abdullah's picture
Add files using upload-large-folder tool
c8f3414 verified
raw
history blame
35.8 kB
1
00:00:21,140 --> 00:00:25,860
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุขู† ุฅู„ู‰ ู…ุง ุงุจุชุฏุฃู†ุง ุจู‡
2
00:00:25,860 --> 00:00:30,980
ู…ุญุงุถุฑุชู†ุง ููŠ ุงู„ูุชุฑุฉ ุงู„ุตุจุงุญูŠุฉ ูˆู‡ูˆ ุขุฎุฑ ุฌุฒุก ู†ุธุฑูŠ ู…ู†
3
00:00:30,980 --> 00:00:36,940
section 4-3 ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุชูŠู ุชุฑุถูŠ ุฃู† ุงู„ eigenvalues
4
00:00:36,940 --> 00:00:39,500
ู„ู„ู…ุตููˆูุฉ nร—n A distinct
5
00:00:39,500 --> 00:00:45,260
eigenvalues of n by n matrix A ูŠุจู‚ู‰ ุงุญู†ุง ุนู†ุฏู†ุง ุนุฏุฏ
6
00:00:45,260 --> 00:00:49,860
ู…ู† ุงู„ eigenvalues ูˆุนุฏุฏู‡ู… ูŠุณุงูˆูŠ R ูˆู„ุง ูˆุงุญุฏุฉ ููŠู‡ู… ุฒูŠ
7
00:00:49,860 --> 00:00:54,820
ุงู„ุชุงู†ูŠุฉ distinct ู…ุนู†ุงุชู‡ ู…ู†ูุตู„ูŠู† ูŠุนู†ูŠ ุบูŠุฑ ู…ุชุณุงูˆูŠู†
8
00:00:54,820 --> 00:00:59,820
ูˆู„ุง ูˆุงุญุฏุฉ ููŠู‡ู… ู…ุชุณุงูˆูŠุฉ ูŠุนู†ูŠ ู…ุงููŠุด ุชูƒุฑุงุฑ ููŠ ู‡ุฏูˆู„
9
00:00:59,820 --> 00:01:06,570
ุทูŠุจ ุงู„ู…ุตุฑูˆูุฉ ู†ุธุงู…ู‡ุง N ููŠ N ุทูŠุจ ุงู„ R ู‡ุฐู‡ ุดูˆ ุนู„ุงู‚ุชู‡ุง
10
00:01:06,570 --> 00:01:14,050
ุจ MุŸ ุฃู…ุง ุงู„ R ุชุณุงูˆูŠ N ุฃูˆ ุงู„ R ุฃู‚ู„ ู…ู† N ุฏุงุฆู…ุง ูˆุฃุจุฏุง
11
00:01:14,050 --> 00:01:20,570
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจู‚ูˆู„ ุงูุชุฑุถ ุฃู† K1 ูˆ K2 ูˆ KR ู‡ู…ุง ุงู„
12
00:01:20,570 --> 00:01:26,110
eigen vectors ุงู„ู…ู†ุงุธุฑุฉ ู„ู…ู†ุŸ ู„ู„ Eigen values then
13
00:01:26,110 --> 00:01:30,370
these vectors are linearly independent ูŠุนู†ูŠ ู…ุง ู†ุชุด
14
00:01:30,370 --> 00:01:35,920
ู‚ุตุฏ ูŠู‚ูˆู„ ู‡ูˆ ูŠู‚ูˆู„ ุฅุฐุง ูƒุงู† ู„ุฏูŠูƒ distinct eigenvaluesุŒ
15
00:01:35,920 --> 00:01:38,820
ููƒู„ ุงู„ู€Eigenvectors ุงู„ู„ูŠ ุจูŠุทู„ุนูˆุง ู…ู†ุงุถุฑุงุช ุงู„ู„ูŠ
16
00:01:38,820 --> 00:01:43,340
ุจูŠูƒูˆู†ูˆุง ู…ุงู„ู‡ู…ุŒ linearly independentุŒ ูˆู„ุง ูˆุงุญุฏ ู„ู‡
17
00:01:43,340 --> 00:01:49,340
ุงุนุชู…ุงุฏ ุนู„ู‰ ุงู„ุซุงู†ูŠุŒ ุจุณ ู„ู…ูŠู†ุŸ ู„ู„ eigenvalues ุงู„ุบูŠุฑ ู…ูƒุฑุฑุงุชุŒ
18
00:01:49,340 --> 00:01:55,300
ุฏูŠ ุจุฑุถูˆ ูƒู„ุงู… ู„ูˆ ูˆุถุนู‡ุฐู‡ ู‡ูŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ุง
19
00:01:55,300 --> 00:02:04,000
ุฃู†ู‡ุง ู†ุธุงู… nร—n ูˆุฃู†ู‡ุง in distinct eigenvalues
20
00:02:06,880 --> 00:02:12,940
ูŠุณุงูˆูŠ ู†ุธุงู… ุชุจุน ู†ุต ุงู„ู…ุตููˆูุฉ N ูŠุจู‚ู‰ ุงู„ุนุฏุฏ ูŠุณุงูˆูŠ N
21
00:02:12,940 --> 00:02:21,120
ุซู… ูŠุจู‚ู‰ ู‡ู†ุงูƒ complete set of eigenvectors ูˆุงู„ู…ุตููˆูุฉ
22
00:02:21,120 --> 00:02:27,530
A ู…ุณุชู‚ู„ุฉ ู…ุณุชู‚ู„ุฉ ู…ุณุชู‚ู„ุฉ ู…ุณุชู‚ู„ุฉ ู…ุณุชู‚ู„ุฉ ู…ุณุชู‚ู„ุฉ ุจุชู‚ูˆู„ ู„ูˆ ุฃู†ุช
23
00:02:27,530 --> 00:02:31,450
ุนู†ุฏูƒ ุฌุฉ ุงู„ู…ุตููˆูุฉ ู†ุธุงู…ู‡ุง ู…ุซู„ุงู‹ ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ุฃูˆ
24
00:02:31,450 --> 00:02:35,730
ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† ุฃูˆ ุฃุฑุจุนุฉ ููŠ ุฃุฑุจุนุฉ ุฅุฐุง ู†ุธุงู…ู‡ุง ุฃุฑุจุนุฉ
25
00:02:35,730 --> 00:02:42,190
ููŠ ุฃุฑุจุนุฉ ูˆุทู„ุน ุนู†ุฏูŠ ุฃุฑุจุนุฉ distinct eigenvalues ูŠุจู‚ู‰
26
00:02:42,190 --> 00:02:46,610
ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ู‡ุฐู‡ diagonalizable ูŠุจู‚ู‰ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ
27
00:02:46,610 --> 00:02:52,770
ุนู†ุฏูŠ ุฅุฐุง ุณุงูˆู‰ ุนุฏุฏ ุงู„ู€ distinct eigenvalues ู†ุธุงู…
28
00:02:52,770 --> 00:02:57,770
ุงู„ู…ุตููˆูุฉ ุฃูˆุชูˆู…ุงุชูŠูƒ ู‡ุฐู‡ ุจุชุจู‚ู‰ diagonalizable ูŠุนู†ูŠ
29
00:02:57,770 --> 00:03:02,310
ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰ ุตูŠุบุฉ ู…ุตููˆูุฉ ู‚ุทุฑูŠุฉ ูˆุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
30
00:03:02,310 --> 00:03:07,870
ุงู„ุฑุฆูŠุณูŠ ููŠู‡ุง ู‡ู… ุงู„ eigenvalues ูƒูˆูŠุณ ูˆุงู„ู„ู‡ ุฏูŠ ุจูŠุณู‡ู„
31
00:03:07,870 --> 00:03:11,050
ุงู„ุดุบู„ ูƒุชูŠุฑ ูŠุนู†ูŠ ุจุฏู„ ู„ุณู‡ ู…ุง ุฃุฑูˆุญ ุฃุซุจุช ูˆุฃุฌูŠุจ
32
00:03:11,050 --> 00:03:14,510
ุงู„ eigenvectors ูˆุฃุญุณุจ ู„ุง ุฏุงุนูŠ ุงู„ eigenvectors
33
00:03:14,510 --> 00:03:17,670
ูŠุจู‚ู‰ ุจุณ ุจุฏูŠ ุฃุดูˆู ุนุฏุฏ
34
00:03:20,480 --> 00:03:25,720
ู‡ู„ ูŠุณุงูˆูŠ ู†ุธุงู… ุงู„ู…ุตููˆูุฉ ุฃูˆ ู„ุงุŸ ุฃูˆ ู‡ู„ ูŠุณุงูˆูŠ ุฑุชุจุฉ
35
00:03:25,720 --> 00:03:29,620
ุงู„ู…ุตููˆูุฉ ุฃูˆ ู„ุงุŸ ุฅุฐุง ุณุงูˆู‰ ุจูŠู‚ูˆู„ ุฎู„ุงุตู†ุง ูŠุจู‚ู‰ ุงู„ู…ุตููˆูุฉ
36
00:03:29,620 --> 00:03:34,060
ู‡ุฐู‡ุŒ ุฏุง ูŠู‚ู†ู†ุงุŒ ู„ุง ูŠุฒูŠุจู†ุงุŒ ุฏุง ู…ู‡ู… ุฌุฏุง ููŠ ุงู„ุดุบู„ ุจุนุฏ
37
00:03:34,060 --> 00:03:43,260
ู‚ู„ูŠู„ุงู„ู…ู„ุญูˆุธุฉ ุงู„ุชุงู„ูŠุฉ ุจูŠู‚ูˆู„ ู„ู€ An n by n matrix
38
00:03:43,260 --> 00:03:47,980
need not have distinct eigenvalues ุฒูŠ ู…ุง ุดูู†ุง
39
00:03:47,980 --> 00:03:53,100
ู‚ุจู„ ู‚ู„ูŠู„ ููŠ ู…ุญุงุถุฑุฉ ุงู„ุตุจุงุญ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ
40
00:03:53,100 --> 00:03:58,040
ุนู†ุฏูŠ ุทุงู„ุนุฉ two eigenvalues ุจูŠุณุงูˆูˆุง ุจุนุถุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง
41
00:03:58,040 --> 00:04:03,610
ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู†ูˆุง ูƒู„ู‡ู… ู…ู†ูุตู„ุงุช ุนู† ุจุนุถ ุงู„ู…ู‡ู… ู‡ูˆ
42
00:04:03,610 --> 00:04:07,490
ู„ุง ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue
43
00:04:07,490 --> 00:04:08,370
eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู†
44
00:04:08,370 --> 00:04:11,710
ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู†
45
00:04:11,710 --> 00:04:13,190
ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue
46
00:04:13,190 --> 00:04:15,290
eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู†
47
00:04:15,290 --> 00:04:17,970
ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู†
48
00:04:17,970 --> 00:04:18,890
ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue
49
00:04:18,890 --> 00:04:21,270
eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู†
50
00:04:21,270 --> 00:04:25,130
ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู† ุฃู† ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ู…ู…ูƒู†
51
00:04:25,130 --> 00:04:28,650
ุฃู†
52
00:04:28,650 --> 00:04:31,000
ูŠูƒูˆู† ู‡ู†ุงูƒ eigenvalue ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู†
53
00:04:31,000 --> 00:04:33,080
ฮป1 ูˆ ฮป2 ูˆ ฮปR are the
54
00:04:33,080 --> 00:04:39,360
distinct eigenvalues ู„ู„ู…ูŠู†ุŸ ู„ู€ ุงู„ n by n matrix A
55
00:04:39,360 --> 00:04:46,600
ู„ุญุธุฉ R ุฃู‚ู„ ู…ู† ุฃูˆ ุชุณุงูˆูŠ N ุฒูŠ ู…ุง ู‚ู„ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰
56
00:04:46,600 --> 00:04:51,180
ู‡ุฐูˆู„ ุงู„ distinct ู„ู…ูŠู†ุŸ ู„ู„ู…ุตููˆูุฉ the characteristic
57
00:04:51,180 --> 00:04:55,820
polynomial ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰ ู…ูŠู… ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
58
00:04:55,820 --> 00:05:01,380
ูŠุนู†ูŠ ู…ุด ุฃู‚ูˆู‰ ุฃุณุณู‡ู… n ู„ุฃู† ุฃู‚ูˆู‰ ุฃุณุณู‡ู… n ู…ุนู†ุงุชู‡
59
00:05:01,380 --> 00:05:06,340
ุฃู† ุนู†ุฏูŠ n ู…ู† ุงู„ู„ุงู†ุฏุงุช ุจุนุถู‡ู… ู‡ูŠูƒูˆู† ู…ูƒุฑุฑ ูŠุนู†ูŠ ู‡ูŠุทู„ุน
60
00:05:06,340 --> 00:05:10,640
ฮป - ฮป1 ู…ุซู„ุงู‹ ุชุฑุจูŠุน ู‡ุฐู‡ ุชูƒุนูŠุจ ุฏู„ูˆู‚ุชูŠ
61
00:05:10,640 --> 00:05:14,680
ู…ุง ูˆุตู„ ู„ู„ ฮปR ู…ู…ูƒู† ู„ูˆุณ ูˆุงุญุฏ ู…ู…ูƒู† ูƒู„ู‡ ู„ูˆุณ ุงุชู†ูŠู†
62
00:05:14,680 --> 00:05:18,360
ู…ู…ูƒู† ุชู„ุงุชุฉ ุฅุฐุง ูƒุงู† ู…ุฌู…ูˆุนูŠ ุงู„ุฃุณุณ ู‡ุฐู‡ ูƒู„ู‡ุง ู…ุฏูˆุณุฉ
63
00:05:18,360 --> 00:05:24,730
ุจุฏูˆุณุงูˆูŠ n ุฅูŠุด ุณุจุจ ุงู„ุฃุณุณ ุฏูŠุŸ ุณุจุจู‡ ุงู„ุชูƒุฑุงุฑ ุงู„
64
00:05:24,730 --> 00:05:30,470
multiplicity ุฌุงู„ูƒุฉ the integer mi ูŠุนู†ูŠ ุฃูŠ ูˆุงุญุฏ ู…ู†
65
00:05:30,470 --> 00:05:34,210
ู‡ุฏูˆู„ is called the multiplicity of the eigenvalue
66
00:05:34,210 --> 00:05:38,970
ฮปi ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุฑู‚ู… ูŠุฏู„ ุนู„ู‰ ุฃู† ุงู„ ฮปi
67
00:05:38,970 --> 00:05:44,290
ู…ูƒุฑุฑุฉ ู…ุฑุชูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุฌุฏ ู…ุง ูŠูƒูˆู† ูŠุจู‚ู‰ ูŠุง ุจู†ุงุชุŒ
68
00:05:44,290 --> 00:05:50,730
ู‡ุฐุง ุงู„ู€M ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุฏู„ ุนู„ู‰ ุนุฏุฏ ู…ุฑุงุช ุชูƒุฑุงุฑ ู‚ูŠู…ุฉ
69
00:05:50,730 --> 00:05:56,350
ฮปุŒ ุงู„ู„ูŠ ู‡ูŠ ุงู„ eigenvalueุŒ ู‡ู†ุง ูˆุถุน ุงู„ุญุฏ ู‡ู†ุงุŒ
70
00:05:56,350 --> 00:06:01,700
ุฌุงุจ ุงู„ู…ูุฑูˆุถุŒ ุญุฏ ูŠู„ุงู‚ูŠ ุงุณุชูุณุงุฑ ู‡ู†ุงุŸ ู„ู…ุง ุจุชุณุฃู„ ุชุณุฃู„
71
00:06:01,700 --> 00:06:06,380
ู…ุด ุนูŠุจ ุชุณุฃู„ูŠู‡ ูˆุฎุฐ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุฏูƒ ุฅูŠุงู‡ ููŠู‡ ุฃูŠ ู†ู‚ุทุฉ
72
00:06:06,380 --> 00:06:10,080
ุจุฏูƒ ุฅูŠุงู‡ ู„ุฅู†ู‡ ุจุนุฏ ู‚ู„ูŠู„ ุจุฏู†ุง ู†ุทุจู‚ ู‡ุฐุง ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน
73
00:06:10,080 --> 00:06:15,760
ู†ุทุจู‚ ุงู„ู€ characteristic polynomial ู„ุฅูŠุดุŸ ู…ุด .. ู…ุด
74
00:06:15,760 --> 00:06:20,720
ุฃุฎุฏู†ุง ููŠ ุฃูˆู„ ู…ุจุงุฏุฆู†ุง ู‡ุฐุง ุงู„ู€ section ู‚ู„ู†ุง ููŠู‡ ุญุงุฌุฉ
75
00:06:20,720 --> 00:06:24,340
ุงุณู…ู‡ุง ุงู„ู€ characteristics polynomial ุงู„ู…ุญุฏุฏ ุชุจุน ุงู„
76
00:06:24,340 --> 00:06:27,380
ฮปI - A ู…ุด ุณู…ูŠู†ุงู‡ุง ุงู„ู€ characteristics
77
00:06:27,380 --> 00:06:31,120
polynomial ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ ฮป ุชุฑุจูŠุน ุงู„ ฮป ุชูƒุนูŠุจ
78
00:06:31,120 --> 00:06:34,220
ุฒุงุฆุฏ ู…ุด ุนุงุฑููŠู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุทูˆูŠู„ุฉ ู‡ุฐู‡ ู‡ุฐู‡
79
00:06:34,220 --> 00:06:37,640
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุญู„ูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ ฮปI ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุฑุงุญุช
80
00:06:37,640 --> 00:06:42,130
ุญุทูŠุชู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ู‡ุฐุง ู…ู† ฮป ู„ุบุงูŠุฉ ฮป
81
00:06:42,130 --> 00:06:45,830
ูˆุงุญุฏ ู„ุบุงูŠุฉ ฮป ุขุฎุฑ ุทุจ ู„ูŠุด ู…ู…ูƒู† ุชุดูŠู„ ฮปn ู„ูˆ
82
00:06:45,830 --> 00:06:50,090
ู‚ู„ุช ู„ู€ ฮปn ู…ุนู†ุงุชู‡ ูˆู„ุง ูˆุงุญุฏุฉ ู…ูƒุฑุฑุฉ ุตุญ ูˆู„ุง ู„ุงุŸ ูƒู„
83
00:06:50,090 --> 00:06:53,890
ูˆุงุญุฏุฉ ุจุณ ู…ุฑุฉ ูˆุงุญุฏุฉ ูˆูƒู„ู‡ distinct ู„ูƒู† ู…ุง ุฏุงู…
