prompt
stringlengths 51
10k
| completion
stringlengths 8
362
| api
stringlengths 18
90
|
---|---|---|
import os
os.environ["LANGCHAIN_WANDB_TRACING"] = "true"
os.environ["WANDB_PROJECT"] = "langchain-tracing"
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import wandb_tracing_enabled
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
tools = | load_tools(["llm-math"], llm=llm) | langchain.agents.load_tools |
from langchain_community.llms import Baseten
mistral = | Baseten(model="MODEL_ID", deployment="production") | langchain_community.llms.Baseten |
from langchain_community.document_loaders import ArcGISLoader
URL = "https://maps1.vcgov.org/arcgis/rest/services/Beaches/MapServer/7"
loader = | ArcGISLoader(URL) | langchain_community.document_loaders.ArcGISLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pinecone-client pinecone-text')
import getpass
import os
os.environ["PINECONE_API_KEY"] = getpass.getpass("Pinecone API Key:")
from langchain.retrievers import PineconeHybridSearchRetriever
os.environ["PINECONE_ENVIRONMENT"] = getpass.getpass("Pinecone Environment:")
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import os
import pinecone
api_key = os.getenv("PINECONE_API_KEY") or "PINECONE_API_KEY"
index_name = "langchain-pinecone-hybrid-search"
pinecone.create_index(
name=index_name,
dimension=1536, # dimensionality of dense model
metric="dotproduct", # sparse values supported only for dotproduct
pod_type="s1",
metadata_config={"indexed": []}, # see explanation above
)
index = pinecone.Index(index_name)
from langchain_openai import OpenAIEmbeddings
embeddings = | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
import os
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders import SpreedlyLoader
spreedly_loader = SpreedlyLoader(
os.environ["SPREEDLY_ACCESS_TOKEN"], "gateways_options"
)
index = | VectorstoreIndexCreator() | langchain.indexes.VectorstoreIndexCreator |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-community langchainhub gpt4all chromadb')
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_community.vectorstores import Chroma
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
question = "What are the approaches to Task Decomposition?"
docs = vectorstore.similarity_search(question)
len(docs)
docs[0]
get_ipython().run_line_magic('pip', 'install --upgrade --quiet llama-cpp-python')
get_ipython().system(' CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 /Users/rlm/miniforge3/envs/llama/bin/pip install -U llama-cpp-python --no-cache-dir')
from langchain_community.llms import LlamaCpp
n_gpu_layers = 1 # Metal set to 1 is enough.
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
llm = LlamaCpp(
model_path="/Users/rlm/Desktop/Code/llama.cpp/models/llama-2-13b-chat.ggufv3.q4_0.bin",
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
n_ctx=2048,
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
verbose=True,
)
llm.invoke("Simulate a rap battle between Stephen Colbert and John Oliver")
from langchain_community.llms import GPT4All
gpt4all = GPT4All(
model="/Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin",
max_tokens=2048,
)
from langchain_community.llms.llamafile import Llamafile
llamafile = Llamafile()
llamafile.invoke("Here is my grandmother's beloved recipe for spaghetti and meatballs:")
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
prompt = PromptTemplate.from_template(
"Summarize the main themes in these retrieved docs: {docs}"
)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
chain = {"docs": format_docs} | prompt | llm | StrOutputParser()
question = "What are the approaches to Task Decomposition?"
docs = vectorstore.similarity_search(question)
chain.invoke(docs)
from langchain import hub
rag_prompt = hub.pull("rlm/rag-prompt")
rag_prompt.messages
from langchain_core.runnables import RunnablePassthrough, RunnablePick
chain = (
RunnablePassthrough.assign(context=RunnablePick("context") | format_docs)
| rag_prompt
| llm
| StrOutputParser()
)
chain.invoke({"context": docs, "question": question})
rag_prompt_llama = | hub.pull("rlm/rag-prompt-llama") | langchain.hub.pull |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core langchain langchain-openai')
from langchain.utils.math import cosine_similarity
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
physics_template = """You are a very smart physics professor. \
You are great at answering questions about physics in a concise and easy to understand manner. \
When you don't know the answer to a question you admit that you don't know.
Here is a question:
{query}"""
math_template = """You are a very good mathematician. You are great at answering math questions. \
You are so good because you are able to break down hard problems into their component parts, \
answer the component parts, and then put them together to answer the broader question.
