุฎู„ุงู„ ู‡ุฐุง ุงู„ุงุดุชู‚ุงู‚ ุจุฏุฃ ุฃุฌูŠุจ ุงู„ critical points ุงู„
86
00:07:10,510 --> 00:07:15,550
critical points ู‡ูŠ ู‚ูŠู… X ุงู„ู„ูŠ ุจุชุฎู„ูŠ ุงู„ู…ุดุชู‚ุฉ ุตูุฑ ุฃูˆ
87
00:07:15,550 --> 00:07:21,130
ุงู„ู…ุดุชู‚ุฉ ุบูŠุฑ ู…ุนุฑูุฉุŒ ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ polynomial ุฅุฐุง ู„ุง
88
00:07:21,130 --> 00:07:25,960
ูŠู…ูƒู† ุฃู† ุชูƒูˆู† ุบูŠุฑ ู…ุนุฑูุฉ ููŠ ูŠูˆู… ู…ู† ุงู„ุฃูŠุงู…ุตุญูŠุญุŸ ุฅุฐุง
89
00:07:25,960 --> 00:07:30,040
ู…ุง ุจุถู„ุด ุนู†ุฏูŠ ุฅู„ุง ุฃุณูˆูŠู‡ุง ุจุงู„ู€ 0 ูˆุจุงู„ุชุงู„ูŠ ุฃุทู„ุน ุงู„
90
00:07:30,040 --> 00:07:35,560
critical points ุฅุฐุง ู„ูˆ ุฌูŠุช ุณูˆูŠุช ู‡ุฐู‡ ุจุงู„ู€ 0 ุจุตูŠุฑ
91
00:07:35,560 --> 00:07:43,100
ุนู†ุฏู†ุง ู…ูŠู… ุงู† ุงู„ X ุชุณูˆูŠ 0 ูˆ X ูŠุณูˆูŠ 1 ูˆ X ูŠุณูˆูŠ 2
92
00:07:43,100 --> 00:07:48,380
ู‡ุฏูˆู„ ู‡ู… ู…ู† are the critical
93
00:07:50,820 --> 00:07:56,420
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู†ู‚ุงุท ุงู„ุญุฑุฌุฉ ู„ู…ูŠู† ู„ู‡ุฐู‡ ุงู„ function ูˆู‡ูˆ
94
00:07:56,420 --> 00:08:00,740
ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ู…ู† ุงู„ู…ุณุฃู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุนุฏูŠู† ุฌู„ูŠุชู„ูŠ
95
00:08:00,740 --> 00:08:05,560
ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต ู…ุดุงู† ุฃุฌูŠุจ ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ
96
00:08:05,560 --> 00:08:10,460
ูˆุงู„ุชู†ุงู‚ุต ุจุฏูŠ ุฃุฑูˆุญ ุฃุฏุฑุณ ุฅุดุงุฑุฉ ุงู„ู…ุดุชู‚ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง
97
00:08:10,460 --> 00:08:14,640
ู…ุดุงู† ุฃุฏุฑุณ ุฅุดุงุฑุฉ ุงู„ู…ุดุชู‚ุฉ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฏุฑุณ ุฅุดุงุฑุฉ ูƒู„
98
00:08:14,640 --> 00:08:19,200
term ู…ู† ุงู„ termุงุช ุงู„ุชู„ุงุชุฉุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุชุฑูˆุญ
99
00:08:19,200 --> 00:08:25,280
ู‡ุงุฌูŠ ุงู‚ูˆู„ู‡ ุจุฏูŠ ุฅุดุงุฑุฉ ุงู„ term ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด 4x
100
00:08:25,280 --> 00:08:31,320
ู‡ุฐุง ุจูŠุงุฎุฏ ุงู„ุตูุฑ ูˆูŠู† ุนู†ุฏ x ุงู„ุณูุฑ ู‚ุฏุงุดุŸ Zero ุจุนุฏ ุงู„
101
00:08:31,320 --> 00:08:36,090
zero positiveูˆุงู„ู„ู‡ ุฎู„ู‘ูŠู‡ุง ู†ุฌูŠุจ ุงู„ zero ุงู„ู„ูŠ ู‡ู†ุง
102
00:08:36,090 --> 00:08:40,710
ุดูˆูŠุฉ ุฎู„ู‘ูŠ ู‡ุฐุง ุงู„ zero ู‡ู†ุง ูˆ ู‚ุจู„ ุงู„ zero ู…ุงู„ู‡
103
00:08:40,710 --> 00:08:46,710
negative ุจุนุฏ ู‡ูŠูƒ ุจุฏุฃ ุฃุฑูˆุญ ุฃุฎุฏ ุฅุดุงุฑุฉ ุงู„ terminal x
104
00:08:46,710 --> 00:08:52,210
ู†ุงู‚ุต ูˆุงุญุฏ ุจูŠุงุฎุฏ ุงู„ zero ุชุจุน ูˆูŠู†ุŸ ุนู†ุฏ ุงู„ ูˆุงุญุฏ ุจุนุฏ
105
00:08:52,210 --> 00:08:57,310
ุงู„ ูˆุงุญุฏ ูƒุฐู„ูƒ positive ูˆ ู‚ุจู„ ุงู„ ูˆุงุญุฏ ู…ุงู„ู‡ negative
106
00:08:57,790 --> 00:09:03,150
ู„ูˆ ุฌูŠุช ุงุฎุฏ ุงุดุงุฑุฉ ุงู„ุฌูˆุณ ุงู„ุชุงู„ุช ู„ูˆู„ ุงูƒุณ ู†ุงู‚ุต ุงุชู†ูŠู†
107
00:09:03,150 --> 00:09:08,690
ูŠุจู‚ู‰ ุจูŠุงุฎุฏ ุฒูŠุฑูˆ ุชุจุน ูˆูŠู† ุนู†ุฏ ุงุชู†ูŠู† ุจุนุฏ ุงุชู†ูŠู† ุฒูŠ
108
00:09:08,690 --> 00:09:13,050
ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุฎู…ุณุฉ ุจู„ุงู‚ูŠ ู‚ูŠู…ุฉ ุงู„ู‚ูˆุณ ุจุงู„ู…ูˆุฌุจ ูˆู‚ุจู„
109
00:09:13,050 --> 00:09:18,830
ุงุชู†ูŠู† ุจู„ุงู‚ูŠ ูƒู„ ู‚ูŠู…ุฉ ุงู„ุฌูˆุณ ู…ุงู„ู‡ ุจุงู„ุณุงู„ุจ ุจุนุฏูƒ ุจุฏุงุฌูŠ
110
00:09:18,830 --> 00:09:24,660
ุงุฎุฏ ุงุดุงุฑุฉ ุญุตู„ ุถุฑุจ ุงุฑุจุนุฉ ุงูƒุณููŠ ุงูƒุณ ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงูƒุณ
111
00:09:24,660 --> 00:09:30,220
ู†ุงู‚ุต ุงุชู†ูŠู† ูˆุงุฌูŠ ุงู‚ูˆู„ ู‡ุฐุง ุงู„ real line ูˆุงุฑูˆุญ ุงุญุฏุฏ
112
00:09:30,220 --> 00:09:36,940
ุงู„ุญุฏูˆุฏ ุงู„ุฅู‚ู„ูŠู…ูŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู‡ุฐุง
113
00:09:36,940 --> 00:09:42,230
ุงู„ุฎุท ุงู„ู„ูŠ ู‡ูˆ ุงุชู†ูŠู†ูˆู‡ุฐุง ุงู„ุฎุท ุงู„ุฑุงุณูŠ ุงู„ู€ X ุนู†ุฏู‡
114
00:09:42,230 --> 00:09:47,530
ุจูˆุงุญุฏ ูˆู‡ุฐุง ุงู„ุฎุท ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู€ X ุนู†ุฏู‡ ุจู‚ุฏุงุด ุจุฒูŠุฑูˆ
115
00:09:47,530 --> 00:09:52,130
ุงู„ุซู„ุงุซุฉ ุชู‚ูˆุณ ู…ุถุฑูˆุจุฉ ููŠ ุจุนุถ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ุงู„ุฅุดุงุฑุงุช
116
00:09:52,130 --> 00:09:59,710
ุงู„ุชู„ุงุชุฉ ููŠ ุจุนุถ ุถุฑุจ ูŠุจู‚ู‰ ู‡ู†ุง ุจุงู„ู…ูˆุฌุฉ ู‡ู†ุง ุณุงู„ู… ู‡ู†ุง
117
00:09:59,710 --> 00:10:06,650
ู…ูˆุฌุฉ ู‡ู†ุง ุณุงู„ู…ูŠุจู‚ู‰ ุถุบุท ุงู„ุฅุดุงุฑุงุช ุณุงู„ุจ ููŠ ุณุงู„ุจ ุจู…ูˆุฌุจ
118
00:10:06,650 --> 00:10:10,490
ููŠ ุณุงู„ุจ ุจุณุงู„ุจ ู…ูˆุฌุจ ููŠ ุณุงู„ุจ ุจุณุงู„ุจ ุณุงู„ุจ ููŠ ุณุงู„ุจ
119
00:10:10,490 --> 00:10:15,570
ุจู…ูˆุฌุจ ู…ูˆุฌุจ ููŠ ู…ูˆุฌุจ ุจู…ูˆุฌุจ ููŠ ุณุงู„ุจ ุจุณุงู„ุจ ูƒู„ ู…ูˆุฌุจ
120
00:10:15,570 --> 00:10:21,570
ูŠุจู‚ู‰ ูƒู„ ู…ูˆุฌุจุŒ ู…ู…ุชุงุฒุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฅุดุงุฑุฉ ู…ูŠู†ุŸุฅุดุงุฑุฉ
121
00:10:21,570 --> 00:10:27,050
ุงู„ู…ุดุชู‚ุฉ ุทู„ุน ู‡ู†ุง ุงู„ู…ุดุชู‚ุฉ ู…ุง ู„ู‡ุง ุณุงู„ูŠ ุจูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ
122
00:10:27,050 --> 00:10:34,010
ูƒุงู†ุช decreasing ุฏู†ุงู‚ุตูŠุฉ ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ู†ุฒู„ุฉ ุฅู„ู‰ ุฃุณูู„
123
00:10:34,010 --> 00:10:39,550
ุงู„ุฅุดุงุฑุฉ ุตุงุฑุช ู…ูˆุฌุฉ ุจูŠุจู‚ู‰ increasing ุงู„ุฏุงู„ุฉ ุตุนุฏุฉ ุฅู„ู‰
124
00:10:39,550 --> 00:10:44,390
ุฃุนู„ู‰ ุณุงู„ูŠ ุจูŠุจู‚ู‰ decreasing ุฅู„ู‰ ุฃุณูู„ ู…ูˆุฌุฉ ุจูŠุจู‚ู‰
125
00:10:44,390 --> 00:10:49,410
increasing ุฅู„ู‰ ุฃุนู„ู‰ุฅุฐุง ุจู‚ุฏุฑ ุฃุญุฏุฏ ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ
126
00:10:49,410 --> 00:10:54,650
ูˆุงู„ุชู†ุงู‚ุต ู„ู…ูŠู† ู„ุฏุงู„ุฉ ุงู„ุนู„ู… ู‡ุฏูู‡ ุจุฑูˆุญ ุจู‚ูˆู„ ู„ู…ุง ูŠุงุชูŠ
127
00:10:54,650 --> 00:11:02,810
ุงู„ F is increasing ุฏุงู„ุฉ ุชุฒุงูŠุฏูŠุฉ on ุนู„ู‰ ุงู„ูุชุฑุฉ
128
00:11:02,810 --> 00:11:11,650
ุงู„ุฃูˆู„ู‰ ู…ู† ุตูุฑ ู„ุบุงูŠุฉ ูˆุงุญุฏ ูˆูƒุฐู„ูƒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุงู†ุฏูŠ
129
00:11:11,650 --> 00:11:18,650
ุงุชู†ูŠู† ู„ุบุงูŠุฉ ูƒุฏู‡ุด infinity ุจุนุฏ ุงูŠู‡ุŸุงู„ู€ F is
130
00:11:18,650 --> 00:11:25,630
decreasing ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุณุงู„ุจ
131
00:11:25,630 --> 00:11:33,430
infinity ู„ุบุงูŠุฉ ุงู„ู€ zero and on ูˆุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุฃู†ุฏ
132
00:11:33,430 --> 00:11:39,470
ุงู„ูˆุงุญุฏ ู„ุบุงูŠุฉ ูƒุฏุงุด ู„ุบุงูŠุฉ ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ู…ุซุงู„ ุจุณูŠุท
133
00:11:39,470 --> 00:11:44,460
ุญุณุจู†ุง ู…ู† ุฎู„ุงู„ู‡ ุงู„ critical points ู„ุฏุงู„ุฉ ู‡ู…ู‡ูˆุญุณุจู†ุง
134
00:11:44,460 --> 00:11:48,780
ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต ูˆุทุจู‚ู†ุง ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ู„ู†ุง
135
00:11:48,780 --> 00:11:55,660
ุชุทุจูŠู‚ุง ู…ุจุงุดุฑุง ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ุนู„ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ูƒุงู†ุช
136
00:11:55,660 --> 00:12:00,860
ู…ูˆู†ูˆุชูˆู†ูƒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ู…ูˆู†ูˆุชูˆู†ูƒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡
137
00:12:00,860 --> 00:12:04,640
ู…ูˆู†ูˆุชูˆู†ูƒ ุนู„ู‰ ุงู„ูุชุฑุฉ ู‡ุฐู‡ ู…ูˆู†ูˆุชูˆู†ูƒ ู„ูƒู† ุงู„ domain
138
00:12:04,640 --> 00:12:12,850
ุชุจุนู‡ุง ูƒู„ู‡ุง not monotonicู†ู†ุชู‚ู„ ุงู„ุฃู† ุฅู„ู‰ ู†ู‚ุทุฉ ุซุงู†ูŠุฉ
139
00:12:12,850 --> 00:12:15,630
ูˆุฃุฎูŠุฑุฉ ููŠ ู‡ุฐุง ุงู„ section
140
00:12:30,950 --> 00:12:34,330
ุงู„ู†ู‚ุทุฉ ุจูŠู† ุญุฏุฏ ุงู„ first derivative test ู„ู„ local
141
00:12:34,330 --> 00:12:43,810
extreme values ูŠุจู‚ู‰ ุงู„ first derivative test
142
00:12:43,810 --> 00:12:57,150
for local extrema ูŠุนู†ูŠ ุงู„ local extreme values
143
00:13:02,410 --> 00:13:13,590
ุจูŠู‚ูˆู„ ู‡ุฐุง ู…ุง ูŠุฃุชูŠ suppose that ุงูุชุฑุถ ุงู†ู‡ ุงู„ c is a
144
00:13:13,590 --> 00:13:24,950
critical point ุงูุชุฑุถ ุงู† ุงู„ c ู‡ูŠ ู†ู‚ุทุฉ ุญุฑูŠุฌุฉ of a
145
00:13:24,950 --> 00:13:26,570
continuous
146
00:13:28,780 --> 00:13:42,280
ูู†ูƒุดู† F ู„ุฏุงู„ุฉ F and ุงู„ F is differentiable
147
00:13:42,280 --> 00:13:54,920
ุฏุงู„ุฉ ู‚ุงุจู„ุฉ ุงู„ุงุดุชุฑุงูƒ at every point ุนู†ุฏ ูƒู„ ู†ู‚ุทุฉ in
148
00:13:54,920 --> 00:13:56,980
some
149
00:13:59,100 --> 00:14:06,480
interval in some interval containing
150
00:14:06,480 --> 00:14:20,040
C except possibly except
151
00:14:20,040 --> 00:14:24,180
possibly at C itself
152
00:14:30,630 --> 00:14:45,090
ู…ุฑุฉ ูˆุงุญุฏ if ุงู„ if prime it change from negative
153
00:14:45,090 --> 00:14:54,470
to positive at c then
154
00:14:56,470 --> 00:15:08,950
ุงู„ู€ F ู„ุฏูŠู‡ ู…ู‚ุงูˆู…ุฉ ู…ู‚ุงูˆู…ุฉ ููŠ ุงู„ู€ C ู†ู…ุฑุฉ
155
00:15:08,950 --> 00:15:15,030
ุงุชู†ูŠู† F F ุจุฑุงูŠู… ุชุชุบูŠุฑ ู…ู† ู…ู‚ุงูˆู…ุฉ ู…ู‚ุงูˆู…ุฉ ู…ู‚ุงูˆู…ุฉ
156
00:15:15,030 --> 00:15:24,170
ู…ู‚ุงูˆู…ุฉ ููŠ ุงู„ู€ C ูุงู„ู€ F ู„ุฏูŠู‡ ู…ู‚ุงูˆู…ุฉ ู…ู‚ุงูˆู…ุฉ ู…ู‚ุงูˆู…ุฉ
157
00:15:24,170 --> 00:15:25,550
ููŠ ุงู„ู€ C
158
00:15:28,460 --> 00:15:39,960
ู†ู‚ุทุฉ ุงู„ุซุงู„ุซุฉ ูˆุงู„ุงุฎูŠุฑุฉ F ุงู„ F prime does not change
159
00:15:39,960 --> 00:15:46,980
does not change its
160
00:15:46,980 --> 00:15:49,200
sign
161
00:15:51,680 --> 00:16:08,920
at C then ุงู„ F has no local extrema at C
162
00:16:57,180 --> 00:16:58,760
ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
163
00:17:58,290 --> 00:17:59,310
ุญุณู†ุงู‹
164
00:18:41,000 --> 00:18:47,160
ุนู„ูŠู‡ ุจุฑูƒู„ุฉุจู†ุฌูŠ ู†ู‚ู„ ุงู„ test derivative test ุงุฎุชุจุงุฑ
165
00:18:47,160 --> 00:18:51,340
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ู„ local extreme values ู„ู…ูˆุงู‚ุน
166
00:18:51,340 --> 00:18:57,600
ุงู„ู†ู‡ุงูŠุงุช ุงู„ุนุธู…ู‰ ูˆุงู„ุตุบุฑู‰ ุงู„ู…ุญู„ูŠุฉ ุจู‚ูˆู„ ูŠูุชุฑุถ ุงู† C is
167
00:18:57,600 --> 00:19:02,960
a critical point ูŠุจู‚ู‰ C ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุญุฑุฌุฉ ู„ุฏุงู„ุฉ ู…ู†
168
00:19:02,960 --> 00:19:08,160
ู„ุฏุงู„ุฉ ู…ุชุตู„ุฉ F ูˆู†ูุชุฑุถ ุงู† ุงู„ุฏุงู„ุฉ F ู‚ุงุจู„ ุงุดุชุฑุงุก
169
00:19:08,160 --> 00:19:17,050
ู„ู„ุงุดุชู‚ุงู‚ ุนู†ุฏ ูƒู„ ู†ู‚ุทุฉ in someinterval containing z
170
00:19:17,050 --> 00:19:21,130
ูŠุจู‚ู‰ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุนู„ู‰ ูƒู„ ุงู„ domain ูˆุฅู†ู…ุง ุนุงู„ู…ูŠุง
171
00:19:21,130 --> 00:19:26,870
ุนู„ู‰ ุฌุฒุก ู…ู† ุงู„ domain containing z except possibly
172
00:19:26,870 --> 00:19:31,690
at z itself ู…ุนุฏู‰ ุนู†ุฏ z itself ุฅูŠุด ูŠุนู†ูŠ ู…ุนุฏู‰ z
173
00:19:31,690 --> 00:19:36,630
itself ูŠุนู†ูŠ ุฏู‡ ู„ูˆ ู…ู…ูƒู† ุชูƒูˆู† ุบูŠุฑ ู‚ุงุจู„ุฉ ู„ู„ุงุดุชู‚ุงู‚ ุนู†ุฏ
174
00:19:36,630 --> 00:19:40,960
z ู…ู…ูƒู† ุชูƒูˆู† ู‚ุงุจู„ุฉ ู„ู„ุงุดุชู‚ุงู‚ุฃูˆ ู…ู…ูƒู† ุชูƒูˆู† ุบูŠุฑ ู‚ุงุจู„ุฉ
175
00:19:40,960 --> 00:19:44,740
ู„ุฅุดุชู‚ุงุก ุนู†ุฏ ุงู„ู€C ู„ุฃู† ุงู„ู€critical point ู‡ูŠ ุงู„ู†ู‚ุทุฉ
176
00:19:44,740 --> 00:19:46,740
ุงู„ุชูŠ ููŠ ุงู„ู€prime ู…ูˆุฌูˆุฏุฉ ุฃูˆ ู„ุง ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€prime
177
00:19:46,740 --> 00:19:52,620
ุจุณ ุจุญูŠุซ ุงู„ู†ู‚ุทุฉ ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉ ููŠ ุฏู…ูŠุงู† ุงู„ุฏุงู„ุฉ ูŠุจู‚ู‰
