prompt
stringlengths
51
10k
completion
stringlengths
8
362
api
stringlengths
18
90
get_ipython().run_line_magic('pip', 'install --upgrade --quiet airbyte-source-salesforce') from langchain_community.document_loaders.airbyte import AirbyteSalesforceLoader config = { } loader = AirbyteSalesforceLoader( config=config, stream_name="asset" ) # check the documentation linked above for a list of all streams docs = loader.load() docs_iterator = loader.lazy_load() from langchain.docstore.document import Document def handle_record(record, id): return
Document(page_content=record.data["title"], metadata=record.data)
langchain.docstore.document.Document
import os from langchain.chains import ConversationalRetrievalChain from langchain_community.vectorstores import Vectara from langchain_openai import OpenAI from langchain_community.document_loaders import TextLoader loader = TextLoader("state_of_the_union.txt") documents = loader.load() vectara = Vectara.from_documents(documents, embedding=None) from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) openai_api_key = os.environ["OPENAI_API_KEY"] llm = OpenAI(openai_api_key=openai_api_key, temperature=0) retriever = vectara.as_retriever() d = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson", k=2 ) print(d) bot = ConversationalRetrievalChain.from_llm( llm, retriever, memory=memory, verbose=False ) query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query}) result["answer"] query = "Did he mention who she suceeded" result = bot.invoke({"question": query}) result["answer"] bot = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectara.as_retriever() ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query, "chat_history": chat_history}) result["answer"] chat_history = [(query, result["answer"])] query = "Did he mention who she suceeded" result = bot.invoke({"question": query, "chat_history": chat_history}) result["answer"] bot = ConversationalRetrievalChain.from_llm( llm, vectara.as_retriever(), return_source_documents=True ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query, "chat_history": chat_history}) result["source_documents"][0] from langchain.chains import LLMChain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT from langchain.chains.question_answering import load_qa_chain question_generator =
LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
langchain.chains.llm.LLMChain
from langchain_community.document_loaders import TextLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import Chroma from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embedding_function =
SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
langchain_community.embeddings.sentence_transformer.SentenceTransformerEmbeddings
from langchain.output_parsers.enum import EnumOutputParser from enum import Enum class Colors(Enum): RED = "red" GREEN = "green" BLUE = "blue" parser = EnumOutputParser(enum=Colors) from langchain_core.prompts import PromptTemplate from langchain_openai import ChatOpenAI prompt =
PromptTemplate.from_template( """What color eyes does this person have? > Person: {person} Instructions: {instructions}""" )
langchain_core.prompts.PromptTemplate.from_template
from getpass import getpass WRITER_API_KEY = getpass() import os os.environ["WRITER_API_KEY"] = WRITER_API_KEY from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import Writer template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm =
Writer()
langchain_community.llms.Writer
get_ipython().run_line_magic('pip', 'install -qU langchain-text-splitters') from langchain_text_splitters import HTMLHeaderTextSplitter html_string = """ <!DOCTYPE html> <html> <body> <div> <h1>Foo</h1> <p>Some intro text about Foo.</p> <div> <h2>Bar main section</h2> <p>Some intro text about Bar.</p> <h3>Bar subsection 1</h3> <p>Some text about the first subtopic of Bar.</p> <h3>Bar subsection 2</h3> <p>Some text about the second subtopic of Bar.</p> </div> <div> <h2>Baz</h2> <p>Some text about Baz</p> </div> <br> <p>Some concluding text about Foo</p> </div> </body> </html> """ headers_to_split_on = [ ("h1", "Header 1"), ("h2", "Header 2"), ("h3", "Header 3"), ] html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on) html_header_splits = html_splitter.split_text(html_string) html_header_splits from langchain_text_splitters import RecursiveCharacterTextSplitter url = "https://plato.stanford.edu/entries/goedel/" headers_to_split_on = [ ("h1", "Header 1"), ("h2", "Header 2"), ("h3", "Header 3"), ("h4", "Header 4"), ] html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on) html_header_splits = html_splitter.split_text_from_url(url) chunk_size = 500 chunk_overlap = 30 text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) splits = text_splitter.split_documents(html_header_splits) splits[80:85] url = "https://www.cnn.com/2023/09/25/weather/el-nino-winter-us-climate/index.html" headers_to_split_on = [ ("h1", "Header 1"), ("h2", "Header 2"), ] html_splitter =
HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
langchain_text_splitters.HTMLHeaderTextSplitter
from langchain_community.document_loaders import ArcGISLoader URL = "https://maps1.vcgov.org/arcgis/rest/services/Beaches/MapServer/7" loader = ArcGISLoader(URL) docs = loader.load() get_ipython().run_cell_magic('time', '', '\ndocs = loader.load()\n') docs[0].metadata loader_geom =
ArcGISLoader(URL, return_geometry=True)
langchain_community.document_loaders.ArcGISLoader
from langchain_core.pydantic_v1 import BaseModel, Field class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str =
Field(description="The punchline to the joke")
langchain_core.pydantic_v1.Field
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.prompts import PromptTemplate from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0).configurable_fields( temperature=ConfigurableField( id="llm_temperature", name="LLM Temperature", description="The temperature of the LLM", ) ) model.invoke("pick a random number") model.with_config(configurable={"llm_temperature": 0.9}).invoke("pick a random number") prompt = PromptTemplate.from_template("Pick a random number above {x}") chain = prompt | model chain.invoke({"x": 0}) chain.with_config(configurable={"llm_temperature": 0.9}).invoke({"x": 0}) from langchain.runnables.hub import HubRunnable prompt = HubRunnable("rlm/rag-prompt").configurable_fields( owner_repo_commit=ConfigurableField( id="hub_commit", name="Hub Commit", description="The Hub commit to pull from", ) ) prompt.invoke({"question": "foo", "context": "bar"}) prompt.with_config(configurable={"hub_commit": "rlm/rag-prompt-llama"}).invoke( {"question": "foo", "context": "bar"} ) from langchain.prompts import PromptTemplate from langchain_community.chat_models import ChatAnthropic from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI llm = ChatAnthropic(temperature=0).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI(), gpt4=ChatOpenAI(model="gpt-4"), ) prompt = PromptTemplate.from_template("Tell me a joke about {topic}") chain = prompt | llm chain.invoke({"topic": "bears"}) chain.with_config(configurable={"llm": "openai"}).invoke({"topic": "bears"}) chain.with_config(configurable={"llm": "anthropic"}).invoke({"topic": "bears"}) llm = ChatAnthropic(temperature=0) prompt = PromptTemplate.from_template( "Tell me a joke about {topic}" ).configurable_alternatives( ConfigurableField(id="prompt"), default_key="joke", poem=PromptTemplate.from_template("Write a short poem about {topic}"), ) chain = prompt | llm chain.invoke({"topic": "bears"}) chain.with_config(configurable={"prompt": "poem"}).invoke({"topic": "bears"}) llm =
ChatAnthropic(temperature=0)
langchain_community.chat_models.ChatAnthropic
from langchain.memory import ConversationKGMemory from langchain_openai import OpenAI llm = OpenAI(temperature=0) memory =
ConversationKGMemory(llm=llm)
langchain.memory.ConversationKGMemory
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas') ORG_ID = "..." import getpass import os from langchain.chains import RetrievalQA from langchain.vectorstores.deeplake import DeepLake from langchain_openai import OpenAIChat, OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ") os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass( "Enter your ActiveLoop API token: " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens" token = os.getenv("ACTIVELOOP_TOKEN") openai_embeddings = OpenAIEmbeddings() db = DeepLake( dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop embedding=openai_embeddings, runtime={"tensor_db": True}, token=token, read_only=False, ) from urllib.parse import urljoin import requests from bs4 import BeautifulSoup def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links base_url = "https://docs.deeplake.ai/en/latest/" all_links = get_all_links(base_url) from langchain.document_loaders import AsyncHtmlLoader loader = AsyncHtmlLoader(all_links) docs = loader.load() from langchain.document_transformers import Html2TextTransformer html2text = Html2TextTransformer() docs_transformed = html2text.transform_documents(docs) from langchain_text_splitters import RecursiveCharacterTextSplitter chunk_size = 4096 docs_new = [] text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, ) for doc in docs_transformed: if len(doc.page_content) < chunk_size: docs_new.append(doc) else: docs = text_splitter.create_documents([doc.page_content]) docs_new.extend(docs) docs = db.add_documents(docs_new) from typing import List from langchain.chains.openai_functions import ( create_structured_output_chain, ) from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_openai import ChatOpenAI from pydantic import BaseModel, Field docs = db.vectorstore.dataset.text.data(fetch_chunks=True, aslist=True)["value"] ids = db.vectorstore.dataset.id.data(fetch_chunks=True, aslist=True)["value"] llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) class Questions(BaseModel): """Identifying information about a person.""" question: str = Field(..., description="Questions about text") prompt_msgs = [ SystemMessage( content="You are a world class expert for generating questions based on provided context. \ You make sure the question can be answered by the text." ), HumanMessagePromptTemplate.from_template( "Use the given text to generate a question from the following input: {input}" ), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = ChatPromptTemplate(messages=prompt_msgs) chain = create_structured_output_chain(Questions, llm, prompt, verbose=True) text = "# Understanding Hallucinations and Bias ## **Introduction** In this lesson, we'll cover the concept of **hallucinations** in LLMs, highlighting their influence on AI applications and demonstrating how to mitigate them using techniques like the retriever's architectures. We'll also explore **bias** within LLMs with examples." questions = chain.run(input=text) print(questions) import random from langchain_openai import OpenAIEmbeddings from tqdm import tqdm def generate_queries(docs: List[str], ids: List[str], n: int = 100): questions = [] relevances = [] pbar = tqdm(total=n) while len(questions) < n: r = random.randint(0, len(docs) - 1) text, label = docs[r], ids[r] generated_qs = [chain.run(input=text).question] questions.extend(generated_qs) relevances.extend([[(label, 1)] for _ in generated_qs]) pbar.update(len(generated_qs)) if len(questions) % 10 == 0: print(f"q: {len(questions)}") return questions[:n], relevances[:n] chain = create_structured_output_chain(Questions, llm, prompt, verbose=False) questions, relevances = generate_queries(docs, ids, n=200) train_questions, train_relevances = questions[:100], relevances[:100] test_questions, test_relevances = questions[100:], relevances[100:] job_id = db.vectorstore.deep_memory.train( queries=train_questions, relevance=train_relevances, ) db.vectorstore.deep_memory.status("6538939ca0b69a9ca45c528c") recall = db.vectorstore.deep_memory.evaluate( queries=test_questions, relevance=test_relevances, ) from ragas.langchain import RagasEvaluatorChain from ragas.metrics import ( context_recall, ) def convert_relevance_to_ground_truth(docs, relevance): ground_truths = [] for rel in relevance: ground_truth = [] for doc_id, _ in rel: ground_truth.append(docs[doc_id]) ground_truths.append(ground_truth) return ground_truths ground_truths = convert_relevance_to_ground_truth(docs, test_relevances) for deep_memory in [False, True]: print("\nEvaluating with deep_memory =", deep_memory) print("===================================") retriever = db.as_retriever() retriever.search_kwargs["deep_memory"] = deep_memory qa_chain = RetrievalQA.from_chain_type( llm=OpenAIChat(model="gpt-3.5-turbo"), chain_type="stuff", retriever=retriever, return_source_documents=True, ) metrics = { "context_recall_score": 0, } eval_chains = {m.name: RagasEvaluatorChain(metric=m) for m in [context_recall]} for question, ground_truth in zip(test_questions, ground_truths): result = qa_chain({"query": question}) result["ground_truths"] = ground_truth for name, eval_chain in eval_chains.items(): score_name = f"{name}_score" metrics[score_name] += eval_chain(result)[score_name] for metric in metrics: metrics[metric] /= len(test_questions) print(f"{metric}: {metrics[metric]}") print("===================================") retriever = db.as_retriever() retriever.search_kwargs["deep_memory"] = True retriever.search_kwargs["k"] = 10 query = "Deamination of cytidine to uridine on the minus strand of viral DNA results in catastrophic G-to-A mutations in the viral genome." qa = RetrievalQA.from_chain_type( llm=OpenAIChat(model="gpt-4"), chain_type="stuff", retriever=retriever ) print(qa.run(query)) retriever = db.as_retriever() retriever.search_kwargs["deep_memory"] = False retriever.search_kwargs["k"] = 10 query = "Deamination of cytidine to uridine on the minus strand of viral DNA results in catastrophic G-to-A mutations in the viral genome." qa = RetrievalQA.from_chain_type( llm=
OpenAIChat(model="gpt-4")
langchain_openai.OpenAIChat
from langchain.callbacks import get_openai_callback from langchain_openai import ChatOpenAI llm = ChatOpenAI(model_name="gpt-4") with
get_openai_callback()
langchain.callbacks.get_openai_callback
get_ipython().run_line_magic('pip', 'install --upgrade --quiet meilisearch') import getpass import os os.environ["MEILI_HTTP_ADDR"] = getpass.getpass("Meilisearch HTTP address and port:") os.environ["MEILI_MASTER_KEY"] = getpass.getpass("Meilisearch API Key:") os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.vectorstores import Meilisearch from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter embeddings = OpenAIEmbeddings() with open("../../modules/state_of_the_union.txt") as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) vector_store =
Meilisearch.from_texts(texts=texts, embedding=embeddings)
langchain_community.vectorstores.Meilisearch.from_texts