Here is a question:
{query}"""
embeddings = OpenAIEmbeddings()
prompt_templates = [physics_template, math_template]
prompt_embeddings = embeddings.embed_documents(prompt_templates)
def prompt_router(input):
query_embedding = embeddings.embed_query(input["query"])
similarity = cosine_similarity([query_embedding], prompt_embeddings)[0]
most_similar = prompt_templates[similarity.argmax()]
print("Using MATH" if most_similar == math_template else "Using PHYSICS")
return PromptTemplate.from_template(most_similar)
chain = (
{"query": RunnablePassthrough()}
| RunnableLambda(prompt_router)
| | ChatOpenAI() | langchain_openai.ChatOpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-api-python-client > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-auth-oauthlib > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-auth-httplib2 > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet beautifulsoup4 > /dev/null # This is optional but is useful for parsing HTML messages')
from langchain_community.agent_toolkits import GmailToolkit
toolkit = | GmailToolkit() | langchain_community.agent_toolkits.GmailToolkit |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-cloud-storage')
from langchain_community.document_loaders import GCSFileLoader
loader = | GCSFileLoader(project_name="aist", bucket="testing-hwc", blob="fake.docx") | langchain_community.document_loaders.GCSFileLoader |
get_ipython().system(' pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)')
get_ipython().system(' pip install "unstructured[all-docs]==0.10.19" pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch')
path = "/Users/rlm/Desktop/cpi/"
from langchain_community.document_loaders import PyPDFLoader
loader = | PyPDFLoader(path + "cpi.pdf") | langchain_community.document_loaders.PyPDFLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai wikipedia')
from operator import itemgetter
from langchain.agents import AgentExecutor, load_tools
from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.prompt_values import ChatPromptValue
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
wiki = WikipediaQueryRun(
api_wrapper=WikipediaAPIWrapper(top_k_results=5, doc_content_chars_max=10_000)
)
tools = [wiki]
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
llm = ChatOpenAI(model="gpt-3.5-turbo")
agent = (
{
"input": itemgetter("input"),
"agent_scratchpad": lambda x: format_to_openai_function_messages(
x["intermediate_steps"]
),
}
| prompt
| llm.bind_functions(tools)
| | OpenAIFunctionsAgentOutputParser() | langchain.agents.output_parsers.OpenAIFunctionsAgentOutputParser |
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders import ModernTreasuryLoader
modern_treasury_loader = ModernTreasuryLoader("payment_orders")
index = | VectorstoreIndexCreator() | langchain.indexes.VectorstoreIndexCreator |
from langchain_experimental.llm_bash.base import LLMBashChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
text = "Please write a bash script that prints 'Hello World' to the console."
bash_chain = LLMBashChain.from_llm(llm, verbose=True)
bash_chain.run(text)
from langchain.prompts.prompt import PromptTemplate
from langchain_experimental.llm_bash.prompt import BashOutputParser
_PROMPT_TEMPLATE = """If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:
Question: "copy the files in the directory named 'target' into a new directory at the same level as target called 'myNewDirectory'"
I need to take the following actions:
- List all files in the directory
- Create a new directory
- Copy the files from the first directory into the second directory
```bash
ls
mkdir myNewDirectory
cp -r target/* myNewDirectory
```
Do not use 'echo' when writing the script.
That is the format. Begin!
Question: {question}"""
PROMPT = PromptTemplate(
input_variables=["question"],
template=_PROMPT_TEMPLATE,
output_parser=BashOutputParser(),
)
bash_chain = | LLMBashChain.from_llm(llm, prompt=PROMPT, verbose=True) | langchain_experimental.llm_bash.base.LLMBashChain.from_llm |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_core.tools import tool
@tool
def multiply(first_int: int, second_int: int) -> int:
"""Multiply two integers together."""
return first_int * second_int
@tool
def add(first_int: int, second_int: int) -> int:
"Add two integers."
return first_int + second_int
@tool
def exponentiate(base: int, exponent: int) -> int:
"Exponentiate the base to the exponent power."
return base**exponent
from operator import itemgetter
from typing import Union
from langchain.output_parsers import JsonOutputToolsParser
from langchain_core.runnables import (
Runnable,
RunnableLambda,
RunnableMap,
RunnablePassthrough,
)
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-3.5-turbo-1106")
tools = [multiply, exponentiate, add]
model_with_tools = model.bind_tools(tools)
tool_map = {tool.name: tool for tool in tools}
def call_tool(tool_invocation: dict) -> Union[str, Runnable]:
"""Function for dynamically constructing the end of the chain based on the model-selected tool."""