178
00:19:52,620 --> 00:19:56,380
ู‡ุฐู‡ ุงู„ู…ู‚ุตูˆุฏ ู…ุง ุนุฏุง ุนู†ุฏ ุงู„ู€C itself ูŠุนู†ูŠ ุนู†ุฏ ุงู„ู€C
179
00:19:56,380 --> 00:20:00,480
itself ู…ู…ูƒู† ุงู„ุฏุงู„ุฉ ุชูƒูˆู† ุบูŠุฑ ู‚ุงุจู„ุฉ ู„ู„ุฅุดุชู‚ุงุก ุงุจู†
180
00:20:00,480 --> 00:20:06,000
ุฌู„ุงู† ุฅุฐุง ูˆุงู„ู„ู‡ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุบูŠุฑุช ุฅุดุงุฑุชู‡ุง ู…ู† ุณุงู„ุจ
181
00:20:06,000 --> 00:20:11,930
ุฅู„ู‰ ู…ูˆุฌุจู…ู† negative ุฅู„ู‰ positive ุนู†ุฏ ุงู„ู†ู‚ุทุฉ C ูŠุจู‚ู‰
182
00:20:11,930 --> 00:20:16,690
ุงู„ F has a local minimum ุชุนุงู„ู‰ ู†ุดูˆู ู‡ุฐุง ุนู„ู‰
183
00:20:16,690 --> 00:20:20,090
ุงู„ุทุจูŠุนุฉ ู‚ุจู„ ู…ุง ู†ุชู‚ู„ ุฅู„ู‰ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุฏุงู„ุฉ
184
00:20:20,090 --> 00:20:24,450
ุจุชุบูŠุฑ ุฅุดุงุฑุชู‡ุง ู…ู† negative ุฅู„ู‰ positive ุจุนุฏูŠู† ุจุชุทู„ุน
185
00:20:24,450 --> 00:20:29,710
ุนู„ู‰ ุงู„ุฏุงู„ุฉ ุงู„ุฏุงู„ุฉ ู‡ู†ุง ุชุฒุงูŠุฏูŠุฉ ุจู„ุช ู‡ู†ุง ูƒู…ุง ุงู„ู…ุงู„ู‡ุง
186
00:20:29,710 --> 00:20:36,370
ุชุฒุงูŠุฏูŠุฉ ู…ุงุชุบูŠุฑุชุดูŠุจู‚ู‰ ู‡ู†ุง ููŠ ู‡ุฐู‡ ุงู„ู…ู†ุทู‚ุฉ F ุฃูƒุจุฑ ู…ู†
187
00:20:36,370 --> 00:20:42,850
ุงู„ู€ 0 ูˆ ู‡ู†ุง F ุฃูƒุจุฑ ู…ู† ุงู„ู€ 0 ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู…ู†ุทู‚ุฉ ู…ู†
188
00:20:42,850 --> 00:20:50,330
ู‡ู†ุง ู„ุบุงูŠุฉ ู‡ู†ุง ูŠุจู‚ู‰ F ุฃู‚ู„ ู…ู† ุงู„ู€ 0ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ F'
189
00:20:51,130 --> 00:20:56,730
ุฃู‚ู„ ู…ู† ุงู„ 0 ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุจู„ุงู‚ูŠ ุฃู† F'
190
00:20:57,350 --> 00:21:02,450
ุฃูƒุจุฑ ู…ู† ุงู„ 0 ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ู…ู†ุทู‚ุฉ ู‡ุฐู‡ ุจู„ุงู‚ูŠ F' ุฃู‚ู„
191
00:21:02,450 --> 00:21:07,510
ู…ู† ุงู„ 0 ู„ุฃู†ู‡ ุชู†ุงู‚ุตูŠุฉ ู„ูˆ ุฌูŠุช ุนู„ู‰ ุงู„ุฌุฒุก ู…ู† ู‡ู†ุง ู„ู‡ู†ุง
192
00:21:07,510 --> 00:21:13,570
ูƒู…ุงู† F' ู…ุงู„ู‡ุง ุฃู‚ู„ ู…ู† ุงู„ 0 ุฅูŠุด ุจู‚ูˆู„ู‡ ู‡ู†ุง ุฅุฐุง F'
193
00:21:13,970 --> 00:21:18,800
ุบูŠุฑุช ุดุฑุทู‡ุง ู…ู† negative ุฅู„ู‰ positiveูƒุงู†ุช ุฏุงู„ุฉ
194
00:21:18,800 --> 00:21:25,660
ุชู†ุงู‚ุตูŠุฉ ูˆ ุฑุฌุนุฉ ุงู„ุทู„ุงู‚ุฉ ุงู„ุชุฒุงูˆุฏูŠุฉ Local Minimum
195
00:21:25,660 --> 00:21:32,260
ูŠุจู‚ู‰ Local Minimum ุนู†ุฏ ุงู„ู€ C ูŠุจู‚ู‰ ุนู†ุฏู†ุง Local
196
00:21:32,260 --> 00:21:40,360
Minimum ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุงู„ู€ F' of C ุชู„ุงุชุฉ ุจุฏู‡ ูŠุณุงูˆูŠ
197
00:21:40,360 --> 00:21:46,330
ู…ูŠู†ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ููŠ ุนู†ุฏูŠ ุบูŠุฑู‡ุง Local MinimumุŸู…ู†
198
00:21:46,330 --> 00:21:52,150
ุฎู„ุงู„ ุงู„ุฑุณู… ููŠ local minimum ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ
199
00:21:52,150 --> 00:21:58,450
ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฐู‡ ูƒู…ุงู† local minimum ุจุณ ู…ุงููŠุด ุชุบูŠูŠุฑ
200
00:21:58,450 --> 00:22:04,930
ุนู†ุฏู‡ุง ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุฑุบู… ุฃู†ู‡ุง ู†ู‚ุทุฉ ุจุฏุงูŠุฉ ู…ู† ุงู„ุจุฏุงูŠุฉ
201
00:22:04,930 --> 00:22:11,550
ูŠุจู‚ู‰ ู‡ุฐู‡ local minimum ุงุชุง ูƒูˆูŠุณุŸ ู„ูƒู† ู‡ุฐู‡ ู„ูŠุณุช ู†ู‚ุทุฉ
202
00:22:11,550 --> 00:22:14,990
ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุฏุงุฎู„ ุงู†ุช ุชู‚ูˆู„ ุบูŠุฑุช ุฅุดุฑุชู‡ุง ู…ู† ูƒุฐุง ุฅู„ู‰
203
00:22:14,990 --> 00:22:19,570
ูƒุฐุงูŠุจู‚ู‰ ู„ูˆ ูƒุงู†ุช ู†ู‚ุทุฉ ููŠ ุงู„ุฏุงุฎู„ ูˆุชุบูŠุฑุช ู…ู† ุณุงู„ุจ ุฅู„ู‰
204
00:22:19,570 --> 00:22:23,790
ู…ูˆุฌุฉ ุจู‚ูˆู„ ู‡ู†ุง local minimum ู‡ุฐู‡ local minimum ู„ูŠุดุŸ
205
00:22:23,790 --> 00:22:29,550
ู„ุฃู†ู‡ุง ุฃู‚ู„ ู‚ูŠู…ุฉ ุจุชุงุฎุฏู‡ุง ู„ู„ุฏุงู„ุฉ ู…ู† ุนู†ุฏ ุฃูˆู„ ู†ู‚ุทุฉ
206
00:22:29,550 --> 00:22:35,310
ู„ุบุงูŠุฉ ู…ูŠู† ู„ูˆ ุฌูŠุช ู‚ู„ุช ู‡ุฐู‡ ุงูุชุฑุถ ุงู† ู‡ุฐู‡ ุฃูˆู„ ู†ู‚ุทุฉ ููŠ
207
00:22:35,310 --> 00:22:41,420
ุงู„ interval A ูˆู‡ุฐู‡ ุฃุฎุฑ ู†ู‚ุทุฉ ููŠ ุงู„ interval Bู„ูˆ ุฌูŠุช
208
00:22:41,420 --> 00:22:45,880
ุญูˆุงู„ูŠู† ุงู„ู€A ู„ู‚ูŠุช ู‡ุฐู‡ ุฃู‚ู„ ู‚ูŠู…ุฉ ู„ุฏู‰ ุงู„ู„ูŠ ูŠุจู‚ู‰ ู‡ุฐู‡
209
00:22:45,880 --> 00:22:49,180
ุงู„ู€local minimum ู…ู† ุฃูˆู„ section ุฃุฎุฏู†ุงู‡ ุงู„ู„ูŠ ู‡ูˆ
210
00:22:49,180 --> 00:22:54,820
section 4-1 ุทูŠุจ ููŠ ุนู†ุฏูŠ ูƒู…ุงู† local minimum ุชุงู†ูŠ
211
00:22:54,820 --> 00:23:02,940
ู…ุงุนู†ุฏูŠุด ู„ูƒู† ู‡ุฐู‡ ู‡ูˆ ูƒู…ุงู† local minimum ุจุณ ุฅูŠุด ู‡ุฐู‡
212
00:23:02,940 --> 00:23:07,420
ู†ู‚ุทุฉ ุทุฑููŠุฉ in point ุชู…ุงู…ุŸ ุฃูŠูˆุฉ
213
00:23:10,080 --> 00:23:14,880
ู„ุง local minimum ูˆู„ุง local maximumุŒ ู„ุง ุจู‚ุฏุฑุด ูˆู„ุง
214
00:23:14,880 --> 00:23:18,960
ุญุงุฌุฉุŒ ุงูŠูˆุฉ ู†ู‚ุฏุฑ ู…ู† ู‡ุฐุง ุงู„ุงุชุจุงู‡ ู†ุนุฑู ุงูŠ ูˆุงุญุฏุฉ ู‡ูŠ ุงู„
215
00:23:18,960 --> 00:23:22,220
absolute ูˆ ุงู„ local minimumุŸ ู‡ู†ุฌูŠ ู„ู„ absoluteุŒ ุจุณ
216
00:23:22,220 --> 00:23:27,170
ุงุณุชุบู„ู†ูŠ ุดูˆูŠุฉุŒ ู‡ู†ู‚ูˆู„ุŒ ู†ุดูŠุฑ ุฅู„ูŠู‡ุงุทูŠุจ ุจุณ ุฎู„ุต ุงู„ local
217
00:23:27,170 --> 00:23:31,090
ุจุนุฏูŠู† ุจุฑูˆุญ ู„ู„ absolute ู„ุณู‡ ุงุญู†ุง ุงุชูƒู„ู…ู†ุง ุนู„ู‰ ุงู„ู†ู‚ุทุฉ
218
00:23:31,090 --> 00:23:36,390
ุงู„ุฃูˆู„ู‰ ุจุฏู†ุง ู†ุฌู„ ุฃุนู„ู‰ ู…ู† ุฅุฐุง ุงู„ F prime ุบูŠุฑุช ุดุฑูŠุทู‡ุง
219
00:23:36,390 --> 00:23:40,910
ู…ู† positive ุฅู„ู‰ negative ูŠุนู†ูŠ ูƒุงู†ุช ุงู„ุฏุงู„ุฉ ุชุฒุงูŠุฏูŠุฉ
220
00:23:40,910 --> 00:23:47,850
ุซู… ุฑุงุฌุนุช ุฃุตุจุญุช ุชู†ุงู‚ุตูŠุฉ ุจู‚ู‰ ู‡ู†ุง ุชุฒุงูŠุฏูŠุฉ ู‡ู†ุง ุชุฒุงูŠุฏูŠุฉ
221
00:23:48,160 --> 00:23:52,720
ู‡ุฐู‡ ุงู„ุงุตุทู†ุงุนุงุช ุงู„ู…ู‡ู…ุฉ ู„ูƒู†ู‡ุง ู„ูŠุณุช ู„ูˆูƒุงู„ ู…ุงูƒุณูŠู…ู…ู…
222
00:23:52,720 --> 00:23:58,360
ูˆู„ุง ุญุชู‰ ู„ูˆูƒุงู„ ู…ูŠู†ูŠู…ุง ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู„ุง ุฅูƒุณุชุฑูŠู…ุง
223
00:23:58,360 --> 00:24:04,140
ู…ุงุนู†ุฏูŠุด ููŠ ู‡ุฐู‡ ูŠุจู‚ู‰ ู‡ุฐู‡ ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุจู‚ูˆู„ ู„ุง
224
00:24:04,140 --> 00:24:07,460
ุฅูƒุณุชุฑูŠู…ุง
225
00:24:23,260 --> 00:24:27,600
ุงู„ุฏุงู„ุฉ ูƒุงู†ุช ุชุฒุงูŠุฏูŠุฉ positive ูˆ ุฑุฌุนุช negative
226
00:24:31,460 --> 00:24:37,200
local maximum ุงุฐุง ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ local maximum
227
00:24:37,200 --> 00:24:44,860
ุจูŠุญุตู„ ุนู†ุฏู‡ุง ูˆุนู†ุฏูŠ f prime of c2 ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุจุฏู‡
228
00:24:44,860 --> 00:24:51,340
ูŠุณุงูˆูŠ zero ุชู…ุงู… ููŠ ูƒู…ุงู† ุงู‡ ููŠ ู‡ูŠ ุงู„ุฏุงู„ุฉ ุงู„ุชุฒุงูŠุฏูŠุฉ
229
00:24:51,340 --> 00:24:55,840
ูˆุฑุฌุนุช ุตุงุฑุช ุชู†ู‚ุตูŠุฉ ูƒุงู†ุช positive ูˆุฑุฌุนุช negative
230
00:24:55,840 --> 00:25:00,240
ูŠุจู‚ู‰ ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุงูŠุด ููŠ ุนู†ุฏูŠ local
231
00:25:02,020 --> 00:25:08,760
ุญุณุจ ุงู„ุชุนุฑูŠู ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ูƒุงู†ุช ุชู†ุงู‚ุตูŠุฉ ูˆุธู„ุช ุชู†ุงู‚ุตูŠุฉ
232
00:25:08,760 --> 00:25:12,680
ูŠุจู‚ู‰ ู…ุงุนู†ุฏูŠุด ู„ุง local maximum ูˆู„ุง local minimum
233
00:25:12,680 --> 00:25:17,700
ู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ ุงู„ุชุงู†ูŠุฉ ุฅุฐุง f prime ู…ุงุนูŠุฑุชุด ุฅุดุงุฑุชู‡ุง ุนู†ุฏ
234
00:25:17,700 --> 00:25:23,280
c ูŠุจู‚ู‰ ู…ุงุนู†ุฏูŠุด has no local extrema ูŠุนู†ูŠ ู…ุงุนู†ุฏูŠุด
235
00:25:23,280 --> 00:25:27,960
ู„ุง local maximum ูˆู„ุง local minimum ุทุจ ุฅูŠุด ุฑุฃูŠูƒ ุนู†ุฏ
236
00:25:27,960 --> 00:25:39,230
ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ุŸุงู„ู€ F' of C4 is undefined ูŠุจู‚ู‰ ู…ุงู‡ูŠุงุด
237
00:25:39,230 --> 00:25:45,410
ู…ุนุฑูุฉ ู„ุฃู† ุนู†ุฏูŠ ุฃูƒุงุณุจ ู‡ู†ุง ุทูŠุจ ุฅุฐุง ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุจูŠู‚ูˆู„
238
00:25:45,410 --> 00:25:50,690
ุฅุฐุง F ู…ุงุบูŠุฑุชุด ุฅุดุงุฑุชู‡ุง ูŠุจู‚ู‰ no local extrema ูŠุจู‚ู‰
239
00:25:50,690 --> 00:25:58,170
ู‡ุงูŠ no local extrema ูˆู‡ู†ุง ูƒุฐู„ูƒ no local extrema
240
00:25:59,890 --> 00:26:05,890
ูŠุจู‚ู‰ ู…ุงุนู†ุฏูŠุด ูƒุฐุง ู„ูƒ ุฑุบู… ุงู†ู‡ f prime of c ุฎู…ุณุฉ ุจุฏู‡
241
00:26:05,890 --> 00:26:11,030
ูŠุณุงูˆูŠ ู‚ุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ zero ูŠุจู‚ู‰ ุตุงุฑ local minimum
242
00:26:11,030 --> 00:26:16,310
local minimum local minimum local maximum local
243
00:26:16,310 --> 00:26:22,750
maximum no local extrema no local extrema ุฎู„ุตู†ุง ู…ู†
244
00:26:22,750 --> 00:26:26,230
ู‚ุตุฉ ุงู„ local ูˆุงุญุฏ ุณุฃู„ ู‚ุงู„ ุทูŠุจ ุงู„ absolute ุจู‚ูˆู„ู‡
245
00:26:26,230 --> 00:26:30,890
ุจุฏู†ุง ู†ุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ ุฅู„ู‰ section 4-1ุจุชุฏุงุฌูŠ ุนู„ู‰ ุงู„ู€
246
00:26:30,890 --> 00:26:35,510
Interval ูƒู„ู‡ุง ู…ู† A ุฅู„ู‰ B ุฃู‚ู„ ู‚ูŠู…ุฉ ุจูŠู‚ูˆู„ ุนู†ู‡ุง
247
00:26:35,510 --> 00:26:40,830
Absolute minimum ุฃูƒุจุฑ ู‚ูŠู…ุฉ Absolute maximum ุฅุฐุง
248
00:26:40,830 --> 00:26:47,290
ู‡ุฐู‡ ูƒู…ุงู† ุฅูŠุด ุจูŠูƒูˆู† Absolute minimum ู„ุฅูŠุด ุฅู† ู‡ุฐู‡
249
00:26:47,290 --> 00:26:53,330
ุฃู‚ู„ ู‚ูŠู…ุฉุŸ ู‡ุฐู‡ ู‡ู†ุง ูƒู…ุงู† ู…ุง ู„ู‡ุง Absolute maximum
250
00:26:53,330 --> 00:26:58,860
ู„ุฅูŠุดุŸ ู„ุฃู† ุฃูƒุจุฑ ู‚ูŠู…ุฉ ู…ูˆุฌูˆุฏุฉ ู„ูˆูŠุง ู„ู„ุฏุงู„ุฉุญุฏ ู„ู‡ ุงูŠ
251
00:26:58,860 --> 00:27:03,040
ุชุณุงุคู„ ุงุฎุฑุŸ ุงูŠูˆุฉ. ุงู„ุฏูƒุชูˆุฑ ุจุงู„ู†ุณุจุฉ ู„ูŠู‡ ู…ุซู„ ุงู„ุชุนุฑูŠู
252
00:27:03,040 --> 00:27:06,540
ุงู„ุฃูˆู„ุŸ ู…ุด ู‡ูˆ ุญุงุฌุงุช ุงู„ู„ูŠ ู†ูุชุฑุงู†ู‡ุงุŸ monotonic
253
00:27:06,540 --> 00:27:10,560
ุงู„ุชุนุฑูŠู ุงู„ุฃูˆู„. ู„ุฃ ู‡ุฐุง ุงู„ู„ูŠ ู…ูƒุชูˆุจ ูŠุนู†ูŠ. ู‡ุฐุง ุงู„ู„ูŠ
254
00:27:10,560 --> 00:27:14,220
ุงู„ุชุงู„ูŠ ูŠุนู†ูŠ. ุงูŠูˆุฉุŒ ู‡ุฐุงุŒ ุงูŠูˆุฉ. ู‚ุตุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„
255
00:27:14,220 --> 00:27:17,940
support ูŠุนู†ูŠ ุงู„ .. ุงู„ support. ุทูŠุจ ุงู†ุง ูƒู†ุช ุฑูŠูˆุฒ
256
00:27:17,940 --> 00:27:21,520
ุนู„ู‰ ุงู„ closed ูˆ differential ุนู„ู‰ ุงู„ open. ุทุจ ู„ูŠุด
257
00:27:21,520 --> 00:27:25,080
ู‚ุงู„ in some terms ูˆ ู„ุง ูƒู†ุชุงู†ูŠุŸู…ุด ู‚ูˆู„ู†ุงู‡ุง ูŠุง ุดุจุงุจุŸ
258
00:27:25,080 --> 00:27:29,500
ู‚ูˆู„ู†ุงู‡ุง ูˆ ู‡ู†ู‚ูˆู„ู‡ุง ูƒู…ุงู† ู…ุฑุฉ ู…ุด ุฃู†ุง ุฎุงุทุฑุŒ ุดูˆ ุงุณู…ูƒ
259
00:27:29,500 --> 00:27:40,370
ุฃู†ุชุŸุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุงุฐุง ูƒุงู† ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู…
260
00:27:40,370 --> 00:27:43,970
ุฒุงุฆุฏ
261
00:27:43,970 --> 00:27:47,870
ุงุฐุง ูƒุงู† ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุงุฐุง ูƒุงู† ุงุฏู… ุฒุงุฆุฏ
262
00:27:47,870 --> 00:27:48,590
ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุงุฐุง ูƒุงู† ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุงุฐุง
263
00:27:48,590 --> 00:27:49,430
ูƒุงู† ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู…
264
00:27:49,430 --> 00:27:49,430
ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ
265
00:27:49,430 --> 00:27:49,430
ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู…
266
00:27:49,430 --> 00:27:54,190
ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ
267
00:27:54,190 --> 00:28:01,960
ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ ุงุฏู… ุฒุงุฆุฏ ุชุจู‚ู‰ูˆุงุถุญุฉ ู‡ูŠ ู…ูƒุชูˆุจุฉ