import os from langchain.chains import ConversationalRetrievalChain from langchain_community.vectorstores import Vectara from langchain_openai import OpenAI from langchain_community.document_loaders import TextLoader loader = TextLoader("state_of_the_union.txt") documents = loader.load() vectara = Vectara.from_documents(documents, embedding=None) from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) openai_api_key = os.environ["OPENAI_API_KEY"] llm = OpenAI(openai_api_key=openai_api_key, temperature=0) retriever = vectara.as_retriever() d = retriever.get_relevant_documents( "What did the president say about Ketanji Brown Jackson", k=2 ) print(d) bot = ConversationalRetrievalChain.from_llm( llm, retriever, memory=memory, verbose=False ) query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query}) result["answer"] query = "Did he mention who she suceeded" result = bot.invoke({"question": query}) result["answer"] bot = ConversationalRetrievalChain.from_llm( OpenAI(temperature=0), vectara.as_retriever() ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query, "chat_history": chat_history}) result["answer"] chat_history = [(query, result["answer"])] query = "Did he mention who she suceeded" result = bot.invoke({"question": query, "chat_history": chat_history}) result["answer"] bot = ConversationalRetrievalChain.from_llm( llm, vectara.as_retriever(), return_source_documents=True ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = bot.invoke({"question": query, "chat_history": chat_history}) result["source_documents"][0] from langchain.chains import LLMChain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT from langchain.chains.question_answering import load_qa_chain question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT) doc_chain = load_qa_chain(llm, chain_type="map_reduce") chain = ConversationalRetrievalChain( retriever=vectara.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain, ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = chain({"question": query, "chat_history": chat_history}) result["answer"] from langchain.chains.qa_with_sources import load_qa_with_sources_chain question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT) doc_chain = load_qa_with_sources_chain(llm, chain_type="map_reduce") chain = ConversationalRetrievalChain( retriever=vectara.as_retriever(), question_generator=question_generator, combine_docs_chain=doc_chain, ) chat_history = [] query = "What did the president say about Ketanji Brown Jackson" result = chain({"question": query, "chat_history": chat_history}) result["answer"] from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains.conversational_retrieval.prompts import ( CONDENSE_QUESTION_PROMPT, QA_PROMPT, ) from langchain.chains.llm import LLMChain from langchain.chains.question_answering import load_qa_chain llm = OpenAI(temperature=0, openai_api_key=openai_api_key) streaming_llm = OpenAI( streaming=True, callbacks=[StreamingStdOutCallbackHandler()], temperature=0, openai_api_key=openai_api_key, ) question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT) doc_chain =
load_qa_chain(streaming_llm, chain_type="stuff", prompt=QA_PROMPT)
langchain.chains.question_answering.load_qa_chain
get_ipython().run_line_magic('pip', 'install --upgrade --quiet googlemaps') import os os.environ["GPLACES_API_KEY"] = "" from langchain.tools import GooglePlacesTool places =
GooglePlacesTool()
langchain.tools.GooglePlacesTool
import os os.environ["LANGCHAIN_PROJECT"] = "movie-qa" import pandas as pd df = pd.read_csv("data/imdb_top_1000.csv") df["Released_Year"] = df["Released_Year"].astype(int, errors="ignore") from langchain.schema import Document from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() records = df.to_dict("records") documents = [Document(page_content=d["Overview"], metadata=d) for d in records] vectorstore = Chroma.from_documents(documents, embeddings) from langchain.chains.query_constructor.base import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_openai import ChatOpenAI metadata_field_info = [ AttributeInfo( name="Released_Year", description="The year the movie was released", type="int", ), AttributeInfo( name="Series_Title", description="The title of the movie", type="str", ), AttributeInfo( name="Genre", description="The genre of the movie", type="string", ), AttributeInfo( name="IMDB_Rating", description="A 1-10 rating for the movie", type="float" ), ] document_content_description = "Brief summary of a movie" llm = ChatOpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, verbose=True ) from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_template( """Answer the user's question based on the below information: Information: {info} Question: {question}""" ) generator = (prompt | ChatOpenAI() | StrOutputParser()).with_config( run_name="generator" ) chain = ( RunnablePassthrough.assign(info=(lambda x: x["question"]) | retriever) | generator ) chain.invoke({"question": "what is a horror movie released in early 2000s"}) from langsmith import Client client = Client() runs = list( client.list_runs( project_name="movie-qa", execution_order=1, filter="and(eq(feedback_key, 'correctness'), eq(feedback_score, 1))", ) ) len(runs) gen_runs = [] query_runs = [] for r in runs: gen_runs.extend( list( client.list_runs( project_name="movie-qa", filter="eq(name, 'generator')", trace_id=r.trace_id, ) ) ) query_runs.extend( list( client.list_runs( project_name="movie-qa", filter="eq(name, 'query_constructor')", trace_id=r.trace_id, ) ) ) runs[0].inputs runs[0].outputs query_runs[0].inputs query_runs[0].outputs gen_runs[0].inputs gen_runs[0].outputs client.create_dataset("movie-query_constructor") inputs = [r.inputs for r in query_runs] outputs = [r.outputs for r in query_runs] client.create_examples( inputs=inputs, outputs=outputs, dataset_name="movie-query_constructor" ) client.create_dataset("movie-generator") inputs = [r.inputs for r in gen_runs] outputs = [r.outputs for r in gen_runs] client.create_examples(inputs=inputs, outputs=outputs, dataset_name="movie-generator") examples = list(client.list_examples(dataset_name="movie-query_constructor")) import json def filter_to_string(_filter): if "operator" in _filter: args = [filter_to_string(f) for f in _filter["arguments"]] return f"{_filter['operator']}({','.join(args)})" else: comparator = _filter["comparator"] attribute = json.dumps(_filter["attribute"]) value = json.dumps(_filter["value"]) return f"{comparator}({attribute}, {value})" model_examples = [] for e in examples: if "filter" in e.outputs["output"]: string_filter = filter_to_string(e.outputs["output"]["filter"]) else: string_filter = "NO_FILTER" model_examples.append( ( e.inputs["query"], {"query": e.outputs["output"]["query"], "filter": string_filter}, ) ) retriever1 = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, verbose=True, chain_kwargs={"examples": model_examples}, ) chain1 = (
RunnablePassthrough.assign(info=(lambda x: x["question"]) | retriever1)
langchain_core.runnables.RunnablePassthrough.assign
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pymysql') get_ipython().system('pip install sqlalchemy') get_ipython().system('pip install langchain') from langchain.chains import RetrievalQA from langchain_community.document_loaders import ( DirectoryLoader, UnstructuredMarkdownLoader, ) from langchain_community.vectorstores.apache_doris import ( ApacheDoris, ApacheDorisSettings, ) from langchain_openai import OpenAI, OpenAIEmbeddings from langchain_text_splitters import TokenTextSplitter update_vectordb = False loader = DirectoryLoader( "./docs", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader ) documents = loader.load() text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50) split_docs = text_splitter.split_documents(documents) update_vectordb = True def gen_apache_doris(update_vectordb, embeddings, settings): if update_vectordb: docsearch = ApacheDoris.from_documents(split_docs, embeddings, config=settings) else: docsearch =
ApacheDoris(embeddings, settings)
langchain_community.vectorstores.apache_doris.ApacheDoris
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai context-python') import os from langchain.callbacks import ContextCallbackHandler token = os.environ["CONTEXT_API_TOKEN"] context_callback = ContextCallbackHandler(token) import os from langchain.callbacks import ContextCallbackHandler from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_openai import ChatOpenAI token = os.environ["CONTEXT_API_TOKEN"] chat = ChatOpenAI( headers={"user_id": "123"}, temperature=0, callbacks=[ContextCallbackHandler(token)] ) messages = [ SystemMessage( content="You are a helpful assistant that translates English to French." ), HumanMessage(content="I love programming."), ] print(chat(messages)) import os from langchain.callbacks import ContextCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, ) from langchain_openai import ChatOpenAI token = os.environ["CONTEXT_API_TOKEN"] human_message_prompt = HumanMessagePromptTemplate( prompt=PromptTemplate( template="What is a good name for a company that makes {product}?", input_variables=["product"], ) ) chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt]) callback =
ContextCallbackHandler(token)
langchain.callbacks.ContextCallbackHandler
get_ipython().run_cell_magic('writefile', 'telegram_conversation.json', '{\n "name": "Jiminy",\n "type": "personal_chat",\n "id": 5965280513,\n "messages": [\n {\n "id": 1,\n "type": "message",\n "date": "2023-08-23T13:11:23",\n "date_unixtime": "1692821483",\n "from": "Jiminy Cricket",\n "from_id": "user123450513",\n "text": "You better trust your conscience",\n "text_entities": [\n {\n "type": "plain",\n "text": "You better trust your conscience"\n }\n ]\n },\n {\n "id": 2,\n "type": "message",\n "date": "2023-08-23T13:13:20",\n "date_unixtime": "1692821600",\n "from": "Batman & Robin",\n "from_id": "user6565661032",\n "text": "What did you just say?",\n "text_entities": [\n {\n "type": "plain",\n "text": "What did you just say?"\n }\n ]\n }\n ]\n}\n') from langchain_community.chat_loaders.telegram import TelegramChatLoader loader = TelegramChatLoader( path="./telegram_conversation.json", ) from typing import List from langchain_community.chat_loaders.base import ChatSession from langchain_community.chat_loaders.utils import ( map_ai_messages, merge_chat_runs, ) raw_messages = loader.lazy_load() merged_messages = merge_chat_runs(raw_messages) messages: List[ChatSession] = list(
map_ai_messages(merged_messages, sender="Jiminy Cricket")
langchain_community.chat_loaders.utils.map_ai_messages
import os os.environ["LANGCHAIN_PROJECT"] = "movie-qa" import pandas as pd df = pd.read_csv("data/imdb_top_1000.csv") df["Released_Year"] = df["Released_Year"].astype(int, errors="ignore") from langchain.schema import Document from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() records = df.to_dict("records") documents = [Document(page_content=d["Overview"], metadata=d) for d in records] vectorstore =
Chroma.from_documents(documents, embeddings)
langchain_community.vectorstores.Chroma.from_documents
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-community langchainhub gpt4all chromadb') from langchain_community.document_loaders import WebBaseLoader from langchain_text_splitters import RecursiveCharacterTextSplitter loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/") data = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) from langchain_community.embeddings import GPT4AllEmbeddings from langchain_community.vectorstores import Chroma vectorstore = Chroma.from_documents(documents=all_splits, embedding=
GPT4AllEmbeddings()
langchain_community.embeddings.GPT4AllEmbeddings
import os import pprint os.environ["SERPER_API_KEY"] = "" from langchain_community.utilities import GoogleSerperAPIWrapper search = GoogleSerperAPIWrapper() search.run("Obama's first name?") os.environ["OPENAI_API_KEY"] = "" from langchain.agents import AgentType, Tool, initialize_agent from langchain_community.utilities import GoogleSerperAPIWrapper from langchain_openai import OpenAI llm = OpenAI(temperature=0) search = GoogleSerperAPIWrapper() tools = [ Tool( name="Intermediate Answer", func=search.run, description="useful for when you need to ask with search", ) ] self_ask_with_search = initialize_agent( tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True ) self_ask_with_search.run( "What is the hometown of the reigning men's U.S. Open champion?" ) search = GoogleSerperAPIWrapper() results = search.results("Apple Inc.") pprint.pp(results) search =
GoogleSerperAPIWrapper(type="images")
langchain_community.utilities.GoogleSerperAPIWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet predictionguard langchain') import os from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import PredictionGuard os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>" os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>" pgllm = PredictionGuard(model="OpenAI-text-davinci-003") pgllm("Tell me a joke") template = """Respond to the following query based on the context. Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦 Exclusive Candle Box - $80 Monthly Candle Box - $45 (NEW!) Scent of The Month Box - $28 (NEW!) Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉 Query: {query} Result: """ prompt = PromptTemplate.from_template(template) pgllm(prompt.format(query="What kind of post is this?")) pgllm = PredictionGuard( model="OpenAI-text-davinci-003", output={ "type": "categorical", "categories": ["product announcement", "apology", "relational"], }, ) pgllm(prompt.format(query="What kind of post is this?")) pgllm = PredictionGuard(model="OpenAI-text-davinci-003") template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm_chain =
LLMChain(prompt=prompt, llm=pgllm, verbose=True)
langchain.chains.LLMChain
import getpass import os os.environ["POLYGON_API_KEY"] = getpass.getpass() from langchain_community.tools.polygon.financials import PolygonFinancials from langchain_community.tools.polygon.last_quote import PolygonLastQuote from langchain_community.tools.polygon.ticker_news import PolygonTickerNews from langchain_community.utilities.polygon import PolygonAPIWrapper api_wrapper = PolygonAPIWrapper() ticker = "AAPL" last_quote_tool = PolygonLastQuote(api_wrapper=api_wrapper) last_quote = last_quote_tool.run(ticker) print(f"Tool output: {last_quote}") import json last_quote = last_quote_tool.run(ticker) last_quote_json = json.loads(last_quote) latest_price = last_quote_json["p"] print(f"Latest price for {ticker} is ${latest_price}") ticker_news_tool =
PolygonTickerNews(api_wrapper=api_wrapper)
langchain_community.tools.polygon.ticker_news.PolygonTickerNews
import os os.environ["GOOGLE_CSE_ID"] = "" os.environ["GOOGLE_API_KEY"] = "" from langchain.tools import Tool from langchain_community.utilities import GoogleSearchAPIWrapper search = GoogleSearchAPIWrapper() tool = Tool( name="google_search", description="Search Google for recent results.", func=search.run, ) tool.run("Obama's first name?") search = GoogleSearchAPIWrapper(k=1) tool = Tool( name="I'm Feeling Lucky", description="Search Google and return the first result.", func=search.run, ) tool.run("python") search =
GoogleSearchAPIWrapper()
langchain_community.utilities.GoogleSearchAPIWrapper
from langchain.evaluation import load_evaluator evaluator = load_evaluator("criteria", criteria="conciseness") from langchain.evaluation import EvaluatorType evaluator = load_evaluator(EvaluatorType.CRITERIA, criteria="conciseness") eval_result = evaluator.evaluate_strings( prediction="What's 2+2? That's an elementary question. The answer you're looking for is that two and two is four.", input="What's 2+2?", ) print(eval_result) evaluator = load_evaluator("labeled_criteria", criteria="correctness") eval_result = evaluator.evaluate_strings( input="What is the capital of the US?", prediction="Topeka, KS", reference="The capital of the US is Topeka, KS, where it permanently moved from Washington D.C. on May 16, 2023", ) print(f'With ground truth: {eval_result["score"]}') from langchain.evaluation import Criteria list(Criteria) custom_criterion = { "numeric": "Does the output contain numeric or mathematical information?" } eval_chain = load_evaluator( EvaluatorType.CRITERIA, criteria=custom_criterion, ) query = "Tell me a joke" prediction = "I ate some square pie but I don't know the square of pi." eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query) print(eval_result) custom_criteria = { "numeric": "Does the output contain numeric information?", "mathematical": "Does the output contain mathematical information?", "grammatical": "Is the output grammatically correct?", "logical": "Is the output logical?", } eval_chain = load_evaluator( EvaluatorType.CRITERIA, criteria=custom_criteria, ) eval_result = eval_chain.evaluate_strings(prediction=prediction, input=query) print("Multi-criteria evaluation") print(eval_result) from langchain.chains.constitutional_ai.principles import PRINCIPLES print(f"{len(PRINCIPLES)} available principles") list(