84
00:06:53,890 --> 00:06:58,310
ุชุณุงูˆูŠ ุฅุฐุง ู‡ูŠุตูŠุฑ ููŠู‡ ุชูƒุฑุงุฑ ูŠุจู‚ู‰ ุนุฏุฏ ุงู„ุฃู‚ูˆุงุณ ู„ุง ูŠู…ูƒู†
85
00:06:58,310 --> 00:07:03,290
ุฃู† ูŠุณุงูˆูŠ n ุจุณุงูˆูŠ R ุฌุฏ ู…ุง ูŠูƒูˆู† ุจุดุฑุท R ู‚ุฏ ุชูƒูˆู†
86
00:07:03,290 --> 00:07:07,470
ุชุณุงูˆูŠ n ุฃูˆ ุฃู‚ู„ ู…ู†ู‡ุง ุฅู† ุณุงูˆู‰ n ูŠุจู‚ู‰ ูƒู„ ูˆุงุญุฏ ู…ู†
87
00:07:07,470 --> 00:07:11,350
ุงู„ุฃุณุณ ู‡ุฏูˆู„ ุจู‚ุฏ ุฅูŠุดุŸ ูŠุจู‚ู‰ ุญุตุชู‡ุง ุบูŠุฑ ู‡ูŠูƒ ุจุฏูŠ ุฃุฒูŠุฏ ุนู†ู‡ุง
88
00:07:11,350 --> 00:07:14,970
ูŠุนู†ูŠ ุจุนุถู‡ู… ู‚ุฏ ูŠูƒูˆู† ูˆุงุญุฏ ุจุนุถู‡ู… ุงุชู†ูŠู† ุจุนุถู‡ู… ุชู„ุงุชุฉ
89
00:07:14,970 --> 00:07:20,630
ุฅู„ู‰ ุขุฎุฑู‡ ุทูŠุจ ุจู†ุฌูŠ ู„ู€ remark ุจู‚ูˆู„ูŠ the number of mi
90
00:07:20,630 --> 00:07:25,230
of multiplicity of the eigenvalue of ฮปi
91
00:07:25,230 --> 00:07:28,230
equal the number of linearly independent eigen
92
00:07:28,230 --> 00:07:36,170
vectors ูƒูˆูŠุณ ุงู„ุขู† ุฃู†ุง ุฌูŠุช ุนู„ู‰ ุงู„ mi ุงูุชุฑุถ ุงู„ mi
93
00:07:36,170 --> 00:07:41,350
ูƒุงู†ุช ุจู‚ุฏ ุฅูŠุดุŸ ูŠุนู†ูŠ ุงู„ุฃุณ ุจุงุชู†ูŠู† ูŠุนู†ูŠ ฮป ุฏู‡ ู…ูƒุฑุฑ ุฑู‚ู…
94
00:07:41,350 --> 00:07:46,510
ู…ุฑุฉ ู…ุฑุชูŠู† ูŠุจู‚ู‰ ุจูŠู‚ูˆู„ the number of multiplicity of
95
00:07:46,510 --> 00:07:52,230
the eigenvalue ฮป is equal ุงู„ุนุฏุฏ ุงู„ู„ูŠู†ูŠุงุฑูŠ
96
00:07:52,230 --> 00:07:55,910
ุงู„ู€ independent ุงู„ู„ูŠ ู‡ูˆ eigenvalue ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
97
00:07:55,910 --> 00:08:00,790
ุจุทู„ ุนู†ุฏูŠ ูƒุงู… eigenvectorุŸ ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู†
98
00:08:00,790 --> 00:08:02,650
ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู†
99
00:08:02,650 --> 00:08:04,110
ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู†
100
00:08:04,110 --> 00:08:07,330
ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู†
101
00:08:07,330 --> 00:08:15,170
ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†ูŠู† ุงุชู†
102
00:08:15,190 --> 00:08:18,770
ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡ ู‡ุฐุง ุจู†ุฑูˆุญ ู†ุญุทู‡ ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน
103
00:08:18,770 --> 00:08:25,750
ุจุฃู…ุซู„ุฉ ูƒุซูŠุฑุฉ ุชูˆุถุญ ุงู„ูƒู„ุงู… ู‡ุฐุง ูƒู„ู‡ ุนู…ู„ูŠุงู‹ ุฌุงู„ูŠ ู‡ู„ ุงู„
104
00:08:25,750 --> 00:08:33,470
matrix ุฏูŠ diagonalizable ุฃู… ู„ุงุŸ ู†ุนุฑูุด ู‡ุฐู‡ ุจุชู‚ูˆู„ูŠ
105
00:08:33,470 --> 00:08:42,430
ุจูŠูƒูˆู† diagonalizable ุฅุฐุง ูƒุงู† ู†ุธุงู… ุงู„ู…ุตููˆูุฉ ุฃูˆ ุฑุชุจุฉ
106
00:08:42,430 --> 00:08:47,870
ุงู„ู…ุตููˆูุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุนุฏุฏ ุงู„ characteristic values
107
00:08:49,860 --> 00:08:56,060
characteristic values ูŠุจู‚ู‰ ุจุชุฌูŠ ุชู‚ูˆู„ ุจุฏู‡ ุฃุฎุฏ
108
00:08:56,060 --> 00:09:03,480
ุงู„ ฮปI ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ ฮปI - A ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐู‡
109
00:09:03,480 --> 00:09:07,960
ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ ูŠุจู‚ู‰ ฮป 0 0 ฮป 0
110
00:09:07,960 --> 00:09:14,680
0 ฮป - A 3 0 0 2 1
111
00:09:14,680 --> 00:09:19,970
0 -1 -2 -1 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
112
00:09:19,970 --> 00:09:27,030
ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง ฮป - 3 ูˆู‡ู†ุง
113
00:09:27,030 --> 00:09:31,970
0 0 ุฒูŠ ู…ุง ู‡ูŠ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ุง -2 ู‡ุฐุง
114
00:09:31,970 --> 00:09:38,870
ฮป - 1 ู‡ุฐุง 0 ุฒูŠ ู…ุง ู‡ูˆ ู‡ุฐุง 1 2
115
00:09:38,870 --> 00:09:47,930
ฮป + 1 ูุจู‚ู‰ ูƒูˆูŠุณ ุฃู†ุง ุณู…ูŠุช ุญู„ู… ู…ุด ุนุงุฑู ูˆู„ุง
116
00:09:47,930 --> 00:09:51,710
ุญุงุฌุฉ ูˆู‚ุงุนุฏ ุจุดุชุบู„ ุฒูŠ ู…ุง ูƒู†ุช ุจุดุชุบู„ ุงู„ุตุจุญ ูˆุฒูŠ ู…ุง
117
00:09:51,710 --> 00:09:55,750
ูƒู†ุช ุจุดุชุบู„ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูƒูˆูŠุณ ู„ูƒู† ู„ูˆ ูˆุงุญุฏุฉ ุตุญู‰
118
00:09:55,750 --> 00:10:04,000
ุดูˆูŠุฉ ูŠูƒูˆู† ูุงุชุญุฉ ุจุชู‚ูˆู„ูŠ ู‡ุฐู‡ ู…ุตููˆูุฉ ู…ุซู„ุซุฉ ุณูู„ู‰ ุตุญ ูˆู„ุง
119
00:10:04,000 --> 00:10:09,800
ู„ุงุŸ ุฅุฐุง ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ุจุฏูŠ ูŠุณุงูˆูŠ ุญุงุตู„ ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ
120
00:10:09,800 --> 00:10:14,840
ุงู„ุฑุฆูŠุณูŠุŒ ู…ุงููŠุด ุฏุง ุชุฑูˆุญ ุชููƒูŠุŒ ุฎู„ุงุต ุญุงุตู„ ุถุฑุจ ูˆุฌุงู‡ุฒุฉ
121
00:10:14,840 --> 00:10:19,580
ูˆุฎู„ุงุตุŒ ู…ุงุดูŠ ุจู‚ูˆู„ู‡ุงุŒ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ูƒูˆูŠุณุŒ ุฅุฐุง ุงู„
122
00:10:19,580 --> 00:10:26,000
determinant ู„ ฮปI - A ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„
123
00:10:26,000 --> 00:10:35,660
ฮป ฮป - 3 ููŠ ฮป - 1 ููŠ ฮป
124
00:10:35,660 --> 00:10:42,160
+ 1 ูˆุฏู‡ ูŠุณุงูˆูŠ 0 ุตุญูŠุญ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ูŠุณุงูˆูŠ the
125
00:10:42,160 --> 00:10:49,940
characteristic values ุฃูˆ ุงู„ eigenvalues are ฮป
126
00:10:49,940 --> 00:10:55,860
ุชุณุงูˆูŠ -1 ูˆ ฮป ุชุณุงูˆูŠ 1 ูˆ ฮป ุชุณุงูˆูŠ