tool = tool_map[tool_invocation["type"]]
return RunnablePassthrough.assign(output=itemgetter("args") | tool)
call_tool_list = RunnableLambda(call_tool).map()
chain = model_with_tools | | JsonOutputToolsParser() | langchain.output_parsers.JsonOutputToolsParser |
import getpass
import os
os.environ["TAVILY_API_KEY"] = getpass.getpass()
from langchain_community.tools.tavily_search import TavilySearchResults
tool = TavilySearchResults()
tool.invoke({"query": "What happened in the latest burning man floods"})
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI
instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
tavily_tool = TavilySearchResults()
tools = [tavily_tool]
agent = | create_openai_functions_agent(llm, tools, prompt) | langchain.agents.create_openai_functions_agent |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet arxiv')
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent, load_tools
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0.0)
tools = load_tools(
["arxiv"],
)
prompt = hub.pull("hwchase17/react")
agent = create_react_agent(llm, tools, prompt)
agent_executor = | AgentExecutor(agent=agent, tools=tools, verbose=True) | langchain.agents.AgentExecutor |
from langchain_community.document_loaders import IFixitLoader
loader = | IFixitLoader("https://www.ifixit.com/Teardown/Banana+Teardown/811") | langchain_community.document_loaders.IFixitLoader |
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate
full_template = """{introduction}
{example}
{start}"""
full_prompt = | PromptTemplate.from_template(full_template) | langchain.prompts.prompt.PromptTemplate.from_template |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_core.tools import tool
@tool
def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int:
"""Do something complex with a complex tool."""
return int_arg * float_arg
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
model_with_tools = model.bind_tools(
[complex_tool],
tool_choice="complex_tool",
)
from operator import itemgetter
from langchain.output_parsers import JsonOutputKeyToolsParser
from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough
chain = (
model_with_tools
| JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True)
| complex_tool
)
chain.invoke(
"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
)
from typing import Any
from langchain_core.runnables import RunnableConfig
def try_except_tool(tool_args: dict, config: RunnableConfig) -> Runnable:
try:
complex_tool.invoke(tool_args, config=config)
except Exception as e:
return f"Calling tool with arguments:\n\n{tool_args}\n\nraised the following error:\n\n{type(e)}: {e}"
chain = (
model_with_tools
| JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True)
| try_except_tool
)
print(
chain.invoke(
"use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg"
)
)
chain = (
model_with_tools
| JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True)
| complex_tool
)
better_model = ChatOpenAI(model="gpt-4-1106-preview", temperature=0).bind_tools(
[complex_tool], tool_choice="complex_tool"
)
better_chain = (
better_model
| | JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True) | langchain.output_parsers.JsonOutputKeyToolsParser |
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml')
from typing import Any
from pydantic import BaseModel
from unstructured.partition.pdf import partition_pdf
path = "/Users/rlm/Desktop/Papers/LLaVA/"
raw_pdf_elements = partition_pdf(
filename=path + "LLaVA.pdf",
extract_images_in_pdf=True,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
category_counts = {}
for element in raw_pdf_elements:
category = str(type(element))
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
unique_categories = set(category_counts.keys())
category_counts
class Element(BaseModel):
type: str
text: Any
categorized_elements = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
categorized_elements.append(Element(type="table", text=str(element)))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
categorized_elements.append(Element(type="text", text=str(element)))
table_elements = [e for e in categorized_elements if e.type == "table"]
print(len(table_elements))
text_elements = [e for e in categorized_elements if e.type == "text"]
print(len(text_elements))
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOllama(model="llama2:13b-chat")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
texts = [i.text for i in text_elements if i.text != ""]
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
tables = [i.text for i in table_elements]
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
get_ipython().run_cell_magic('bash', '', '\n# Define the directory containing the images\nIMG_DIR=~/Desktop/Papers/LLaVA/\n\n# Loop through each image in the directory\nfor img in "${IMG_DIR}"*.jpg; do\n # Extract the base name of the image without extension\n base_name=$(basename "$img" .jpg)\n\n # Define the output file name based on the image name\n output_file="${IMG_DIR}${base_name}.txt"\n\n # Execute the command and save the output to the defined output file\n /Users/rlm/Desktop/Code/llama.cpp/bin/llava -m ../models/llava-7b/ggml-model-q5_k.gguf --mmproj ../models/llava-7b/mmproj-model-f16.gguf --temp 0.1 -p "Describe the image in detail. Be specific about graphs, such as bar plots." --image "$img" > "$output_file"\n\ndone\n')
import glob
import os
file_paths = glob.glob(os.path.expanduser(os.path.join(path, "*.txt")))
img_summaries = []
for file_path in file_paths:
with open(file_path, "r") as file:
img_summaries.append(file.read())
cleaned_img_summary = [
s.split("clip_model_load: total allocated memory: 201.27 MB\n\n", 1)[1].strip()
for s in img_summaries
]
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
vectorstore = Chroma(
collection_name="summaries", embedding_function=GPT4AllEmbeddings()
)
store = | InMemoryStore() | langchain.storage.InMemoryStore |
from langchain_community.document_loaders import GitbookLoader
loader = | GitbookLoader("https://docs.gitbook.com") | langchain_community.document_loaders.GitbookLoader |
get_ipython().system(' pip install --quiet pypdf chromadb tiktoken openai langchain-together')
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("~/Desktop/mixtral.pdf")
data = loader.load()
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
"""
from langchain_together.embeddings import TogetherEmbeddings
embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
"""
vectorstore = Chroma.from_documents(
documents=all_splits,
collection_name="rag-chroma",
embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
from langchain_together import Together
llm = Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.0,
max_tokens=2000,
top_k=1,
)
chain = (
RunnableParallel({"context": retriever, "question": | RunnablePassthrough() | langchain_core.runnables.RunnablePassthrough |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import OpenAI
search = | GoogleSearchAPIWrapper() | langchain_community.utilities.GoogleSearchAPIWrapper |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai.chat_models import ChatOpenAI
model = ChatOpenAI()
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're an assistant who's good at {ability}. Respond in 20 words or fewer",
),
MessagesPlaceholder(variable_name="history"),
("human", "{input}"),
]
)
runnable = prompt | model
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = | ChatMessageHistory() | langchain_community.chat_message_histories.ChatMessageHistory |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet feedparser newspaper3k listparser')
from langchain_community.document_loaders import RSSFeedLoader
urls = ["https://news.ycombinator.com/rss"]
loader = RSSFeedLoader(urls=urls)
data = loader.load()
print(len(data))
print(data[0].page_content)
loader = | RSSFeedLoader(urls=urls, nlp=True) | langchain_community.document_loaders.RSSFeedLoader |
get_ipython().system(' pip install --quiet pypdf chromadb tiktoken openai langchain-together')
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("~/Desktop/mixtral.pdf")
data = loader.load()
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
"""
from langchain_together.embeddings import TogetherEmbeddings
embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval")
"""
vectorstore = Chroma.from_documents(
documents=all_splits,
collection_name="rag-chroma",
embedding=OpenAIEmbeddings(),
)
retriever = vectorstore.as_retriever()
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
prompt = | ChatPromptTemplate.from_template(template) | langchain_core.prompts.ChatPromptTemplate.from_template |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet psycopg2-binary')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken')
YBUSER = "[SANDBOX USER]"
YBPASSWORD = "[SANDBOX PASSWORD]"
YBDATABASE = "[SANDBOX_DATABASE]"
YBHOST = "trialsandbox.sandbox.aws.yellowbrickcloud.com"
OPENAI_API_KEY = "[OPENAI API KEY]"
import os
import pathlib
import re
import sys
import urllib.parse as urlparse
from getpass import getpass
import psycopg2
from IPython.display import Markdown, display
from langchain.chains import LLMChain, RetrievalQAWithSourcesChain
from langchain.docstore.document import Document
from langchain_community.vectorstores import Yellowbrick
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
yellowbrick_connection_string = (
f"postgres://{urlparse.quote(YBUSER)}:{YBPASSWORD}@{YBHOST}:5432/{YBDATABASE}"
)
YB_DOC_DATABASE = "sample_data"
YB_DOC_TABLE = "yellowbrick_documentation"
embedding_table = "my_embeddings"
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
system_template = """If you don't know the answer, Make up your best guess."""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = | ChatPromptTemplate.from_messages(messages) | langchain.prompts.chat.ChatPromptTemplate.from_messages |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet "unstructured[all-docs]"')
from langchain_community.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./example_data/state_of_the_union.txt")
docs = loader.load()
docs[0].page_content[:400]
files = ["./example_data/whatsapp_chat.txt", "./example_data/layout-parser-paper.pdf"]
loader = | UnstructuredFileLoader(files) | langchain_community.document_loaders.UnstructuredFileLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3')
from langchain_community.document_loaders import S3DirectoryLoader
loader = S3DirectoryLoader("testing-hwc")
loader.load()
loader = | S3DirectoryLoader("testing-hwc", prefix="fake") | langchain_community.document_loaders.S3DirectoryLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints')
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvapi_key = getpass.getpass("Enter your NVIDIA API key: ")
assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvapi_key
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
print(llm.batch(["What's 2*3?", "What's 2*6?"]))
for chunk in llm.stream("How far can a seagull fly in one day?"):
print(chunk.content, end="|")
async for chunk in llm.astream(
"How long does it take for monarch butterflies to migrate?"