PRINCIPLES.items()
langchain.chains.constitutional_ai.principles.PRINCIPLES.items
STAGE_BUCKET = "<bucket-name>" get_ipython().run_cell_magic('bash', ' -s "$STAGE_BUCKET"', '\nrm -rf data\nmkdir -p data\ncd data\necho getting org ontology and sample org instances\nwget http://www.w3.org/ns/org.ttl \nwget https://raw.githubusercontent.com/aws-samples/amazon-neptune-ontology-example-blog/main/data/example_org.ttl \n\necho Copying org ttl to S3\naws s3 cp org.ttl s3://$1/org.ttl\naws s3 cp example_org.ttl s3://$1/example_org.ttl\n') get_ipython().run_line_magic('load', '-s s3://{STAGE_BUCKET} -f turtle --store-to loadres --run') get_ipython().run_line_magic('load_status', "{loadres['payload']['loadId']} --errors --details") EXAMPLES = """ <question> Find organizations. </question> <sparql> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX org: <http://www.w3.org/ns/org#> select ?org ?orgName where {{ ?org rdfs:label ?orgName . }} </sparql> <question> Find sites of an organization </question> <sparql> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX org: <http://www.w3.org/ns/org#> select ?org ?orgName ?siteName where {{ ?org rdfs:label ?orgName . ?org org:hasSite/rdfs:label ?siteName . }} </sparql> <question> Find suborganizations of an organization </question> <sparql> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX org: <http://www.w3.org/ns/org#> select ?org ?orgName ?subName where {{ ?org rdfs:label ?orgName . ?org org:hasSubOrganization/rdfs:label ?subName . }} </sparql> <question> Find organizational units of an organization </question> <sparql> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX org: <http://www.w3.org/ns/org#> select ?org ?orgName ?unitName where {{ ?org rdfs:label ?orgName . ?org org:hasUnit/rdfs:label ?unitName . }} </sparql> <question> Find members of an organization. Also find their manager, or the member they report to. </question> <sparql> PREFIX org: <http://www.w3.org/ns/org#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> select * where {{ ?person rdf:type foaf:Person . ?person org:memberOf ?org . OPTIONAL {{ ?person foaf:firstName ?firstName . }} OPTIONAL {{ ?person foaf:family_name ?lastName . }} OPTIONAL {{ ?person org:reportsTo ??manager }} . }} </sparql> <question> Find change events, such as mergers and acquisitions, of an organization </question> <sparql> PREFIX org: <http://www.w3.org/ns/org#> select ?event ?prop ?obj where {{ ?org rdfs:label ?orgName . ?event rdf:type org:ChangeEvent . ?event org:originalOrganization ?origOrg . ?event org:resultingOrganization ?resultingOrg . }} </sparql> """ import boto3 from langchain.chains.graph_qa.neptune_sparql import NeptuneSparqlQAChain from langchain_community.chat_models import BedrockChat from langchain_community.graphs import NeptuneRdfGraph host = "<neptune-host>" port = "<neptune-port>" region = "us-east-1" # specify region graph = NeptuneRdfGraph( host=host, port=port, use_iam_auth=True, region_name=region, hide_comments=True ) schema_elements = graph.get_schema_elements graph.load_from_schema_elements(schema_elements) bedrock_client = boto3.client("bedrock-runtime") llm =
BedrockChat(model_id="anthropic.claude-v2", client=bedrock_client)
langchain_community.chat_models.BedrockChat
get_ipython().run_line_magic('pip', 'install --upgrade --quiet banana-dev') import os os.environ["BANANA_API_KEY"] = "YOUR_API_KEY" from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import Banana template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm =
Banana(model_key="YOUR_MODEL_KEY", model_url_slug="YOUR_MODEL_URL_SLUG")
langchain_community.llms.Banana
get_ipython().system('pip install --quiet langchain_experimental langchain_openai') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings text_splitter = SemanticChunker(OpenAIEmbeddings()) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) text_splitter = SemanticChunker( OpenAIEmbeddings(), breakpoint_threshold_type="percentile" ) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) print(len(docs)) text_splitter = SemanticChunker( OpenAIEmbeddings(), breakpoint_threshold_type="standard_deviation" ) docs = text_splitter.create_documents([state_of_the_union]) print(docs[0].page_content) print(len(docs)) text_splitter = SemanticChunker(
OpenAIEmbeddings()
langchain_openai.embeddings.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() from langchain_core.tools import tool @tool def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int: """Do something complex with a complex tool.""" return int_arg * float_arg from langchain_openai import ChatOpenAI model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) model_with_tools = model.bind_tools( [complex_tool], tool_choice="complex_tool", ) from operator import itemgetter from langchain.output_parsers import JsonOutputKeyToolsParser from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough chain = ( model_with_tools |
JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True)
langchain.output_parsers.JsonOutputKeyToolsParser
from langchain.chains import LLMMathChain from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_core.tools import Tool from langchain_experimental.plan_and_execute import ( PlanAndExecute, load_agent_executor, load_chat_planner, ) from langchain_openai import ChatOpenAI, OpenAI search = DuckDuckGoSearchAPIWrapper() llm = OpenAI(temperature=0) llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True) tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="Calculator", func=llm_math_chain.run, description="useful for when you need to answer questions about math", ), ] model =
ChatOpenAI(temperature=0)
langchain_openai.ChatOpenAI
from ray import serve from starlette.requests import Request @serve.deployment class LLMServe: def __init__(self) -> None: pass async def __call__(self, request: Request) -> str: return "Hello World" deployment = LLMServe.bind() serve.api.run(deployment) serve.api.shutdown() from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI from getpass import getpass OPENAI_API_KEY = getpass() @serve.deployment class DeployLLM: def __init__(self): llm = OpenAI(openai_api_key=OPENAI_API_KEY) template = "Question: {question}\n\nAnswer: Let's think step by step." prompt =
PromptTemplate.from_template(template)
langchain.prompts.PromptTemplate.from_template
from langchain.prompts import ( ChatPromptTemplate, FewShotChatMessagePromptTemplate, ) examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, ] example_prompt = ChatPromptTemplate.from_messages( [ ("human", "{input}"), ("ai", "{output}"), ] ) few_shot_prompt = FewShotChatMessagePromptTemplate( example_prompt=example_prompt, examples=examples, ) print(few_shot_prompt.format()) final_prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a wondrous wizard of math."), few_shot_prompt, ("human", "{input}"), ] ) from langchain_community.chat_models import ChatAnthropic chain = final_prompt | ChatAnthropic(temperature=0.0) chain.invoke({"input": "What's the square of a triangle?"}) from langchain.prompts import SemanticSimilarityExampleSelector from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, {"input": "2+4", "output": "6"}, {"input": "What did the cow say to the moon?", "output": "nothing at all"}, { "input": "Write me a poem about the moon", "output": "One for the moon, and one for me, who are we to talk about the moon?", }, ] to_vectorize = [" ".join(example.values()) for example in examples] embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_texts(to_vectorize, embeddings, metadatas=examples) example_selector = SemanticSimilarityExampleSelector( vectorstore=vectorstore, k=2, ) example_selector.select_examples({"input": "horse"}) from langchain.prompts import ( ChatPromptTemplate, FewShotChatMessagePromptTemplate, ) few_shot_prompt = FewShotChatMessagePromptTemplate( input_variables=["input"], example_selector=example_selector, example_prompt=
ChatPromptTemplate.from_messages( [("human", "{input}")
langchain.prompts.ChatPromptTemplate.from_messages
from langchain_community.graphs import NeptuneGraph host = "<neptune-host>" port = 8182 use_https = True graph = NeptuneGraph(host=host, port=port, use_https=use_https) from langchain.chains import NeptuneOpenCypherQAChain from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0, model="gpt-4") chain =
NeptuneOpenCypherQAChain.from_llm(llm=llm, graph=graph)
langchain.chains.NeptuneOpenCypherQAChain.from_llm
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiledb-vector-search') from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import TileDB from langchain_text_splitters import CharacterTextSplitter raw_documents = TextLoader("../../modules/state_of_the_union.txt").load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) documents = text_splitter.split_documents(raw_documents) embeddings =
HuggingFaceEmbeddings()
langchain_community.embeddings.HuggingFaceEmbeddings
from typing import Any, Dict, List from langchain.chains import ConversationChain from langchain.schema import BaseMemory from langchain_openai import OpenAI from pydantic import BaseModel get_ipython().run_line_magic('pip', 'install --upgrade --quiet spacy') import spacy nlp = spacy.load("en_core_web_lg") class SpacyEntityMemory(BaseMemory, BaseModel): """Memory class for storing information about entities.""" entities: dict = {} memory_key: str = "entities" def clear(self): self.entities = {} @property def memory_variables(self) -> List[str]: """Define the variables we are providing to the prompt.""" return [self.memory_key] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load the memory variables, in this case the entity key.""" doc = nlp(inputs[list(inputs.keys())[0]]) entities = [ self.entities[str(ent)] for ent in doc.ents if str(ent) in self.entities ] return {self.memory_key: "\n".join(entities)} def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" text = inputs[list(inputs.keys())[0]] doc = nlp(text) for ent in doc.ents: ent_str = str(ent) if ent_str in self.entities: self.entities[ent_str] += f"\n{text}" else: self.entities[ent_str] = text from langchain.prompts.prompt import PromptTemplate template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant. Relevant entity information: {entities} Conversation: Human: {input} AI:""" prompt =
PromptTemplate(input_variables=["entities", "input"], template=template)
langchain.prompts.prompt.PromptTemplate
get_ipython().system('pip install --quiet langchain_experimental langchain_openai') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_experimental.text_splitter import SemanticChunker from langchain_openai.embeddings import OpenAIEmbeddings text_splitter = SemanticChunker(
OpenAIEmbeddings()
langchain_openai.embeddings.OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator from langchain_community.document_loaders import StripeLoader stripe_loader = StripeLoader("charges") index =
VectorstoreIndexCreator()
langchain.indexes.VectorstoreIndexCreator
REGION = "us-central1" # @param {type:"string"} INSTANCE = "test-instance" # @param {type:"string"} DB_USER = "sqlserver" # @param {type:"string"} DB_PASS = "password" # @param {type:"string"} DATABASE = "test" # @param {type:"string"} TABLE_NAME = "test-default" # @param {type:"string"} get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-cloud-sql-mssql') from google.colab import auth auth.authenticate_user() PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') get_ipython().system('gcloud services enable sqladmin.googleapis.com') from langchain_google_cloud_sql_mssql import MSSQLEngine engine = MSSQLEngine.from_instance( project_id=PROJECT_ID, region=REGION, instance=INSTANCE, database=DATABASE, user=DB_USER, password=DB_PASS, ) engine.init_document_table(TABLE_NAME, overwrite_existing=True) from langchain_core.documents import Document from langchain_google_cloud_sql_mssql import MSSQLDocumentSaver test_docs = [ Document( page_content="Apple Granny Smith 150 0.99 1", metadata={"fruit_id": 1}, ), Document( page_content="Banana Cavendish 200 0.59 0", metadata={"fruit_id": 2}, ), Document( page_content="Orange Navel 80 1.29 1", metadata={"fruit_id": 3}, ), ] saver =
MSSQLDocumentSaver(engine=engine, table_name=TABLE_NAME)
langchain_google_cloud_sql_mssql.MSSQLDocumentSaver
get_ipython().run_line_magic('pip', 'install --upgrade --quiet scann') from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import ScaNN from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("state_of_the_union.txt") documents = loader.load() text_splitter =
CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
langchain_text_splitters.CharacterTextSplitter
from langchain_community.document_loaders import IFixitLoader loader = IFixitLoader("https://www.ifixit.com/Teardown/Banana+Teardown/811") data = loader.load() data loader =
IFixitLoader( "https://www.ifixit.com/Answers/View/318583/My+iPhone+6+is+typing+and+opening+apps+by+itself" )
langchain_community.document_loaders.IFixitLoader
import os from langchain.chains import ConversationalRetrievalChain from langchain_community.vectorstores import Vectara from langchain_openai import OpenAI from langchain_community.document_loaders import TextLoader loader = TextLoader("state_of_the_union.txt") documents = loader.load() vectara =
Vectara.from_documents(documents, embedding=None)
langchain_community.vectorstores.Vectara.from_documents
from langchain_community.document_loaders.blob_loaders.youtube_audio import ( YoutubeAudioLoader, ) from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers import ( OpenAIWhisperParser, OpenAIWhisperParserLocal, ) get_ipython().run_line_magic('pip', 'install --upgrade --quiet yt_dlp') get_ipython().run_line_magic('pip', 'install --upgrade --quiet pydub') get_ipython().run_line_magic('pip', 'install --upgrade --quiet librosa') local = False urls = ["https://youtu.be/kCc8FmEb1nY", "https://youtu.be/VMj-3S1tku0"] save_dir = "~/Downloads/YouTube" if local: loader = GenericLoader( YoutubeAudioLoader(urls, save_dir), OpenAIWhisperParserLocal() ) else: loader = GenericLoader(YoutubeAudioLoader(urls, save_dir), OpenAIWhisperParser()) docs = loader.load() docs[0].page_content[0:500] from langchain.chains import RetrievalQA from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter combined_docs = [doc.page_content for doc in docs] text = " ".join(combined_docs) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=150) splits = text_splitter.split_text(text) embeddings = OpenAIEmbeddings() vectordb =
FAISS.from_texts(splits, embeddings)
langchain_community.vectorstores.FAISS.from_texts
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-community') import os os.environ["YDC_API_KEY"] = "" os.environ["OPENAI_API_KEY"] = "" from langchain_community.tools.you import YouSearchTool from langchain_community.utilities.you import YouSearchAPIWrapper api_wrapper =
YouSearchAPIWrapper(num_web_results=1)
langchain_community.utilities.you.YouSearchAPIWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai context-python') import os from langchain.callbacks import ContextCallbackHandler token = os.environ["CONTEXT_API_TOKEN"] context_callback = ContextCallbackHandler(token) import os from langchain.callbacks import ContextCallbackHandler from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_openai import ChatOpenAI token = os.environ["CONTEXT_API_TOKEN"] chat = ChatOpenAI( headers={"user_id": "123"}, temperature=0, callbacks=[ContextCallbackHandler(token)] ) messages = [ SystemMessage( content="You are a helpful assistant that translates English to French." ),
HumanMessage(content="I love programming.")