127
00:10:55,860 --> 00:10:56,980
3
128
00:10:59,830 --> 00:11:05,150
ู‡ุคู„ุงุก distinct ูˆู„ุง ู„ุงุŸ ูˆู†ุธุงู… ุงู„ู…ุตููˆูุฉ ุฅุฐุง ุฏู‡ ูŠูƒูˆู†
129
00:11:05,150 --> 00:11:09,470
ู„ุงุฒู… ูŠุจู„ ุทุจ ุฎู„ู‘ุงู„ ุงู„ crawler ุงู„ู„ูŠ ุฎู„ู‘ุตู†ุง ุจุฏูˆู† ุฃู†
130
00:11:09,470 --> 00:11:12,870
ุชุฑูˆุญ ุชุฏูˆุฑ ูˆู„ุง ุชุฌูŠุจ ุงู„ eigenvectors ูˆู„ุง ุชุบู„ุจ ุดุญุงู„ูƒ
131
00:11:12,870 --> 00:11:21,490
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ู†ุง since the eigenvalues
132
00:11:21,490 --> 00:11:27,730
are distinct
133
00:11:31,680 --> 00:11:48,960
and equal 3 ุนุฏุฏู‡ู… ุชู„ุงุชุฉ and the system of the
134
00:11:48,960 --> 00:12:08,110
matrix A is 3ร—3 by the above crawlery we
135
00:12:08,110 --> 00:12:18,270
have that the A is diagonalizable
136
00:12:18,270 --> 00:12:23,530
ุฒูŠุจู„ diagonalizable
137
00:12:23,530 --> 00:12:30,390
ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ู‡ุฐู‡ ูˆุณูŠู„ุฉ ุทุฑูŠู‚ุฉ ู…ุจุณุทุฉ ุจุชุณู‡ู„ ู‡ุงู„ุดุบู„ ู‡ุฐู‡
138
00:12:40,990 --> 00:12:47,810
ุจู†ุงุฎุฏ ูƒู…ุงู† ู…ุซุงู„ ุญุฏ ู…ุง ู†ู‚ุช ู…ุนู„ู…ุฉ ุดูŠูƒุจุงู„ ุงุณู…ู‡ุง
139
00:12:47,810 --> 00:12:56,010
example
140
00:12:56,010 --> 00:13:04,950
2 ุจูŠู‚ูˆู„
141
00:13:04,950 --> 00:13:15,490
ุฅู† ุงู„ู…ุตููˆูุฉ A ุชุณุงูˆูŠ 2 2 3 1 2
142
00:13:15,490 --> 00:13:23,050
1 2 -2 1 2 -2 1
143
00:13:23,050 --> 00:13:34,290
ุจูŠู‚ูˆู„ is the matrix A diagonalizable
144
00:13:56,840 --> 00:13:58,240
ุงู„ุณู„ุงู… ุนู„ูŠูƒู…
145
00:14:07,940 --> 00:14:12,040
ู‡ุฐู‡ ุงู„ุณุคุงู„ ู…ุฎุชู„ูุฉ ุนู† ุงู„ุณุคุงู„ ุงู„ุณุงุจู‚ ู„ุฃู† ุงู„ุณุคุงู„
146
00:14:12,040 --> 00:14:17,040
ุงู„ุณุงุจู‚ ูƒุงู† ุณู‡ู„ ู„ุฃู†ู‡ ูƒุงู† lower triangular matrix ุชู…ุงู…
147
00:14:17,040 --> 00:14:21,280
ู‡ุฐู‡ ุงู„ุฃุจู†ุงุก ู„ุง lower ูˆู„ุง upper ู‡ุฐู‡ ู…ุตููˆูุฉ ุนุงุฏูŠุฉ
148
00:14:21,280 --> 00:14:28,040
ูˆุจุงู„ุชุงู„ูŠ ู†ุญุณุจ ุงู„ุญุณุงุจุงุช ู‡ุฐู‡ ุจุงู„ุชูุตูŠู„ ู†ุงุฎุฏ ุงู„ ฮป
149
00:14:28,040 --> 00:14:37,590
I - A ูŠุจุฏูˆ ูŠุณุงูˆูŠ ฮป 0 0 ฮป 0 0
150
00:14:37,590 --> 00:14:44,330
ฮป - ุงู„ู„ูŠ ู‡ูˆ 2 2 3 1 2
151
00:14:44,330 --> 00:14:52,010
1 2 -2 1 ูˆูŠุณุงูˆูŠ ฮป - 2
152
00:14:52,010 --> 00:14:59,030
ูˆู‡ู†ุง -2 -3 ูˆู‡ู†ุง -1 ูˆู‡ู†ุง
153
00:14:59,030 --> 00:15:05,250
ฮป - 2 ูˆู‡ู†ุง -1 -2 2
154
00:15:05,480 --> 00:15:11,960
ูˆู‡ู†ุง ฮป - 1 ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุจุนุฏ ู‡ูŠูƒ
155
00:15:11,960 --> 00:15:17,780
ู…ุดุงู† ู†ุฌูŠุจ ู‚ูŠู… ฮป ุจุฏู†ุง ู†ุฑูˆุญ ู†ุงุฎุฏ ุงู„ู…ุญุฏุฏ ุชุจุน ู‡ุฐู‡
156
00:15:17,780 --> 00:15:24,780
ุงู„ู…ุตููˆูุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุขุฎุฏ ุงู„ determinant ุชุจุน ฮปI
157
00:15:24,780 --> 00:15:32,290
- A ูŠุจู‚ู‰ ุงู„ู…ุญุฏุฏ ฮป - 2 -2
158
00:15:32,290 --> 00:15:40,050
-3 -1 ฮป - 2 -1
159
00:15:40,050 --> 00:15:47,600
-2 2 ฮป - 1 ูŠุจู‚ู‰ ู‡ุงูŠ ุฑูˆุญู†ุง
160
00:15:47,600 --> 00:15:52,200
ุฃุฎุฏู†ุง ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆุจุฏู†ุง ู†ูŠุฌูŠ ู†ููƒ ุงู„ู…ุญุฏุฏ
161
00:15:52,200 --> 00:15:58,800
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุฃูŠ ุตู ุฃูˆ ุฃูŠ ุนู…ูˆุฏ ููŠู‡ ูู…ุซู„ุงู‹ ู„ูˆ ุฌูŠุช
162
00:15:58,800 --> 00:16:04,100
ู‚ู„ุช ุจุฏูŠ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ฮป
163
00:16:04,100 --> 00:16:11,080
- 2 ููŠู‡ ุงู„ุฑุฆูŠุณูŠ -2 ูˆูŠุจู‚ู‰ ฮป -
164
00:16:11,080 --> 00:16:19,720
2 ููŠ ฮป - 1 + 2 ู‡ุฐุง ู…ู† ู‡ุฐุง ู„ุณู‡
165
00:16:19,720 --> 00:16:24,160
ุงู„ุญุฏ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุจุนุฏู‡ ุญุณุจ ู‚ุงุนุฏุฉ ุงู„ุฅุดุงุฑุงุช ุฅุดุงุฑุชู‡
166
00:16:24,160 --> 00:16:30,900
ุณุงู„ุจุฉ ูˆุณุงู„ุจ ุจูŠุตูŠุฑ ู…ูˆุฌุจ 2 ููŠู‡ ุฃุดุทุฑ ุจุตูู‡ ูˆ
167
00:16:30,900 --> 00:16:37,140
ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุตูŠุฑ 1 -
168
00:16:37,140 --> 00:16:42,820
ฮป ู„ุฅู†ู‡ ุจูŠุดุงุฑ ุงู„ุณุงู„ุจ -2 ุงู„ุดูƒู„ ุงู„ู„ูŠ
169
00:16:42,820 --> 00:16:49,550
ุนู†ุฏู†ุง ู‡ุฐุง ุงู„ู„ูŠ ุจุนุฏู‡ -3 ููŠู‡ ุฃุดุทุฑ ุจุตูู‡ ุนู…ูˆุฏู‡
170
00:16:49,550 --> 00:16:57,970
ูŠุจู‚ู‰ -2 + 2ฮป - 4 ูƒู„ ู‡ุฐุง
171
00:16:57,970 --> 00:17:03,890
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ 0 ู…ุฑุฉ ุซุงู†ูŠุฉ ู‚ู„ูŠูƒูŠ ู…ุนุงูŠุง ุซุงู†ูŠุฉ
172
00:17:04,670 --> 00:17:09,150
ุจู‚ูˆู„ ู‡ุฐุง ุงู„ term ุงู„ุฃูˆู„ ุงู„ู…ุญุฏุฏ ุงู„ุฃุตุบุฑ ู…ุงุถูŠ ุฑุงุญ ุญุตู„
173
00:17:09,150 --> 00:17:14,910
ุถุฑุจ ู‡ุฏูˆู„ - ู…ุน - ุจุตูŠุฑ + 2 ุญุณุจ ู‚ุงู„ู‡ ุดุฑุท
174
00:17:14,910 --> 00:17:20,790
ุงู„ุดุฑุท ุงู„ุณู„ุจูŠุฉ ุจุตูŠุฑ ู…ูˆุฌุจุฉ ุชู…ุดูŠุท ุจุตูู‡ ุนู…ูˆุฏู‡ ุจุตูŠุฑ -
175
00:17:20,790 --> 00:17:27,670
ฮป + 1 ูŠุจู‚ู‰ -ฮป + 1 - ู…ุน
176
00:17:27,670 --> 00:17:33,150
ุถุงุจู„ - ุจูŠุจู‚ู‰ - ู‚ุฏ ุฅูŠุดุŸ -2 - 3 ูˆุดุช
177
00:17:33,150 --> 00:17:38,810
ุจูŠุตููˆุง ุนู…ูˆุฏู‡ ุจูŠุตูŠุฑ -2 ูˆู‡ู†ุง - ู…ุน -
178
00:17:38,810 --> 00:17:43,510
ุจูŠุตูŠุฑ + 2ฮป - 4 ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู…
179