268
00:28:01,960 --> 00:28:05,600
ู…ูƒุชูˆุจุฉ ุงู†ุง ุจุฏูŠ ุงูŠุงู‡ุง differentiable ุนู„ู‰ ุงู„ open
269
00:28:05,600 --> 00:28:10,340
interval ู‡ุฐู‡ ู…ู‚ุนุฏุฉ ุนู†ุฏู‡ุง C ุชุณูŠู„ููŠ ู…ู…ูƒู† ู…ุง ุชุจู‚ุงุด
270
00:28:10,340 --> 00:28:14,960
differentiable ู‡ูŠ ู„ูˆ ุฌูŠุช ุญูˆู„ู‡ุง differentiable
271
00:28:14,960 --> 00:28:19,100
ุงุชุฏุงู„ู‰ ู…ู‚ุนุฏุฉ ู…ู† ู…ู‚ุนุฏุฉ ุนู†ุฏ ุงู„ C4 ุนู†ุฏ ุงู„ C4 ุงุชุฏุงู„ู‰
272
00:28:19,100 --> 00:28:23,340
ุบูŠุฑ ู‚ุงุจู„ ุงู„ุงุดุชู‚ุงู„ ูˆุงุถุญุฉ ุชู…ุงู… ุทูŠุจ ุญุงุฌุฉ ุถุงู„ุฉ ุจุฏูŠ
273
00:28:23,340 --> 00:28:28,880
ุงุณุฃู„ ุชุงู†ูŠ ุทุจ ุจู†ุฑูˆุญ ุงู„ุขู† ู„ุงู„ุงู…ุซู„ุฉ
274
00:28:33,820 --> 00:28:37,440
ุทูŠุจ ู‚ุจู„ ุงู„ุงู…ุซู„ุฉ ุดุงูŠุฉ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ู„ุชู‡ ู‡ู†ุง ุจุฏูŠ ุฃุญุทู‡
275
00:28:37,440 --> 00:28:41,740
ู„ูƒ ู‡ู†ุง ุนู„ู‰ ุงู„ุทุจูŠุนุฉ ุงู„ุณุคุงู„ ุฃูŠู‡ ู‚ุจู„ู‡ุŸ ุงุชุทู„ุน ู„ูŠู‡ ู‡ู†ุง
276
00:28:41,740 --> 00:28:46,100
ุงู„ู…ุดุชู‚ุฉ ูƒุงู†ุช ู†ุงุฒู„ู‡ ุจุนุฏ ู‡ูŠูƒ ุงุชุทู„ุนุชูŠู‡ ุจูŠู‡ ุนู†ุฏ ุงู„
277
00:28:46,100 --> 00:28:52,180
zero ุฅูŠุด ุจุฏูŠ ุฃูƒูˆู†ุŸ ุงู„ุงู† ูƒุงู†ุช ุงู„ุตุนุงุฏุฉ ู…ุดุชู‚ุฉ ุฃูƒุจุฑ ู…ู†
278
00:28:52,180 --> 00:28:55,520
zero ุตุงุฑุช ุฃู‚ู„ ู…ู† ุงู„ zero ูŠุจู‚ู‰ ุนู†ุฏ ุงู„ูˆุงุญุฏ local
279
00:28:55,520 --> 00:29:01,220
maximum ุงู„ุงู† ุนู†ุฏ ุงุชู†ุงู† ู…ุดุชู‚ุฉ ูƒุงู†ุช ุณุงู„ูุฉ ุตุงุฑุช ู…ูˆุฌุฉ
280
00:29:01,220 --> 00:29:05,310
ุจูŠุจู‚ู‰ local minimum ูˆ ู‡ูƒุฐุงูŠุจู‚ู‰ ู‡ุงูŠู‡ ุนู„ู‰ ุงู„ุทุจูŠุนุฉ ู…ู†
281
00:29:05,310 --> 00:29:10,390
ุฎู„ุงู„ ุงู„ู…ุซุงู„ ุฃุณุฑุน ูŠุนู†ูŠ ุฃู†ุง ู…ุงูุถูŠุด ุฃู…ุณุญู‡ุง ู…ุชุนู…ุฏ ุญุชู‰
282
00:29:10,390 --> 00:29:14,510
ุฃุญุงูˆู„ ุฃุฑุจุท ู„ูƒ ู‡ุฐู‡ ููŠู‡ุง ูˆุงู„ุขู† ุจุฏู†ุง ู†ุนุทูŠ ุฃู…ุซู„ุฉ
283
00:29:14,510 --> 00:29:20,270
ู…ุฎุชู„ูุฉ ุนู„ู‰ ุงู„ูƒู„ุงู… ุงู„ุฐูŠ ุชุนุฑุถู†ุง ู„ู‡ ูุถู„
284
00:29:28,700 --> 00:29:35,440
ู…ุด ุนู†ุฏู‡ ู†ู‚ุทุฉ ู‡ุงุฏู‰ุŒ ุดุทุฉ ุงู„ู€ C4 ู…ุด ู…ุนุฑูุฉุŸ ู…ุด ู…ุนุฑูุฉ
285
00:29:35,440 --> 00:29:40,240
ุงู„ู€ C4ุŸ ุงู„ู…ุดุชู‚ุฉ ู…ุด ู…ุนุฑูุฉุŒ ุงู„ุฏุงู„ุฉ ู…ุนุฑูุฉุŒ ุงู„ุฏุงู„ุฉ
286
00:29:40,240 --> 00:29:43,780
ู…ุชุตู„ุฉ ู„ูƒู† ุงู„ู…ุดุชู‚ุฉ ุบูŠุฑ ู…ูˆุฌูˆุฏุฉ ุนุดุงู† ู‡ูŠูƒูˆู† ุงู„ local
287
00:29:43,780 --> 00:29:49,530
maximumุŸ ุงู„ local maximum ุทุจูŠุนูŠ ู„ุฅู†ู‡ุง ู…ุนุฑูุฉุงู„ู…ุดุชู‚ุฉ
288
00:29:49,530 --> 00:29:54,350
ู„ูŠู‡ ู…ุด ู…ุนุฑูุฉ ุงู„ุฏุงู„ุฉ ู…ุนุฑูุฉ ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ุฏุงู„ุฉ ู…ุชุตู„ุฉ
289
00:29:54,350 --> 00:30:00,550
ู„ูƒู†ู‡ุง ุบูŠุฑ ู‚ุงุจู„ุฉ ู„ุงุดุชู‚ุงู‚ ุจุณุจุจ ูˆุฌูˆุฏ ุงู„ุชุฃุณุจุงุจ ุฎู„ุงุตุŸ
290
00:30:00,550 --> 00:30:07,190
ุญุฏ ุจูŠุณุฃู„ ุชุงู†ูŠุŸ ู‡ุฐู‡ ุฑุณู…ุฉ
291
00:30:07,190 --> 00:30:14,490
F of X ู„ูƒู† ู„ูˆ ุฃุฎุฏุช ุงู„ูุชุฑุฉ ู‡ุฐู‡ ุจู„ู‚ู‰ ุงู„ F Prime ุฃูƒุจุฑ
292
00:30:14,490 --> 00:30:18,930
ู…ู† Zero ุนู„ูŠู‡ุงู„ูˆ ุฃุฎุฏุช ุงู„ูุชุฑุฉ ุงู„ุชุงู†ูŠุฉ ู‡ุฐู‡ ุจู„ุงุฌ ุงู„ F'
293
00:30:19,370 --> 00:30:23,290
ุฃูƒุจุฑ ู…ู† ุงู„ zero ู„ูˆ ุฃุฎุฏุช ุงู„ูุชุฑุฉ ุงู„ุชุงู„ุชุฉ ุจู„ุงุฌ ุงู„ F'
294
00:30:23,790 --> 00:30:28,230
ุฃู‚ู„ ู…ู† ุงู„ zero ูŠุนู†ูŠ ู„ูŠุด ุงู† ุงู„ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ุทุจู‚
295
00:30:28,230 --> 00:30:33,810
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุงุญู†ุง ุฌุงูŠ ู„ูŠู„ู‡ ุทุจุนุงุŸ ุทูŠุจ ู†ุฑุฌุน ุงู„ุขู†
296
00:30:33,810 --> 00:30:36,150
ู†ุงุฎุฏ ู…ุซุงู„ example
297
00:30:41,420 --> 00:30:47,140
for the following functions for the following
298
00:30:47,140 --> 00:30:59,360
functions ู„ูƒู„ ู…ู† ุงู„ุฏูˆุงู„ุฉ ุงู„ุชุงู„ูŠุฉ ู†ู…ุฑุฃุฉ a find find
299
00:30:59,360 --> 00:31:06,500
the intervals of
300
00:31:06,500 --> 00:31:17,340
the intervalsin which the function in which the
301
00:31:17,340 --> 00:31:24,660
function is increasing
302
00:31:24,660 --> 00:31:28,180
and
303
00:31:28,180 --> 00:31:35,500
decreasing ุจุฏู†ุง ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต
304
00:31:43,000 --> 00:31:53,600
identify the local extreme values the
305
00:31:53,600 --> 00:32:03,220
local extrema ูˆุฎู„ุตู†ุง ุจุงู„ุงุฎุชุตุงุฑ ู‡ูŠูƒุฏ if any if
306
00:32:03,220 --> 00:32:05,680
any saying
307
00:32:09,010 --> 00:32:14,710
saying where they
308
00:32:14,710 --> 00:32:20,910
occur ู†ู…ุฑุณูŠ
309
00:32:20,910 --> 00:32:31,450
which if any of
310
00:32:31,450 --> 00:32:33,610
the
311
00:32:51,100 --> 00:33:01,800
F of X ูŠุณุงูˆูŠ 2X ุชูƒูŠูŠุจ ู†ุงู‚ุต 18X
312
00:33:36,970 --> 00:33:41,970
ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ู†ุนุทูŠ ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ุฏูˆุงู„ ุจุฏู„ ุงู„ุฏุงู„ุฉ
313
00:33:41,970 --> 00:33:46,970
ุฃุฑุจุนุฉ ุฏูˆุงู„ ูˆ ู„ูƒู„ ุฏุงู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆุงู„ ู†ุญุณุจ ุชู„ุช ุดุบู„ุงุช
314
00:33:46,970 --> 00:33:52,390
ุงู„ุดุบู„ุฉ ุงู„ุฃูˆู„ู‰ ู†ุฌูŠุจ ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต ู„ูƒู„ ุฏุงู„ุฉ
315
00:33:52,390 --> 00:33:56,890
ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆุงู„ ุงู„ุดุบู„ุฉ ุงู„ู…ุทู…ูˆุจุฉ ุชุงู†ูŠุฉ identified a
316
00:33:56,890 --> 00:34:03,250
local extraุชุญุฏุฏู†ูŠ ุงู„ู†ู‡ุงูŠุงุช ุงู„ุนุธู…ุฉ ูˆุงู„ุตุบุฑุฉ ุงู„ู…ุญู„ูŠุฉ
317
00:34:03,250 --> 00:34:09,750
ู„ู‡ุฐู‡ ุงู„ุฏูˆุงู„ if any ุงู† ูˆุฌุฏุช ู…ุด ู…ูˆุฌูˆุฏุฉ ู…ุณุงู…ุญูŠู†ูƒ ููŠู‡ุง
318
00:34:09,750 --> 00:34:13,830
saying where they occur ูˆูŠู† ุจุชุญุตู„ ู‡ุฐู‡ ูŠุนู†ูŠ ุจุชู‚ูˆู„ูŠ
319
00:34:13,830 --> 00:34:18,610
ู†ู‡ุงูŠุฉ ุงู„ุนุธู…ุฉ ู…ุซู„ุง ูƒุฐุง ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุงู„ูู„ุงู†ูŠุฉ ุงู„ู†ู‡ุงูŠุฉ
320
00:34:18,610 --> 00:34:21,570
ุงู„ุตุบุฑุฉ ูƒุฐุง ุนู†ุฏ ุงู„ู†ู‚ุทุฉ ุงู„ูู„ุงู†ูŠุฉ ูŠุนู†ูŠ ุจู†ุญุฏุฏ ู…ูˆุงุถุน
321
00:34:21,570 --> 00:34:28,070
ู†ู‡ุงูŠุงุช ุงู„ุนุธู…ุฉ ูˆุงู„ุตุบุฑุฉุจุนุฏ ุฐู„ูƒ which if any in if
322
00:34:28,070 --> 00:34:32,710
any ูŠุนู†ูŠ ุฅูŠู‡ ุงู„ู†ูˆุฌุจุงุช of the extreme values are
323
00:34:32,710 --> 00:34:35,430
absolute mean ู…ู† ุงู„ extreme values ุงู„ู„ูŠ ุจุชุจู‚ู‰
324
00:34:35,430 --> 00:34:39,810
absolute maximum ุฃูˆ absolute minimum ูŠุนุทูŠู†ูŠ ุฃูˆู„
325
00:34:39,810 --> 00:34:45,290
ุฏุงู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆุงู„ุฉ ุงู„ู„ูŠ ู‡ูˆ 2x ูƒุจ ู†ู‚ุต 18x ู‚ุฏุงุดุฉ ุงู„
326
00:34:45,290 --> 00:34:50,700
domain ุชุจุนู‡ุง ู‡ุฐู‡ูƒู„ real number ูŠุจู‚ู‰ ุฃู†ุง ุจู‚ูˆู„ู‡ ู‡ู†ุง
327
00:34:50,700 --> 00:34:57,080
domain ุงู„ F ูŠุณุงูˆูŠ ู…ู† ุณุงู„ุจ infinity ู„ infinity ูŠุนู†ูŠ
328
00:34:57,080 --> 00:35:02,720
ู…ุงุนู†ุฏูŠุด end points ุงู„ domain ูƒู„ู‡ ุนู„ู‰ ุทุงู‚ู…ุŒ ุจู‚ูˆู„ู‡
329
00:35:02,720 --> 00:35:10,060
ูƒูˆูŠุณูŠุจู‚ู‰ ุจุฏูŠ ุงุจุฏุง ุจุงู„ F prime of X 6X ุชุฑุจูŠู‡ ู†ุงู‚ุต
330
00:35:10,060 --> 00:35:17,440
ุชู…ุงู†ุชุงุด ูŠุนู†ูŠ 6 ุจุถู„ X ุชุฑุจูŠู‡ ู†ุงู‚ุต ุชู„ุงุชุฉ ูŠุนู†ูŠ 6 ููŠ X
331
00:35:17,440 --> 00:35:24,210
ู†ุงู‚ุต ุฌุฏุฑ ุชู„ุงุชุฉ ููŠ X ุฒุงุฆุฏ ุฌุฏุฑ ุชู„ุงุชุฉูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„
332
00:35:24,210 --> 00:35:29,430
ุงู„ู…ุดุชู‚ุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ุฑูˆุญู†ุง ุญู„ู„ู†ุง ุญู„ู„ู†ุง
333
00:35:29,430 --> 00:35:33,690
ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ุฒูŠ ู…ุง ุงู†ุช ุดุงูŠู ุงู„ู…ุดุชู‚ุฉ
334
00:35:33,690 --> 00:35:37,810
polynomial ูŠุจู‚ู‰ ุงู„ domain ุชุจุนู‡ุง ูƒู…ุงู† ู…ูŠู† ูƒู„ ุงู„
335
00:35:37,810 --> 00:35:42,810
real line ุจุงู„ุงุณุชุซู†ุงุก ุชู…ุงู… ูŠุจู‚ู‰ ุญูƒุงูŠุฉ ุงู†ุง ุบูŠุฑ ู…ุนุฑู
336
00:35:42,810 --> 00:35:46,810
ุงุญุทู‡ุง ุน ุดุฌุฑูŠุจู‚ู‰ ู…ุง ุฃู‚ุฏุฑุด ุฃุฌูŠุจ ุงู„ critical points
337
00:35:46,810 --> 00:35:51,130
ุฅู„ุง ุฅุฐุง ุณูˆูŠุชู‡ุง ุจุงู„ุตูุฑ ูู‚ุท ู„ุง ุบูŠุฑ ู…ุงุนู†ุฏูŠุด ุบูŠุฑ ู‡ูŠูƒ
338
00:35:51,130 --> 00:35:56,090
ูŠุจู‚ู‰ ุจุงู„ูŠ ุจู‚ูˆู„ู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ Zero ุฅุฐุง ู„ู…ุง
339
00:35:56,090 --> 00:36:02,090
ูŠุณุงูˆูŠ Zero ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู„ูƒ ุฅู† X ูŠุณุงูˆูŠ ุณุงู„ุจ ุฌุฐุฑ
340
00:36:02,090 --> 00:36:10,990
ุชู„ุงุชุฉ and ุงู„ X ุจุฏู‡ ูŠุณุงูˆูŠ ุฌุฐุฑ ุชู„ุงุชุฉ are the only
341
00:36:10,990 --> 00:36:12,850
critical
342
00:36:17,890 --> 00:36:22,330
ูŠุจู‚ู‰ ุงู†ุง ุฌุจุชู„ู‡ ุงู„ู€ critical ุจุณ ุญุชู‰ ุงู„ุขู† ู…ุงุฌุจุชู„ู‡ุด
343
00:36:22,330 --> 00:36:27,610
ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต ูŠุจู‚ู‰ ุจุฏู‡ ูŠุงุฎุฏ ุฅุดุงุฑุฉ ุงู„ุฃู‚ูˆุงุต
344
00:36:27,610 --> 00:36:33,470
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุจุฏู‡ ูŠุฑูˆุญ ูˆูŠู‚ูˆู„ู‡ ุจุฏู‡ ูŠุงุฎุฏ ุฅุดุงุฑุฉ 6
345
00:36:33,470 --> 00:36:39,790
ููŠ X ู†ุงู‚ุต ุฌุฐุฑ 3 ูˆูŠุบูŠุฑู†ูŠ ุงู„ู„ู‡ ูŠุนู†ูŠ ุจุชุงุฎุฏ ุงู„ zero
346
00:36:39,790 --> 00:36:45,270
ุชุจุนู‡ุง ูˆูŠู†ุŸุนู† ุฌุฐุฑ ุงู„ุชู„ุงุชุฉุŒ ู„ูˆ ุฌูŠุช ุจุนุฏ ุฌุฐุฑ ุงู„ุชู„ุงุชุฉุŒ
347
00:36:45,270 --> 00:36:50,410
ุงู„ุฌุซุฉ ุฏู‡ ุจูŠูƒูˆู† ุจุนุฏ ุฌุฐุฑ ุงู„ุชู„ุงุชุฉุŒ ูŠุนู†ูŠ ุฃูƒุจุฑ ู…ู† ุฌุฐุฑ
348
00:36:50,410 --> 00:36:59,670
ุงู„ุชู„ุงุชุฉ ุจูŠูƒูˆู† ู…ูˆุฌุจ ูˆู‚ุจู„ู‡ ุจุตูŠุฑ ุณุงู„ู…ุงู„ุงู† ู„ูˆ ุฌูŠุช ุงุฎุฏุช
349
00:36:59,670 --> 00:37:06,650
ุงุดุงุฑุฉ ุงู„ X ุฒุงุฆุฏ ุฌุฐุฑ ุชู„ุงุชุฉ ุจูŠุงุฎุฏ ุงู„ zero ุชุจุน ูˆูŠู†
350
00:37:06,650 --> 00:37:15,210
ุนู†ุฏ ุณุงู„ุจ ุฌุฐุฑ ุชู„ุงุชุฉ ุจุนุฏู‡ุง ู…ูˆุฌุจ ูˆ ู‚ุจู„ู‡ุง ุณุงู„ุจ ุงู„ุงู†
351
00:37:15,210 --> 00:37:21,940
ุงู†ุง ุจุฏูŠ ุงุดุงุฑุฉ ุญุงุตู„ ุถุฑุจ ุงู„ู‚ูˆุณูŠู†X ู†ุงู‚ุต ุฌุฏุฑ ุชู„ุงุชุฉ ููŠ
352
00:37:21,940 --> 00:37:28,700
ุณุชุฉ ููŠ X ุฒุงุฆุฏ ุฌุฏุฑ ุชู„ุงุชุฉ ูˆุงุฏู‰ ุงู„ real line ูˆุจุฏู†ุง
353
00:37:28,700 --> 00:37:35,420
ู†ูŠุฌูŠ ู†ุญุฏุฏ ุงู„ุญุฏูˆุฏ ุงู„ุฅู‚ู„ูŠู…ูŠุฉ ูŠุจู‚ู‰ ุงู†ู‚ุณู… ุงู„ domain
354
00:37:35,420 --> 00:37:42,280
ุฅู„ู‰ ุซู„ุงุซุฉ ู…ู†ุงุทู‚ู‡ุฐู‡ ุฌุฐุฑูŠุฉ ุชู„ุงุชุฉ ูˆู‡ู†ุง ุณุงู„ุจ ุฌุฐุฑูŠุฉ
355
00:37:42,280 --> 00:37:46,820
ุชู„ุงุชุฉ ุงู„ุฌุซูŠู† ู…ุถุฑุจุงุช ููŠ ุจุนุถ ุถุฑุจ ูŠุจู‚ู‰ ู†ุถุฑุจ ุงู„ุฅุดุงุฑุงุช
356
00:37:46,820 --> 00:37:53,380
ุถุฑุจ ุณุงู„ุจ ููŠ ุณุงู„ุจ ุจู…ูˆุฌุจ ุณุงู„ุจ ููŠ ู…ูˆุฌุจ ุจุณุงู„ุจ ู…ูˆุฌุจ ููŠ
357
00:37:53,380 --> 00:37:59,380
ู…ูˆุฌุจ ุจู…ูˆุฌุจ ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ุฏุงู„ุฉ ุงู„ู…ุดุชู‚ุฉ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰
358
00:37:59,380 --> 00:38:05,240
ุงู„ุฏุงู„ุฉ ูƒุงู†ุชincreasing ูŠุจู‚ู‰ ุชุฏู„ุน ุงู„ุตุนูŠุฏุฉ ุงู„ู‰ ุงุนู„ู‰
359
00:38:05,240 --> 00:38:10,720
ู‡ู†ุง ุงู„ุณุงู„ุจุฉ ูŠุจู‚ู‰ ุตุงุฑุช ู…ุงู„ู‡ุง decreasing ู‡ู†ุง ู…ูˆุฌุฉ
360
00:38:10,720 --> 00:38:17,780
ุจูŠุจู‚ู‰ ุนุงุฏุฉ ุทู„ุนุช ุงู„ู‰ ุงุนู„ู‰ ุงุฐุง ุงู„ู…ุทู„ูˆุจ ุงู„ุงูˆู„ ู†ู…ุฑ ุงูŠู‡
361
00:38:17,780 --> 00:38:23,580
ุจู‚ูˆู„ ุงู„ F is increasing
362
00:38:25,440 --> 00:38:30,480
on ุงู„ูุชุฑุฉ ู…ู† ุณุงู„ุจ infinity ู„ุฃู† ุงู„ domain ูƒู„ ุงู„