langchain.schema.HumanMessage
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sqlite-vss') from langchain_community.document_loaders import TextLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import SQLiteVSS from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) texts = [doc.page_content for doc in docs] embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = SQLiteVSS.from_texts( texts=texts, embedding=embedding_function, table="state_union", db_file="/tmp/vss.db", ) query = "What did the president say about Ketanji Brown Jackson" data = db.similarity_search(query) data[0].page_content from langchain_community.document_loaders import TextLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import SQLiteVSS from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) texts = [doc.page_content for doc in docs] embedding_function =
SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
langchain_community.embeddings.sentence_transformer.SentenceTransformerEmbeddings
get_ipython().system('pip install -U oci') from langchain_community.llms import OCIGenAI llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", ) response = llm.invoke("Tell me one fact about earth", temperature=0.7) print(response) from langchain.chains import LLMChain from langchain_core.prompts import PromptTemplate llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", auth_type="SECURITY_TOKEN", auth_profile="MY_PROFILE", # replace with your profile name model_kwargs={"temperature": 0.7, "top_p": 0.75, "max_tokens": 200}, ) prompt = PromptTemplate(input_variables=["query"], template="{query}") llm_chain = LLMChain(llm=llm, prompt=prompt) response = llm_chain.invoke("what is the capital of france?") print(response) from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnablePassthrough from langchain_community.embeddings import OCIGenAIEmbeddings from langchain_community.vectorstores import FAISS embeddings = OCIGenAIEmbeddings( model_id="MY_EMBEDDING_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", ) vectorstore = FAISS.from_texts( [ "Larry Ellison co-founded Oracle Corporation in 1977 with Bob Miner and Ed Oates.", "Oracle Corporation is an American multinational computer technology company headquartered in Austin, Texas, United States.", ], embedding=embeddings, ) retriever = vectorstore.as_retriever() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = PromptTemplate.from_template(template) llm = OCIGenAI( model_id="MY_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID", ) chain = ( {"context": retriever, "question":
RunnablePassthrough()
langchain.schema.runnable.RunnablePassthrough
from langchain.chains import LLMMathChain from langchain_community.utilities import DuckDuckGoSearchAPIWrapper from langchain_core.tools import Tool from langchain_experimental.plan_and_execute import ( PlanAndExecute, load_agent_executor, load_chat_planner, ) from langchain_openai import ChatOpenAI, OpenAI search = DuckDuckGoSearchAPIWrapper() llm = OpenAI(temperature=0) llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True) tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="Calculator", func=llm_math_chain.run, description="useful for when you need to answer questions about math", ), ] model = ChatOpenAI(temperature=0) planner = load_chat_planner(model) executor =
load_agent_executor(model, tools, verbose=True)
langchain_experimental.plan_and_execute.load_agent_executor
import kuzu db = kuzu.Database("test_db") conn = kuzu.Connection(db) conn.execute("CREATE NODE TABLE Movie (name STRING, PRIMARY KEY(name))") conn.execute( "CREATE NODE TABLE Person (name STRING, birthDate STRING, PRIMARY KEY(name))" ) conn.execute("CREATE REL TABLE ActedIn (FROM Person TO Movie)") conn.execute("CREATE (:Person {name: 'Al Pacino', birthDate: '1940-04-25'})") conn.execute("CREATE (:Person {name: 'Robert De Niro', birthDate: '1943-08-17'})") conn.execute("CREATE (:Movie {name: 'The Godfather'})") conn.execute("CREATE (:Movie {name: 'The Godfather: Part II'})") conn.execute( "CREATE (:Movie {name: 'The Godfather Coda: The Death of Michael Corleone'})" ) conn.execute( "MATCH (p:Person), (m:Movie) WHERE p.name = 'Al Pacino' AND m.name = 'The Godfather' CREATE (p)-[:ActedIn]->(m)" ) conn.execute( "MATCH (p:Person), (m:Movie) WHERE p.name = 'Al Pacino' AND m.name = 'The Godfather: Part II' CREATE (p)-[:ActedIn]->(m)" ) conn.execute( "MATCH (p:Person), (m:Movie) WHERE p.name = 'Al Pacino' AND m.name = 'The Godfather Coda: The Death of Michael Corleone' CREATE (p)-[:ActedIn]->(m)" ) conn.execute( "MATCH (p:Person), (m:Movie) WHERE p.name = 'Robert De Niro' AND m.name = 'The Godfather: Part II' CREATE (p)-[:ActedIn]->(m)" ) from langchain.chains import KuzuQAChain from langchain_community.graphs import KuzuGraph from langchain_openai import ChatOpenAI graph =
KuzuGraph(db)
langchain_community.graphs.KuzuGraph
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai context-python') import os from langchain.callbacks import ContextCallbackHandler token = os.environ["CONTEXT_API_TOKEN"] context_callback = ContextCallbackHandler(token) import os from langchain.callbacks import ContextCallbackHandler from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_openai import ChatOpenAI token = os.environ["CONTEXT_API_TOKEN"] chat = ChatOpenAI( headers={"user_id": "123"}, temperature=0, callbacks=[ContextCallbackHandler(token)] ) messages = [ SystemMessage( content="You are a helpful assistant that translates English to French." ), HumanMessage(content="I love programming."), ] print(chat(messages)) import os from langchain.callbacks import ContextCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, ) from langchain_openai import ChatOpenAI token = os.environ["CONTEXT_API_TOKEN"] human_message_prompt = HumanMessagePromptTemplate( prompt=PromptTemplate( template="What is a good name for a company that makes {product}?", input_variables=["product"], ) ) chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt]) callback = ContextCallbackHandler(token) chat = ChatOpenAI(temperature=0.9, callbacks=[callback]) chain =
LLMChain(llm=chat, prompt=chat_prompt_template, callbacks=[callback])
langchain.chains.LLMChain
from typing import Optional from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_experimental.autonomous_agents import BabyAGI from langchain_openai import OpenAI, OpenAIEmbeddings get_ipython().run_line_magic('pip', 'install faiss-cpu > /dev/null') get_ipython().run_line_magic('pip', 'install google-search-results > /dev/null') from langchain.docstore import InMemoryDocstore from langchain_community.vectorstores import FAISS embeddings_model = OpenAIEmbeddings() import faiss embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import LLMChain from langchain_community.utilities import SerpAPIWrapper from langchain_openai import OpenAI todo_prompt = PromptTemplate.from_template( "You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}" ) todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt) search =
SerpAPIWrapper()
langchain_community.utilities.SerpAPIWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-text-splitters tiktoken') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_text_splitters import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_tiktoken_encoder( chunk_size=100, chunk_overlap=0 ) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) from langchain_text_splitters import TokenTextSplitter text_splitter =
TokenTextSplitter(chunk_size=10, chunk_overlap=0)
langchain_text_splitters.TokenTextSplitter
get_ipython().run_line_magic('pip', 'install --upgrade --quiet semanticscholar') from langchain import hub from langchain.agents import AgentExecutor, create_openai_functions_agent from langchain_openai import ChatOpenAI instructions = """You are an expert researcher.""" base_prompt = hub.pull("langchain-ai/openai-functions-template") prompt = base_prompt.partial(instructions=instructions) llm = ChatOpenAI(temperature=0) from langchain_community.tools.semanticscholar.tool import SemanticScholarQueryRun tools = [
SemanticScholarQueryRun()
langchain_community.tools.semanticscholar.tool.SemanticScholarQueryRun
from langchain.pydantic_v1 import BaseModel, Field from langchain.tools import BaseTool, StructuredTool, tool @tool def search(query: str) -> str: """Look up things online.""" return "LangChain" print(search.name) print(search.description) print(search.args) @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b print(multiply.name) print(multiply.description) print(multiply.args) class SearchInput(BaseModel): query: str = Field(description="should be a search query") @tool("search-tool", args_schema=SearchInput, return_direct=True) def search(query: str) -> str: """Look up things online.""" return "LangChain" print(search.name) print(search.description) print(search.args) print(search.return_direct) from typing import Optional, Type from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) class SearchInput(BaseModel): query: str = Field(description="should be a search query") class CalculatorInput(BaseModel): a: int =
Field(description="first number")
langchain.pydantic_v1.Field
from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.prompts import PromptTemplate from langchain_community.llms import TitanTakeoffPro llm = TitanTakeoffPro() output = llm("What is the weather in London in August?") print(output) llm = TitanTakeoffPro( base_url="http://localhost:3000", min_new_tokens=128, max_new_tokens=512, no_repeat_ngram_size=2, sampling_topk=1, sampling_topp=1.0, sampling_temperature=1.0, repetition_penalty=1.0, regex_string="", ) output = llm("What is the largest rainforest in the world?") print(output) llm = TitanTakeoffPro() rich_output = llm.generate(["What is Deep Learning?", "What is Machine Learning?"]) print(rich_output.generations) llm = TitanTakeoffPro( streaming=True, callback_manager=CallbackManager([
StreamingStdOutCallbackHandler()
langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results') import os from langchain_community.tools.google_finance import GoogleFinanceQueryRun from langchain_community.utilities.google_finance import GoogleFinanceAPIWrapper os.environ["SERPAPI_API_KEY"] = "" tool = GoogleFinanceQueryRun(api_wrapper=GoogleFinanceAPIWrapper()) tool.run("Google") import os from langchain.agents import AgentType, initialize_agent, load_tools from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = "" os.environ["SERP_API_KEY"] = "" llm =
OpenAI()
langchain_openai.OpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet trubrics') import os os.environ["TRUBRICS_EMAIL"] = "***@***" os.environ["TRUBRICS_PASSWORD"] = "***" os.environ["OPENAI_API_KEY"] = "sk-***" from langchain.callbacks import TrubricsCallbackHandler from langchain_openai import OpenAI llm = OpenAI(callbacks=[
TrubricsCallbackHandler()
langchain.callbacks.TrubricsCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet annoy') from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Annoy embeddings_func =
HuggingFaceEmbeddings()
langchain_community.embeddings.HuggingFaceEmbeddings
REGION = "us-central1" # @param {type:"string"} INSTANCE = "test-instance" # @param {type:"string"} DB_USER = "sqlserver" # @param {type:"string"} DB_PASS = "password" # @param {type:"string"} DATABASE = "test" # @param {type:"string"} TABLE_NAME = "test-default" # @param {type:"string"} get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-cloud-sql-mssql') from google.colab import auth auth.authenticate_user() PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') get_ipython().system('gcloud services enable sqladmin.googleapis.com') from langchain_google_cloud_sql_mssql import MSSQLEngine engine = MSSQLEngine.from_instance( project_id=PROJECT_ID, region=REGION, instance=INSTANCE, database=DATABASE, user=DB_USER, password=DB_PASS, ) engine.init_document_table(TABLE_NAME, overwrite_existing=True) from langchain_core.documents import Document from langchain_google_cloud_sql_mssql import MSSQLDocumentSaver test_docs = [ Document( page_content="Apple Granny Smith 150 0.99 1", metadata={"fruit_id": 1}, ), Document( page_content="Banana Cavendish 200 0.59 0", metadata={"fruit_id": 2}, ), Document( page_content="Orange Navel 80 1.29 1", metadata={"fruit_id": 3}, ), ] saver = MSSQLDocumentSaver(engine=engine, table_name=TABLE_NAME) saver.add_documents(test_docs) from langchain_google_cloud_sql_mssql import MSSQLLoader loader = MSSQLLoader(engine=engine, table_name=TABLE_NAME) docs = loader.lazy_load() for doc in docs: print("Loaded documents:", doc) from langchain_google_cloud_sql_mssql import MSSQLLoader loader = MSSQLLoader( engine=engine, query=f"select * from \"{TABLE_NAME}\" where JSON_VALUE(langchain_metadata, '$.fruit_id') = 1;", ) onedoc = loader.load() onedoc from langchain_google_cloud_sql_mssql import MSSQLLoader loader =
MSSQLLoader(engine=engine, table_name=TABLE_NAME)
langchain_google_cloud_sql_mssql.MSSQLLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet playwright > /dev/null') get_ipython().run_line_magic('pip', 'install --upgrade --quiet lxml') from langchain_community.agent_toolkits import PlayWrightBrowserToolkit from langchain_community.tools.playwright.utils import ( create_async_playwright_browser, # A synchronous browser is available, though it isn't compatible with jupyter.\n", }, ) import nest_asyncio nest_asyncio.apply() async_browser =
create_async_playwright_browser()
langchain_community.tools.playwright.utils.create_async_playwright_browser