):
print(chunk.content, end="|")
ChatNVIDIA.get_available_models()
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser()
for txt in chain.stream({"input": "What's your name?"}):
print(txt, end="")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert coding AI. Respond only in valid python; no narration whatsoever.",
),
("user", "{input}"),
]
)
chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser()
for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}):
print(txt, end="")
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="nemotron_steerlm_8b")
complex_result = llm.invoke(
"What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0}
)
print("Un-creative\n")
print(complex_result.content)
print("\n\nCreative\n")
creative_result = llm.invoke(
"What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9}
)
print(creative_result.content)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = (
prompt
| ChatNVIDIA(model="nemotron_steerlm_8b").bind(
labels={"creativity": 9, "complexity": 0, "verbosity": 9}
)
| StrOutputParser()
)
for txt in chain.stream({"input": "Why is a PB&J?"}):
print(txt, end="")
import IPython
import requests
image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/nvidia-picasso-3c33-p@2x.jpg" ## Large Image
image_content = requests.get(image_url).content
IPython.display.Image(image_content)
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="playground_neva_22b")
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
]
)
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
],
labels={"creativity": 0, "quality": 9, "complexity": 0, "verbosity": 0},
)
import IPython
import requests
image_url = "https://picsum.photos/seed/kitten/300/200"
image_content = requests.get(image_url).content
IPython.display.Image(image_content)
import base64
from langchain_core.messages import HumanMessage
b64_string = base64.b64encode(image_content).decode("utf-8")
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{b64_string}"},
},
]
)
]
)
base64_with_mime_type = f"data:image/png;base64,{b64_string}"
llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />')
from langchain_nvidia_ai_endpoints import ChatNVIDIA
kosmos = | ChatNVIDIA(model="kosmos_2") | langchain_nvidia_ai_endpoints.ChatNVIDIA |
get_ipython().system('pip install -qU langchain-ibm')
import os
from getpass import getpass
watsonx_api_key = getpass()
os.environ["WATSONX_APIKEY"] = watsonx_api_key
import os
os.environ["WATSONX_URL"] = "your service instance url"
os.environ["WATSONX_TOKEN"] = "your token for accessing the CPD cluster"
os.environ["WATSONX_PASSWORD"] = "your password for accessing the CPD cluster"
os.environ["WATSONX_USERNAME"] = "your username for accessing the CPD cluster"
os.environ["WATSONX_INSTANCE_ID"] = "your instance_id for accessing the CPD cluster"
parameters = {
"decoding_method": "sample",
"max_new_tokens": 100,
"min_new_tokens": 1,
"temperature": 0.5,
"top_k": 50,
"top_p": 1,
}
from langchain_ibm import WatsonxLLM
watsonx_llm = WatsonxLLM(
model_id="ibm/granite-13b-instruct-v2",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
watsonx_llm = WatsonxLLM(
model_id="ibm/granite-13b-instruct-v2",
url="PASTE YOUR URL HERE",
username="PASTE YOUR USERNAME HERE",
password="PASTE YOUR PASSWORD HERE",
instance_id="openshift",
version="4.8",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
watsonx_llm = WatsonxLLM(
deployment_id="PASTE YOUR DEPLOYMENT_ID HERE",
url="https://us-south.ml.cloud.ibm.com",
project_id="PASTE YOUR PROJECT_ID HERE",
params=parameters,
)
from langchain.prompts import PromptTemplate
template = "Generate a random question about {topic}: Question: "
prompt = | PromptTemplate.from_template(template) | langchain.prompts.PromptTemplate.from_template |
import zipfile
import requests
def download_and_unzip(url: str, output_path: str = "file.zip") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
with zipfile.ZipFile(output_path, "r") as zip_ref:
zip_ref.extractall()
print(f"File {output_path} has been unzipped.")
url = (
"https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing"
)
download_and_unzip(url)
directory_path = "./hogwarts"
from langchain_community.chat_loaders.facebook_messenger import (
FolderFacebookMessengerChatLoader,
SingleFileFacebookMessengerChatLoader,
)
loader = SingleFileFacebookMessengerChatLoader(
path="./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json",
)
chat_session = loader.load()[0]
chat_session["messages"][:3]
loader = FolderFacebookMessengerChatLoader(
path="./hogwarts",
)
chat_sessions = loader.load()
len(chat_sessions)
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list( | map_ai_messages(merged_sessions, "Harry Potter") | langchain_community.chat_loaders.utils.map_ai_messages |
from getpass import getpass
KAY_API_KEY = getpass()
OPENAI_API_KEY = getpass()
import os
os.environ["KAY_API_KEY"] = KAY_API_KEY
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain.chains import ConversationalRetrievalChain
from langchain.retrievers import KayAiRetriever