363
00:38:30,480 --> 00:38:36,440
real line ุจูŠู„ุงุณู‚ ุงู„ูุชุฑุฉ ู„ุฃู† ู…ู† ุณุงู„ุจ infinity ู„ุบุงูŠุฉ
364
00:38:36,440 --> 00:38:45,060
ุณุงู„ุจ ุฌุฐุฑ ุชู„ุงุชุฉ and on ูƒุฐู„ูƒ ุงู„ู„ูŠ ู‡ูˆ ุฌุฐุฑ ุชู„ุงุชุฉ
365
00:38:45,060 --> 00:38:51,180
closed ูˆู…ู† ู‡ู†ุง closed ู…ู† ุฌุฐุฑ ุชู„ุงุชุฉ ู„ุบุงูŠุฉ infinity
366
00:38:52,070 --> 00:38:57,710
ูŠุจู‚ู‰ ุญุฏุฏู†ุง ูุชุฑุฉ ุงู„ุชุฒุงูŠุฏ ุถุงูŠู„ุฉ ูุชุฑุฉ ุงู„ุชู†ุงู‚ุต ูŠุจู‚ู‰
367
00:38:57,710 --> 00:39:06,430
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู† ุงู„ F is decreasing ูŠุจู‚ู‰ ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ
368
00:39:06,430 --> 00:39:13,410
ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู† ุณุงู„ู ุฌุฐุฑ ุชู„ุงุชุฉ ุฅู„ู‰ ุฌุฐุฑ ุชู„ุงุชุฉ ุจุงู„ุถุจุท
369
00:39:13,410 --> 00:39:18,990
ุชู…ุงู…ุง ุฎู„ุตู†ุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„ ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ุทู„ูˆุจ ุงู„ุชุงู†ูŠ
370
00:39:18,990 --> 00:39:25,070
ู†ู…ุฑ ุจูŠู‡ู‡ูˆ ุญุฏุฏ ู„ูŠ ุงู„ local extreme values ูˆุงุถุญ ุงู†ู‡
371
00:39:25,070 --> 00:39:30,620
ุนู†ุฏู‰ ู‡ู†ุง localุชุบูŠุฑุช ุงู„ุฅุดุงุฑุฉ ู…ู† positive ุฅู„ู‰
372
00:39:30,620 --> 00:39:35,500
negative ูŠุจู‚ู‰ maximum ู‡ู†ุง ุชุบูŠุฑุช ู…ู† negative ุฅู„ู‰
373
00:39:35,500 --> 00:39:43,420
positive ูŠุจู‚ู‰ minimum ุชู…ุงู… ุฅุฐุง ุจุฏู†ุง ู†ุญุณุจ F of ุณุงู„ุจ
374
00:39:43,420 --> 00:39:51,380
ุฌุฐุฑ ุชู„ุงุชุฉ ูˆูŠุณุงูˆูŠ 2 ููŠ ุณุงู„ุจ ุฌุฐุฑ ุชู„ุงุชุฉ ู„ูƒู„ ุชูƒูŠุจ ุณุงู„ุจ
375
00:39:51,380 --> 00:39:58,970
ุชู…ุงู†ุชุงุดุฑ ููŠ ุณุงู„ุจ ุฌุฐุฑ ุชู„ุงุชุฉ ูˆูŠุณุงูˆูŠู‡ุฐู‡ ุจุชุนุทูŠู†ูŠ ุงู„ู„ูŠ
376
00:39:58,970 --> 00:40:06,230
ู‡ูˆ ุงู„ุณุงู„ุจ ุณุชุฉ ุฌุฐุฑ ุชู„ุงุชุฉ ูˆู‡ุฐู‡ ุจุชุนุทูŠู†ูŠ ุชู…ุงู†ุชุงุดุฑ ุฌุฐุฑ
377
00:40:06,230 --> 00:40:13,570
ุชู„ุงุชุฉ ูˆูŠุณุงูˆูŠ ุงุชู†ุงุดุฑ ุฌุฐุฑ ุชู„ุงุชุฉ ุจุฏู†ุง ู†ุญุณุจู„ู‡ ุงู„ F of
378
00:40:13,570 --> 00:40:20,330
ุฌุฐุฑ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ุงุชู†ูŠู† ููŠ ุฌุฐุฑ ุชู„ุงุชุฉ
379
00:40:20,330 --> 00:40:29,890
ู„ูƒู„ ุชูƒูŠุจ ู†ู‚ุต ุชู…ุงู†ุชุงุดุฑ ููŠ ุฌุฐุฑ ุชู„ุงุชุฉุงู„ุฌูˆุงุจ ูŠุณุงูˆูŠ ุณุชุฉ
380
00:40:29,890 --> 00:40:36,570
ุฌุฐุฑ ุชู„ุงุชุฉ ู†ุงู‚ุต ุชู…ุงู†ุชุงุดุฑ ุฌุฐุฑ ุชู„ุงุชุฉ ูˆูŠุณุงูˆูŠ ู†ุงู‚ุต
381
00:40:36,570 --> 00:40:39,210
ุงุชู†ุงุดุฑ ุฌุฐุฑ ุชู„ุงุชุฉ
382
00:40:44,240 --> 00:40:55,240
ุงู„ู€ F has a local maximum 12 ุฌุฏุฑ ุชู„ุงุชุฉ at x ูŠุณุงูˆูŠ
383
00:40:55,240 --> 00:40:57,280
ุณุงู„ู ุฌุฏุฑ ุชู„ุงุชุฉ
384
00:41:05,890 --> 00:41:10,830
ุงู„ุฌุฐุฑ ุซู„ุงุซุฉ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ูŠุง ุดุจุงุจ
385
00:41:10,830 --> 00:41:15,630
ุฃู†ุง ุจูƒุชุจ ู‡ุฐุง ุงู„ู„ูŠ ุจุงู„ุฃุญู…ุฑ ุจู†ุงุก ุนู„ู‰ ุงู„ู†ุชุงุฌ ุงู„ู„ูŠ
386
00:41:15,630 --> 00:41:20,130
ุนู†ุฏูŠ ู…ุด ุนู†ุฏ ุงู„ู‚ูŠู…ุฉ ุญุณุจ ู…ุง ู‡ูˆ ููŠ ุงู„ุฌุฏูˆู„ ู‡ู†ุง ู‚ู„ู†ุง
387
00:41:20,130 --> 00:41:25,050
local maximum ู‡ู†ุง local minimum ูˆุจู†ุงุก ุนู„ูŠู‡ ู‚ู„ุช
388
00:41:25,050 --> 00:41:29,110
local maximum ุนู†ุฏ ุงู„ุณุงู„ุจ ุชู„ุงุชุฉ ูˆlocal minimum ุนู†ุฏ
389
00:41:29,110 --> 00:41:35,540
ุงู„ุฌุฐุฑ ุชู„ุงุชุฉุงู„ู…ุทู„ูˆุจ ู†ู…ุฑู‰ c ู‚ุงู„ which if any of the
390
00:41:35,540 --> 00:41:39,920
extreme values are absolute ูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏูŠ ู‚ูŠู…ุชูŠู†
391
00:41:39,920 --> 00:41:45,320
ู…ู…ู† ู‡ู… absolute ูˆู„ุง ูˆุงุญุฏุฉ ู„ุฃู†ู‡ ู…ุงุนู†ุฏูŠุด end points
392
00:41:45,320 --> 00:41:50,020
interval ู…ุงุดูŠุฉ ู„ุบุงูŠุฉ ุณู„ุจ infinity ูˆ ู„ุบุงูŠุฉ ู…ูˆุฌุฉ ุจ
393
00:41:50,020 --> 00:42:00,320
infinity ูŠุจู‚ู‰ ู†ู…ุฑู‰ c ุงู„ f has no absolute
394
00:42:01,440 --> 00:42:06,540
extrema because
395
00:42:06,540 --> 00:42:17,860
ุงู„ F has no end points ุงูˆ ุงู„ domain ุชุจุน ุงู„ F has
396
00:42:17,860 --> 00:42:24,800
no end points ุนู„ูŠูƒ ุงู†ุชู‡ู‰ ุงู„ุณุคุงู„ ู†ุฑูˆุญ ู†ุงุฎุฏ ุงู„ุณุคุงู„
397
00:42:24,800 --> 00:42:28,960
ุงู„ุซุงู†ูŠ ุงู„ุณุคุงู„
398
00:42:28,960 --> 00:42:37,310
ุงู„ุซุงู†ูŠุงู„ู€ F of X ุชุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ X ุชุฑุจูŠุน ู†ุงู‚ุต
399
00:42:37,310 --> 00:42:45,250
ุชู„ุงุชุฉ ุนู„ู‰ X ู†ุงู‚ุต ุงุชู†ูŠู† ูˆุงู„ู€ X ู„ุง ุชุณุงูˆูŠ ุงุชู†ูŠู†
400
00:42:58,950 --> 00:43:03,570
ุทุจุนุง ุงู„ุฏุงู„ุฉ ุบูŠุฑ ู…ุนุฑูุฉ ุนู†ุฏ ุงุชู†ูŠู† ู„ูƒู† ุงู„ุฏู…ูŠู† ุจูŠุตูŠุฑ
401
00:43:03,570 --> 00:43:07,630
ู…ู† ุณุงู„ุจ infinity ู„ุบุงูŠุฉ ุงุชู†ูŠู† ูˆ ู…ู† ุงุชู†ูŠู† ู„ infinity
402
00:43:07,630 --> 00:43:13,770
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ domain ุงู„ุฏุงู„ุฉ F ู…ู† ุณุงู„ุจ infinity
403
00:43:13,770 --> 00:43:21,460
ู„ุบุงูŠุฉ ุงุชู†ูŠู† ุงุชุญุงุฏ ุงุชู†ูŠู† ูˆ infinityุทุจ ุจู†ุฌูŠุจ ุงู„
404
00:43:21,460 --> 00:43:25,940
interval of increasing and decreasing ู…ู…ูƒู† ุงุดุชู‚
405
00:43:25,940 --> 00:43:29,900
ุงู„ู…ู‚ุงู… ููŠ ู…ุดุชู‚ุฉ ุงู„ bus ู„ูƒู† ููŠ ูˆุงุญุฏ ูŠู‚ูˆู„ูŠ ุงู†ุง ุจุณุด
406
00:43:29,900 --> 00:43:34,900
ู„ุฃ ุงุณู‡ู„ ู…ู† ู‡ู†ุงูƒ ุจู‚ูˆู„ุชู„ู‡ ูƒุฏู‡ ุจู‚ุงู„ูŠ ุจู‚ุณู… ุฌุณู…ู‡ ู…ุทูˆู„ุฉ
407
00:43:34,900 --> 00:43:38,660
ูˆ ุจุนุฏ ู‡ูŠูƒ ุจุฑูˆุญ ุจุดุชู‚ ุจู‚ูˆู„ู‡ ูˆุงู„ู„ู‡ ูƒู„ุงู…ูƒ ู…ุธู‡ุฑ ุจู‚ุณู…
408
00:43:38,660 --> 00:43:43,500
ุฌุณู…ู‡ ู…ุทูˆู„ุฉ ู…ุงุฌุชูŠุด ุงุฐุง ุฏุฑุฌุฉ ุงู„ bus ุงูƒุจุฑ ู…ู† ุงูˆ ุชุณุงูˆูŠ
409
00:43:43,500 --> 00:43:49,790
ุฏุฑุฌุงุชุฃุฐุง ู‡ุฐู‡ ุงู„ู…ุซุงู„ุฉ ุจู‚ุฏุฑ ุฃู‚ูˆู„ x ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ
410
00:43:49,790 --> 00:43:56,630
ุจุฏูŠ ุฃุฌุณู…ู‡ุง ุนู…ู„ูŠุง ุนู„ู‰ x ู†ุงู‚ุต ุงุชู†ูŠู† ููŠู‡ุง x ุจx ุชุฑุจูŠุน
411
00:43:56,630 --> 00:44:02,250
ู†ุงู‚ุต ุงุชู†ูŠู† x ุฒุงุฏ ุจุตูŠุฑ ู†ุงู‚ุต ูˆู‡ุฐู‡ ุฒุงุฏ ู‡ุฐู‡ ู…ุน ุงู„ุณู„ุงู…ุฉ
412
00:44:02,250 --> 00:44:07,810
ุจุถู„ ุงุชู†ูŠู† x ู†ุงู‚ุต ุชู„ุงุชุฉุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰
413
00:44:07,810 --> 00:44:12,190
ูˆุงู„ู…ู‚ุณู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุจู†ูˆุงุตู„ ุนู…ู„ูŠุฉ ุงู„ู‚ุณู…ุฉ
414
00:44:12,190 --> 00:44:19,690
ูŠุจู‚ู‰ 2x ุนู„ู‰ x ููŠู‡ุง ุฌุฏุงุด 2 2 ููŠ x ุจ2x ูˆู†ุงู‚ุต ู‡ู†ุง
415
00:44:19,690 --> 00:44:26,070
ุฌุฏุงุดุฃุฑุจุนุฉ ู‡ุฐูŠ ุฒุงุฏ ูˆ ู‡ุฐูŠ ุฒุงุฏ ู‡ุฐูˆู„ ู…ุน ุงู„ุณู„ุงู…ุฉ ุจูŠุธู„
416
00:44:26,070 --> 00:44:30,170
ุฌุฏุงุด ูˆุงุญุฏ ูŠุจู‚ู‰ ุฎู„ุงุต ุทุจ ุงู„ู„ู‡ ูŠุนุทูŠูƒ ุงู„ุนุงููŠุฉ ู„ุฅู†
417
00:44:30,170 --> 00:44:33,530
ุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ูˆ ุงู„ู…ู‚ุตูˆู… ุนู„ูŠู‡ุง ู…ู† ุงู„ุฏุฑุฌุฉ
418
00:44:33,530 --> 00:44:40,560
ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ F of XูŠู‚ูˆู„ ุงูƒุณ ุชุฑุจูŠู‡
419
00:44:40,560 --> 00:44:46,280
ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ ุงูƒุณ ู†ุงู‚ุต ุงุชู†ูŠู† ุจุฏูŠ ุงูƒุชุจู‡ุง ุจุดูƒู„ ุงุฎุฑ
420
00:44:46,280 --> 00:44:52,200
ุงูƒุณ ุฒุงุฆุฏ ุงุชู†ูŠู† ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุงูƒุณ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุจู‚ู‰
421
00:44:52,200 --> 00:44:56,800
ู‡ุฐู‡ ุงุณู‡ู„ุฉ ููŠ ุงู„ุดุบู„ ู…ู†ูŠู† ู…ู† ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
422
00:44:56,800 --> 00:45:01,500
ูŠุจู‚ู‰ ุฎู„ุงุต ุจุงุดุชุบู„ ุฏูˆุฑูŠ ุงู„ุญูŠู† ุทุจุนุง ู‡ุฐุง ุดุจุงุจ ุงูŠุด ูƒู†ุง
423
00:45:01,500 --> 00:45:10,750
ุจู†ุณู…ูŠู‡ ุงุจู„ุงุฌ ุงู„ุณู…ุชุช ูˆู‡ุฐุง ุงูŠุด ูƒู†ุง ุจู†ุณู…ูŠู‡ุฃูƒุณ ูŠุณุงูˆู‰
424
00:45:10,750 --> 00:45:14,990
ุงุชู†ูŠู†ุŒ Vertical ุจุณ ุจุนุฏ ู…ุง ุชูุญุตูˆุงุŒ ุทุจ ููŠู‡
425
00:45:14,990 --> 00:45:19,970
horizontal ุฃุณู…ุชุŸ ู„ุฃ ู„ุฅู† ุถุฑุฑูŠุฉ ุงู„ bus ุฃุนู„ู‰ ู…ู† ุถุฑุฑูŠุฉ
426
00:45:19,970 --> 00:45:24,210
ุงู„ู…ู‚ุงู… ุงู„ limit ุจุชุนุทูŠู†ูŠ infinity ูˆุจุงู„ุชุงู„ูŠ ู†ู‚ุจู„ูƒุŒ
427
00:45:24,210 --> 00:45:28,410
ุทุจ ุงุญู†ุง ู‡ุฐุง ุจุฏู†ุง ุฅูŠุด ู†ุฑุณู… ุงู„ูŠูˆู…ุŒ ู…ุด ุดุบู„ุชู†ุง ุงู„ุฑุณู…
428
00:45:28,410 --> 00:45:33,400
ุงู„ูŠูˆู…ุŒ ุชู…ุงู…ุŸุดุบู„ุชู†ุง ุจุณ ุจูŠุฌูŠ ูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต
429
00:45:33,400 --> 00:45:40,000
ุฅุฐุง ุจุฏูŠ ุฃุฌูŠ ู„ู„ู†ู‚ุทุฉ A ุจุฏูŠ ุงู„ F prime of X ู…ุดุชุงู‚ุฉ
430
00:45:40,000 --> 00:45:46,460
ู‡ุฐู‡ ุจูˆุงุญุฏ ูˆุงุชู†ูŠู† ู…ุน ุงู„ุณู„ุงู…ุฉ ูˆู‡ุฐู‡ X ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„
431
00:45:46,460 --> 00:45:56,370
ุชุฑุจูŠุฉุจู†ูˆุญุฏ ุงู„ู…ู‚ุงู…ุงุช ูŠุจู‚ู‰ x ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุฉ
432
00:45:56,370 --> 00:46:04,770
ุจูŠุตูŠุฑ x ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุทูŠุจ ู†ููƒ ู‡ุฐุง
433
00:46:04,770 --> 00:46:11,330
ุงู„ุจุต ุจูŠุตูŠุฑ x ุชุฑุจูŠุฉู†ุงู‚ุต ุฃุฑุจุนุฉ X ุฒุงุฆุฏ ุฃุฑุจุนุฉ ู†ุงู‚ุต
434
00:46:11,330 --> 00:46:18,210
ูˆุงุญุฏ ุนู„ู‰ X ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุฉ ูŠุนู†ูŠ X ุชุฑุจูŠุฉ ู†ุงู‚ุต
435
00:46:18,210 --> 00:46:25,450
ุฃุฑุจุนุฉ X ุฒุงุฆุฏ ุชู„ุงุชุฉ ุนู„ู‰ X ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุฉ ู‡ุฐู‡
436
00:46:25,450 --> 00:46:32,710
ูŠู…ูƒู† ุชุญู„ูŠู„ู‡ุง ูŠุจู‚ู‰ ุตุงุฑ ุงู„ F prime of X ู‡ูˆ X ู†ุงู‚ุต
437
00:46:32,710 --> 00:46:41,310
ูˆุงุญุฏููŠ x ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ x ู†ุงู‚ุต ุงุชู†ูŠู† ุงู„ูƒู„ ุชุฑุจูŠุน
438
00:46:43,800 --> 00:46:49,360
ุงู„ุงู† ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ X ุชุณุงูˆูŠ ูˆุงุญุฏ ูˆุงู„ X ุชุณุงูˆูŠ ุชู„ุงุชุฉ
439
00:46:49,360 --> 00:46:52,820
ู‡ู…ุง ู…ูŠู† ุงู„ critical ุจุณ ู…ุงู‚ุงู„ู„ูŠุด ู‡ุงุช ุงู„ critical
440
00:46:52,820 --> 00:46:56,460
ู‚ุงู„ู„ูŠ ู‡ุงุชู„ูŠ ุงู„ interval ุฅุฐุง ู…ุงููŠุด ุฏุงุนูŠ ุฃู‚ู„ุจ ุญุงู„ูŠ ูˆ
441
00:46:56,460 --> 00:46:59,020
ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐุง ุงู„ critical ู„ูˆ ู„ุฃ ุจุฏูŠ ุฃุดูˆู ุฅุดุงุฑุงุช
442
00:46:59,020 --> 00:47:04,620
ุงู„ุฃู‚ูˆุงุต ุฏุบุฑูŠ ู…ุจุงุดุฑุฉ ุชู…ุงู…ุŸ ุฅุฐุง ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุจูŠุฏุงุฌูŠ
443
00:47:04,620 --> 00:47:12,060
ุฃุฎุฏ ุฅุดุงุฑุฉ ุงู„ู‚ูˆุณ ุงู„ุฃูˆู„ X ู†ุงู‚ุต ูˆุงุญุฏู‡ุฐุง ุงู„ู€ real line
444
00:47:12,060 --> 00:47:17,720
ุจูŠุงุฎุฏ ุงู„ู€ zero ุชุจุนู‡ ุนู†ุฏ ุงู„ูˆุงุญุฏ ุจุนุฏ ุงู„ูˆุงุญุฏ positive
445
00:47:17,720 --> 00:47:25,980
ูˆ ู‚ุจู„ ุงู„ูˆุงุญุฏ negative ุจุฏุง ูŠุงุฎุฏ ุฅุดุงุฑุฉ ุงู„ู„ูŠ ู‡ูˆ ุงู„ X
446
00:47:25,980 --> 00:47:31,940
ู†ุงู‚ุต ุชู„ุงุชุฉ ู‡ุฐุง ุงู„ุฎุท ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ูˆ ุจูŠุงุฎุฏ ุงู„
447
00:47:31,940 --> 00:47:38,080
zero ุชุจุนู‡ ุฃูŠู†ุŸ ุนู†ุฏ ุงู„ุชู„ุงุชุฉ ุจุนุฏ ุงู„ุชู„ุงุชุฉ ู…ูˆุฌุจ ูˆ ู‚ุจู„ู‡
448
00:47:38,080 --> 00:47:45,030
ู…ุง ุดุงุก ุงู„ู„ู‡ negativeุจุฏุฃ ูŠุงุฎุฏ ุฅุดุงุฑุฉ ุงู„ X ู†ุงู‚ุต ุงุชู†ูŠู†
449
00:47:45,030 --> 00:47:50,370
ู„ูƒู„ ุชุฑุจูŠุนุŒ ุจุนุฏูŠู† ุจู‚ูˆู„ ู„ู‡ ู‡ุฐุง ุจูŠุงุฎุฏ ุงู„ zero ุชุจู‚ู‰
450
00:47:50,370 --> 00:47:58,530
ูˆูŠู†ุŸ ุนู†ุฏ ุงุชู†ูŠู†ุŒ ุจุนุฏ ุงุชู†ูŠู† ู…ูˆุฌุจ ูˆ ุฌุงุจู„ู‡ู…ูˆุฌุจ ูƒู…ุงู„
451