00:17:43,510 --> 00:17:49,530
ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏ ุฅูŠุดุŸ 0 ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ฮป -
180
00:17:49,530 --> 00:17:57,530
201
00:20:17,250 --> 00:20:24,950
ุจุงู„ู…ูˆุฌุฉ ูŠุจู‚ู‰ ู‡ุงูŠ ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ุจูŠุธู„ ุณุงู„ุจ ุงุซู†ูŠู† ุจูŠุธู„
202
00:20:24,950 --> 00:20:32,150
ุฒุงุฆุฏ ุงุซู†ูŠู† ู„ุฅู† ู…ุธุจูˆุท ุฅูŠู‡ ูŠุง ุจู†ุงุชุŸ ุฃุฑุจุนุฉ ูˆ ุณุชุฉ ุนุดุฑ
203
00:20:32,150 --> 00:20:36,070
ู…ูˆุฌุจ ูˆ ุงุซู†ูŠู† ูˆ ุณุชุฉ ุซู…ุงู†ูŠุฉ ุจูŠุธู„ ุงุซู†ูŠู† ุจุงู„ู…ูˆุฌุจ ุจูŠุธู„
204
00:20:36,070 --> 00:20:40,590
ู„ู†ุง ู…ู† ู‡ู†ุง ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ูˆ ุณุงู„ุจ ุงุซู†ูŠู† ุณุงู„ุจ ุนุดุฑุฉ ูˆ
205
00:20:40,590 --> 00:20:47,110
ุฒุงุฆุฏ ุน ุซู…ุงู† ุนุดุฑุฉ ุจูŠุธู„ ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ูŠุณุงูˆูŠ Zero
206
00:21:06,420 --> 00:21:13,380
ููŠ ุญุฏ ุงู„ุงุนุชุฑุงุถุŸ ูƒูŠูุŸ
207
00:21:13,380 --> 00:21:18,000
ุงู„ู…ุนุงุฏู„ุฉ ุณู„ูŠู…ุฉ ู…ุงุฆุฉ ุจุงู„ู…ุงุฆุฉ ุทุจ ุจุฏู†ุง ู†ุญู„ ู‡ุฐู‡ ู„ุง ููŠ
208
00:21:18,000 --> 00:21:23,280
ุนูˆุงู…ู„ ู…ุดุชุฑูƒุฉ ูˆู„ุง ููŠ ุบูŠุฑู‡ ูŠุจู‚ู‰ ุฃู†ุง ุงู„ู…ุนุงุฏู„ุฉ ู…ู†ู‡ุง
209
00:21:23,280 --> 00:21:27,600
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู„ุซุฉ ู„ู…ุง ุจุฏูŠ ุฃุญู„ ู‡ูŠูƒ ูˆ ุชุจู‚ู‰ ุตุนุจุฉ ุจุฑูˆุญ
210
00:21:27,600 --> 00:21:35,580
ุจุฏูˆุฑ ุนู„ู‰ ู‚ูˆุงุณู… ุงู„ุซู…ุงู†ูŠุฉ ู…ูŠู†ุŸ 1 ูˆ ุณุงู„ุจ 1
211
00:21:35,580 --> 00:21:44,940
2 ุณุงู„ุจ 2 4 ุณุงู„ุจ 4 8 ุณุงู„ุจ 8 ูŠุนู†ูŠ ุนู†ุฏูŠ 8 ู‚ูˆุงุณู… ุชู…ุงู…
212
00:21:44,940 --> 00:21:50,630
ุฎู„ูŠู†ูŠ ู†ุจุฏุฃ ุจุงู„ุฃูˆู„ ู„ูˆ ุญุทูŠุช ู„ุฅู† ุฏู‡ ุจูˆุงุญุฏ ุจูŠุตูŠุฑ ู‡ู†ุง
213
00:21:50,630 --> 00:21:57,350
ูˆุงุญุฏ ูˆ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุซู„ุงุซุฉ ูˆ ุซู…ุงู†ูŠุฉ ุฃุญุฏ ุนุดุฑ ุฃุญุฏ ุนุดุฑ
214
00:21:57,350 --> 00:22:01,730
ู‡ู†ุง ุจูˆุงุญุฏ ุจูŠุตูŠุฑ ู†ุงู‚ุต ุฎู…ุณุฉ ูŠุจุนุชูƒ ุงู„ู„ู‡ ูŠุจู‚ู‰ ู„ุฅู† ุฏู‡
215
00:22:01,730 --> 00:22:07,030
ุจูˆุงุญุฏ ู„ุฃ ุจุฏูŠ ุงุญุท ู„ุฅู† ุฏู‡ ุจู‚ุฏุงุด ุณุงู„ุจ ูˆุงุญุฏ ู„ูˆ ุญุทูŠุช
216
00:22:07,030 --> 00:22:12,650
ุณุงู„ุจ ูˆุงุญุฏ ุจูŠุตูŠุฑ ู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆ ุณุงู„ุจ ุฎู…ุณุฉ ุณุงู„ุจ ุณุชุฉ
217
00:22:12,650 --> 00:22:17,650
ุณุงู„ุจ ุณุชุฉ ูˆ ุงุซู†ูŠู† ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ูˆ ุซู…ุงู†ูŠุฉ ุฒูŠุฑูˆ ุชู…ุงู…
218
00:22:17,650 --> 00:22:22,390
ุชู…ุงู… ูŠุจู‚ู‰ ุงู„ lambda ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ูŠู†
219
00:22:22,390 --> 00:22:27,910
ุนู† ุญู„ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูŠุนู†ูŠ ุงู„ lambda ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ูŠ ุฃุญุฏ
220
00:22:27,910 --> 00:22:34,990
ุนูˆุงู…ู„ ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ since ุจู…ุง ุฃู†
221
00:22:36,230 --> 00:22:47,810
Lambda ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ is a solution of
222
00:22:47,810 --> 00:22:58,330
the equation A star ูŠุจู‚ู‰
223
00:22:58,330 --> 00:23:11,910
Lambda ุฒุงุฆุฏ ูˆุงุญุฏ is a factor of equation star ูŠุนู†ูŠ
224
00:23:11,910 --> 00:23:16,410
ุงู„ู…ุนุงุฏู„ุฉ ุชู‚ุณู… ุนู„ู‰ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุฏูˆู† ุจุงู‚ูŠ
225
00:23:23,490 --> 00:23:29,970
ูˆู‡ู†ุง ุนู†ุฏูƒ ู†ุงู‚ุต ุฎู…ุณุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุฎู…ุณุฉ ุฒุงุฆุฏ
226
00:23:29,970 --> 00:23:35,570
ุงุซู†ูŠู† lambda ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ุจุฏูŠ ุฃู‚ุณู…ู‡ุง ู‚ุณู…ุฉ ุทูˆูŠู„ุฉ
227
00:23:35,570 --> 00:23:41,350
ุนุงุฏูŠุฉ ุนู„ู‰ lambda ุฒุงุฆุฏ ูˆุงุญุฏ ููŠู‡ุง ู‚ุฏุงุด lambda ุชุฑุจูŠุน ููŠ
228
00:23:41,350 --> 00:23:48,610
lambda lambda ุชูƒุนูŠุจ ุฒุงุฆุฏ lambda ุชุฑุจูŠุน ุชู…ุงู…ุŸ ุจุฃุฌูŠ ุจุบูŠุฑ
229
00:23:48,610 --> 00:23:54,810
ุงู„ุฅุดุงุฑุงุช ูˆุจุฌู…ุน ู…ุน ุงู„ุณู„ุงู…ุฉ ูุงู„ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน
230
00:23:54,810 --> 00:24:00,330
ุฒุงุฆุฏ ุงุซู†ูŠู† lambda ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
231
00:24:00,330 --> 00:24:04,850
ุงู„ุซุงู†ูŠุฉ ูˆุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุจูˆุงุตู„ ุนู…ู„ูŠุฉ
232
00:24:04,850 --> 00:24:10,230
ุงู„ู‚ุณู…ุฉ ูŠุจู‚ู‰ ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ุนู„ู‰ lambda ุจุทู„ุน
233
00:24:10,230 --> 00:24:20,080
ู‚ุฏุงุด ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน
234
00:24:20,080 --> 00:24:24,120
ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ
235
00:24:24,120 --> 00:24:24,160
lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda
236
00:24:24,160 --> 00:24:24,740
ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda
237
00:24:24,740 --> 00:24:24,820
ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต
238
00:24:24,820 --> 00:24:27,680
ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda
239