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model_name="gpt-3.5-turbo")
retriever = KayAiRetriever.create(
dataset_id="company", data_types=["PressRelease"], num_contexts=6
)
qa = | ConversationalRetrievalChain.from_llm(model, retriever=retriever) | langchain.chains.ConversationalRetrievalChain.from_llm |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet annoy')
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Annoy
embeddings_func = HuggingFaceEmbeddings()
texts = ["pizza is great", "I love salad", "my car", "a dog"]
vector_store = Annoy.from_texts(texts, embeddings_func)
vector_store_v2 = Annoy.from_texts(
texts, embeddings_func, metric="dot", n_trees=100, n_jobs=1
)
vector_store.similarity_search("food", k=3)
vector_store.similarity_search_with_score("food", k=3)
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txtn.txtn.txt")
documents = loader.load()
text_splitter = | CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | langchain_text_splitters.CharacterTextSplitter |
import re
from IPython.display import Image, display
from steamship import Block, Steamship
from langchain.agents import AgentType, initialize_agent
from langchain.tools import SteamshipImageGenerationTool
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
tools = [ | SteamshipImageGenerationTool(model_name="dall-e") | langchain.tools.SteamshipImageGenerationTool |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet gigachat')
import os
from getpass import getpass
os.environ["GIGACHAT_CREDENTIALS"] = getpass()
from langchain_community.chat_models import GigaChat
chat = | GigaChat(verify_ssl_certs=False) | langchain_community.chat_models.GigaChat |
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
loaders = [
TextLoader("../../paul_graham_essay.txt"),
TextLoader("../../state_of_the_union.txt"),
]
docs = []
for loader in loaders:
docs.extend(loader.load())
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
vectorstore = Chroma(
collection_name="full_documents", embedding_function=OpenAIEmbeddings()
)
store = | InMemoryStore() | langchain.storage.InMemoryStore |
import pprint
from langchain_community.utilities import SearxSearchWrapper
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888")
search.run("What is the capital of France")
search = SearxSearchWrapper(
searx_host="http://127.0.0.1:8888", k=5
) # k is for max number of items
search.run("large language model ", engines=["wiki"])
search = SearxSearchWrapper(searx_host="http://127.0.0.1:8888", k=1)
search.run("deep learning", language="es", engines=["wiki"])
search = | SearxSearchWrapper(searx_host="http://127.0.0.1:8888") | langchain_community.utilities.SearxSearchWrapper |
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_openai import ChatOpenAI
api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100)
tool = | WikipediaQueryRun(api_wrapper=api_wrapper) | langchain_community.tools.WikipediaQueryRun |
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryByteStore
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
loaders = [
TextLoader("../../paul_graham_essay.txt"),
TextLoader("../../state_of_the_union.txt"),
]
docs = []
for loader in loaders:
docs.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000)
docs = text_splitter.split_documents(docs)
vectorstore = Chroma(
collection_name="full_documents", embedding_function=OpenAIEmbeddings()
)
store = | InMemoryByteStore() | langchain.storage.InMemoryByteStore |
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI
template = """Human: {question}
AI Assistant: """
prompt = PromptTemplate.from_template(template)
import getpass
my_account_id = getpass.getpass("Enter your Cloudflare account ID:\n\n")
my_api_token = getpass.getpass("Enter your Cloudflare API token:\n\n")
llm = | CloudflareWorkersAI(account_id=my_account_id, api_token=my_api_token) | langchain_community.llms.cloudflare_workersai.CloudflareWorkersAI |
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryByteStore
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
loaders = [
TextLoader("../../paul_graham_essay.txt"),
TextLoader("../../state_of_the_union.txt"),
]
docs = []
for loader in loaders:
docs.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000)
docs = text_splitter.split_documents(docs)
vectorstore = Chroma(
collection_name="full_documents", embedding_function=OpenAIEmbeddings()
)
store = InMemoryByteStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
import uuid
doc_ids = [str(uuid.uuid4()) for _ in docs]
child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
sub_docs = []
for i, doc in enumerate(docs):
_id = doc_ids[i]
_sub_docs = child_text_splitter.split_documents([doc])
for _doc in _sub_docs:
_doc.metadata[id_key] = _id
sub_docs.extend(_sub_docs)
retriever.vectorstore.add_documents(sub_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))
retriever.vectorstore.similarity_search("justice breyer")[0]
len(retriever.get_relevant_documents("justice breyer")[0].page_content)
from langchain.retrievers.multi_vector import SearchType
retriever.search_type = SearchType.mmr