00:47:58,530 --> 00:48:05,690
ุงู†ู‡ ูƒู…ูŠุฉ ู…ุฑุจุน ุชู…ุงู…ุŸ ุจุนุฏ ู‡ูŠูƒ ุจุฏู†ุง ุฅุดุงุฑุฉ ุงู„ู„ูŠ ู‡ูˆ X
452
00:48:05,690 --> 00:48:11,410
ู†ุงู‚ุต ูˆุงุญุฏ ููŠ ุงู„ X ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ X ู†ุงู‚ุต ุงุชู†ูŠู† ู„ูƒู„
453
00:48:11,410 --> 00:48:18,450
ุชุฑุจูŠุฉ ูˆู‡ุฐุง ุงู„ line ุงู„ู„ูŠ ุนู†ุฏู†ุง ูˆ ุฌูŠู†ุง ู†ุญุฏุฏ ุงู„ุญุฏูˆุฏ
454
00:48:18,450 --> 00:48:26,870
ุงู„ุฅู‚ู„ูŠู…ูŠุฉ ููŠู…ุง ุจูŠู†ู‡ู…ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุชู…ุงู…ุŸ
455
00:48:26,870 --> 00:48:34,770
ุทูŠุจ ู‡ูŠ ุงู„ุชู„ุงุชุฉ ูˆู‡ูŠ ุงุชู†ูŠู† ูˆู‡ูŠ ุงู„ูˆุงุญุฏ ุทู„ุนู„ู‡ ู‡ู†ุง ูƒู„ู‡ุง
456
00:48:34,770 --> 00:48:42,830
ู…ูˆุฌุจ ูˆู‡ู†ุง ุณุงู„ุจ ูˆู‡ู†ุง ุณุงู„ุจ ูˆู‡ู†ุง ู…ูˆุฌุจ ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ
457
00:48:42,830 --> 00:48:49,710
ูƒุงู†ุช increasing ุตุงุฑุช decreasing ุจู‚ูŠุช decreasing
458
00:48:49,710 --> 00:48:53,970
ุตุงุฑุช increasing ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ู„ุฏูŠู†ุง ู‡ู†ุง
459
00:49:15,640 --> 00:49:24,920
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู„ู‡ ุงู„ F is increasing ุฏู„ุชุฉ ุฒูŠูˆุฏูŠุฉ on
460
00:49:24,920 --> 00:49:32,320
ุงู„ูุชุฑุฉ ู…ู† ุณุงู„ุจ infinity ู„ุบุงูŠุฉ ุงู„ูˆุงุญุฏ ูˆ closed ุนู†ุฏ
461
00:49:32,320 --> 00:49:40,580
ุงู„ูˆุงุญุฏ and on ูˆ ูƒุฐู„ูƒ ู…ู† ุนู†ุฏ ุงู„ุชู„ุงุชุฉ ู„ุบุงูŠุฉ infinity
462
00:49:41,780 --> 00:49:51,620
ุจุนุฏู‡ุง ุงู„ F is decreasing on ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ุนู„ู‰
463
00:49:51,620 --> 00:49:55,960
ุงู„ูุชุฑุฉ ู…ู† ุนู†ุฏ ุงู„ูˆุงุญุฏ ู„ุบุงูŠุฉ ุงุชู†ูŠู† ู…ูุชูˆุญุฉ ู…ู† ุนู†ุฏ
464
00:49:55,960 --> 00:50:01,440
ุงุชู†ูŠู† ู„ูŠุด ุงู† ุงู„ุฏุงู„ุฉ ุบูŠุฑ ู…ุนุฑูุฉ ุนู†ุฏ ุงุชู†ูŠู† ุงุชุญุงุฏ
465
00:50:01,440 --> 00:50:10,000
ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ู…ูŠู†
466
00:50:10,000 --> 00:50:10,680
ุงู„ู„ูŠ ุจูŠุญูƒูŠ
467
00:50:30,910 --> 00:50:34,090
ุทูŠุจ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ
468
00:50:34,090 --> 00:50:37,910
ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ
469
00:50:37,910 --> 00:50:40,630
ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ
470
00:50:40,630 --> 00:50:44,820
ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ ู†ู…ุฑ ุจูŠู‡ู‡ู†ุง ููŠู‡ ู„ุฃ ู‡ู†ุง
471
00:50:44,820 --> 00:50:50,860
local minimum ุฅุฐุง ุจุฏู†ุง ู†ุญุณุจู„ู‡ ูู‚ุท F of ูˆุงุญุฏ ูˆ F of
472
00:50:50,860 --> 00:50:58,240
ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุจุงุฏูŠ ุจุงุฎุฏู„ู‡ F of ูˆุงุญุฏ F of ูˆุงุญุฏ ูŠุณุงูˆูŠ
473
00:50:58,240 --> 00:51:04,180
ู‡ุงูŠ ูˆุงุญุฏ ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ ุนู„ู‰ ูˆุงุญุฏ ู†ุงู‚ุต ุงุชู†ูŠู†
474
00:51:04,180 --> 00:51:08,720
ุจูŠุจู‚ู‰ ู„ู†ุง ู†ุงู‚ุต ุงุชู†ูŠู† ุนู„ู‰ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงุชู†ูŠู†
475
00:51:09,070 --> 00:51:16,690
ูˆุจุฏู†ุง ุงู„ F of ุชู„ุงุชุฉ ูˆูŠุณูˆูŠ ุชู„ุงุชุฉ ุชุฑุจูŠุน ู†ุงู‚ุต ุชู„ุงุชุฉ
476
00:51:16,690 --> 00:51:23,510
ุนู„ู‰ ุชู„ุงุชุฉ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุจู‚ู‰ ุชุณุนุฉ ู†ุงู‚ุต ุชู„ุงุชุฉ ู„ู‡ูˆ ุณุชุฉ
477
00:51:23,510 --> 00:51:33,830
ุนู„ู‰ ูˆุงุญุฏ ูˆูŠุณูˆูŠ ุณุชุฉ ูŠุจู‚ู‰ ุงู„ F has local maximum
478
00:51:35,620 --> 00:51:44,680
local maximum ูŠุชู†ูŠู† at x ูŠุณุงูˆูŠ ูˆุงุญุฏ and local
479
00:51:44,680 --> 00:51:52,340
minimum ุณุชุฉ at x ูŠุณุงูˆูŠ ุชู„ุงุชุฉ ูˆุงุญุฏ ูŠู‚ูˆู„ ุทุจ ู‡ูˆ ุงู„
480
00:51:52,340 --> 00:51:58,300
minimum ุณุชุฉ ูˆ ุงู„ maximum ุจู†ูุน ูŠูƒูˆู† ุงุชู†ูŠู†ุงู†ุง ู‡ุฐู‡
481
00:51:58,300 --> 00:52:03,600
ู‚ูŠู… ู„ูŠุด ู…ู†ุญู†ุง ู…ู…ูƒู† ูŠูƒูˆู† ุฌูˆุณ ุชุญุช ูˆ ุฌูˆุณ ููˆู‚ ุตุญูŠุญ ุงู†ุง
482
00:52:03,600 --> 00:52:07,520
ุจูŠุจู‚ู‰ ุตุงุฑุช ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ local maximum ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ
483
00:52:07,520 --> 00:52:12,960
ุชุญุช local minimum ุจู‡ู…ู†ุงุด ูŠุจู‚ู‰ ุงู†ุง ุจูƒุชุจ ู†ุชุงุฌ ู…ุซู„ ู…ุง
484
00:52:12,960 --> 00:52:18,720
ุจุทู„ุนู‡ุง ุงูŠู‡ ุชู…ุงู…ุง ู†ุฌูŠ ู„ู†ู…ุฑู‰ ุฏู‰ุŒ ู†ู…ุฑู‰ ุฏู‰ ุจูŠู‚ูˆู„ ู…ูŠู†
485
00:52:18,720 --> 00:52:21,360
ู…ู† ุงู„ local maximum ูˆ ุงู„ local minimum ุชุจู‚ู‰
486
00:52:21,360 --> 00:52:26,340
absolute ุจูŠู‚ูˆู„ูˆุง ุงู„ู„ู‡ ุชุนุงู„ู‰ ู‡ู†ุง ุฌุงูŠูŠู† ู…ู† ูˆูŠู† ุงุญู†ุงุŸ
487
00:52:29,660 --> 00:52:32,740
ู…ุงุนู†ุฏูŠุด end pointุŒ ุณูˆุงุก ุนู†ุฏูŠ ุงุชู†ูŠู† ุงู„ุฏุงู„ุฉ ุบูŠุฑ
488
00:52:32,740 --> 00:52:42,820
ู…ุนุฑูุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงู„ F has no absolute extrema
489
00:52:42,820 --> 00:52:49,380
because domain
490
00:52:51,500 --> 00:53:03,500
ุงู„ู€ F has no end points ู…ุงุนู†ุฏูŠุด ุทุจ ุงู„ุณุคุงู„ ุงู„ุชุงู„ุช
491
00:53:03,500 --> 00:53:12,620
ุงู„ุณุคุงู„ ุงู„ุชุงู„ุช ุจูŠู‚ูˆู„ F of X ูŠุณุงูˆูŠ
492
00:53:12,620 --> 00:53:20,140
X ุฃุณุทู„ ุชูŠู† ูู…ูŠู† ููŠ X ุฒุงุฆุฏ ุฎู…ุณุฉ
493
00:53:24,460 --> 00:53:31,140
ูƒูˆูŠุณ ุทุจ ุฅูŠู‡ ุฅูŠุด ุฑุฃูŠูƒุŸ ู‡ุฐู‡ ุจุฏู„ ู…ุง ู‡ูŠ ุญุงุตู„ ุถุฑุจ ุฏู„ุช
494
00:53:31,140 --> 00:53:38,360
ุฎู„ู†ุง ู†ููƒู‡ุง ูˆุฎู„ุงุต ูŠุนู†ูŠ ู‡ุฐู‡ ุจูŠุตูŠุฑ X ุฃุณ ุฌุฏูŠุด ุฎู…ุณุฉ ุน
495
00:53:38,360 --> 00:53:48,930
ุชู„ุงุชุฉ ุฒูŠ ุฎู…ุณุฉ X ุฃุณ ุทูˆู„ุชูŠู†ุจุฏู†ุง ุงู„ F prime of X ูŠุจู‚ู‰
496
00:53:48,930 --> 00:53:59,530
ูŠุณุงูˆูŠ ุฎู…ุณ ุฃุชู„ุงุช X ุฃุณ ุชู„ุชูŠู† ุฒุงุฆุฏ ุนุดุฑ ุฃุชู„ุงุช X ุฃุณุงู„ูŠุจ
497
00:53:59,530 --> 00:54:05,890
ุชู„ุชู…ุธุจูˆุท ู‡ูŠูƒุŸ ุทุจ ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ critical points ุงูˆ
498
00:54:05,890 --> 00:54:10,690
ุจุฏูŠ ุงูƒุชุจ ู‡ุฐู‡ ุงู„ุดูƒู„ุฉ ูƒูˆูŠุณ ู…ุดุงู† ุงู‚ุฏุฑ ุงุญุฏุฏ ุงู„ุฅุดุงุฑุงุช
499
00:54:10,690 --> 00:54:17,030
ุจู‚ูˆู„ูˆุง ู‡ุฐู‡ ุจุณูŠุทุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ุฎู…ุณุฉ ุนู„ู‰ ุชู„ุงุชุฉ X ุฃุณ
500
00:54:17,030 --> 00:54:24,320
ุทูˆู„ุชูŠู† ุฒุงุฆุฏ ุนุดุฑุฉ ุนู„ู‰ ุชู„ุงุชุฉ X ุฃุณ ุทูˆู„ุชูŠู†ุฃูƒุณ ุฃุณ ุณุงู„ุจ
501
00:54:24,320 --> 00:54:30,920
ุชู„ุช ู†ุฒู„ุชู‡ุง ุชุญุช ุตุงุฑุช ู…ูŠู† ุจุงู„ู…ุนุฌุจ ุฅุฐุง ู‡ุฐุง ูƒู„ู‡ ุจู‚ุฏุฑ
502
00:54:30,920 --> 00:54:37,440
ุฃู‚ูˆู„ ุชู„ุงุชุฉ ุฃูƒุณ ุฃุณ ุชู„ุช ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ ุนู„ู‰ ุชู„ุงุชุฉ
503
00:54:37,440 --> 00:54:43,060
ุจุถู„ุด ุงู„ู„ูŠ ุนู†ุฏูŠ ุฎู…ุณุฉ ุฃูƒุณ ุฃุณ ุชู„ุช ููŠ ุฃูƒุณ ุฃุณ ุชู„ุชูŠู† ุจุถู„
504
00:54:43,060 --> 00:54:50,950
ุฎู…ุณุฉ ุฃูƒุณูู‚ุท ู„ุบุงูŠุฉ ุชู„ุชูŠู† ุฒุงุฆุฏ ุชู„ุช ุชู„ุงุชุฉ ุน ุชู„ุงุชุฉ
505
00:54:50,950 --> 00:54:59,550
ูŠุนู†ูŠ ูˆุงุญุฏ ุตุญูŠุญ ูˆู‡ู†ุง ุฒุงุฆุฏ ุนุดุฑุฉ ุงูˆ ุฎู…ุณุฉ ููŠ X ุฒุงุฆุฏ
506
00:54:59,550 --> 00:55:07,750
ุงุชู†ูŠู† ุนู„ู‰ ุชู„ุงุชุฉ X ู‚ุต ุชู„ุช ุทุจ ูŠุจู‚ู‰ ุงู„ critical
507
00:55:07,750 --> 00:55:14,060
points ู…ู† ูˆ ู…ู†ุŸุณุงูˆูŠ ุจุงุชู†ูŠู† ูˆู…ูŠู†ุŸ ูˆ Zero ู„ุฃู† ุนู†ุฏ ุงู„
508
00:55:14,060 --> 00:55:18,780
Zero ุงู„ู…ุดุชู‚ุฉ ุบูŠุฑ ู…ุนุฑูุฉ ูŠุจู‚ู‰ ู„ูˆ ุณูˆูŠุช ุจุงู„ Zero ุงู„ุจุต
509
00:55:18,780 --> 00:55:21,660
ู‡ูˆ ุจุงู„ุณุงูˆูŠ Zero ูˆุจุงู„ุชุงู„ูŠ ุงู„ critical point CX ุณุงูˆูŠ
510
00:55:21,660 --> 00:55:28,660
ุณุงูˆูŠ ุจุงุชู†ูŠู† ูˆูƒุฐู„ูƒ X ูŠุณุงูˆูŠ Zero ุฃูŠุถุง ู…ุงุญุทูŠุชุด ุงู† ู‡ุฐุง
511
00:55:28,660 --> 00:55:34,050
ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุงู†ุง ู‚ู„ุช ุงู„ A6 local maximumุฃู†ุง
512
00:55:34,050 --> 00:55:39,410
ู‚ู„ุช ูˆ ุญูƒูŠุชู‡ุง ุจุณ ุฃู†ุช ูƒู†ุช ููŠ ู…ุฌุงู„ ุขุฎุฑ ูˆ ุจุฏู‡ ุฃุนูŠุฏู‡ุง
513
00:55:39,410 --> 00:55:44,330
ุจุฑุถู‡ ู…ุด ู‡ุงู†ุฎุทูƒุŒ ุดูˆ ุงุณู…ูƒ ุฃู†ุชุŸ ุชุงู…ุฑ ุฌุฑุงุฏุฉุŒ ุงุญู†ุง ููŠ
514
00:55:44,330 --> 00:55:48,670
ุงู„ุณุคุงู„ ุงู„ุณุงุจู‚ ูˆ ู„ูŠุณ ููŠ ุงู„ุณุคุงู„ ู‡ุฐุง ุทูŠุจุŒ ุนู„ู‰ ุฃูŠ ุญุงู„ุŒ
515
00:55:48,670 --> 00:55:53,710
ุดูˆูุช ุงู„ุฑุณู…ุฉ ุฅูŠุด ูƒุงู†ุช ุนู†ุฏูƒ ู‡ู†ุงุŸ ุฅูŠุด ููŠ ุนู†ุฏ ุงู„ูˆุงุญุฏุŸ
516
00:55:53,710 --> 00:56:01,500
F' ุบูŠุฑุช ุฅุดุฑุชู‡ุง ู…ู† ู…ูˆุฌุฉ ุจูŠู‡ุง ุงู„ุณู„ุจูŠุฉุŒ ุฅูŠุด ุนู†ุฏูƒุŸู‡ู†ุง
517
00:56:01,500 --> 00:56:07,580
ู„ู ูˆูŠุฑุด ู…ู† ุณุงู„ุจ ู„ุฃ ู…ูˆุฌุฉ ุจูŠุจู‚ุงุด ุนู†ุฏูƒ ุนู†ุฏูƒ ุชู„ุงุชุฉ
518
00:56:07,580 --> 00:56:12,500
ุทู„ุนุช ุณุชุฉ ู…ุธุจูˆุท ูˆู„ุง ู…ู† ุนุดุงู† ู‡ุฐู‡ ุงุชู†ูŠู† ูˆ ู‡ุฐู‡ ุณุชุฉ ุณุชุฉ
519
00:56:12,500 --> 00:56:17,460
ู…ุณุชู‚ู„ุฉ ู…ุด ุฌุฒู„ูƒ ู‡ุฐุง ููŠ ุนู†ุฏูƒ ุฃุจู„ุฌุฒ ุณู… ุชุทู„ุน ูˆุฑุง ุณู…
520
00:56:17,460 --> 00:56:21,460
ุชุฌูˆุฒ ุจุชุทู„ุน ููˆู‚ูˆ ุฌูˆุณ ุจูŠุทู„ุน ุชุญุช ูŠุจู‚ู‰ ู‡ุฐู‡ local
521
00:56:21,460 --> 00:56:25,500
maximum ูˆ ู‡ุฐู‡ ุงู„ู„ูŠ ููˆู‚ ุจูŠุตูŠุฑ local minimum
522
00:56:25,500 --> 00:56:30,180
ู‚ุงุนุฏู†ุงู‡ุง ูƒู…ุงู† ู…ุฑุฉ ุนู„ูŠู‡ุง ุงู„ู„ูŠ ุนู†ุฏ ุงู„ุฑุณู… ุจุฑุถู‡ ููŠ ุงู„
523
00:56:30,180 --> 00:56:34,280
section ุงู„ู‚ุงุฏู… ุงู„ู„ูŠ ุณู†ุจุฏุฃู‡ ุจุนุฏ ู‚ู„ูŠู„ ู‡ุชุดูˆู ุดุบู„ุงุช ุฒูŠ
524
00:56:34,280 --> 00:56:38,670
ูƒุฏู‡ุชุดูˆู ุดุบู„ุงุช ุนู…ู„ูŠุฉ ู†ุฑุฌุน ู„ุณุคุงู„ู†ุง ูŠุง ุดุจุงุจ ุงุญู†ุง
525
00:56:38,670 --> 00:56:42,350
ุฌูŠุจู†ุง ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆ ุฃุตุจุญุช ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุนู„ู‰
526
00:56:42,350 --> 00:56:46,850
ุงู„ุดูƒู„ ุฎู…ุณุฉ ููŠ X ุฒุงุฆุฏ ุงุชู†ูŠู† ุนู„ู‰ ุชู„ุงุชุฉ X ุฃุณ ุทูˆู„ ุชุจู‚ู‰
527
00:56:46,850 --> 00:56:51,130
ุงู„ critical point ูŠุณุงู„ุจ ุงุชู†ูŠู† ูˆ Zero ุฅุฐุง ุจุชุดูˆู
528
00:56:51,130 --> 00:56:57,170
ุฅุดุงุฑุฉ ูƒู„ term ู…ู† ู‡ุฏูŠู† ุงู„ termูŠู†ุฅุฐุง ู„ูˆ ุฌูŠุช Gulf ุจุฏู‰
529
00:56:57,170 --> 00:57:04,210
ุฃุฎุฏ ุฅุดุงุฑุฉ ุฎู…ุณุฉ ููŠ X ุฒุงุฆุฏ ุงุชู†ูŠู† ู‡ุฐุง ุงู„ real line
530
00:57:04,210 --> 00:57:10,270
ุจูŠุงุฎุฏ ุงู„ zero ุชุจุน ูˆูŠู†ุŸ ุนู†ุฏ ุงู„ุณุงู„ุจ ุงุชู†ูŠู† ุจุนุฏ ุงู„ุณุงู„ุจ
531
00:57:10,270 --> 00:57:19,050
ุงุชู†ูŠู† ุงูŠุด ุจุชูƒูˆู† ุงู„ู‚ูŠู…ุฉุŸ ูˆ ู‚ุจู„ู‡ุŸุทูŠุจ ุจุฏู„ ูŠุงุฎุฏ ุฅุดุงุฑุฉ
532
00:57:19,050 --> 00:57:26,050
ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ุฅูƒุณูˆุณ ุทูˆู„ ุจูŠุงุฎุฏ ุงู„ zero ุชุจุน ูˆูŠู†ุŸ ุนู†ุฏ
533
00:57:26,050 --> 00:57:31,710
ุงู„ zero ุจุนุฏ ุงู„ zero ูˆ ู‚ุจู„ ุงู„ zero ุทูŠุจ ุงู„ุฏู…ูŠู† ุชุจุน
534
00:57:31,710 --> 00:57:37,560
ุฏู‡ ุงู„ู„ูŠ ู‡ุฏ ู…ูŠู†ุŸูƒู„ ุงู„ุงุฑ ุจู„ุง ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ู„ุง ุนู†ุฏูŠ
535
00:57:37,560 --> 00:57:43,820
ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฅุฐุง ุจุฏูŠ ุฅุดุงุฑุฉ ุฎู…ุณุฉ ููŠ ุฅูƒุณ ุฒุงุฆุฏ
536
00:57:43,820 --> 00:57:49,860
ุงุชู†ูŠู† ุนู„ู‰ ุชู„ุงุชุฉ ุฅูƒุณ ุฃุณ ุทูˆู„ ูˆ ู‡ุฐุง ุงู„ real line ูˆ
537
00:57:49,860 --> 00:57:57,480
ุจุฏูŠ ู†ูŠุฌูŠ ู†ุญุฏุฏ ุงู„ุญุฏูˆุฏ ุงู„ุฅู‚ู„ูŠู…ูŠุฉ ุฃูŠ ุณุงู„ุจ ุงุชู†ูŠู† ุฃูˆ ุฃูŠ
538
00:57:57,480 --> 00:58:04,780
ุฒูŠุฑูˆ ู‡ู†ุง ู…ูˆุฌุจ ู‡ู†ุง ุณุงู„ุจ ู‡ู†ุง ู…ูˆุฌุจุณุงู„ุจ ุนู„ู‰ ุณุงู„ุจ
539
00:58:04,780 --> 00:58:09,340
ุจู…ูˆุฌุจุŒ ู…ูˆุฌุจ ุนู„ู‰ ุณุงู„ุจ ุจุณุงู„ุจุŒ ู…ูˆุฌุจ ุนู„ู‰ ู…ูˆุฌุจ ุจู…ูˆุฌุจ.