00:24:27,680 --> 00:24:33,620
ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุงู„ุจุงู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ
240
00:24:33,620 --> 00:24:37,500
ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ู‚ุณูˆู… ุนู„ูŠู‡ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุจูˆุงุตู„ ุนู…ู„ูŠุฉ
241
00:24:37,500 --> 00:24:42,580
ุงู„ู‚ุณู…ุฉ ูŠุจู‚ู‰ ุซู…ุงู†ูŠุฉ lambda ุนู„ู‰ lambda ููŠู‡ุง ู‚ุฏุงุด ู‡ูŠ
242
00:24:42,580 --> 00:24:50,240
ุซู…ุงู†ูŠุฉ ุซู…ุงู†ูŠุฉ lambda ูˆู‡ู†ุง ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ุบูŠุฑ ุงู„ุฅุดุงุฑุงุช
243
00:24:50,240 --> 00:24:57,060
ูˆุฌู…ุนูŠ ุจูŠุตูŠุฑ ู‡ู†ุง ู‚ุฏุงุด ุจูŠุตูŠุฑ ู‡ุฐู‡ ุจุงู„ุฐุงุช ุจูŠุตูŠุฑ ู†ุงู‚ุต ูŠุจู‚ู‰
244
00:24:57,060 --> 00:25:03,300
zero ูˆ zero ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู…ุนุงุฏู„ุฉ star ูŠุจู‚ู‰
245
00:25:03,300 --> 00:25:10,480
equation star take the four ูŠุจู‚ู‰ ุจุชุงุฎุฏ ุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ
246
00:25:10,480 --> 00:25:15,240
ุงู„ู„ูŠ ุนู†ุฏูŠ ุฎุงุฑุฌ ุงู„ู‚ุณู…ุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุฑูˆุจ ููŠ ุงู„ู…ู‚ุณูˆู…
247
00:25:15,240 --> 00:25:21,760
ุนู„ูŠู‡ lambda ุชุฑุจูŠุน ู†ุงู‚ุต ุณุชุฉ lambda ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ูŠุณุงูˆูŠ
248
00:25:21,760 --> 00:25:27,820
ุฒูŠุฑูˆ ุงู„ุขู† ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ lambda ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ุฐู‡ ุจู‚ุฏุฑ
249
00:25:27,820 --> 00:25:35,340
ุฃุญู„ู„ู‡ุง ูƒุญุงุตู„ ุถุฑุจ ู‚ูˆุณูŠู† ู‡ู†ุง lambda ู‡ู†ุง lambda ูˆู‡ู†ุง
250
00:25:35,340 --> 00:25:41,400
ุงุซู†ูŠู† ูˆู‡ู†ุง ุฃุฑุจุนุฉ ูˆู‡ู†ุง ู†ุงู‚ุต ูˆู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ุจู†ุงุก
251
00:25:41,400 --> 00:25:46,560
ุนู„ูŠู‡ lambda ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูˆ lambda ุชุณุงูˆูŠ ุงุซู†ูŠู†
252
00:25:46,560 --> 00:25:56,060
ูˆ lambda ุชุณุงูˆูŠ ู‚ุฏุงุด ุฃุฑุจุนุฉ ู‡ุฏูˆู„ ู…ุงู„ู‡ู… are distinct
253
00:25:56,060 --> 00:25:59,380
eigen
254
00:25:59,380 --> 00:26:02,100
values
255
00:26:03,990 --> 00:26:08,370
ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงู„ู€ distinct eigenvalues ุฅุฐุง ุจู†ุงุก ุนู„ู‰
256
00:26:08,370 --> 00:26:13,030
ุงู„ู…ุตููˆูุฉ ุนู†ุฏ ุงู„ุฃุตู„ูŠุฉ ู‚ุฏุงุด ู†ุธุงู…ู‡ุง ุซู„ุงุซุฉ ููŠ ุซู„ุงุซุฉ
257
00:26:13,030 --> 00:26:18,130
ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุงู„ู‡ุงุŸ Diagonalizable ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ู€ sense
258
00:26:18,130 --> 00:26:24,230
ุงู„ู„ูŠ ุฏูŠ Matrix A
259
00:26:24,230 --> 00:26:41,130
is of the system ุซู„ุงุซุฉ ููŠ ุซู„ุงุซุฉ and we have three
260
00:26:41,130 --> 00:26:49,950
distinct eigenvalues
261
00:26:49,950 --> 00:26:57,170
we have the a is
262
00:27:06,400 --> 00:27:10,280
Diagonalizable ูŠุจู‚ู‰ ุงู„ูˆู‚ุช ู„ูˆ ุฌุงุจู„ุชูƒ ู…ุนุงุฏู„ุฉ ู…ู†
263
00:27:10,280 --> 00:27:14,800
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู„ุซุฉ ูƒูŠู ุจุฏูƒ ุชุญู„ูŠู‡ุง ุจุชุดูˆููŠ ู‚ูˆุงุณู… ุงู„
264
00:27:14,800 --> 00:27:20,460
constant ุจุงู„ุฏูˆุฑ ุนู„ู‰ ุฑู‚ู… ูŠุตูุฑ ุงู„ู…ุนุงุฏู„ุฉ ูˆุจุนุฏ ู‡ูŠูƒ
265
00:27:20,460 --> 00:27:24,460
ุจู†ุฌูŠุจ ุงู„ุฑู‚ู… ู‡ุฐุง ุนู„ู‰ ุงู„ุดุฌุฑุฉ ุงู„ุซุงู†ูŠุฉ ูˆุจุงู„ุชุงู„ูŠ ูŠูƒูˆู†
266
00:27:24,460 --> 00:27:28,500
ู‡ุฐุง ุฃุญุฏ ุนูˆุงู…ู„ ุงู„ู…ุนุงุฏู„ุฉ ูˆุจุงู„ุชุงู„ูŠ ุจู†ู†ุฒู„ ุฑุชุจู‡ุง ู…ู†
267
00:27:28,500 --> 00:27:31,260
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู„ุซุฉ ุฅู„ู‰ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ูˆุจุงู„ุชุงู„ูŠ ุจู‚ุฏุฑ
268
00:27:31,260 --> 00:27:36,480
ุฃุญู„ู‡ุง ูŠุง ุฅู…ุง ุชุญู„ูŠู‡ุง ุจุงู„ู‚ูˆุณูŠู† ุฃูˆ ุจุงู„ู‚ุงู†ูˆู† ูˆุจุทู„ุน ู‚ุฏุงุด
269
00:27:36,480 --> 00:27:40,460
ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู… lambda ุงู„ู…ุฎุชู„ูุฉ
270
00:28:01,410 --> 00:28:11,690
ู…ุซุงู„ ุซู„ุงุซุฉ ุจูŠู‚ูˆู„
271
00:28:11,690 --> 00:28:22,350
is the matrix is the matrix ู‚ู„ูŠู„ุฉ ู…ุตููˆูุฉ ุฅูŠู‡ ุชุณุงูˆูŠุŸ
272
00:28:22,350 --> 00:28:29,410
Zero ูˆ Zero ูˆ ูˆุงุญุฏ ูˆ Zero ูˆุงุญุฏ ูˆ ุงุซู†ูŠู† ูˆ Zero ูˆ
273
00:28:29,410 --> 00:28:49,510
Zero ูˆ ูˆุงุญุฏ ุฏู‚ูŠู‚ุฉ diagonalizable ูƒูŠูุŸ
274
00:28:54,850 --> 00:28:59,810
ุงู„ู…ุญุฏุฏ ุตุญูŠุญ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู„ูƒู† ุฅุญู†ุง ู…ุง ู‚ู„ู†ุงุด ุญุงุฌุฉ
275
00:28:59,810 --> 00:29:03,990
ุฅุญู†ุง ู‚ู„ู†ุง ุงุจุญุซูˆุง ูˆุฏูˆุฑูˆุง ุฎู„ุงุต ู„ูƒู† ู‡ู„ ุญุทูŠู†ุง ุดุฑุทู†ุง ู„ูˆ
276
00:29:03,990 --> 00:29:09,010
ูƒุงู† ุงู„ู…ุญุฏุฏ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู…ู…ู†ูˆุนุŸ ู„ุง ุงู„ู…ุตููˆูุฉ ุงู„ุฃุฎุฑู‰
277
00:29:09,010 --> 00:29:12,450
ุงู„ู„ูŠ ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠู‡ุง ุจุฏูŠ ุฃูŠุงู‡ุง ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ู‡ูŠูƒูˆู†
278
00:29:12,450 --> 00:29:15,910