len(retriever.get_relevant_documents("justice breyer")[0].page_content)
import uuid
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
chain = (
{"doc": lambda x: x.page_content}
| ChatPromptTemplate.from_template("Summarize the following document:\n\n{doc}")
| ChatOpenAI(max_retries=0)
| StrOutputParser()
)
summaries = chain.batch(docs, {"max_concurrency": 5})
vectorstore = Chroma(collection_name="summaries", embedding_function=OpenAIEmbeddings())
store = InMemoryByteStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=id_key,
)
doc_ids = [str(uuid.uuid4()) for _ in docs]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, docs)))
sub_docs = vectorstore.similarity_search("justice breyer")
sub_docs[0]
retrieved_docs = retriever.get_relevant_documents("justice breyer")
len(retrieved_docs[0].page_content)
functions = [
{
"name": "hypothetical_questions",
"description": "Generate hypothetical questions",
"parameters": {
"type": "object",
"properties": {
"questions": {
"type": "array",
"items": {"type": "string"},
},
},
"required": ["questions"],
},
}
]
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
chain = (
{"doc": lambda x: x.page_content}
| ChatPromptTemplate.from_template(
"Generate a list of exactly 3 hypothetical questions that the below document could be used to answer:\n\n{doc}"
)
| ChatOpenAI(max_retries=0, model="gpt-4").bind(
functions=functions, function_call={"name": "hypothetical_questions"}
)
| | JsonKeyOutputFunctionsParser(key_name="questions") | langchain.output_parsers.openai_functions.JsonKeyOutputFunctionsParser |
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-community')
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.schema.messages import AIMessage
from langchain_community.llms.chatglm3 import ChatGLM3
template = """{question}"""
prompt = PromptTemplate.from_template(template)
endpoint_url = "http://127.0.0.1:8000/v1/chat/completions"
messages = [
| AIMessage(content="我将从美国到中国来旅游,出行前希望了解中国的城市") | langchain.schema.messages.AIMessage |
get_ipython().run_cell_magic('writefile', 'discord_chats.txt', "talkingtower — 08/15/2023 11:10 AM\nLove music! Do you like jazz?\nreporterbob — 08/15/2023 9:27 PM\nYes! Jazz is fantastic. Ever heard this one?\nWebsite\nListen to classic jazz track...\n\ntalkingtower — Yesterday at 5:03 AM\nIndeed! Great choice. 🎷\nreporterbob — Yesterday at 5:23 AM\nThanks! How about some virtual sightseeing?\nWebsite\nVirtual tour of famous landmarks...\n\ntalkingtower — Today at 2:38 PM\nSounds fun! Let's explore.\nreporterbob — Today at 2:56 PM\nEnjoy the tour! See you around.\ntalkingtower — Today at 3:00 PM\nThank you! Goodbye! 👋\nreporterbob — Today at 3:02 PM\nFarewell! Happy exploring.\n")
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class DiscordChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
"""
Initialize the Discord chat loader.
Args:
path: Path to the exported Discord chat text file.
"""
self.path = path
self._message_line_regex = re.compile(
r"(.+?) — (\w{3,9} \d{1,2}(?:st|nd|rd|th)?(?:, \d{4})? \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))", # noqa
flags=re.DOTALL,
)
def _load_single_chat_session_from_txt(
self, file_path: str
) -> chat_loaders.ChatSession:
"""
Load a single chat session from a text file.
Args:
file_path: Path to the text file containing the chat messages.
Returns:
A `ChatSession` object containing the loaded chat messages.
"""
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(
r".+? — (\d{2}/\d{2}/\d{4} \d{1,2}:\d{2} (?:AM|PM)|Today at \d{1,2}:\d{2} (?:AM|PM)|Yesterday at \d{1,2}:\d{2} (?:AM|PM))", # noqa
line,
):
if current_sender and current_content:
results.append(
HumanMessage(
content="".join(current_content).strip(),
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
current_sender, current_timestamp = line.split(" — ")[:2]
current_content = [
line[len(current_sender) + len(current_timestamp) + 4 :].strip()
]
elif re.match(r"\[\d{1,2}:\d{2} (?:AM|PM)\]", line.strip()):
results.append(
HumanMessage(
content="".join(current_content).strip(),
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
current_timestamp = line.strip()[1:-1]
current_content = []
else:
current_content.append("\n" + line.strip())
if current_sender and current_content:
results.append(
HumanMessage(
content="".join(current_content).strip(),
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return | chat_loaders.ChatSession(messages=results) | langchain_community.chat_loaders.base.ChatSession |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet wandb')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pandas')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet textstat')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet spacy')
get_ipython().system('python -m spacy download en_core_web_sm')
import os
os.environ["WANDB_API_KEY"] = ""
from datetime import datetime
from langchain.callbacks import StdOutCallbackHandler, WandbCallbackHandler
from langchain_openai import OpenAI
"""Main function.
This function is used to try the callback handler.