540
00:58:09,760 --> 00:58:16,640
ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ ูƒุงู†ุช increasing. ุฅูŠุด ุตุงุฑุชุŸ decreasing.
541
00:58:17,020 --> 00:58:23,320
ุฅูŠุด ุฑุฌุนุชุŸ increasing. ูŠุจู‚ู‰ ูŠุง ุชู…ุฑ ูŠุง ุฌุฑุงุฏุฉ ุฅูŠุด
542
00:58:23,320 --> 00:58:28,910
ุฑุฃูŠูƒุŸ ุนู†ุฏูŠ ุงู„ุณุงู„ุจ ุงุชู†ูŠู† ู‡ู†ุงุŒ ุฅูŠุด ููŠู‡ุŸูˆุนู†ุฏูŠ zero
543
00:58:28,910 --> 00:58:34,710
ุจุฏู†ุง ู†ุญุณุจ ู‚ูŠู…ุฉ ุฏู‡ ู„ูˆ ุฌุฏ ู…ุง ุชุทู„ุน ุชุทู„ุน ุจู‡ู…ู†ุงุด ุทุจุนุง
544
00:58:34,710 --> 00:58:40,310
ุงุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุญุณุจ F of ุณุงู„ูŠ ุจุงุชู†ูŠู† ูŠุจู‚ู‰ ุจุฏู†ุง ู†ูŠุฌูŠ
545
00:58:40,310 --> 00:58:45,790
ู†ุงุฎุฏ F of ุณุงู„ูŠ ุจุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
546
00:58:45,790 --> 00:58:53,400
ุณุงู„ูŠ ุจุงุชู†ูŠู† ุฃุณ ุชู„ุชูŠู† ููŠ ุณุงู„ูŠ ุจุงุชู†ูŠู† ุฒุงุฆุฏ ุฎู…ุณุฉุทุจ
547
00:58:53,400 --> 00:58:59,780
ูƒูˆูŠุณ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ู…ูŠู†ุŸ ุจุฏู‡ ูŠุนุทูŠู†ุง ุชู„ุงุชุฉ ู‡ุฐุง
548
00:58:59,780 --> 00:59:05,400
ุงู„ุฌุฐุฑ ุงู„ุชุงู„ุช ู„ุณู„ุจ ุงุชู†ูŠู† ุชุฑุจูŠุฉ ุณู„ุจ ุงุชู†ูŠู† ุชุฑุจูŠุฉ
549
00:59:05,400 --> 00:59:10,940
ู…ุงูู‚ุฏุงุดุŒ ูŠุจู‚ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุงู„ุช ู„ุงุฑุจุนุฉุŒ ูŠุจู‚ู‰ ุชู„ุงุชุฉ
550
00:59:10,940 --> 00:59:21,340
ุงู„ุฌุฐุฑ ุชู„ุงุชุฉ ุงู„ุฌุฐุฑ ุชุงู„ุชู„ุฃุฑุจุนุฉ ุชู…ุงู… ุจุฏู†ุง ู†ูŠุฌูŠ ู†ุญุณุจ F
551
00:59:21,340 --> 00:59:28,480
of Zero Background Zero ูŠุจู‚ู‰ ุจุนุฏูŠ ุจู‚ูˆู„ู‡ ุงู„ F has
552
00:59:28,480 --> 00:59:37,480
local maximum ุชู„ุงุชุฉ ุงู„ุฌุฏุฑู‰ ุงู„ุชุงู„ุช ู„ุฃุฑุจุนุฉ X ูŠุณุงูˆูŠ
553
00:59:37,480 --> 00:59:43,100
ุณุงู„ูŠ ุจุงุชู†ูŠู† ุงู„ F has local minimum Zero
554
00:59:46,710 --> 00:59:53,870
ุงู„ุณุคุงู„ ู‡ูˆ ููŠ ุนู†ุฏูŠ absolute maximum ุงูˆ minimumุŸ ู„ุฃ
555
00:59:53,870 --> 00:59:55,990
ู„ุงู† ู…ุงุนู†ุฏูŠุด end points
556
01:00:13,680 --> 01:00:26,240
ุทูŠุจ ู†ุฌู„ุน ู†ู…ุณูŠ if has no absolute extrema because
557
01:00:26,240 --> 01:00:37,040
ุงู„ domain ุจุชุจุน ุงู„ if has no end points
558
01:00:39,260 --> 01:00:45,260
ุทูŠุจ ู†ูŠุฌูŠ ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ุชุงู„ุช ู†ูŠุฌูŠ ู„ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน
559
01:00:45,260 --> 01:00:52,060
ูˆุงู„ุงุฎูŠุฑ ููŠ ู‡ุฐุง ุงู„ section ุงูŠู‡ ุงู„ุณุคุงู„ุŸ ุทูŠุจ ู…ุซู„ุง ู„ูˆ
560
01:00:52,060 --> 01:00:55,700
ุงู†ุง ุงูุชุฑุงุถ ุงู„ minimum ุงูˆ ุงู„ maximum ุณุงุนุฏู†ุง ู‡ูŠ ุฃูุถู„
561
01:00:55,700 --> 01:01:01,420
ุญุงุฌุฉุŒ ูƒูŠูุŸ ู„ูˆ ุงูŠู‡ุŸ ุงู„ minimum ุงู„ู‚ูŠู…ุฉ ุงู„ minimum
562
01:01:01,420 --> 01:01:04,400
value ุฃูˆ ุงู„ absolute ู…ุซู„ุง
563
01:01:12,440 --> 01:01:17,400
ู…ุด ุฑุงูŠูƒ ุชุตุจุฑ ุดูˆูŠุฉ ุจุณ ู†ุงุฎุฏ ุงู„ู…ุซุงู„ ุงู„ุฃุฎูŠุฑ ู‡ุฐุงุŒ ุจุณ
564
01:01:17,400 --> 01:01:20,500
ุฎู„ูŠูƒ ู…ุญุชูุธ ุจุงู„ุณุคุงู„ุŒ ูŠู…ูƒู† ู†ุฌุงูˆุจ ุนู„ูŠู‡ ููŠ ุงู„ุณุคุงู„
565
01:01:20,500 --> 01:01:29,410
ุงู„ุฃุฎูŠุฑู‚ุจู„ ุงู„ุชูƒู…ู„ ูŠุงู„ุง ุงูƒุชุจู„ูŠ ู‡ุฐุง f of x ุจุฏู‡ ูŠุณุงูˆูŠ
566
01:01:29,410 --> 01:01:38,490
ุงู„ู„ูŠ ู‡ูˆ ุงู„ X ุชูƒูŠุจ ู†ุงู‚ุต ุชู„ุงุชุฉ X ุชุฑุจูŠุน ูˆ ุณุงู„ุจ
567
01:01:38,490 --> 01:01:44,770
infinity ุงู‚ู„ ู…ู† ุงู„ X ุงู‚ู„ ู…ู† ุงูˆ ูŠุณุงูˆูŠ ุชู„ุงุชุฉ
568
01:01:51,740 --> 01:01:59,800
ุจู†ุฌูŠุจ ุงู„ู€ f prime of x ูŠุจู‚ู‰ ุชู„ุงุชุฉ x ุชุฑุจูŠู‡ ู†ุงู‚ุต ุณุชุฉ
569
01:01:59,800 --> 01:02:07,180
x ููŠ ุนู†ุฏูŠ ุนุงู…ู„ ู…ุดุชุฑูƒ ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ุชู„ุงุชุฉ x ุจูŠุธู„ x
570
01:02:07,180 --> 01:02:15,700
ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุจู‚ู‰ ุงู„ critical points ู‡ูŠ zero ูˆ ุงุชู†ูŠู†
571
01:02:15,700 --> 01:02:21,930
ูู‚ุท ู„ุง ุบูŠุฑ ู…ุธุจูˆุท ูŠุจู‚ู‰ ุงุญู†ุง ุจุฏู†ุง ู†ุจุญุซ ุงู„ุฅุดุงุฑุงุชูŠุจู‚ู‰
572
01:02:21,930 --> 01:02:30,330
ุจุฏ ุฅุดุงุฑุฉ 3x ุจู‚ูˆู„ู‡ ุจุชุงุฎุฏ ุงู„ zero ุชุจุนู‡ ุฃูŠู†ุŸ ุนู†ุฏ ุงู„
573
01:02:30,330 --> 01:02:35,990
zero ูˆ ุจุนุฏ ุงู„ zeroุŸ ู…ูˆุฌุจ ูˆ ู‚ุจู„ ุงู„ zeroุŸ ุทุจ ุนู„ู‰
574
01:02:35,990 --> 01:02:42,140
ุฅุทู„ุงู‚ ู‡ูˆ ุงู„ู„ู‡ ู…ุญุฏูˆุฏุฉุจุฏูŠ ุงู‚ุถู‰ ูุนู†ุฏูŠ ุงู„ุชู„ุงุชุฉ ู…ู…ู†ูˆุน
575
01:02:42,140 --> 01:02:47,240
ุชุชุญุฏู‰ ุงู„ุชู„ุงุชุฉ ุชุชุนุฏู‰ ู…ุงุนู†ุฏูŠุด ุจุนุฏ ุงู„ุชู„ุงุชุฉ ุฏู„ู‡ุง ุชู…ุงู…
576
01:02:47,240 --> 01:02:52,100
ุจุฌู‡ุฉ ุฏูŠ ู„ูŠุณุช ุทุจุนุง ุจุณ ู…ู† ุนู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ุนู„ู‰ ุฅุทู„ุงู‚ู‡ุง
577
01:02:52,100 --> 01:02:55,640
ุงู„ู„ู‡ ุณู‡ู„ ุนู„ูŠู†ุง ู†ุฌู„ุจ ู…ู† ุณุงู„ุจ infinity ู„ุบุงูŠุฉ ู…ูŠู†
578
01:02:55,640 --> 01:03:03,140
ู„ุบุงูŠุฉ ุงู„ุชู„ุงุชุฉ ุจุนุฏ ู‡ูŠูƒ ุจุฏูŠ ุฅุดุงุฑุฉ X ู†ุงู‚ุต 2 ุชุงุฎุฏ ุงู„
579
01:03:03,140 --> 01:03:10,490
zero ุชุจุนู‡ุง ูˆูŠู† ุนู†ุฏ 2 ุจุนุฏ 2ูˆ ุชู„ุงุชุฉ ุจุฏูŠ ุงูˆู‚ู ูˆ ู‚ุจู„
580
01:03:10,490 --> 01:03:16,970
ู‡ูŠ set ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุงู†ู‡ุง ุฏู‡ ุจุนุฏ ู‡ูŠูƒ ุจุฏูŠ ุงุดุงุฑุฉ ุชู„ุงุชุฉ
581
01:03:16,970 --> 01:03:24,410
x ููŠ x ู†ุงู‚ุต ุงุชู†ูŠู† ูˆ ุจู†ูŠุฌูŠ ุงู„ู‰ ุงู„ุญุฏูˆุฏ ุงู„ุงู‚ู„ูŠู…ูŠุฉ
582
01:03:24,410 --> 01:03:31,950
ูŠุจู‚ู‰ ู‡ูŠ zeroู‡ูˆ ุงูŠ ุงุชู†ูŠู† ูˆู‡ูˆ ุงูŠ ู…ูŠู† ุชู„ุงุชุฉ ุจุนุฏ
583
01:03:31,950 --> 01:03:36,550
ุงู„ุชู„ุงุชุฉ ู…ุงุนู†ุฏูŠุด ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุฌุซูŠู… ู…ุถุฑุจุงุช ููŠ ุจุนุถ ุถุฑุจ
584
01:03:36,550 --> 01:03:42,770
ูŠุจู‚ู‰ ุณุงู„ุจ ูŠุจู‚ู‰ ู…ูˆุฌุจ ุงุชุฏุงู„ุฉ increasing ุตุงุฑุช
585
01:03:42,770 --> 01:03:48,650
decreasing ุฑุฌุนุช increasing ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงู‚ูˆู„ ู…ุงุชูŠ
586
01:03:48,650 --> 01:03:58,850
ู†ู…ุฑุฉ ุงูŠู‡ ุงู„ F is increasing onู…ู† ุณุงู„ุจ infinity
587
01:03:58,850 --> 01:04:07,150
ู„ุบุงูŠุฉ ู…ู† ุงู„ zero and on ูˆูƒุฐู„ูƒ ู…ู† ุงู„ุงุชู†ูŠู† ู„ุบุงูŠุฉ
588
01:04:07,150 --> 01:04:07,950
ุงู„ุชู„ุงุชุฉ
589
01:04:11,680 --> 01:04:20,360
ุงู„ุขู† ุงู„ F is decreasing ุฏู‡ ู„ุชู†ุงู‚ุตูŠุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ ู…ู†
590
01:04:20,360 --> 01:04:24,940
Zero ู„ุบุงูŠุฉ ูƒุฏู‡ ุงุด ู„ุบุงูŠุฉ ุงุชู†ูŠู† ุฎู„ุตู†ุง ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
591
01:04:24,940 --> 01:04:32,160
ุจู†ุงู„ูŠ ุฌู‡ ู†ุญุณุจู„ู‡ ุงู„ F of ู†ู…ุฑุฉ ุจูŠ ุงู„ F of Zero ุงู„ F
592
01:04:32,160 --> 01:04:39,120
of Zero ุชุณุงูˆูŠ Zero ูˆุงู„ุชุงู†ูŠุฉ ุงู„ F of ุงุชู†ูŠู†F of
593
01:04:39,120 --> 01:04:46,560
ุงุชู†ูŠู† ูŠุณุงูˆูŠ ุงุชู†ูŠู† ุชูƒุนูŠุจ ู†ุงู‚ุต ุชู„ุงุชุฉ ููŠ ุงุชู†ูŠู† ุชุฑุงุจูŠุน
594
01:04:48,150 --> 01:04:54,550
ุชู…ุงู…ุŸ ุทูŠุจ ู‡ุฐู‡ ุจุชุตูŠุฑ ุชู…ุงู†ูŠุฉ ู†ุงู‚ุต ุงุชู†ุงุดุฑ ูˆ ูŠุณุงูˆูŠ
595
01:04:54,550 --> 01:05:03,110
ู‚ุฏุงุดุฑุŸ ู†ุงู‚ุต ุงุฑุจุน ุงุฐุง ุนู†ุฏูŠ zero ููŠ ุนู†ุฏูŠ ุงูŠุดุŸ ููŠ
596
01:05:03,110 --> 01:05:09,430
ุนู†ุฏูŠ zero ููŠ local maximum ูŠุจู‚ู‰ if has local
597
01:05:09,430 --> 01:05:19,510
maximum0 at x ูŠุณุงูˆูŠ 0 ุชู…ุงู…ุŸ ุทุจ ุฅูŠุด ุฑุฃูŠูƒ ุนู†ุฏ
598
01:05:19,510 --> 01:05:28,290
ุงู„ุชู„ุงุชุฉุŸ ุทูŠุจ ุนู†ุฏ ุงู„ุชู„ุงุชุฉ ุจุฏู†ุง ู†ุฌูŠุจู„ู‡ ูƒู…ุงู† F of
599
01:05:28,290 --> 01:05:34,390
ุชู„ุงุชุฉ ูŠุจู‚ู‰ ุจุตูŠุฑ ุนู†ุฏูŠ ูŠุณุงูˆูŠ ุชู„ุงุชุฉ
600
01:05:40,050 --> 01:05:49,440
ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ุชูƒูŠุจ ู†ุงู‚ุต ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ุชุฑุจูŠุนูู‰
601
01:05:49,440 --> 01:05:57,400
ุงุดุชู„ุงุชู‡ุง ุงู„ุตุญูŠุฉ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ูƒุฏู‡ุŸ Zero ูƒุฐู„ูƒ ูŠุจู‚ู‰
602
01:05:57,400 --> 01:06:01,140
ุจุนุฏ ูŠุจู‚ู‰ ูŠู‚ูˆู„ ุงู„ู€ F has a local maximum Zero at X
603
01:06:01,140 --> 01:06:08,440
ูŠุณุงูˆูŠ Zero and ุงู„ X ูŠุณุงูˆูŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ู…ูˆู‚ุนูŠู† ููŠู‡ู…
604
01:06:08,440 --> 01:06:15,060
local maximum ุทูŠุจ ุงู„ F has local
605
01:06:21,070 --> 01:06:30,110
ู„ูˆูƒุงู„ ู…ูŠู†ูŠู…ู… ุนู†ุฏูŠ ุงุชู†ูŠู† ุณุงู„ุจ ุงุฑุจุน ุงุช ุงูƒุณ ูŠุณู…ู‰
606
01:06:30,110 --> 01:06:35,550
ู„ู‚ุฏุงุด ุงุชู†ูŠู† ูŠุจู‚ู‰ ุฌูŠุจู†ุง ุงู„ local maximum ูŠุจู‚ู‰ ู„ู„
607
01:06:35,550 --> 01:06:43,090
absolute ู†ู…ุฑุณู‰ ููŠ absolute maximumุŸ ููŠู‡
608
01:06:44,640 --> 01:06:51,120
ุชู„ุงุชุฉ ูˆู„ุง ู„ุงุŸ ู„ุฃู† ู‡ุฐู‡ ุงู„ุฏู„ุฌุฉ ู…ู† ุชุญุช increasing
609
01:06:51,120 --> 01:06:58,600
ุตุนุฏุช ู„ุบุงูŠุฉ zero ู†ุฒู„ุช ุนู†ุฏ ุงุชู†ูŠู† ู„ู…ูŠู† ู„ุณุงู„ุจ ุงุฑุจุนุฉ
610
01:06:58,600 --> 01:07:04,540
ุชุญุช ุฑุฌุนุช ุทู„ุนุช ู„ู…ูŠู†ุŸ ุงูŠุด ุฑุงูŠูƒ ุจุงู„ zero ู‡ุฐู‡ ุจุงู„ุตูŠุฑุŸ
611
01:07:05,680 --> 01:07:11,240
absolute maximum ูŠุจู‚ู‰ ุนู†ุฏูŠ ู…ูˆู‚ุนูŠู† ู„ู„ absolute
612
01:07:11,240 --> 01:07:20,160
maximum ุจุฑุถู‡ ุจุฌูŠ ุจู‚ูˆู„ ุงู„ F has absolute maximum
613
01:07:21,920 --> 01:07:29,900
ุฃุช ุงูƒุณ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ and ุงู„ X ูŠุณุงูˆูŠ ุชู„ุงุชุฉ ููŠู‡ ุนู†ุฏูŠ
614
01:07:29,900 --> 01:07:34,620
absolute minimum ู„ุฅู†ู‡ ุฌุงูŠ ู…ู† ูˆูŠู† ู…ู† ุชุญุช ู…ู† ุณุงู„ุจ
615
01:07:34,620 --> 01:07:38,820
infinity ูˆุถู„ู‡ ุทุงู„ุน ุนู„ู‰ ุงู„ zero ู†ุฒู„ุช ู„ุณุงู„ุจ ุฃุฑุจุน
616
01:07:38,820 --> 01:07:42,880
ูˆุฑุฌุน ุทุงู„ุน ู„ุชู„ุชุฑ ูŠุนู†ูŠ ุนู†ุฏูŠ absolute maximum ูˆู„ุง
617
01:07:42,880 --> 01:07:49,080
ูŠูˆุฌุฏ absolute minimum ูŠุจู‚ู‰ ุงู„ F has
618
01:08:10,240 --> 01:08:17,420