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pygithub') import os from langchain.agents import AgentType, initialize_agent from langchain_community.agent_toolkits.github.toolkit import GitHubToolkit from langchain_community.utilities.github import GitHubAPIWrapper from langchain_openai import ChatOpenAI os.environ["GITHUB_APP_ID"] = "123456" os.environ["GITHUB_APP_PRIVATE_KEY"] = "path/to/your/private-key.pem" os.environ["GITHUB_REPOSITORY"] = "username/repo-name" os.environ["GITHUB_BRANCH"] = "bot-branch-name" os.environ["GITHUB_BASE_BRANCH"] = "main" os.environ["OPENAI_API_KEY"] = "" llm = ChatOpenAI(temperature=0, model="gpt-4-1106-preview") github = GitHubAPIWrapper() toolkit = GitHubToolkit.from_github_api_wrapper(github) tools = toolkit.get_tools() agent = initialize_agent( tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) print("Available tools:") for tool in tools: print("\t" + tool.name) agent.run( "You have the software engineering capabilities of a Google Principle engineer. You are tasked with completing issues on a github repository. Please look at the existing issues and complete them." ) from langchain import hub gh_issue_prompt_template = hub.pull("kastanday/new-github-issue") print(gh_issue_prompt_template.template) def format_issue(issue): title = f"Title: {issue.get('title')}." opened_by = f"Opened by user: {issue.get('opened_by')}" body = f"Body: {issue.get('body')}" comments = issue.get("comments") # often too long return "\n".join([title, opened_by, body]) issue = github.get_issue(33) # task to implement a RNA-seq pipeline (bioinformatics) final_gh_issue_prompt = gh_issue_prompt_template.format( issue_description=format_issue(issue) ) print(final_gh_issue_prompt) from langchain.memory.summary_buffer import ConversationSummaryBufferMemory from langchain_core.prompts.chat import MessagesPlaceholder summarizer_llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # type: ignore chat_history = MessagesPlaceholder(variable_name="chat_history") memory = ConversationSummaryBufferMemory( memory_key="chat_history", return_messages=True, llm=summarizer_llm, max_token_limit=2_000, ) agent = initialize_agent( tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, handle_parsing_errors=True, # or pass a function that accepts the error and returns a string max_iterations=30, max_execution_time=None, early_stopping_method="generate", memory=memory, agent_kwargs={ "memory_prompts": [chat_history], "input_variables": ["input", "agent_scratchpad", "chat_history"], "prefix": final_gh_issue_prompt, }, ) from langchain_core.tracers.context import tracing_v2_enabled os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "ls__......" os.environ["LANGCHAIN_PROJECT"] = "Github_Demo_PR" os.environ["LANGCHAIN_WANDB_TRACING"] = "false" with tracing_v2_enabled(project_name="Github_Demo_PR", tags=["PR_bot"]) as cb: agent.run(final_gh_issue_prompt) from langchain.tools.render import render_text_description_and_args print(render_text_description_and_args(tools)) get_ipython().run_line_magic('pip', 'install --upgrade --quiet duckduckgo-search') from langchain.agents import Tool from langchain.tools import DuckDuckGoSearchRun from langchain_openai import ChatOpenAI tools = [] unwanted_tools = ["Get Issue", "Delete File", "Create File", "Create Pull Request"] for tool in toolkit.get_tools(): if tool.name not in unwanted_tools: tools.append(tool) tools += [ Tool( name="Search", func=
DuckDuckGoSearchRun()
langchain.tools.DuckDuckGoSearchRun
get_ipython().run_line_magic('pip', 'install --upgrade --quiet O365') get_ipython().run_line_magic('pip', 'install --upgrade --quiet beautifulsoup4 # This is optional but is useful for parsing HTML messages') from langchain_community.agent_toolkits import O365Toolkit toolkit =
O365Toolkit()
langchain_community.agent_toolkits.O365Toolkit
get_ipython().system(' nomic login') get_ipython().system(' nomic login token') get_ipython().system(' pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain') import os os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "api_key" from langchain_community.document_loaders import WebBaseLoader urls = [ "https://lilianweng.github.io/posts/2023-06-23-agent/", "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/", "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/", ] docs = [
WebBaseLoader(url)
langchain_community.document_loaders.WebBaseLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet rank_bm25 > /dev/null') from langchain.retrievers import BM25Retriever, EnsembleRetriever from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings doc_list_1 = [ "I like apples", "I like oranges", "Apples and oranges are fruits", ] bm25_retriever = BM25Retriever.from_texts( doc_list_1, metadatas=[{"source": 1}] * len(doc_list_1) ) bm25_retriever.k = 2 doc_list_2 = [ "You like apples", "You like oranges", ] embedding =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
from langchain_community.tools.edenai import ( EdenAiExplicitImageTool, EdenAiObjectDetectionTool, EdenAiParsingIDTool, EdenAiParsingInvoiceTool, EdenAiSpeechToTextTool, EdenAiTextModerationTool, EdenAiTextToSpeechTool, ) from langchain.agents import AgentType, initialize_agent from langchain_community.llms import EdenAI llm = EdenAI( feature="text", provider="openai", params={"temperature": 0.2, "max_tokens": 250} ) tools = [ EdenAiTextModerationTool(providers=["openai"], language="en"), EdenAiObjectDetectionTool(providers=["google", "api4ai"]),
EdenAiTextToSpeechTool(providers=["amazon"], language="en", voice="MALE")
langchain_community.tools.edenai.EdenAiTextToSpeechTool
from langchain import hub from langchain.agents import AgentExecutor, create_openai_functions_agent from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper from langchain_openai import ChatOpenAI api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100) tool =
WikipediaQueryRun(api_wrapper=api_wrapper)
langchain_community.tools.WikipediaQueryRun
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic') import os import boto3 comprehend_client = boto3.client("comprehend", region_name="us-east-1") from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain comprehend_moderation = AmazonComprehendModerationChain( client=comprehend_client, verbose=True, # optional ) from langchain.prompts import PromptTemplate from langchain_community.llms.fake import FakeListLLM from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( ModerationPiiError, ) template = """Question: {question} Answer:""" prompt = PromptTemplate.from_template(template) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.", ] llm = FakeListLLM(responses=responses) chain = ( prompt | comprehend_moderation | {"input": (lambda x: x["output"]) | llm} | comprehend_moderation ) try: response = chain.invoke( { "question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?" } ) except ModerationPiiError as e: print(str(e)) else: print(response["output"]) from langchain_experimental.comprehend_moderation import ( BaseModerationConfig, ModerationPiiConfig, ModerationPromptSafetyConfig, ModerationToxicityConfig, ) pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X") toxicity_config = ModerationToxicityConfig(threshold=0.5) prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.5) moderation_config = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, # specify the configuration client=comprehend_client, # optionally pass the Boto3 Client verbose=True, ) from langchain.prompts import PromptTemplate from langchain_community.llms.fake import FakeListLLM template = """Question: {question} Answer:""" prompt = PromptTemplate.from_template(template) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.", ] llm = FakeListLLM(responses=responses) chain = ( prompt | comp_moderation_with_config | {"input": (lambda x: x["output"]) | llm} | comp_moderation_with_config ) try: response = chain.invoke( { "question": "A sample SSN number looks like this 123-45-7890. Can you give me some more samples?" } ) except Exception as e: print(str(e)) else: print(response["output"]) from langchain_experimental.comprehend_moderation import BaseModerationCallbackHandler class MyModCallback(BaseModerationCallbackHandler): async def on_after_pii(self, output_beacon, unique_id): import json moderation_type = output_beacon["moderation_type"] chain_id = output_beacon["moderation_chain_id"] with open(f"output-{moderation_type}-{chain_id}.json", "w") as file: data = {"beacon_data": output_beacon, "unique_id": unique_id} json.dump(data, file) """ async def on_after_toxicity(self, output_beacon, unique_id): pass async def on_after_prompt_safety(self, output_beacon, unique_id): pass """ my_callback = MyModCallback() pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X") toxicity_config = ModerationToxicityConfig(threshold=0.5) moderation_config = BaseModerationConfig(filters=[pii_config, toxicity_config]) comp_moderation_with_config = AmazonComprehendModerationChain( moderation_config=moderation_config, # specify the configuration client=comprehend_client, # optionally pass the Boto3 Client unique_id="john.doe@email.com", # A unique ID moderation_callback=my_callback, # BaseModerationCallbackHandler verbose=True, ) from langchain.prompts import PromptTemplate from langchain_community.llms.fake import FakeListLLM template = """Question: {question} Answer:""" prompt = PromptTemplate.from_template(template) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.", ] llm = FakeListLLM(responses=responses) chain = ( prompt | comp_moderation_with_config | {"input": (lambda x: x["output"]) | llm} | comp_moderation_with_config ) try: response = chain.invoke( { "question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?" } ) except Exception as e: print(str(e)) else: print(response["output"]) get_ipython().run_line_magic('pip', 'install --upgrade --quiet huggingface_hub') import os os.environ["HUGGINGFACEHUB_API_TOKEN"] = "<YOUR HF TOKEN HERE>" repo_id = "google/flan-t5-xxl" from langchain.prompts import PromptTemplate from langchain_community.llms import HuggingFaceHub template = """{question}""" prompt = PromptTemplate.from_template(template) llm = HuggingFaceHub( repo_id=repo_id, model_kwargs={"temperature": 0.5, "max_length": 256} ) pii_config = ModerationPiiConfig( labels=["SSN", "CREDIT_DEBIT_NUMBER"], redact=True, mask_character="X" ) toxicity_config = ModerationToxicityConfig(threshold=0.5) prompt_safety_config = ModerationPromptSafetyConfig(threshold=0.8) moderation_config_1 = BaseModerationConfig( filters=[pii_config, toxicity_config, prompt_safety_config] ) moderation_config_2 = BaseModerationConfig(filters=[pii_config]) amazon_comp_moderation = AmazonComprehendModerationChain( moderation_config=moderation_config_1, client=comprehend_client, moderation_callback=my_callback, verbose=True, ) amazon_comp_moderation_out = AmazonComprehendModerationChain( moderation_config=moderation_config_2, client=comprehend_client, verbose=True ) chain = ( prompt | amazon_comp_moderation | {"input": (lambda x: x["output"]) | llm} | amazon_comp_moderation_out ) try: response = chain.invoke( { "question": """What is John Doe's address, phone number and SSN from the following text? John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at johndoe@example.com reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place. """ } ) except Exception as e: print(str(e)) else: print(response["output"]) endpoint_name = "<SAGEMAKER_ENDPOINT_NAME>" # replace with your SageMaker Endpoint name region = "<REGION>" # replace with your SageMaker Endpoint region import json from langchain.prompts import PromptTemplate from langchain_community.llms import SagemakerEndpoint from langchain_community.llms.sagemaker_endpoint import LLMContentHandler class ContentHandler(LLMContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: dict) -> bytes: input_str = json.dumps({"text_inputs": prompt, **model_kwargs}) return input_str.encode("utf-8") def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) return response_json["generated_texts"][0] content_handler = ContentHandler() template = """From the following 'Document', precisely answer the 'Question'. Do not add any spurious information in your answer. Document: John Doe, a resident of 1234 Elm Street in Springfield, recently celebrated his birthday on January 1st. Turning 43 this year, John reflected on the years gone by. He often shares memories of his younger days with his close friends through calls on his phone, (555) 123-4567. Meanwhile, during a casual evening, he received an email at johndoe@example.com reminding him of an old acquaintance's reunion. As he navigated through some old documents, he stumbled upon a paper that listed his SSN as 123-45-6789, reminding him to store it in a safer place. Question: {question} Answer: """ llm_prompt = PromptTemplate.from_template(template) llm = SagemakerEndpoint( endpoint_name=endpoint_name, region_name=region, model_kwargs={ "temperature": 0.95, "max_length": 200, "num_return_sequences": 3, "top_k": 50, "top_p": 0.95, "do_sample": True, }, content_handler=content_handler, ) pii_config =
ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X")
langchain_experimental.comprehend_moderation.ModerationPiiConfig
from langchain.chains import HypotheticalDocumentEmbedder, LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI, OpenAIEmbeddings base_embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-openai langchain-anthropic langchain-community wikipedia') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() os.environ["ANTHROPIC_API_KEY"] = getpass.getpass() from langchain_community.retrievers import WikipediaRetriever from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) wiki = WikipediaRetriever(top_k_results=6, doc_content_chars_max=2000) prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, answer the user question. If none of the articles answer the question, just say you don't know.\n\nHere are the Wikipedia articles:{context}", ), ("human", "{question}"), ] ) prompt.pretty_print() from operator import itemgetter from typing import List from langchain_core.documents import Document from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import ( RunnableLambda, RunnableParallel, RunnablePassthrough, ) def format_docs(docs: List[Document]) -> str: """Convert Documents to a single string.:""" formatted = [ f"Article Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}" for doc in docs ] return "\n\n" + "\n\n".join(formatted) format = itemgetter("docs") | RunnableLambda(format_docs) answer = prompt | llm | StrOutputParser() chain = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format) .assign(answer=answer) .pick(["answer", "docs"]) ) chain.invoke("How fast are cheetahs?") from langchain_core.pydantic_v1 import BaseModel, Field class cited_answer(BaseModel): """Answer the user question based only on the given sources, and cite the sources used.""" answer: str = Field( ..., description="The answer to the user question, which is based only on the given sources.", ) citations: List[int] = Field( ..., description="The integer IDs of the SPECIFIC sources which justify the answer.", ) llm_with_tool = llm.bind_tools( [cited_answer], tool_choice="cited_answer", ) example_q = """What Brian's height? Source: 1 Information: Suzy is 6'2" Source: 2 Information: Jeremiah is blonde Source: 3 Information: Brian is 3 inches shorted than Suzy""" llm_with_tool.invoke(example_q) from langchain.output_parsers.openai_tools import JsonOutputKeyToolsParser output_parser = JsonOutputKeyToolsParser(key_name="cited_answer", return_single=True) (llm_with_tool | output_parser).invoke(example_q) def format_docs_with_id(docs: List[Document]) -> str: formatted = [ f"Source ID: {i}\nArticle Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}" for i, doc in enumerate(docs) ] return "\n\n" + "\n\n".join(formatted) format_1 = itemgetter("docs") | RunnableLambda(format_docs_with_id) answer_1 = prompt | llm_with_tool | output_parser chain_1 = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format_1) .assign(cited_answer=answer_1) .pick(["cited_answer", "docs"]) ) chain_1.invoke("How fast are cheetahs?") class Citation(BaseModel): source_id: int = Field( ..., description="The integer ID of a SPECIFIC source which justifies the answer.", ) quote: str = Field( ..., description="The VERBATIM quote from the specified source that justifies the answer.", ) class quoted_answer(BaseModel): """Answer the user question based only on the given sources, and cite the sources used.""" answer: str = Field( ..., description="The answer to the user question, which is based only on the given sources.", ) citations: List[Citation] = Field( ..., description="Citations from the given sources that justify the answer." ) output_parser_2 = JsonOutputKeyToolsParser(key_name="quoted_answer", return_single=True) llm_with_tool_2 = llm.bind_tools( [quoted_answer], tool_choice="quoted_answer", ) format_2 = itemgetter("docs") | RunnableLambda(format_docs_with_id) answer_2 = prompt | llm_with_tool_2 | output_parser_2 chain_2 = ( RunnableParallel(question=RunnablePassthrough(), docs=wiki) .assign(context=format_2) .assign(quoted_answer=answer_2) .pick(["quoted_answer", "docs"]) ) chain_2.invoke("How fast are cheetahs?") from langchain_anthropic import ChatAnthropicMessages anthropic =