ู…ุงู†ุน ู„ูˆ ุณุงูˆู‰ ุฅู† ู…ุงุชูƒู„ู…ู†ุงุด ุนู„ูŠู‡ุง ุฏูŠ ูˆู„ุง ุญุงุฌุฉ ุฅุญู†ุง
279
00:29:15,910 --> 00:29:22,290
ุจู‚ูˆู„ ู‚ุฏ ุชูƒูˆู† ูˆู‚ุฏ ู„ุง ุชูƒูˆู† ุชู…ุงู…ุŸ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ ู†ูุณ
280
00:29:22,290 --> 00:29:27,150
ุงู„ู‚ุตุฉ ุจุฏูŠ ุฃู…ุดูŠ ุฒูŠ ู…ุง ูƒู†ุช ุจู…ุดูŠ ู‚ุจู„ ู‚ู„ูŠู„ ุทุจ ุจุงุฌูŠ
281
00:29:27,150 --> 00:29:32,410
ุจุณุฃู„ ู†ูุณูŠ ู‡ุฐู‡ upper ูˆู„ุง lower triangleุŸ upper
282
00:29:32,410 --> 00:29:36,850
ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ุง ูˆ ุงู„ Zero ูˆ ุงู„ ูˆุงุญุฏ ูˆ ุงู„ูˆุงุญุฏ ู‡ู… ู…ู†
283
00:29:36,850 --> 00:29:42,950
ุงู„ lambdas ูˆุจุงู„ุชุงู„ูŠ ุงู„ lambdas ุชูƒุฑุฑุช ูƒุฏู‡ุŸ ู…ุฑุชูŠู† ูŠุจู‚ู‰ ุจู†ุงุก
284
00:29:42,950 --> 00:29:43,750
ุนู„ูŠู‡
285
00:29:46,400 --> 00:29:53,620
ุงู„ู€ Determinant ู„ู€ Lambda I ู†ุงู‚ุต ุงู„ู€ A ู‡ูˆ ุงู„ู…ุญุฏุฏ
286
00:29:53,620 --> 00:30:03,240
ุชุจุน Lambda ูˆ Zero ูˆ ู†ุงู‚ุต ูˆุงุญุฏ ูˆ Zero ูˆ ู‡ู†ุง Lambda
287
00:30:03,240 --> 00:30:09,860
ู†ุงู‚ุต ูˆุงุญุฏ ูˆ ู†ุงู‚ุต ุงุซู†ูŠู† ูˆ Zero Zero Lambda ู†ุงู‚ุต
288
00:30:09,860 --> 00:30:10,540
ูˆุงุญุฏ
289
00:30:13,120 --> 00:30:20,760
ูˆู‡ุฐุง ูŠู‚ูˆู… ุจุฅุถุงูุฉ ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต
290
00:30:20,760 --> 00:30:22,260
ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ
291
00:30:22,260 --> 00:30:31,000
ู„ู€Lambda ู†ุงู‚ุต ูˆุงุญุฏ ู„ู€Lambda ู†ุงู‚ุต
292
00:30:31,000 --> 00:30:37,450
ูˆุงุญุฏ ูŠุจู‚ู‰ ุฅูŠู‡ ุฌุจุช ู„ู‡ ู…ุงู† ุฌุจุช ู„ู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ ุงู„
293
00:30:37,450 --> 00:30:43,230
eigenvalues ู„ูƒู† ููŠู‡ ุงุซู†ุชูŠู† are repeated ูŠุนู†ูŠ ูŠุง
294
00:30:43,230 --> 00:30:47,410
ุจู†ุงุช ู„ูˆ ููƒูŠุช ุงู„ุฌู…ู„ุฉ ุฏูŠ ุฅูŠู‡ ุจูŠุตูŠุฑ lambda ููŠ lambda ู†ุงู‚ุต
295
00:30:47,410 --> 00:30:53,330
ูˆุงุญุฏ ู„ูƒู„ ุชุฑุจูŠุน ูŠุณุงูˆูŠ zero ู„ุฅู† lambda ุจูˆุงุญุฏ ูˆุงู„ู‚ูˆุณ ุจุฃุณูŠ
296
00:30:53,330 --> 00:30:58,550
ุงุซู†ูŠู† ูŠุจู‚ู‰ ู…ุฌู…ูˆุน ุฏุฑุฌุงุช ูŠุณุงูˆูŠ ุงู„ู€ N ุงู„ุฏุฑุฌุฉ
297
00:30:58,550 --> 00:31:02,730
ุชุจุน ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุชู…ุงู… ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ุงู„ู„ูŠ ูƒู†ุง
298
00:31:02,730 --> 00:31:06,730
ูƒุงุชุจูŠู†ู‡ ู‚ุจู„ ู‚ู„ูŠู„ M ูˆุงุญุฏ ุฒูŠ M ุงุซู†ูŠู† ุฒูŠ M ุซู„ุงุซุฉ ุฒูŠ M
299
00:31:06,730 --> 00:31:13,390
N ุจุฏู‡ ูŠุณุงูˆูŠ N ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ูŠ ุชู†ุทุจู‚ ุนู„ูŠู‡ุง ุชู…ุงู… ุทูŠุจ
300
00:31:13,390 --> 00:31:17,670
ู‡ุงูŠุฌูŠุจู†ุง ุงู„ lambdas ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุณ ู‡ุฏูˆู„ ู…ุด distinct
301
00:31:17,670 --> 00:31:25,330
ุทู„ุนูˆุง ููŠู‡ู… ุงู„ุงุซู†ุชูŠู† ู‡ุฏูˆู„ ู…ุงู„ู‡ู… ู…ูƒุฑุฑุงุช ุชู…ุงู… ุจุงุฌูŠ
302
00:31:25,330 --> 00:31:31,190
ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ู…ุง ุฃู†ุง ุนุงุฑู ุงู„ุญูŠู† ุงุฎุชู„ูุช ุนู† ุงู„ุฑู‚ู… ุซู„ุงุซุฉ
303
00:31:31,190 --> 00:31:34,650
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู„ ุชุทู„ุน ุฏูŠ ูŠู‚ูˆู„ ุงู„ู„ูŠ ูŠุฒุจู„ ูˆุงู„ู„ู‡ ู…ูŠุฒุจู„
304
00:31:34,650 --> 00:31:41,570
ูŠู‚ูˆู„ ุงู„ู„ู‡ ุฃุนู„ู… ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง F lambda ุชุณุงูˆูŠ
305
00:31:41,570 --> 00:31:46,890
ุฒูŠุฑูˆ lambda
306
00:31:46,890 --> 00:31:54,270
I ู†ุงู‚ุต ุงู„ู€ A ููŠ ุงู„ู€ X ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ M Plus lambda I
307
00:31:54,270 --> 00:32:01,150
ู†ุงู‚ุต ุงู„ู€ A ู‡ูŠ ูŠุจู‚ู‰ ู‡ูŠ ุนู†ุฏ ู…ูŠู†ุŸ ู‡ูŠ lambda ูˆุฒูŠุฑูˆ ูˆุณุงู„ุจ
308
00:32:01,150 --> 00:32:07,010
ูˆุงุญุฏ ูˆุฒูŠุฑูˆ ูˆ lambda ู†ุงู‚ุต ูˆุงุญุฏ ูˆู†ุงู‚ุต ุงุซู†ูŠู† ูˆุฒูŠุฑูˆ ุฒูŠุฑูˆ
309
00:32:07,010 --> 00:32:17,390
lambda ู†ุงู‚ุต ูˆุงุญุฏ ููŠ X1, X2, X3 ุจุฏูŠ ูŠุณุงูˆูŠ 000 ุจุฏูŠ
310
00:32:17,390 --> 00:32:21,870
ุฃุดูŠู„ ูƒู„ lambda ูˆุฃุญุท ู…ูƒุงู†ู‡ุง Zero ูŠุจู‚ู‰ ุจู„ุงุด ู‡ุงุฏ
311
00:32:21,870 --> 00:32:28,270
ู†ูƒุชุจู‡ุง ู‡ู†ุง ู…ุด ู‡ูŠูƒูˆู† ุฃุฑุชุจ ุจุณ F lambda ุชุณุงูˆูŠ Zero
312
00:32:28,270 --> 00:32:34,310
then ุจุฏูŠ ุฃุฌุนู„ ู‡ุฐู‡ ูˆุฃุดูŠู„ ูƒู„ lambda ูˆุฃุญุท ู…ูƒุงู†ู‡ุง
313
00:32:34,310 --> 00:32:42,620
Zero ูŠุจู‚ู‰ Zero ูˆู‡ู†ุง zero ูˆู‡ู†ุง ุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ู†ุง zero
314
00:32:42,620 --> 00:32:49,980
ุณุงู„ุจ ูˆุงุญุฏ ุณุงู„ุจ ุงุซู†ูŠู† zero zero ุณุงู„ุจ ูˆุงุญุฏ X ูˆุงุญุฏ X
315
00:32:49,980 --> 00:32:55,440
ุงุซู†ูŠู† X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ zero zero zero ู‡ุฐุง ุจุฏู‡
316
00:32:55,440 --> 00:33:00,810
ูŠุนุทูŠู†ุง ู†ุจุฏุฃ ุฃูƒุชุจ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู„ูŠ ุนู†ุฏูŠ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุงุช
317
00:33:00,810 --> 00:33:06,950
ุงู„ู„ูŠ ุนู†ุฏูŠ ุณุงู„ุจ X ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด zero ูˆ ุณุงู„ุจ X
318
00:33:06,950 --> 00:33:13,550
ุงุซู†ูŠู† ุณุงู„ุจ ุงุซู†ูŠู† X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ zero ูˆ ุงู„ู€ X