ุฃุฌุงุจู†ุง ุณุคุงู„ูƒุŸ ูˆ ู„ุง ู„ุณู‡ุŸ ูˆุตู„ุชุŸ ุงู„ุญู…ุฏ ู„ู„ู‡ ุฐู„ูƒ ู…ุง ูƒู†ุง
619
01:08:17,420 --> 01:08:17,920
ู†ุจุบูŠ
620
01:08:46,510 --> 01:08:50,450
ุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡
621
01:08:55,470 --> 01:08:59,330
ุจุนุฏู‡ุง ู†ุฌูŠ ู„ exercises ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ู‡ูƒุชุจ ุนู„ูŠูƒ ููˆู‚
622
01:08:59,330 --> 01:09:07,750
ู‡ู†ุง ูŠุจู‚ู‰ exercises ุฃุฑุจุนุฉ ุชู„ุงุชุฉ ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ
623
01:09:07,750 --> 01:09:13,350
ุงู„ู„ูŠ ู…ู† ูˆุงุญุฏ ู„ุชุณุนุฉ ูˆุชู„ุงุชูŠู† ุงู„ุฃุฏ ู…ู† ูˆุงุญุฏ ู„ุชุณุนุฉ
624
01:09:13,350 --> 01:09:21,500
ูˆุชู„ุงุชูŠู† ุงู„ุฃุฏูˆ ู…ู† ูˆุงุญุฏ ูˆ ุฃุฑุจุนูŠู† ู„ูˆุงุญุฏ ูˆ ุฎู…ุณูŠู† ู…ู†
625
01:09:21,500 --> 01:09:29,260
ูˆุงุญุฏ ูˆ ุฃุฑุจุนูŠู† ู„ูˆุงุญุฏ ูˆ ุฎู…ุณูŠู† ูƒู…ุงู† ุงู„ odd ูˆ part
626
01:09:29,260 --> 01:09:39,660
part a ูˆ b a ูˆ b ูู‚ุท ู„ุง ุบูŠุฑูˆ ู…ู† ุชู„ุงุชุฉ ูˆ ุฎู…ุณูŠู†
627
01:09:39,660 --> 01:09:49,320
ู„ุชุณุนุฉ ูˆ ุฎู…ุณูŠู† ู…ู† ุชู„ุงุชุฉ ูˆ ุฎู…ุณูŠู† ู„ุชุณุนุฉ ูˆ ุฎู…ุณูŠู† ุงู„ุงุฏ
628
01:09:49,320 --> 01:09:59,220
part F ูู‚ุท ู„ุบูŠุฑ ูˆ ู…ู† ูˆุงุญุฏ ูˆ ุณุชูŠู† ู„ุณุจุนูŠู† ู…ู† ูˆุงุญุฏ ูˆ
629
01:09:59,220 --> 01:10:03,580
ุณุชูŠู† ู„ุณุจุนูŠู† ูƒู„ู‡ู… ุจู„ุง ุงุณุชุซู†ุงุก
630
01:10:06,940 --> 01:10:15,120
ุทูŠุจ ู†ู†ุชู‚ู„ ุงู„ุงู† ุงู„ู‰ ุงู„ section ุงู„ู„ู‰ ูŠู„ูŠู‡ ูˆู‡ูˆ
631
01:10:15,120 --> 01:10:22,660
section ุงุฑุจุนุฉ ุงุฑุจุนุฉ ูŠุจู‚ู‰ section ุงุฑุจุนุฉ ุงุฑุจุนุฉ ุจุชุญุฏุซ
632
01:10:22,660 --> 01:10:33,760
ุนู† ุดุบู„ุชูŠู† ุงู„ concavity concavity and ุงู„ curve
633
01:10:33,760 --> 01:10:35,280
sketching
634
01:10:37,400 --> 01:10:45,260
ุงู„ุฑุณู… ุงู„ุจูŠุงู†ูŠ ู„ู„ู…ู†ุญู†ูŠุงุช ู†ุนุทูŠ ุชุนุฑูŠู ู„ู„ Concavity ููŠ
635
01:10:45,260 --> 01:10:53,240
ุงู„ุฃูˆู„ ูˆุจุนุฏ ุฐู„ูƒ ุจุฑูˆุญ ู„ู„ุจุงู‚ูŠ The graph of
636
01:10:53,240 --> 01:11:04,200
a differentiable function Y ุชุณุงูˆูŠ F of X is
637
01:11:06,500 --> 01:11:23,060
ุงู„ู…ุฑุฉ ูˆุงุญุฏ Concave up on an open interval I
638
01:11:23,060 --> 01:11:35,980
if ุงู„ F' is increasing on I
639
01:11:38,360 --> 01:11:47,100
ู†ู…ุฑู‡ ุงุชู†ูŠู† concave down ุนู„ู‰ ุงู„ open interval I ูุงู„
640
01:11:47,100 --> 01:11:56,440
F' is decreasing on I that
641
01:11:56,440 --> 01:12:03,160
is I N ู†ู…ุฑู‡
642
01:12:03,160 --> 01:12:13,020
ุงุญุฏ Fุงู„ู€ F double prime greater than zero on I
643
01:12:13,020 --> 01:12:17,400
then
644
01:12:17,400 --> 01:12:37,610
the graph of Fุซู… graph of F over I is concave up
645
01:12:37,610 --> 01:12:40,670
ู†ู…ุฑู‡
646
01:12:40,670 --> 01:12:48,890
ุงุชู†ูŠู† F ุงู„ F double prime ุงู‚ู„ ู…ู† ุงู„ zero on I ุซู…
647
01:12:48,890 --> 01:12:55,710
graph of F is concave
648
01:12:55,710 --> 01:12:56,490
down
649
01:13:14,380 --> 01:13:24,560
if ุงู„ F is continuous on an open interval
650
01:13:24,560 --> 01:13:28,680
containing
651
01:13:28,680 --> 01:13:31,900
X
652
01:13:31,900 --> 01:13:39,440
node and if ุงู„ F
653
01:13:44,090 --> 01:13:51,790
ุชุชุบูŠุฑ ุงู„ุงุชุฌุงู‡ ู…ู†
654
01:13:51,790 --> 01:13:54,930
ุงู„ู‡ูŠุฆุฉ
655
01:13:54,930 --> 01:14:03,330
ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ
656
01:14:03,330 --> 01:14:08,750
ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ ุงู„ู‡ูŠุฆุฉ
657
01:14:12,330 --> 01:14:26,770
ูˆ F of X0 is called an inflection
658
01:14:26,770 --> 01:14:30,610
point
659
01:14:30,610 --> 01:14:34,010
of F
660
01:15:17,390 --> 01:15:20,190
ู…ุงุฐุง ุจุญู‚ ุงู„ุฌุญูŠู…
661
01:15:30,110 --> 01:15:30,750
ูŠุง ุฑุฌู„ ..
662
01:17:57,300 --> 01:18:01,760
ุงู„ุฌุฏ ู‡ูˆ ูŠุจู‚ู‰ ุงุชุฑุงูƒ ูุชุฑุฉ ูŠูƒูˆู† ู…ู† ูŠู…ูŠู† ูˆ ู…ู† ุงู„ูŠุณุงุฑุŒ
663
01:18:01,760 --> 01:18:04,840
ุงูŠ ุฌุฏ ูŠูƒูˆู† ู…ู† ูŠู…ูŠู† ูˆ ู…ู† ุงู„ูŠุณุงุฑุŒ ู„ูƒู† ูŠูƒูˆู† closed
664
01:18:16,440 --> 01:18:23,340
ู‡ุฐุง ุงู„ู…ุชู‚ุจู„ ุฏุงู„ุฉ ู…ุฌุฒุฉ ุตุญ ูˆู„ุง ู„ุฃุŸ ุงู‡ ู„ุฃุŒ ุงู„ู…ุชู‚ุจู„
665
01:18:23,340 --> 01:18:27,900
ุฏุงู„ุฉ ู…ุฌุฒุฉ ุฅู„ู‰ ุฌุฒุฆูŠู†ุŒ ุงู„ู…ุชู‚ุจู„ ุฏุงู„ุฉ ู…ุฌุฒุฉ ุฅู„ู‰ ุฌุฒุฆูŠู†ุŒ
666
01:18:27,900 --> 01:18:33,440
ู…ู†ู‚ูˆู„ ุนู† ุทุฑููŠู† ุงู„ูุชุฑุฉ ุงู„ุฏุงู„ุฉ ุบูŠุฑ ู…ุนุฑูุฉุŒ ุตุญูŠุญ ูˆู„ุง
667
01:18:33,440 --> 01:18:37,960
ู„ุฃุŸ ู…ู†ู‚ูˆู„ ู…ุดุชู‚ุฉุŒ ุงู„ู…ุดุชู‚ุฉ ุบูŠุฑ ู…ุนุฑูุฉุŒ ู…ุธุจูˆุทุŸ ู…ู†
668
01:18:37,960 --> 01:18:42,860
ุงุณุชุจุนุฏ ุงู„ุทุฑููŠู†ุŒ ู„ุฃู†ู‡ ู„ู…ุง ุฃูˆู‚ู ุนู†ุฏู‡ ุงุญุชู…ุงู„ ูŠูƒูˆู†
669
01:18:42,860 --> 01:18:47,100
ูƒุจูŠุฑ ููŠู‡ discontinuityุนู† ุทุฑููŠู† ุงู„ูุชุฑุฉ ุงุญุชู…ุงู„ู‡ุง
670
01:18:47,100 --> 01:18:50,980
ุชู…ุงู… ูˆุจุงู„ุชุงู„ูŠ ุงู†ุง ุจุงุณุชุจุนุฏ ุงู„ุทุฑููŠู† ุญุชู‰ ู…ุงูˆุฌุนุด ููŠ
671
01:18:50,980 --> 01:18:57,000
ู…ุดุงูƒู„ ู…ุธุจูˆุท ุงุณู…ู‡
672
01:18:57,000 --> 01:18:57,440
ูŠุง ุฑุงุฌู„
673
01:19:05,870 --> 01:19:10,990
ู„ูˆ ูƒุงู†ุช ุฏุงู„ุฉ ุนุฒูŠุฒูŠ polynomial ูู…ุนุฑูุฉ ุนู„ูŠู‡ุง ูƒู„ real
674
01:19:10,990 --> 01:19:14,710
line ุฏุฎู„ุช ุงู„ุทุฑููŠู† ูˆ ุงู„ู„ู‡ ู‚ู„ุช ุงู„ุทุฑููŠู† ู…ุด ุณุจุจุด ุนู†ุฏูŠ
675
01:19:14,710 --> 01:19:19,730
ู…ุดูƒู„ุฉ ุฎุงู„ุต ุจุณ ู„ู…ุง ุชุจู‚ู‰ ุฏุงู„ุฉ ู…ุฌุฒู„ุฉ ุงุญุชู…ุงู„ ุงู„ู…ุดูƒู„ุฉ
676
01:19:19,730 --> 01:19:21,790
ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉ ุงุญุชู…ุงู„ ูƒุจูŠุฑ ูƒู…ุงู†
677
01:19:25,440 --> 01:19:29,400
ุฃู ูˆ ููƒุณ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุฃู ูˆ ููƒุณ ูŠุณุงูˆูŠ ุงูƒุณ ุชุฑุจูŠุน ุงูƒุณ
678
01:19:29,400 --> 01:19:33,780
ุชุฑุจูŠุน ู…ุงุดูŠุฉ ุงู„ู„ู‡ ู‡ุงูŠ ุจู‡ุง ุงู„ domain ูƒู„ ุงู„ real line
679
01:19:33,780 --> 01:19:37,080
ูˆุงู„ู„ู‡ ุงู†ุช ุญุฌุฒุช ุนู†ุฏ ุงู„ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ุนู†ุฏ ุงู„ูˆุงุญุฏ ูˆ
680
01:19:37,080 --> 01:19:39,660
ุงุชู†ูŠู† ุนู†ุฏ ุงู„ูˆุงุญุฏ ูˆ ุงุชู†ูŠู† ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุงู„ุณุงุฑุงุช
681
01:19:39,660 --> 01:19:42,620
ุชู„ุงุชุฉ ุงูƒุณ ุชุฑุจูŠุน ุชู„ุงุชุฉ ุงูƒุณ ุชุฑุจูŠุน ูŠุจู‚ู‰ ุงู„ุณุงุฑุฉ ุนู†ุฏ
682
01:19:42,620 --> 01:19:46,260
ุงู„ูˆุงุญุฏ ู…ุนุฑูุฉ ูˆ ุนู†ุฏ ุงุชู†ูŠู† ู…ุนุฑูุฉ ูˆุจุงู„ุชุงู„ูŠ ุฏุฎู„ุช ููŠ ุงู„
683
01:19:46,260 --> 01:19:50,240
interview ูˆุงู„ู„ู‡ ูˆุงู„ู„ู‡ ู‚ุฑุฑุชู‡ุง ู„ุง ูŠุคุซุฑ ุนู†ุฏูŠ ุจุตูŠุฑ
684
01:19:50,240 --> 01:19:54,640
ุงู„ู…ุดุชู‚ุฉ ู…ุนุฑูุฉ ุนู†ุฏ ุงู„ูˆุงุญุฏ ูˆ ุนู†ุฏ ุงุชู†ูŠู†ู‡ุฐุง ูƒู„ู‡ ู…ุซู„ุง
685
01:19:54,640 --> 01:19:58,720
ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุจุณ ู„ู…ุง ุชุจู‚ู‰ ุฏุงู„ุฉ ู…ุฌุฒุฉ ุฅู„ู‰ ุฌุฒุกูŠู† ุจุตูŠุฑ
686
01:19:58,720 --> 01:20:01,400
ุงู„ู„ูŠ ุงุญุชู…ุงู„ ุงู„ู…ุดุงูƒู„ ุงูˆ ุซู„ุงุซุฉ ุฌุฒุก ุงูˆ ุงุฑุจุน ุชุตูŠุฑ
687
01:20:01,400 --> 01:20:05,240
ุงู„ู…ุดุงูƒู„ ุนู†ุฏ ุงู„ุฃุทุฑุงู ู…ู…ูƒู†ูƒ ู„ุงูŠุณุชุจุนุฏ ุงู„ุฃุทุฑุงู ูˆุฑุงูŠุง
688
01:20:05,240 --> 01:20:12,020
ุฏู…ุงุบูƒ ู‡ุฐุง ูƒู„ ู…ุง ููŠ ุงู„ุฃู…ุฑ ุทุจ ู†ุฑุฌุน ู„ุณุคุงู„ู†ุง ู‡ุฐุง ุงู„
689
01:20:12,020 --> 01:20:16,180
section ุงู„ู„ูŠ ุจูŠู† ุงุฏูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ section 4 4 con kvt
690
01:20:16,180 --> 01:20:24,250
ุงู„ู„ูŠ ู‡ูˆ mainุงู„ุชู‚ุงุนุฑ ุงูˆ ุงู„ุชุญุฏุจ ู„ู„ู…ู†ุญู†ุฉ ุชู…ุงู…ุŸ and ุงู„
691
01:20:24,250 --> 01:20:28,550
curve sketching ูˆุฑุณู… ุงู„ู…ู†ุญู†ูŠุงุช ูŠุจู‚ู‰ ุงุญู†ุง ููŠ ู‡ุฐุง
692
01:20:28,550 --> 01:20:34,190
section ุจู†ุณุชุฎุฏู… ูƒู„ ู…ุง ุณุจู‚ ุงู„ุฏุฑุงุณุฉ ูˆููŠ section 4.1
693
01:20:34,190 --> 01:20:41,210
ูˆ4.2 ูˆ4.3 ููŠ ุฑุณู… ุงู„ู…ู†ุญู†ูŠุงุช ูˆุฎุงุตุฉู„ู€ critical points
694
01:20:41,210 --> 01:20:48,290
ูˆูุชุฑุงุช ุงู„ุชุฒุงูŠุฏ ูˆุงู„ุชู†ุงู‚ุต ูˆูƒุฐู„ูƒ ุงู„ local maximum ูˆ
695
01:20:48,290 --> 01:20:53,490
ุงู„ local minimum ูŠุจู‚ู‰ ุงุญู†ุง ุจู†ุณุชุฎุฏู… ูƒู„ ู…ุง ุณุจู‚
696
01:20:53,490 --> 01:20:59,450
ุฏุฑุงุณุชู‡ ููŠ ุงู„ุฑุณู…ุจู†ุฐู‡ุจ ูู‚ุท ู„ู„ุฃูˆู„ ูˆู†ุนุฑู ุงู„ู€ Concavity
697
01:20:59,450 --> 01:21:03,950
ู„ู…ู†ุญู†ุฉ ูƒูŠู ุจุฏูŠ ุฃุญุตู„ ุนู„ูŠู‡ ูˆุจุนุฏ ุฐู„ูƒ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง
698
01:21:03,950 --> 01:21:07,150
ู†ุนู…ู„ู‡ุง ูุจุนุฏูŠู† ุจู‚ูˆู„ graph of a differentiable
699
01:21:07,150 --> 01:21:14,200
function y ุชุณุงูˆูŠ f of x isconcave up ุนู„ู‰ ูุชุฑุฉ I
700
01:21:14,200 --> 01:21:19,500
ูˆู„ู… ุงู‚ูˆู„ ุงู†ู‡ุง ู…ู‚ูู„ุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ
701
01:21:19,500 --> 01:21:19,780
ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ
702
01:21:19,780 --> 01:21:21,340
ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ
703
01:21:21,340 --> 01:21:22,920
ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ
704
01:21:22,920 --> 01:21:24,760
ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ
705
01:21:24,760 --> 01:21:33,120
ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆุญุฉ ุงูˆ ู…ูุชูˆูˆ ุจู‚ูˆู„ ู„ูƒ ุฏู‡ ู„ูƒู† cave
706
01:21:33,120 --> 01:21:37,640
up if ุงู„ if increasing ุจุญุงุฌุฉ ุชุถูŠู‚ ุงู„ู…ุดุชู‚ุฉ ูŠุจู‚ู‰
707
01:21:37,640 --> 01:21:42,120
ูƒู„ุงู…ูŠ ุตุญ ูˆู„ุง ุบู„ุทุŸ ุบู„ุท ูŠุจู‚ู‰ ุตุญ ุตุญ ูˆุฎุฏ ุจุงู„ูƒ ู…ู†
708
01:21:42,120 --> 01:21:47,280
ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุฅุฐุง ุงู„ู…ุดุชู‚ุฉ ูƒุงู†ุช ุชุฒุงูŠุฏูŠุฉ ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ
709
01:21:47,280 --> 01:21:51,080
ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุจุชูƒูˆู† ุฃูƒุจุฑ ู…ู† ุงู„ zero ุตุญ ูˆู„ุง ..