ChatAnthropicMessages(model_name="claude-instant-1.2")
langchain_anthropic.ChatAnthropicMessages
get_ipython().system(' pip install langchain replicate') from langchain_community.chat_models import ChatOllama llama2_chat = ChatOllama(model="llama2:13b-chat") llama2_code = ChatOllama(model="codellama:7b-instruct") from langchain_community.llms import Replicate replicate_id = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d" llama2_chat_replicate = Replicate( model=replicate_id, input={"temperature": 0.01, "max_length": 500, "top_p": 1} ) llm = llama2_chat from langchain_community.utilities import SQLDatabase db = SQLDatabase.from_uri("sqlite:///nba_roster.db", sample_rows_in_table_info=0) def get_schema(_): return db.get_table_info() def run_query(query): return db.run(query) from langchain_core.prompts import ChatPromptTemplate template = """Based on the table schema below, write a SQL query that would answer the user's question: {schema} Question: {question} SQL Query:""" prompt = ChatPromptTemplate.from_messages( [ ("system", "Given an input question, convert it to a SQL query. No pre-amble."), ("human", template), ] ) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough sql_response = ( RunnablePassthrough.assign(schema=get_schema) | prompt | llm.bind(stop=["\nSQLResult:"]) | StrOutputParser() ) sql_response.invoke({"question": "What team is Klay Thompson on?"}) template = """Based on the table schema below, question, sql query, and sql response, write a natural language response: {schema} Question: {question} SQL Query: {query} SQL Response: {response}""" prompt_response = ChatPromptTemplate.from_messages( [ ( "system", "Given an input question and SQL response, convert it to a natural language answer. No pre-amble.", ), ("human", template), ] ) full_chain = (
RunnablePassthrough.assign(query=sql_response)
langchain_core.runnables.RunnablePassthrough.assign
get_ipython().run_line_magic('pip', 'install --upgrade --quiet text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2') import os from langchain_community.llms import HuggingFaceTextGenInference ENDPOINT_URL = "<YOUR_ENDPOINT_URL_HERE>" HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") llm = HuggingFaceTextGenInference( inference_server_url=ENDPOINT_URL, max_new_tokens=512, top_k=50, temperature=0.1, repetition_penalty=1.03, server_kwargs={ "headers": { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json", } }, ) from langchain_community.llms import HuggingFaceEndpoint ENDPOINT_URL = "<YOUR_ENDPOINT_URL_HERE>" llm = HuggingFaceEndpoint( endpoint_url=ENDPOINT_URL, task="text-generation", model_kwargs={ "max_new_tokens": 512, "top_k": 50, "temperature": 0.1, "repetition_penalty": 1.03, }, ) from langchain_community.llms import HuggingFaceHub llm = HuggingFaceHub( repo_id="HuggingFaceH4/zephyr-7b-beta", task="text-generation", model_kwargs={ "max_new_tokens": 512, "top_k": 30, "temperature": 0.1, "repetition_penalty": 1.03, }, ) from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_community.chat_models.huggingface import ChatHuggingFace messages = [
SystemMessage(content="You're a helpful assistant")
langchain.schema.SystemMessage
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_community.chat_models import ChatAnthropic from langchain_openai import ChatOpenAI from unittest.mock import patch import httpx from openai import RateLimitError request = httpx.Request("GET", "/") response = httpx.Response(200, request=request) error = RateLimitError("rate limit", response=response, body="") openai_llm = ChatOpenAI(max_retries=0) anthropic_llm = ChatAnthropic() llm = openai_llm.with_fallbacks([anthropic_llm]) with patch("openai.resources.chat.completions.Completions.create", side_effect=error): try: print(openai_llm.invoke("Why did the chicken cross the road?")) except RateLimitError: print("Hit error") with patch("openai.resources.chat.completions.Completions.create", side_effect=error): try: print(llm.invoke("Why did the chicken cross the road?")) except RateLimitError: print("Hit error") from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're a nice assistant who always includes a compliment in your response", ), ("human", "Why did the {animal} cross the road"), ] ) chain = prompt | llm with patch("openai.resources.chat.completions.Completions.create", side_effect=error): try: print(chain.invoke({"animal": "kangaroo"})) except RateLimitError: print("Hit error") from langchain_core.output_parsers import StrOutputParser chat_prompt = ChatPromptTemplate.from_messages( [ ( "system", "You're a nice assistant who always includes a compliment in your response", ), ("human", "Why did the {animal} cross the road"), ] ) chat_model = ChatOpenAI(model_name="gpt-fake") bad_chain = chat_prompt | chat_model | StrOutputParser() from langchain.prompts import PromptTemplate from langchain_openai import OpenAI prompt_template = """Instructions: You should always include a compliment in your response. Question: Why did the {animal} cross the road?""" prompt = PromptTemplate.from_template(prompt_template) llm = OpenAI() good_chain = prompt | llm chain = bad_chain.with_fallbacks([good_chain]) chain.invoke({"animal": "turtle"}) short_llm = ChatOpenAI() long_llm = ChatOpenAI(model="gpt-3.5-turbo-16k") llm = short_llm.with_fallbacks([long_llm]) inputs = "What is the next number: " + ", ".join(["one", "two"] * 3000) try: print(short_llm.invoke(inputs)) except Exception as e: print(e) try: print(llm.invoke(inputs)) except Exception as e: print(e) from langchain.output_parsers import DatetimeOutputParser prompt = ChatPromptTemplate.from_template( "what time was {event} (in %Y-%m-%dT%H:%M:%S.%fZ format - only return this value)" ) openai_35 = ChatOpenAI() |
DatetimeOutputParser()
langchain.output_parsers.DatetimeOutputParser
from langchain.pydantic_v1 import BaseModel, Field from langchain.tools import BaseTool, StructuredTool, tool @tool def search(query: str) -> str: """Look up things online.""" return "LangChain" print(search.name) print(search.description) print(search.args) @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b print(multiply.name) print(multiply.description) print(multiply.args) class SearchInput(BaseModel): query: str = Field(description="should be a search query") @tool("search-tool", args_schema=SearchInput, return_direct=True) def search(query: str) -> str: """Look up things online.""" return "LangChain" print(search.name) print(search.description) print(search.args) print(search.return_direct) from typing import Optional, Type from langchain.callbacks.manager import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) class SearchInput(BaseModel): query: str = Field(description="should be a search query") class CalculatorInput(BaseModel): a: int = Field(description="first number") b: int = Field(description="second number") class CustomSearchTool(BaseTool): name = "custom_search" description = "useful for when you need to answer questions about current events" args_schema: Type[BaseModel] = SearchInput def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" return "LangChain" async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("custom_search does not support async") class CustomCalculatorTool(BaseTool): name = "Calculator" description = "useful for when you need to answer questions about math" args_schema: Type[BaseModel] = CalculatorInput return_direct: bool = True def _run( self, a: int, b: int, run_manager: Optional[CallbackManagerForToolRun] = None ) -> str: """Use the tool.""" return a * b async def _arun( self, a: int, b: int, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" raise NotImplementedError("Calculator does not support async") search = CustomSearchTool() print(search.name) print(search.description) print(search.args) multiply = CustomCalculatorTool() print(multiply.name) print(multiply.description) print(multiply.args) print(multiply.return_direct) def search_function(query: str): return "LangChain" search = StructuredTool.from_function( func=search_function, name="Search", description="useful for when you need to answer questions about current events", ) print(search.name) print(search.description) print(search.args) class CalculatorInput(BaseModel): a: int = Field(description="first number") b: int =
Field(description="second number")
langchain.pydantic_v1.Field
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pygithub') import os from langchain.agents import AgentType, initialize_agent from langchain_community.agent_toolkits.github.toolkit import GitHubToolkit from langchain_community.utilities.github import GitHubAPIWrapper from langchain_openai import ChatOpenAI os.environ["GITHUB_APP_ID"] = "123456" os.environ["GITHUB_APP_PRIVATE_KEY"] = "path/to/your/private-key.pem" os.environ["GITHUB_REPOSITORY"] = "username/repo-name" os.environ["GITHUB_BRANCH"] = "bot-branch-name" os.environ["GITHUB_BASE_BRANCH"] = "main" os.environ["OPENAI_API_KEY"] = "" llm = ChatOpenAI(temperature=0, model="gpt-4-1106-preview") github = GitHubAPIWrapper() toolkit = GitHubToolkit.from_github_api_wrapper(github) tools = toolkit.get_tools() agent = initialize_agent( tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) print("Available tools:") for tool in tools: print("\t" + tool.name) agent.run( "You have the software engineering capabilities of a Google Principle engineer. You are tasked with completing issues on a github repository. Please look at the existing issues and complete them." ) from langchain import hub gh_issue_prompt_template = hub.pull("kastanday/new-github-issue") print(gh_issue_prompt_template.template) def format_issue(issue): title = f"Title: {issue.get('title')}." opened_by = f"Opened by user: {issue.get('opened_by')}" body = f"Body: {issue.get('body')}" comments = issue.get("comments") # often too long return "\n".join([title, opened_by, body]) issue = github.get_issue(33) # task to implement a RNA-seq pipeline (bioinformatics) final_gh_issue_prompt = gh_issue_prompt_template.format( issue_description=format_issue(issue) ) print(final_gh_issue_prompt) from langchain.memory.summary_buffer import ConversationSummaryBufferMemory from langchain_core.prompts.chat import MessagesPlaceholder summarizer_llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # type: ignore chat_history = MessagesPlaceholder(variable_name="chat_history") memory = ConversationSummaryBufferMemory( memory_key="chat_history", return_messages=True, llm=summarizer_llm, max_token_limit=2_000, ) agent = initialize_agent( tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, handle_parsing_errors=True, # or pass a function that accepts the error and returns a string max_iterations=30, max_execution_time=None, early_stopping_method="generate", memory=memory, agent_kwargs={ "memory_prompts": [chat_history], "input_variables": ["input", "agent_scratchpad", "chat_history"], "prefix": final_gh_issue_prompt, }, ) from langchain_core.tracers.context import tracing_v2_enabled os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "ls__......" os.environ["LANGCHAIN_PROJECT"] = "Github_Demo_PR" os.environ["LANGCHAIN_WANDB_TRACING"] = "false" with tracing_v2_enabled(project_name="Github_Demo_PR", tags=["PR_bot"]) as cb: agent.run(final_gh_issue_prompt) from langchain.tools.render import render_text_description_and_args print(
render_text_description_and_args(tools)
langchain.tools.render.render_text_description_and_args
from langchain.memory import ConversationSummaryBufferMemory from langchain_openai import OpenAI llm = OpenAI() memory =
ConversationSummaryBufferMemory(llm=llm, max_token_limit=10)
langchain.memory.ConversationSummaryBufferMemory
from typing import List from langchain.output_parsers import YamlOutputParser from langchain.prompts import PromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0) class Joke(BaseModel): setup: str =
Field(description="question to set up a joke")
langchain_core.pydantic_v1.Field
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-text-splitters tiktoken') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_text_splitters import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_tiktoken_encoder( chunk_size=100, chunk_overlap=0 ) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) from langchain_text_splitters import TokenTextSplitter text_splitter = TokenTextSplitter(chunk_size=10, chunk_overlap=0) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) get_ipython().run_line_magic('pip', 'install --upgrade --quiet spacy') with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_text_splitters import SpacyTextSplitter text_splitter = SpacyTextSplitter(chunk_size=1000) texts = text_splitter.split_text(state_of_the_union) print(texts[0]) from langchain_text_splitters import SentenceTransformersTokenTextSplitter splitter = SentenceTransformersTokenTextSplitter(chunk_overlap=0) text = "Lorem " count_start_and_stop_tokens = 2 text_token_count = splitter.count_tokens(text=text) - count_start_and_stop_tokens print(text_token_count) token_multiplier = splitter.maximum_tokens_per_chunk // text_token_count + 1 text_to_split = text * token_multiplier print(f"tokens in text to split: {splitter.count_tokens(text=text_to_split)}") text_chunks = splitter.split_text(text=text_to_split) print(text_chunks[1]) with open("../../state_of_the_union.txt") as f: state_of_the_union = f.read() from langchain_text_splitters import NLTKTextSplitter text_splitter =
NLTKTextSplitter(chunk_size=1000)
langchain_text_splitters.NLTKTextSplitter
from langchain.pydantic_v1 import BaseModel, Field from langchain.tools import BaseTool, StructuredTool, tool @tool def search(query: str) -> str: """Look up things online.""" return "LangChain" print(search.name) print(search.description) print(search.args) @tool def multiply(a: int, b: int) -> int: """Multiply two numbers.""" return a * b print(multiply.name) print(multiply.description) print(multiply.args) class SearchInput(BaseModel): query: str = Field(description="should be a search query") @
tool("search-tool", args_schema=SearchInput, return_direct=True)