319
00:33:13,550 --> 00:33:23,110
ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุงุด ุจุฏู‡ ูŠุณุงูˆูŠ zero ุชู…ุงู… ู‡ุฐุง ู…ุนู†ุงู‡ ูˆ
320
00:33:23,110 --> 00:33:31,390
ุงู„ู€ X ุซู„ุงุซุฉ ุฃูˆ ุณุงู„ุจ X ุซู„ุงุซุฉ ุณุงู„ุจ X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ
321
00:33:31,390 --> 00:33:32,250
ุฒูŠุฑูˆ
322
00:33:40,120 --> 00:33:45,880
ุณุงู„ุจ X ุซู„ุงุซุฉ ู…ุธุจูˆุท ู‡ุฐุง ุณุงู„ุจ X ุซู„ุงุซุฉ ูˆู‡ุฐุง ุณุงู„ุจ
323
00:33:45,880 --> 00:33:51,100
X ุงุซู†ูŠู† ุณุงู„ุจ ุงุซู†ูŠู† X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆู‡ุฐุง
324
00:33:51,100 --> 00:33:55,220
ุณุงู„ุจ X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅู†
325
00:33:55,220 --> 00:34:00,670
X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุฌุจู†ุงู‡ุง ุจุฏูŠูˆุง ูŠุณุงูˆูŠ Zero ู„ู…ุง
326
00:34:00,670 --> 00:34:05,810
ุงู„ู€ X ุซู„ุงุซุฉ ุจุฏูŠูˆุง ูŠุณุงูˆูŠ Zero X ุงุซู†ูŠู† ูƒู…ุงู† ุจุฏูŠูˆุง
327
00:34:05,810 --> 00:34:10,290
ูŠุณุงูˆูŠ ู…ูŠู†ุŸ Zero ู„ู…ุดุงู† ูŠูƒูˆู† Eigen vector X ูˆุงุญุฏ
328
00:34:10,290 --> 00:34:19,070
ู…ู…ูƒู† ุชุจู‚ู‰ ุงู„ุฑู‚ู… ุบูŠุฑ Zero ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ู†ุง F X
329
00:34:19,070 --> 00:34:26,810
ูˆุงุญุฏ ุจุฏูŠูˆุง ูŠุณุงูˆูŠ ุงู„ู€ A then the Eigen vectors
330
00:34:34,960 --> 00:34:48,020
Lambda ุชุณุงูˆูŠ ุฒูŠุฑูˆ are in the form ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ X
331
00:34:48,020 --> 00:34:55,140
ูˆุงุญุฏ ุจู€ a ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุจู€ zero zero ูŠุจู‚ู‰ a ููŠ ูˆุงุญุฏ
332
00:34:55,140 --> 00:35:02,960
zero zero ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุฌุจุช ู‡ุฐุง ุงู„ู€ eigen
333
00:35:02,960 --> 00:35:07,880
vector ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฅูŠู‡ ู‡ู†ุง zero zero
334
00:35:22,560 --> 00:35:28,320
ุทูŠุจ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠ ู†ุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ
335
00:35:28,320 --> 00:35:33,260
ูƒุงู† Lambda ุชุณุงูˆูŠ ุงุซู†ูŠู† ุฃูˆ ุชุณุงูˆูŠ ุงู„ู‚ูŠู…ุฉ ุงู„ุซุงู†ูŠุฉ
336
00:35:43,490 --> 00:35:55,310
ุจุงุฏุฆ ุจู‚ูˆู„ ู‡ู†ุง F lambda ุชุณุงูˆูŠ lambda ุงุซู†ูŠู† ุฃูˆ ุชุณุงูˆูŠ
337
00:35:55,310 --> 00:36:00,090
lambda ุซู„ุงุซุฉ ุชุณุงูˆูŠ ูˆุงุญุฏ then ู‡ุฐู‡ ุงู„ู…ุตู…ูˆูุฉ ุงู„ู„ูŠ
338
00:36:00,090 --> 00:36:03,430
ุนู†ุฏู†ุง ุจุฏูŠ ุฃุดูŠู„ lambda ูˆุงุญุทู‡ ู…ูƒุงู†ู‡ุง ูˆุงุญุฏ ูŠุง ุจู†ุงุช
339
00:36:03,430 --> 00:36:12,270
ูŠุจู‚ุงุด ุจูŠุตูŠุฑ ุงูŠ ูˆุงุญุฏ zero ุณุงู„ุจ ูˆุงุญุฏ zero zero ู‡ู†ุง
340
00:36:12,270 --> 00:36:20,610
ู†ุงู‚ุต ุงุซู†ูŠู† ูˆู‡ู†ุง ุฒูŠุฑูˆ ุฒูŠุฑูˆ ูˆู‡ู†ุง ูƒู…ุงู† ุฒูŠุฑูˆ ุจุงู„ุดูƒู„
341
00:36:20,610 --> 00:36:25,650
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ X ูˆุงุญุฏ X ุงุซู†ูŠู† X ุซู„ุงุซุฉ
342
00:36:25,650 --> 00:36:33,930
ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูˆุฒูŠุฑูˆ ูˆุฒูŠุฑูˆ ูŠุจู‚ู‰ ุงู„ู…ุนุงุฏู„ุงุช X ูˆุงุญุฏ ู†ุงู‚ุต
343
00:36:33,930 --> 00:36:41,750
X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ูˆู†ุงู‚ุต ุงุซู†ูŠู† X
344
00:36:41,750 --> 00:36:50,760
ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅูŠู‡
345
00:36:50,760 --> 00:36:57,780
ู…ุนู†ุงู‡ ุฅู† X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู„ู…ุง X ุซู„ุงุซุฉ ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ
346
00:36:57,780 --> 00:37:07,220
ูŠูƒุจุฑ X ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ุฒูŠุฑูˆ ู…ุนู†ุงุชู‡ ุฅู† X ุงุซู†ูŠู† ุจุฏู‡ ูŠุณุงูˆูŠ b ู…ุซู„ุงู‹
347
00:37:07,220 --> 00:37:13,100
ูŠุจู‚ู‰ ุฃุตุจุญ Eigen
348
00:37:13,100 --> 00:37:15,060
vectors
349
00:37:20,700 --> 00:37:31,840
corresponding the eigen vector eigen value ุงู„ู€ lambda
350
00:37:31,840 --> 00:37:42,920
ุชุณุงูˆูŠ ูˆุงุญุฏ are in the form ุจุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู†
351
00:37:42,920 --> 00:37:54,240
X1 X2 X3 ุจุฏู‡ ูŠุณุงูˆูŠ X1 ุจู€ 0 ูˆ X3 ุจู€ 0 ูˆ ู‡ุฐู‡ ุจูŠ ุจูŠ
352
00:37:54,240 --> 00:38:01,860
ุงู„ู„ูŠ ู‡ูŠ ุจุฏู‡ุง ุชุณุงูˆูŠ ุจูŠ ููŠ Zero ูˆุงุญุฏ Zero ูƒุฏู‡ ุนุฏุฏ
353
00:38:01,860 --> 00:38:03,820
ู…ุฑุงุช ุชูƒุฑุงุฑ ุงู„ู€ lambda ุฏู‡ุŸ
354
00:38:21,090 --> 00:38:27,910
ุฅู† ุญุฏุซ ุฐู„ูƒ ุจูŠู‚ูˆู„ Diagonalizable ู…ุง ุญุฏุซ ูŠุจู‚ู‰ ุงู„ู€
355
00:38:27,910 --> 00:38:33,910
not diagonalizable ูŠุจู‚ู‰ since
356
00:38:35,540 --> 00:38:42,840
lambda ุชุณุงูˆูŠ ูˆุงุญุฏ has multiplicity
357
00:38:42,840 --> 00:38:59,640
two and we have one ุงู„ู„ูŠ ู‡ูˆ one eigen vector only
358
00:38:59,640 --> 00:39:11,770
for lambda ุชุณุงูˆูŠ ูˆุงุญุฏ The matrix A is not
359
00:39:11,770 --> 00:39:15,350
diagonalizable
360
00:39:25,990 --> 00:39:30,550
ุทุจ ูŠุนุทูŠูƒู… ุงู„ุนููˆ ูˆู†ูƒู…ู„ ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ู„ุณู‡ ู„ุง ูŠุฒุงู„
361
00:39:30,550 --> 00:39:34,370
ุนู†ุฏู†ุง ู…ุฒูŠุฏ ู…ู† ุงู„ุฃู…ุซู„ุฉ