710
01:21:51,080 --> 01:21:55,120
ุจู‚ูˆู„ ู„ูƒ ุฏู‡ ู„ุง increasing ุฅุฐุง ุงู„ู…ุดุชู‚ุฉ ุชุจุนุชู‡ุง ูƒุงู†ุช
711
01:21:55,120 --> 01:21:57,960
ุฃูƒุจุฑ ู…ู† ุงู„ zero ูŠุจู‚ู‰ ุงู„ if prime increasing ุฅุฐุง
712
01:21:57,960 --> 01:22:02,590
ู…ุดุชู‚ุชู‡ุงุงู„ู„ูŠ ุตุงุฑุช ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุจุชุจู‚ู‰ ุฃูƒุจุฑ ู…ู† ู…ูŠู†
713
01:22:02,590 --> 01:22:07,150
ู…ู† ุงู„ zero ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ ุจูŠู‚ูˆู„ ู‡ูŠูƒูˆู† curve up
714
01:22:07,150 --> 01:22:12,890
ุงู„ู…ู†ุญู†ุฉ ู…ูุชูˆุญ ุฅู„ู‰ ุฃุนู„ู‰ ุฅุฐุง ูƒุงู†ุช ุงู„ F prime
715
01:22:12,890 --> 01:22:17,410
increasing ุฅุฐุง ูƒุงู†ุช ุงู„ุฏุงู„ุฉ ุฅุฐุง ูƒุงู†ุช ู…ุดุชู‚ุฉ ู‡ุฐู‡
716
01:22:17,410 --> 01:22:21,630
ุงู„ุฏุงู„ุฉ ุฎู„ุงู„ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ูƒุงู†ุช ุงู„ู…ุดุชู‚ุฉ ุชุฒุงูŠุฏ ู…ุด
717
01:22:21,630 --> 01:22:28,220
ุงู„ุฏุงู„ุฉ ู…ุดุชู‚ุฉ ุงู„ุฏุงู„ุฉ ูƒุงู†ุช ุชุฒุงูŠุฏูŠุงconcave down ูŠุนู†ูŠ
718
01:22:28,220 --> 01:22:34,740
ุฅู„ู‰ ุฃุณูู„ ุฅุฐุง ูƒุงู†ุช ุงู„ู…ุดุชู‚ุฉ ุฎู„ุงู„ู‡ุง decreasing ูŠุจู‚ู‰
719
01:22:34,740 --> 01:22:40,920
ุฅุฐุง ูƒุงู†ุช ู…ุดุชู‚ุฉ ุงู„ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ูˆู„ูŠุณุช ุงู„ุฏุงู„ุฉ ู…ุดุชู‚ุฉ
720
01:22:40,920 --> 01:22:46,180
ุงู„ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ุทูŠุจ ุจุฏูŠ ุฃุนูŠุฏ ุตูŠุงุบุฉ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ู„ุชู‡
721
01:22:46,180 --> 01:22:50,960
ุจู†ุงุญูŠุฉ ุฑูŠุงุถูŠุฉ ุซุงู†ูŠุฉูุจุนุฏูŠู† ุจู‚ูˆู„ ุงูŠู‡ ุฏู‡ ุงู„ู„ูŠ ุจุชุจู‚ู‰
722
01:22:50,960 --> 01:22:56,140
cone curve up ุงุฐุง ุงู„ู…ุดุชู‚ ุงู„ุซุงู†ูŠ ุงูƒุจุฑ ู…ู† ู…ูŠู† ู…ู† ุงู„
723
01:22:56,140 --> 01:23:00,380
zero ู…ุง ู‡ูŠ ู‡ุฐู‡ ุงู„ุชุฑุฌู…ุฉ ุงู† ุงู„ F prime increasing ุตุญ
724
01:23:00,380 --> 01:23:05,200
ูˆู„ุง ู„ุฃ ู…ุด ู‚ุจู„ ุดูˆูŠุฉ ุงุฎุฏู†ุง ุงุฐุง ุงู„ู…ุด F prime ุงูƒุจุฑ ู…ู†
725
01:23:05,200 --> 01:23:10,030
ุงู„ zero ูŠุจู‚ู‰ ุงู„ F increasingู‡ู†ุง ุฅุฐุง ุงู„ู€ f double
726
01:23:10,030 --> 01:23:14,730
prime ุฃูƒุจุฑ ู…ู† 0 ูŠุจู‚ู‰ ุงู„ู€ f prime increasing ูŠุจู‚ู‰
727
01:23:14,730 --> 01:23:19,710
ุฃูƒุจุฑ ู…ู† ุงู„ู€ 0 ุงู„ู€ graph of f over a is concave up
728
01:23:19,710 --> 01:23:24,930
ูŠุจู‚ู‰ ู…ูุชูˆุญ ุฅู„ู‰ ุฃุนู„ู‰ ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ
729
01:23:24,930 --> 01:23:29,090
ุฃู‚ู„ ู…ู† ุงู„ู€ 0 ุนู„ู‰ ุงู„ูุชุฑุฉ I ูŠุจู‚ู‰ ุงู„ graph of it
730
01:23:29,090 --> 01:23:35,600
ุจุฏูŠูƒูˆู† ู…ุงู„ู‡ concave downุงู„ูƒุชุงุจ ุจูŠุณู…ูŠ ุงู„ุดุฑุทูŠู† ู‡ุฏูˆู„
731
01:23:35,600 --> 01:23:41,760
ู‡ูŠูƒ ุจูŠุณู…ูŠู‡ู… second derivative
732
01:23:41,760 --> 01:23:44,820
test
733
01:23:44,820 --> 01:23:49,340
for concavity
734
01:23:53,590 --> 01:23:59,170
ูŠุจู‚ู‰ ุงู„ู…ุดุชุงู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู„ู‚ูŠุงุณ ุชู‚ุงุฑ ูˆ ุชุญุฏุจ ุงู„ู…ู†ุญู†ุฉ
735
01:23:59,170 --> 01:24:03,910
ู„ูƒู† ุงู„ first derivative ุชุณุชุฎุฏู… ู„ู…ู†ุŸ ู„ุชุญุฏูŠุฏ ุงู„
736
01:24:03,910 --> 01:24:07,710
local maximum ูˆ ุงู„ local ู…ู† ููˆู‚ ุงู„ local extreme
737
01:24:07,710 --> 01:24:13,150
value ุฃูŠู‡ ุงู„ูุฑู‚ ููŠ ู…ุง ุจูŠู†ู‡ู…ุงุŸ ุทูŠุจ ุฅุฐุง ุงู„ู…ู†ุญู†ุฉ
738
01:24:13,150 --> 01:24:19,450
ุจุงู„ุดูƒู„ ุฅู† ู‡ุฐุง ุทู„ุน ุฅู† ู‡ุฐุง ูƒู†ูƒ ูŠุงุจูˆูŠู†ู‡ุฐุง concave
739
01:24:19,450 --> 01:24:25,810
ูˆูŠู†ุŸ ูุนู†ุฏูŠ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุงู†ุชู‚ู„ ู…ู† concave
740
01:24:25,810 --> 01:24:30,490
up ุฅู„ู‰ concave ู…ู† concave down ุฅู„ู‰ concave up
741
01:24:30,490 --> 01:24:36,710
ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง ู†ู‚ุทุฉ ุงู†ู‚ู„ุงุจ ู„ู„ู…ู†ุญู†ุฉูŠุจู‚ู‰
742
01:24:36,710 --> 01:24:40,330
inflection point ูŠุจู‚ู‰ ุงู„ inflection point ุจุฏูŠ
743
01:24:40,330 --> 01:24:46,790
ุดุฑุทูŠู† ู„ู‡ุง ุญุชู‰ ุชุชุญู‚ู‚ ุฃูˆู„ ุดูŠ ุจุฏูŠ ุชุจู‚ู‰ ุฏุงู„ุฉ ู…ุชุงุตู„ุฉ
744
01:24:46,790 --> 01:24:51,550
ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ุจุฏูŠ ุงุชุฌุงู‡ ุงู„ concavity
745
01:24:51,550 --> 01:24:56,850
ูŠุชุบูŠุฑ ู…ู† down ุฅู„ู‰ up ุฃูˆ ู…ู† up ุฅู„ู‰ down ุทู„ุน ุนู†ุฏ
746
01:24:56,850 --> 01:25:02,330
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู‡ุฐู‡ ูƒุงู† concave up ุตุงุฑ concave down
747
01:25:02,590 --> 01:25:06,690
ูŠุจู‚ู‰ ุจุงุฏู„ุฉ ุชุงู†ูŠ ุจูŠู‚ูˆู„ ุฅุฐุง ุงู„ F ูƒุงู†ุช ุฏุงู„ุฉ ู…ุชุงุตู„ุฉ
748
01:25:06,690 --> 01:25:12,230
ุนู„ู‰ ุงู„ open interval ุงู„ุชูŠ ุชุญุชูˆูŠ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ X0
749
01:25:12,230 --> 01:25:17,590
ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ ููŠ ูุชุฑุฉ ุชุญุชูˆูŠ ุนู„ู‰ ู†ู‚ุทุฉ ุฒูŠ ุงู„ู†ู‚ุทุฉ
750
01:25:17,590 --> 01:25:23,510
ู‡ุฐู‡ุŒ ูƒูˆูŠุณุŸ ุชู…ุงู…ุŒ ุฅูŠุด ุญุตู„ุŸ ุฏุงู„ุฉ ุฏุงู„ุฉ ู…ุชุงุตู„ุฉand if
751
01:25:23,510 --> 01:25:28,130
it changes the direction of its concavity under X0
752
01:25:28,130 --> 01:25:33,470
ุนู†ุฏ X0 ุงู„ุฏุงู„ุฉ ุบูŠุฑุช ุงุชุฌุงู‡ ุงู„concavity ุชุจุนู‡ุง ูŠุจู‚ู‰ ููŠ
753
01:25:33,470 --> 01:25:36,970
ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ูˆู„ ุงู„ู†ู‚ุทุฉ X0 ูˆ F of X0 ุจุณู…ูŠู‡ุง
754
01:25:36,970 --> 01:25:40,870
inflection point ุฏูŠ ู…ุง ูƒุงู† ู…ู…ูƒู† ู…ุงุชู„ุงู‚ูŠุด ุงู„ุชุนุฑูŠู
755
01:25:40,870 --> 01:25:43,750
ุชุจุนูŠ ู‡ูˆ ุงู„ู„ูŠ ู…ู†ุตูˆุต ุนุงู„ูŠ ููŠ ุงู„ูƒุชุงุจ ูŠูƒูˆู† ุงู„ูƒุชุงุจ
756
01:25:43,750 --> 01:25:48,250
ู…ุงุชู„ุงู‚ูŠ ูƒุชุจู‡ ู…ู† ู†ุต ุขุฎุฑ ู„ูƒู† ู‡ุฐุง ุฃุฏู‚ ู†ุต ู„ุงูŠู…ูƒู† ูŠุฎุฑ
757
01:25:48,250 --> 01:25:52,600
ู…ู†ู‡ ุงู„ู…ูŠู‡ ุฒูŠ ู…ุง ุจู‚ูˆู„ู‡ูŠุจู‚ู‰ ุงู†ุง ุนุดุงู† ูŠูƒูˆู† ุนู†ุฏูŠ
758
01:25:52,600 --> 01:25:56,060
inflection point ุนู„ู‰ ุงู„ู…ู†ุญู†ุฉ ุจุฏูŠ ุงุชุญู‚ู‚ ุดุฑุทูŠู†
759
01:25:56,060 --> 01:26:00,320
ุงู„ุงุชุตุงู„ ุชุจุน ุงู„ุฏู„ุฉ ุนู†ุฏ ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงุชู†ูŠู† ุจุฏูŠ ุงุชุบูŠุฑ
760
01:26:00,320 --> 01:26:05,040
ุงุชุฌุงู‡ ุงู„ connectivity ู„ู‡ุฐู‡ ุงู„ุฏู„ุฉ ุงู„ inflection
761
01:26:05,040 --> 01:26:11,240
point ุจุชุญุตู„ ูˆูŠู†ุŸุจุชุฏูˆุฑ ุนู„ูŠู‡ุง ูˆูŠู† ูŠุนู†ูŠุŸ ููŠ ู…ูƒุงู†ูŠู†
762
01:26:11,240 --> 01:26:14,760
ุงู„ู„ูŠ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠ ุนู†ุฏู‡ ูŠุณุงูˆูŠ zero ุงูˆ ุงู„ู…ุดุชู‚ุฉ
763
01:26:14,760 --> 01:26:18,460
ุงู„ุซุงู†ูŠุฉ ุชุจู‚ู‰ ุบูŠุฑ ู…ุนุฑูุฉ ุฒูŠ ุงู„ local maximum ูˆ ุงู„
764
01:26:18,460 --> 01:26:23,720
local minimum ุจุฏูˆุฑ ุนู„ูŠู‡ุง ูˆูŠู†ุŸ ุงุฐุง ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰
765
01:26:23,720 --> 01:26:26,860
ุตูุฑ ุงูˆ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุบูŠุฑ ู…ุนุฑูุฉุŸ ุงุฐุง ุงู„ู…ุดุชู‚ุฉ
766
01:26:26,860 --> 01:26:32,550
ุงู„ุซุงู†ูŠุฉ ุจุฏู„ ู…ู† ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุทูŠุจ ุงู„ุณุคุงู„ ู‡ูˆู„ูˆ ูƒุงู†ุช
767
01:26:32,550 --> 01:26:37,150
ุงู„ู…ุดุชู‚ุฉ ุซุงู†ูŠุฉ ุชุณุงูˆูŠ zero ุงูˆ ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ุง ู‡ูŠ
768
01:26:37,150 --> 01:26:45,850
ู…ุนุฑูˆูุฉ ูŠุนู†ูŠ ุถุฑูˆุฑูŠ ุงู„ุงู‚ูŠ inflection point ู„ุฃ ู„ุฃ ู„ูŠุณ
769
01:26:45,850 --> 01:26:50,890
ุจุงู„ุถุฑูˆุฑุฉ ูŠุจู‚ู‰ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุงุฐุง ุจุชุทู„ุน ุจู‚ู‰ ู‚ุจู„ ู…ุง
770
01:26:50,890 --> 01:26:56,370
ู†ูƒู…ู„ ู‡ู†ุงู„ูˆ ุฌูŠุช ุงู„ูุชุฑุฉ ู…ู† ู‡ู†ุง ู„ู‡ู†ุง ุงู„ูุชุฑุฉ ุงู„ู„ูŠ
771
01:26:56,370 --> 01:27:01,830
ุนู†ุฏู†ุง ู‡ุฐู‡ ู…ูุชูˆุญ ุงู„ู‰ ุฃุนู„ู‰ ูˆุงู„ู„ู‡ ุงู„ู‰ ุฃุณูู„ ุงู„ู‰ ุฃุนู„ู‰
772
01:27:01,830 --> 01:27:07,710
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู…ุฑุญู„ุฉ ุจู‚ูˆู„ ุนู„ูŠู‡ุง ูƒู† ูƒุจุท
773
01:27:08,580 --> 01:27:15,640
ุทูŠุจ ู‡ุฐู‡ ู…ู† ู‡ู†ุง ู„ุบุงูŠุฉ ู‡ู†ุง concave down ูŠุจู‚ู‰ ู…ูุชูˆุญ
774
01:27:15,640 --> 01:27:24,540
ู„ู‡ุง ู„ูุชุฑุฉ ู‡ุฐู‡ concave up ู‡ุฐู‡ concave down
775
01:27:28,820 --> 01:27:34,660
ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ูˆู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ูˆู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงูƒุณ ูˆุงุญุฏ ูˆ ุงูƒุณ
776
01:27:34,660 --> 01:27:39,040
ุงุชู†ูŠู† ูˆ ุงูƒุณ ุชู„ุงุชุฉ ุนู†ุฏู‡ู… ููŠ ุงู†ูู„ูŠูƒุดู† point ูŠุจู‚ู‰ ู‡ุฐู‡
777
01:27:44,070 --> 01:27:49,890
point ูŠุจู‚ู‰ ู‡ุฏูˆู„ ู†ู‚ุงุท ุงู†ู‚ู„ุงุจ ู„ู„ู…ู†ุญู†ู‰ ู…ูŠู† ู‡ู…ุง ุงู„ู„ูŠ
778
01:27:49,890 --> 01:27:56,230
ู‡ูŠ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุนู†ุฏูƒ ู‡ุฐู‡ ูˆ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ูˆ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡
779
01:27:56,230 --> 01:28:04,050
ูˆ ูƒุฐู„ูƒ ุงู„ู†ู‚ุทุฉ ุงู„ู„ูŠ ุนู†ุฏูƒ ู…ูŠู† ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุทุจุนุง ู‡ุฐู‡
780
01:28:04,050 --> 01:28:09,770
ุจู‚ุฏุฑุด ุฃุชุฃูƒุฏ ู…ู†ู‡ุง ู„ุฃู† ู…ุงุนู†ุฏูŠุด ู…ู†ุญู†ู‰ ุจุนุฏู‡ุง ูŠุจู‚ู‰ ู‡ุฐู‡
781
01:28:09,770 --> 01:28:15,680
ุจู‚ุฏุฑุด ุฃุชุฃูƒุฏ ู…ู†ู‡ุง ุจุงู„ุถุจุท ุงู„ุขู†ุฅู„ุง ุฅุฐุง ุฎู„ู‘ูŠุช ุงู„ู‚ูˆุณ
782
01:28:15,680 --> 01:28:18,780
ูŠู†ุฒู„ ุดูˆูŠุฉ ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ู„ูƒู† ุฃู†ุง ุจู‚ูˆู„ ู‡ุงูŠ ูƒู„ ุงู„ู„ูŠ
783
01:28:18,780 --> 01:28:22,420
ุจู‚ุฏุฑ ุฃู‚ูˆู„ู‡ุŒ ู‡ุฏูˆู„ ูˆุงุญุฏุฉุŒ ุงุชูŠู†ุŒ ุงุชูŠู†ุŒ ุชู„ุงุชุฉ ู…ุชุฃูƒุฏ
784
01:28:22,420 --> 01:28:25,860
ู…ู†ู‡ู…ุŒ ู‡ุฏ ู…ุด ู…ุชุฃูƒุฏ ู…ู†ู‡ุงุŒ ูŠุจู‚ู‰ ุจู‚ูˆู„ ุนู†ุฏูŠ ุงู„ู†ู‚ุทุฉ
785
01:28:25,860 --> 01:28:30,300
ุงู„ุชู„ุงุชุฉ ู‡ุฏูˆู„ ููŠู‡ุง ุนู†ุฏูŠ main inflection pointู‡ูŠ
786
01:28:30,300 --> 01:28:34,720
concave upุŒ concave downุŒ concave upุŒ concave down
787
01:28:34,720 --> 01:28:38,800
ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ุฌุณู…ุช ุนู„ูŠู‡ุง ุงู„ุชู‚ุณูŠู…ุงุช ู‡ุฐู‡ ุงู„ุณุคุงู„ ู‡ูˆ
788
01:28:38,800 --> 01:28:45,340
ู„ูˆ ูƒุงู†ุช ุงู„ู…ุดุชู‚ุฉ ุชุณุงูˆูŠ zero ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู‡ู„ ู…ู†
789
01:28:45,340 --> 01:28:50,300
ุงู„ุถุฑูˆุฑูŠ ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ inflection point ุงู„ุฅุฌุงุจุฉ ู„ูŠุณ
790
01:28:50,300 --> 01:28:56,080
ุจุงู„ุถุฑูˆุฑุฉ ู†ุนุทูŠูƒ ู‡ุงู„ู…ู„ุงุญุธุฉ ู‡ุฐู‡ ูˆุจู‡ุง ู†ู†ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ
791
01:28:56,080 --> 01:28:57,680
ุงู„ู…ู„ุงุญุธุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ
792
01:29:07,390 --> 01:29:15,890
ุฅุฐุง yw' ุชุณุงูˆูŠ 0 ูู‡ูˆ
793
01:29:15,890 --> 01:29:20,430
ู„ูŠุณ ุตุญูŠุญ
794
01:29:22,840 --> 01:29:33,260
through that must there is
795
01:29:33,260 --> 01:29:42,260
an inflection point
796
01:29:42,260 --> 01:29:48,160
there is an inflection point for example
797
01:29:50,680 --> 01:29:57,540
ูƒุดุบู„ุฉ ุชูˆุถูŠุญูŠุฉ ุนู„ู‰ ุฐู„ูƒ ุงู„ Y ุชุณุงูˆูŠ X ุฃูุต ุฃุฑุจุนุฉ ู„ูˆ
798
01:29:57,540 --> 01:30:03,580
ุจุฏู‰ ุชุฌูŠุจ ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ุจุชุนุทูŠูƒ ุฃุฑุจุนุฉ X ุชูƒูŠุจ ู…ุดุชู‚ุฉ
799
01:30:03,580 --> 01:30:12,360
ุซุงู†ูŠุฉ ุจุชุณุงูˆูŠ ุงุชู†ุงุดุฑ X ุชุฑุจูŠุน ูˆู‡ุฐู‡ ุชุณุงูˆูŠ Zero at X
800
01:30:12,360 --> 01:30:20,620
ูŠุณุงูˆูŠ Zeroู„ูˆ ุฌูŠู†ุง ุฑุณู…ู†ุง ู‡ุฐู‡ ุจู‚ูˆู„ ู‡ูŠ ุงู„ู…ู†ุญู†ุฉ ูƒูˆูŠุณ
801
01:30:20,620 --> 01:30:25,960
ูŠุจู‚ู‰ ู‡ุฐุง ู…ุญูˆุฑ X ูˆ ู‡ุฐุง Y ุทุจุนุง ุฑุณู…ู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ ูŠุจู‚ู‰
802
01:30:25,960 --> 01:30:33,780
ุงู„ู…ู†ุญู†ุฉ ุจุฏูŠ ุฃุฌูŠู„ูƒ ู‡ูŠูƒ ู‡ุฐุง Y ุชุณุงูˆูŠ X ุฃูุต ุฃุฑุจุน
803
01:30:33,780 --> 01:30:40,220
ุงู„ู…ุดูƒู„ุฉ ุนู† ูˆูŠู† ุนู†ุฏ ุงู„ zero ุงู„ุขู† ู‚ุจู„ ุงู„ zero
804
01:30:40,220 --> 01:30:46,530
ุงู„ู…ู†ุญู†ุฉ ูƒุงู†ุช ูƒูŠู ูˆูŠู†ุŸุจุนุฏ ุงู„ู€ zero ู…ุบูŠุฑุด ูŠุจู‚ู‰ ู‡ุฐู‡
805
01:30:46,530 --> 01:30:52,150
ู‡ุฐุง ุงู„ุฌุฒุก ู…ูุชูˆุญ
806
01:30:52,150 --> 01:30:57,850
ุงู„ู‰ ุฃุนู„ู‰ ูˆ ู‡ุฐุง ูƒู…ุงู† concave up ูŠุนู†ูŠ ุงู„ุฏุงู„ุฉ ุนู†ุฏ ุงู„
807
01:30:57,850 --> 01:31:01,990
zero ุตุญูŠุญ ุฏุงู„ุฉ ู…ุชุตู„ุฉ ุจุณ ู„ู… ุชุบูŠุฑ ุงุชุฌุงู‡ ุงู„ concavity
808
01:31:01,990 --> 01:31:08,190
ูŠุจู‚ู‰ ูˆุจุงู„ุชุงู„ูŠ ู„ูŠุณุช inflection point ูŠุจู‚ู‰ ุณุงูˆูŠ zero
809
01:31:08,190 --> 01:31:19,830
butุงู„ุงูƒุณ ุชุณุงูˆูŠ ุฒูŠุฑูˆ ู…ุงู„ู‡ุง
810
01:31:19,830 --> 01:31:25,490
is
811
01:31:25,490 --> 01:31:30,550
not
812
01:31:30,550 --> 01:31:38,370
an inflection point
813
01:31:44,950 --> 01:31:55,090
ู„ุฃู† ุงู„ู€ wireprime ู„ุง ูŠุชุบูŠุฑ
814
01:31:55,090 --> 01:31:56,570
ุตูˆุฑุชู‡ุง
815
01:32:06,310 --> 01:32:10,870
ูŠุจู‚ู‰ ู…ููŠุด handy inflection point ูˆุตู„ู†ุง ู„ ุงู„ุฃู…ุซู„ุฉ
816
01:32:10,870 --> 01:32:14,990
ุฎู„ู‘ูŠ ุงู„ุฃู…ุซู„ุฉ ู„ู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