langchain.tools.tool
get_ipython().run_line_magic('pip', 'install -U --quiet langchain langchain_community openai chromadb langchain-experimental') get_ipython().run_line_magic('pip', 'install --quiet "unstructured[all-docs]" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken') import logging import zipfile import requests logging.basicConfig(level=logging.INFO) data_url = "https://storage.googleapis.com/benchmarks-artifacts/langchain-docs-benchmarking/cj.zip" result = requests.get(data_url) filename = "cj.zip" with open(filename, "wb") as file: file.write(result.content) with zipfile.ZipFile(filename, "r") as zip_ref: zip_ref.extractall() from langchain_community.document_loaders import PyPDFLoader loader =
PyPDFLoader("./cj/cj.pdf")
langchain_community.document_loaders.PyPDFLoader
get_ipython().system("python3 -m pip install --upgrade langchain 'deeplake[enterprise]' openai tiktoken") import getpass import os from langchain_community.vectorstores import DeepLake from langchain_openai import OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") activeloop_token = getpass.getpass("Activeloop Token:") os.environ["ACTIVELOOP_TOKEN"] = activeloop_token embeddings = OpenAIEmbeddings(disallowed_special=()) get_ipython().system('git clone https://github.com/twitter/the-algorithm # replace any repository of your choice') import os from langchain_community.document_loaders import TextLoader root_dir = "./the-algorithm" docs = [] for dirpath, dirnames, filenames in os.walk(root_dir): for file in filenames: try: loader = TextLoader(os.path.join(dirpath, file), encoding="utf-8") docs.extend(loader.load_and_split()) except Exception: pass from langchain_text_splitters import CharacterTextSplitter text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(docs) username = "<USERNAME_OR_ORG>" # replace with your username from app.activeloop.ai db = DeepLake( dataset_path=f"hub://{username}/twitter-algorithm", embedding=embeddings, ) db.add_documents(texts) db = DeepLake( dataset_path=f"hub://{username}/twitter-algorithm", read_only=True, embedding=embeddings, ) retriever = db.as_retriever() retriever.search_kwargs["distance_metric"] = "cos" retriever.search_kwargs["fetch_k"] = 100 retriever.search_kwargs["maximal_marginal_relevance"] = True retriever.search_kwargs["k"] = 10 def filter(x): if "com.google" in x["text"].data()["value"]: return False metadata = x["metadata"].data()["value"] return "scala" in metadata["source"] or "py" in metadata["source"] from langchain.chains import ConversationalRetrievalChain from langchain_openai import ChatOpenAI model = ChatOpenAI(model_name="gpt-3.5-turbo-0613") # switch to 'gpt-4' qa =
ConversationalRetrievalChain.from_llm(model, retriever=retriever)
langchain.chains.ConversationalRetrievalChain.from_llm
get_ipython().run_line_magic('pip', 'install --upgrade --quiet redis redisvl langchain-openai tiktoken') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redis_url = "redis://localhost:6379" redis_url = "redis://:secret@redis:7379/2" redis_url = "redis://joe:secret@redis/0" redis_url = "redis+sentinel://localhost:26379" redis_url = "redis+sentinel://joe:secret@redis" redis_url = "redis+sentinel://redis:26379/zone-1/2" redis_url = "rediss://localhost:6379" redis_url = "rediss+sentinel://localhost" metadata = [ { "user": "john", "age": 18, "job": "engineer", "credit_score": "high", }, { "user": "derrick", "age": 45, "job": "doctor", "credit_score": "low", }, { "user": "nancy", "age": 94, "job": "doctor", "credit_score": "high", }, { "user": "tyler", "age": 100, "job": "engineer", "credit_score": "high", }, { "user": "joe", "age": 35, "job": "dentist", "credit_score": "medium", }, ] texts = ["foo", "foo", "foo", "bar", "bar"] from langchain_community.vectorstores.redis import Redis rds = Redis.from_texts( texts, embeddings, metadatas=metadata, redis_url="redis://localhost:6379", index_name="users", ) rds.index_name get_ipython().system('rvl index listall') get_ipython().system('rvl index info -i users') get_ipython().system('rvl stats -i users') results = rds.similarity_search("foo") print(results[0].page_content) results = rds.similarity_search("foo", k=3) meta = results[1].metadata print("Key of the document in Redis: ", meta.pop("id")) print("Metadata of the document: ", meta) results = rds.similarity_search_with_score("foo", k=5) for result in results: print(f"Content: {result[0].page_content} --- Score: {result[1]}") results = rds.similarity_search_with_score("foo", k=5, distance_threshold=0.1) for result in results: print(f"Content: {result[0].page_content} --- Score: {result[1]}") results = rds.similarity_search_with_relevance_scores("foo", k=5) for result in results: print(f"Content: {result[0].page_content} --- Similiarity: {result[1]}") results = rds.similarity_search_with_relevance_scores("foo", k=5, score_threshold=0.9) for result in results: print(f"Content: {result[0].page_content} --- Similarity: {result[1]}") new_document = ["baz"] new_metadata = [{"user": "sam", "age": 50, "job": "janitor", "credit_score": "high"}] rds.add_texts(new_document, new_metadata) results = rds.similarity_search("baz", k=3) print(results[0].metadata) results = rds.max_marginal_relevance_search("foo") results = rds.max_marginal_relevance_search("foo", lambda_mult=0.1) rds.write_schema("redis_schema.yaml") new_rds = Redis.from_existing_index( embeddings, index_name="users", redis_url="redis://localhost:6379", schema="redis_schema.yaml", ) results = new_rds.similarity_search("foo", k=3) print(results[0].metadata) new_rds.schema == rds.schema index_schema = { "tag": [{"name": "credit_score"}], "text": [{"name": "user"}, {"name": "job"}], "numeric": [{"name": "age"}], } rds, keys = Redis.from_texts_return_keys( texts, embeddings, metadatas=metadata, redis_url="redis://localhost:6379", index_name="users_modified", index_schema=index_schema, # pass in the new index schema ) from langchain_community.vectorstores.redis import RedisText is_engineer = RedisText("job") == "engineer" results = rds.similarity_search("foo", k=3, filter=is_engineer) print("Job:", results[0].metadata["job"]) print("Engineers in the dataset:", len(results)) starts_with_doc = RedisText("job") % "doc*" results = rds.similarity_search("foo", k=3, filter=starts_with_doc) for result in results: print("Job:", result.metadata["job"]) print("Jobs in dataset that start with 'doc':", len(results)) from langchain_community.vectorstores.redis import RedisNum is_over_18 = RedisNum("age") > 18 is_under_99 = RedisNum("age") < 99 age_range = is_over_18 & is_under_99 results = rds.similarity_search("foo", filter=age_range) for result in results: print("User:", result.metadata["user"], "is", result.metadata["age"]) age_range = (RedisNum("age") > 18) & (RedisNum("age") < 99) results = rds.similarity_search("foo", filter=age_range) for result in results: print("User:", result.metadata["user"], "is", result.metadata["age"]) query = "foo" results = rds.similarity_search_with_score(query, k=3, return_metadata=True) for result in results: print("Content:", result[0].page_content, " --- Score: ", result[1]) retriever = rds.as_retriever(search_type="similarity", search_kwargs={"k": 4}) docs = retriever.get_relevant_documents(query) docs retriever = rds.as_retriever( search_type="similarity_distance_threshold", search_kwargs={"k": 4, "distance_threshold": 0.1}, ) docs = retriever.get_relevant_documents(query) docs retriever = rds.as_retriever( search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.9, "k": 10}, ) retriever.get_relevant_documents("foo") retriever = rds.as_retriever( search_type="mmr", search_kwargs={"fetch_k": 20, "k": 4, "lambda_mult": 0.1} ) retriever.get_relevant_documents("foo")
Redis.delete(keys, redis_url="redis://localhost:6379")
langchain_community.vectorstores.redis.Redis.delete
get_ipython().run_line_magic('pip', 'install --upgrade --quiet playwright beautifulsoup4') get_ipython().system(' playwright install') from langchain_community.document_loaders import AsyncChromiumLoader urls = ["https://www.wsj.com"] loader =
AsyncChromiumLoader(urls)
langchain_community.document_loaders.AsyncChromiumLoader
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-community') from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.schema.messages import AIMessage from langchain_community.llms.chatglm3 import ChatGLM3 template = """{question}""" prompt = PromptTemplate.from_template(template) endpoint_url = "http://127.0.0.1:8000/v1/chat/completions" messages = [ AIMessage(content="我将从美国到中国来旅游,出行前希望了解中国的城市"),
AIMessage(content="欢迎问我任何问题。")
langchain.schema.messages.AIMessage
from langchain_community.chat_models import ChatDatabricks from langchain_core.messages import HumanMessage from mlflow.deployments import get_deploy_client client = get_deploy_client("databricks") secret = "secrets/<scope>/openai-api-key" # replace `<scope>` with your scope name = "my-chat" # rename this if my-chat already exists client.create_endpoint( name=name, config={ "served_entities": [ { "name": "my-chat", "external_model": { "name": "gpt-4", "provider": "openai", "task": "llm/v1/chat", "openai_config": { "openai_api_key": "{{" + secret + "}}", }, }, } ], }, ) chat = ChatDatabricks( target_uri="databricks", endpoint=name, temperature=0.1, ) chat([HumanMessage(content="hello")]) from langchain_community.embeddings import DatabricksEmbeddings embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en") embeddings.embed_query("hello")[:3] from langchain_community.llms import Databricks llm = Databricks(endpoint_name="dolly") llm("How are you?") llm("How are you?", stop=["."]) import os import dbutils os.environ["DATABRICKS_TOKEN"] = dbutils.secrets.get("myworkspace", "api_token") llm =
Databricks(host="myworkspace.cloud.databricks.com", endpoint_name="dolly")
langchain_community.llms.Databricks
import getpass import os os.environ["TAVILY_API_KEY"] = getpass.getpass() from langchain_community.tools.tavily_search import TavilySearchResults tool = TavilySearchResults() tool.invoke({"query": "What happened in the latest burning man floods"}) import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() from langchain import hub from langchain.agents import AgentExecutor, create_openai_functions_agent from langchain_openai import ChatOpenAI instructions = """You are an assistant.""" base_prompt = hub.pull("langchain-ai/openai-functions-template") prompt = base_prompt.partial(instructions=instructions) llm = ChatOpenAI(temperature=0) tavily_tool =
TavilySearchResults()
langchain_community.tools.tavily_search.TavilySearchResults
import os os.environ["LANGCHAIN_WANDB_TRACING"] = "true" os.environ["WANDB_PROJECT"] = "langchain-tracing" from langchain.agents import AgentType, initialize_agent, load_tools from langchain.callbacks import wandb_tracing_enabled from langchain_openai import OpenAI llm = OpenAI(temperature=0) tools = load_tools(["llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run("What is 2 raised to .123243 power?") # this should be traced if "LANGCHAIN_WANDB_TRACING" in os.environ: del os.environ["LANGCHAIN_WANDB_TRACING"] with
wandb_tracing_enabled()
langchain.callbacks.wandb_tracing_enabled
get_ipython().run_line_magic('pip', 'install --upgrade --quiet dingodb') get_ipython().run_line_magic('pip', 'install --upgrade --quiet git+https://git@github.com/dingodb/pydingo.git') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Dingo from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() from dingodb import DingoDB index_name = "langchain_demo" dingo_client = DingoDB(user="", password="", host=["127.0.0.1:13000"]) if ( index_name not in dingo_client.get_index() and index_name.upper() not in dingo_client.get_index() ): dingo_client.create_index( index_name=index_name, dimension=1536, metric_type="cosine", auto_id=False ) docsearch = Dingo.from_documents( docs, embeddings, client=dingo_client, index_name=index_name ) from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Dingo from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter query = "What did the president say about Ketanji Brown Jackson" docs = docsearch.similarity_search(query) print(docs[0].page_content) vectorstore =
Dingo(embeddings, "text", client=dingo_client, index_name=index_name)
langchain_community.vectorstores.Dingo
from langchain.output_parsers import DatetimeOutputParser from langchain.prompts import PromptTemplate from langchain_openai import OpenAI output_parser =
DatetimeOutputParser()
langchain.output_parsers.DatetimeOutputParser
import os os.environ["EXA_API_KEY"] = "..." get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain_exa import ExaSearchRetriever, TextContentsOptions from langchain_openai import ChatOpenAI retriever = ExaSearchRetriever( k=5, text_contents_options=
TextContentsOptions(max_length=200)
langchain_exa.TextContentsOptions
from langchain.chains import HypotheticalDocumentEmbedder, LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI, OpenAIEmbeddings base_embeddings = OpenAIEmbeddings() llm = OpenAI() embeddings =
HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")
langchain.chains.HypotheticalDocumentEmbedder.from_llm
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') from langchain.prompts import PromptTemplate from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0).configurable_fields( temperature=ConfigurableField( id="llm_temperature", name="LLM Temperature", description="The temperature of the LLM", ) ) model.invoke("pick a random number") model.with_config(configurable={"llm_temperature": 0.9}).invoke("pick a random number") prompt = PromptTemplate.from_template("Pick a random number above {x}") chain = prompt | model chain.invoke({"x": 0}) chain.with_config(configurable={"llm_temperature": 0.9}).invoke({"x": 0}) from langchain.runnables.hub import HubRunnable prompt = HubRunnable("rlm/rag-prompt").configurable_fields( owner_repo_commit=ConfigurableField( id="hub_commit", name="Hub Commit", description="The Hub commit to pull from", ) ) prompt.invoke({"question": "foo", "context": "bar"}) prompt.with_config(configurable={"hub_commit": "rlm/rag-prompt-llama"}).invoke( {"question": "foo", "context": "bar"} ) from langchain.prompts import PromptTemplate from langchain_community.chat_models import ChatAnthropic from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI llm = ChatAnthropic(temperature=0).configurable_alternatives( ConfigurableField(id="llm"), default_key="anthropic", openai=ChatOpenAI(), gpt4=ChatOpenAI(model="gpt-4"), ) prompt = PromptTemplate.from_template("Tell me a joke about {topic}") chain = prompt | llm chain.invoke({"topic": "bears"}) chain.with_config(configurable={"llm": "openai"}).invoke({"topic": "bears"}) chain.with_config(configurable={"llm": "anthropic"}).invoke({"topic": "bears"}) llm =
ChatAnthropic(temperature=0)
langchain_community.chat_models.ChatAnthropic
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core langchain langchain-openai') from langchain.utils.math import cosine_similarity from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings physics_template = """You are a very smart physics professor. \ You are great at answering questions about physics in a concise and easy to understand manner. \ When you don't know the answer to a question you admit that you don't know. Here is a question: {query}""" math_template = """You are a very good mathematician. You are great at answering math questions. \ You are so good because you are able to break down hard problems into their component parts, \ answer the component parts, and then put them together to answer the broader question. Here is a question: {query}""" embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
import getpass import os os.environ["POLYGON_API_KEY"] = getpass.getpass() from langchain_community.tools.polygon.financials import PolygonFinancials from langchain_community.tools.polygon.last_quote import PolygonLastQuote from langchain_community.tools.polygon.ticker_news import PolygonTickerNews from langchain_community.utilities.polygon import PolygonAPIWrapper api_wrapper = PolygonAPIWrapper() ticker = "AAPL" last_quote_tool =
PolygonLastQuote(api_wrapper=api_wrapper)
langchain_community.tools.polygon.last_quote.PolygonLastQuote
from langchain.evaluation import load_evaluator evaluator = load_evaluator("criteria", criteria="conciseness") from langchain.evaluation import EvaluatorType evaluator =
load_evaluator(EvaluatorType.CRITERIA, criteria="conciseness")
langchain.evaluation.load_evaluator
get_ipython().run_line_magic('pip', 'install --upgrade --quiet wikipedia') from langchain import hub from langchain.agents import AgentExecutor, create_react_agent from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper from langchain_openai import OpenAI api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100) tool = WikipediaQueryRun(api_wrapper=api_wrapper) tools = [tool] prompt = hub.pull("hwchase17/react") llm = OpenAI(temperature=0) agent = create_react_agent(llm, tools, prompt) agent_executor =
AgentExecutor(agent=agent, tools=tools, verbose=True)
langchain.agents.AgentExecutor
get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-memorystore-redis') PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') from google.colab import auth auth.authenticate_user() import redis from langchain_google_memorystore_redis import ( DistanceStrategy, HNSWConfig, RedisVectorStore, ) redis_client = redis.from_url("redis://127.0.0.1:6379") index_config = HNSWConfig( name="my_vector_index", distance_strategy=DistanceStrategy.COSINE, vector_size=128 ) RedisVectorStore.init_index(client=redis_client, index_config=index_config) from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("./state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) from langchain_community.embeddings.fake import FakeEmbeddings embeddings = FakeEmbeddings(size=128) redis_client = redis.from_url("redis://127.0.0.1:6379") rvs = RedisVectorStore.from_documents( docs, embedding=embeddings, client=redis_client, index_name="my_vector_index" ) rvs = RedisVectorStore( client=redis_client, index_name="my_vector_index", embeddings=embeddings ) ids = rvs.add_texts( texts=[d.page_content for d in docs], metadatas=[d.metadata for d in docs] ) import pprint query = "What did the president say about Ketanji Brown Jackson" knn_results = rvs.similarity_search(query=query) pprint.pprint(knn_results) rq_results = rvs.similarity_search_with_score(query=query, distance_threshold=0.8) pprint.pprint(rq_results) mmr_results = rvs.max_marginal_relevance_search(query=query, lambda_mult=0.90) pprint.pprint(mmr_results) retriever = rvs.as_retriever() results = retriever.invoke(query) pprint.pprint(results) rvs.delete(ids)
RedisVectorStore.drop_index(client=redis_client, index_name="my_vector_index")
langchain_google_memorystore_redis.RedisVectorStore.drop_index
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints') import getpass import os if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"): nvapi_key = getpass.getpass("Enter your NVIDIA API key: ") assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key" os.environ["NVIDIA_API_KEY"] = nvapi_key from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="mixtral_8x7b") result = llm.invoke("Write a ballad about LangChain.") print(result.content) print(llm.batch(["What's 2*3?", "What's 2*6?"])) for chunk in llm.stream("How far can a seagull fly in one day?"): print(chunk.content, end="|") async for chunk in llm.astream( "How long does it take for monarch butterflies to migrate?" ): print(chunk.content, end="|") ChatNVIDIA.get_available_models() from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser() for txt in chain.stream({"input": "What's your name?"}): print(txt, end="") prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are an expert coding AI. Respond only in valid python; no narration whatsoever.", ), ("user", "{input}"), ] ) chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser() for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}): print(txt, end="") from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="nemotron_steerlm_8b") complex_result = llm.invoke( "What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0} ) print("Un-creative\n") print(complex_result.content) print("\n\nCreative\n") creative_result = llm.invoke( "What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9} ) print(creative_result.content) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = ( prompt | ChatNVIDIA(model="nemotron_steerlm_8b").bind( labels={"creativity": 9, "complexity": 0, "verbosity": 9} ) | StrOutputParser() ) for txt in chain.stream({"input": "Why is a PB&J?"}): print(txt, end="") import IPython import requests image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/nvidia-picasso-3c33-p@2x.jpg" ## Large Image image_content = requests.get(image_url).content IPython.display.Image(image_content) from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="playground_neva_22b") from langchain_core.messages import HumanMessage llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ] ) from langchain_core.messages import HumanMessage llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, {"type": "image_url", "image_url": {"url": image_url}}, ] ) ], labels={"creativity": 0, "quality": 9, "complexity": 0, "verbosity": 0}, ) import IPython import requests image_url = "https://picsum.photos/seed/kitten/300/200" image_content = requests.get(image_url).content IPython.display.Image(image_content) import base64 from langchain_core.messages import HumanMessage b64_string = base64.b64encode(image_content).decode("utf-8") llm.invoke( [ HumanMessage( content=[ {"type": "text", "text": "Describe this image:"}, { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_string}"}, }, ] ) ] ) base64_with_mime_type = f"data:image/png;base64,{b64_string}" llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />') from langchain_nvidia_ai_endpoints import ChatNVIDIA kosmos = ChatNVIDIA(model="kosmos_2") from langchain_core.messages import HumanMessage def drop_streaming_key(d): """Takes in payload dictionary, outputs new payload dictionary""" if "stream" in d: d.pop("stream") return d kosmos =
ChatNVIDIA(model="kosmos_2")
langchain_nvidia_ai_endpoints.ChatNVIDIA
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sagemaker') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai') get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results') import os os.environ["OPENAI_API_KEY"] = "<ADD-KEY-HERE>" os.environ["SERPAPI_API_KEY"] = "<ADD-KEY-HERE>" from langchain.agents import initialize_agent, load_tools from langchain.callbacks import SageMakerCallbackHandler from langchain.chains import LLMChain, SimpleSequentialChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI from sagemaker.analytics import ExperimentAnalytics from sagemaker.experiments.run import Run from sagemaker.session import Session HPARAMS = { "temperature": 0.1, "model_name": "gpt-3.5-turbo-instruct", } BUCKET_NAME = None EXPERIMENT_NAME = "langchain-sagemaker-tracker" session = Session(default_bucket=BUCKET_NAME) RUN_NAME = "run-scenario-1" PROMPT_TEMPLATE = "tell me a joke about {topic}" INPUT_VARIABLES = {"topic": "fish"} with Run( experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session ) as run: sagemaker_callback = SageMakerCallbackHandler(run) llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS) prompt = PromptTemplate.from_template(template=PROMPT_TEMPLATE) chain = LLMChain(llm=llm, prompt=prompt, callbacks=[sagemaker_callback]) chain.run(**INPUT_VARIABLES) sagemaker_callback.flush_tracker() RUN_NAME = "run-scenario-2" PROMPT_TEMPLATE_1 = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title. Title: {title} Playwright: This is a synopsis for the above play:""" PROMPT_TEMPLATE_2 = """You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play. Play Synopsis: {synopsis} Review from a New York Times play critic of the above play:""" INPUT_VARIABLES = { "input": "documentary about good video games that push the boundary of game design" } with Run( experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session ) as run: sagemaker_callback = SageMakerCallbackHandler(run) prompt_template1 = PromptTemplate.from_template(template=PROMPT_TEMPLATE_1) prompt_template2 = PromptTemplate.from_template(template=PROMPT_TEMPLATE_2) llm = OpenAI(callbacks=[sagemaker_callback], **HPARAMS) chain1 = LLMChain(llm=llm, prompt=prompt_template1, callbacks=[sagemaker_callback]) chain2 = LLMChain(llm=llm, prompt=prompt_template2, callbacks=[sagemaker_callback]) overall_chain = SimpleSequentialChain( chains=[chain1, chain2], callbacks=[sagemaker_callback] ) overall_chain.run(**INPUT_VARIABLES) sagemaker_callback.flush_tracker() RUN_NAME = "run-scenario-3" PROMPT_TEMPLATE = "Who is the oldest person alive? And what is their current age raised to the power of 1.51?" with Run( experiment_name=EXPERIMENT_NAME, run_name=RUN_NAME, sagemaker_session=session ) as run: sagemaker_callback =
SageMakerCallbackHandler(run)
langchain.callbacks.SageMakerCallbackHandler
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml') from typing import Any from pydantic import BaseModel from unstructured.partition.pdf import partition_pdf path = "/Users/rlm/Desktop/Papers/LLaVA/" raw_pdf_elements = partition_pdf( filename=path + "LLaVA.pdf", extract_images_in_pdf=True, infer_table_structure=True, chunking_strategy="by_title", max_characters=4000, new_after_n_chars=3800, combine_text_under_n_chars=2000, image_output_dir_path=path, ) category_counts = {} for element in raw_pdf_elements: category = str(type(element)) if category in category_counts: category_counts[category] += 1 else: category_counts[category] = 1 unique_categories = set(category_counts.keys()) category_counts class Element(BaseModel): type: str text: Any categorized_elements = [] for element in raw_pdf_elements: if "unstructured.documents.elements.Table" in str(type(element)): categorized_elements.append(Element(type="table", text=str(element))) elif "unstructured.documents.elements.CompositeElement" in str(type(element)): categorized_elements.append(Element(type="text", text=str(element))) table_elements = [e for e in categorized_elements if e.type == "table"] print(len(table_elements)) text_elements = [e for e in categorized_elements if e.type == "text"] print(len(text_elements)) from langchain_community.chat_models import ChatOllama from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate prompt_text = """You are an assistant tasked with summarizing tables and text. \ Give a concise summary of the table or text. Table or text chunk: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) model = ChatOllama(model="llama2:13b-chat") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() texts = [i.text for i in text_elements if i.text != ""] text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5}) tables = [i.text for i in table_elements] table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) get_ipython().run_cell_magic('bash', '', '\n# Define the directory containing the images\nIMG_DIR=~/Desktop/Papers/LLaVA/\n\n# Loop through each image in the directory\nfor img in "${IMG_DIR}"*.jpg; do\n # Extract the base name of the image without extension\n base_name=$(basename "$img" .jpg)\n\n # Define the output file name based on the image name\n output_file="${IMG_DIR}${base_name}.txt"\n\n # Execute the command and save the output to the defined output file\n /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file"\n\ndone\n') import glob import os file_paths = glob.glob(os.path.expanduser(os.path.join(path, "*.txt"))) img_summaries = [] for file_path in file_paths: with open(file_path, "r") as file: img_summaries.append(file.read()) cleaned_img_summary = [ s.split("clip_model_load: total allocated memory: 201.27 MB\n\n", 1)[1].strip() for s in img_summaries ] import uuid from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import InMemoryStore from langchain_community.embeddings import GPT4AllEmbeddings from langchain_community.vectorstores import Chroma from langchain_core.documents import Document vectorstore = Chroma( collection_name="summaries", embedding_function=GPT4AllEmbeddings() ) store = InMemoryStore() # <- Can we extend this to images id_key = "doc_id" retriever = MultiVectorRetriever( vectorstore=vectorstore, docstore=store, id_key=id_key, ) doc_ids = [str(uuid.uuid4()) for _ in texts] summary_texts = [ Document(page_content=s, metadata={id_key: doc_ids[i]}) for i, s in enumerate(text_summaries) ] retriever.vectorstore.add_documents(summary_texts) retriever.docstore.mset(list(zip(doc_ids, texts))) table_ids = [str(uuid.uuid4()) for _ in tables] summary_tables = [ Document(page_content=s, metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries) ] retriever.vectorstore.add_documents(summary_tables) retriever.docstore.mset(list(zip(table_ids, tables))) img_ids = [str(uuid.uuid4()) for _ in cleaned_img_summary] summary_img = [ Document(page_content=s, metadata={id_key: img_ids[i]}) for i, s in enumerate(cleaned_img_summary) ] retriever.vectorstore.add_documents(summary_img) retriever.docstore.mset( list(zip(img_ids, cleaned_img_summary)) ) # Store the image summary as the raw document retriever.get_relevant_documents("Images / figures with playful and creative examples")[ 0 ] from langchain_core.runnables import RunnablePassthrough template = """Answer the question based only on the following context, which can include text and tables: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) model =
ChatOllama(model="llama2:13b-chat")
langchain_community.chat_models.ChatOllama
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3') from langchain_community.document_loaders import S3DirectoryLoader loader =
S3DirectoryLoader("testing-hwc")
langchain_community.document_loaders.S3DirectoryLoader
README.md exists but content is empty.
Downloads last month
30