Scenarios:
1. OpenAI LLM
2. Chain with multiple SubChains on multiple generations
3. Agent with Tools
"""
session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")
wandb_callback = WandbCallbackHandler(
job_type="inference",
project="langchain_callback_demo",
group=f"minimal_{session_group}",
name="llm",
tags=["test"],
)
callbacks = [StdOutCallbackHandler(), wandb_callback]
llm = OpenAI(temperature=0, callbacks=callbacks)
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
wandb_callback.flush_tracker(llm, name="simple_sequential")
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [
{
"title": "documentary about good video games that push the boundary of game design"
},
{"title": "cocaine bear vs heroin wolf"},
{"title": "the best in class mlops tooling"},
]
synopsis_chain.apply(test_prompts)
wandb_callback.flush_tracker(synopsis_chain, name="agent")
from langchain.agents import AgentType, initialize_agent, load_tools
tools = | load_tools(["serpapi", "llm-math"], llm=llm) | langchain.agents.load_tools |
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool, StructuredTool, tool
@tool
def search(query: str) -> str:
"""Look up things online."""
return "LangChain"
print(search.name)
print(search.description)
print(search.args)
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
print(multiply.name)
print(multiply.description)
print(multiply.args)
class SearchInput(BaseModel):
query: str = Field(description="should be a search query")
@tool("search-tool", args_schema=SearchInput, return_direct=True)
def search(query: str) -> str:
"""Look up things online."""
return "LangChain"
print(search.name)
print(search.description)
print(search.args)
print(search.return_direct)
from typing import Optional, Type
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
class SearchInput(BaseModel):
query: str = Field(description="should be a search query")
class CalculatorInput(BaseModel):
a: int = Field(description="first number")
b: int = Field(description="second number")
class CustomSearchTool(BaseTool):
name = "custom_search"
description = "useful for when you need to answer questions about current events"
args_schema: Type[BaseModel] = SearchInput
def _run(
self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return "LangChain"
async def _arun(
self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("custom_search does not support async")
class CustomCalculatorTool(BaseTool):
name = "Calculator"
description = "useful for when you need to answer questions about math"
args_schema: Type[BaseModel] = CalculatorInput
return_direct: bool = True
def _run(
self, a: int, b: int, run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
"""Use the tool."""
return a * b
async def _arun(
self,
a: int,
b: int,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
raise NotImplementedError("Calculator does not support async")
search = CustomSearchTool()
print(search.name)
print(search.description)
print(search.args)
multiply = CustomCalculatorTool()
print(multiply.name)
print(multiply.description)
print(multiply.args)
print(multiply.return_direct)
def search_function(query: str):
return "LangChain"
search = StructuredTool.from_function(
func=search_function,
name="Search",
description="useful for when you need to answer questions about current events",
)
print(search.name)
print(search.description)
print(search.args)
class CalculatorInput(BaseModel):
a: int = | Field(description="first number") | langchain.pydantic_v1.Field |
get_ipython().system(' pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet')
from pprint import pprint
from docugami import Docugami
from docugami.lib.upload import upload_to_named_docset, wait_for_dgml
DOCSET_NAME = "NTSB Aviation Incident Reports"
FILE_PATHS = [
"/Users/tjaffri/ntsb/Report_CEN23LA277_192541.pdf",
"/Users/tjaffri/ntsb/Report_CEN23LA338_192753.pdf",
"/Users/tjaffri/ntsb/Report_CEN23LA363_192876.pdf",
"/Users/tjaffri/ntsb/Report_CEN23LA394_192995.pdf",
"/Users/tjaffri/ntsb/Report_ERA23LA114_106615.pdf",
"/Users/tjaffri/ntsb/Report_WPR23LA254_192532.pdf",
]
assert len(FILE_PATHS) > 5, "Please provide at least 6 files"
dg_client = Docugami()
dg_docs = upload_to_named_docset(dg_client, FILE_PATHS, DOCSET_NAME)
dgml_paths = wait_for_dgml(dg_client, dg_docs)
pprint(dgml_paths)
from pathlib import Path
from dgml_utils.segmentation import get_chunks_str
dgml_path = dgml_paths[Path(FILE_PATHS[0]).name]
with open(dgml_path, "r") as file:
contents = file.read().encode("utf-8")
chunks = get_chunks_str(
contents,
include_xml_tags=True, # Ensures Docugami XML semantic tags are included in the chunked output (set to False for text-only chunks and tables as Markdown)
max_text_length=1024 * 8, # 8k chars are ~2k tokens for OpenAI.
)
print(f"found {len(chunks)} chunks, here are the first few")
for chunk in chunks[:10]:
print(chunk.text)
with open(dgml_path, "r") as file:
contents = file.read().encode("utf-8")
chunks = get_chunks_str(
contents,
include_xml_tags=False, # text-only chunks and tables as Markdown
max_text_length=1024
* 8, # 8k chars are ~2k tokens for OpenAI. Ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
)
print(f"found {len(chunks)} chunks, here are the first few")
for chunk in chunks[:10]:
print(chunk.text)
import requests
dgml = requests.get(
"https://raw.githubusercontent.com/docugami/dgml-utils/main/python/tests/test_data/article/Jane%20Doe.xml"
).text
chunks = get_chunks_str(dgml, include_xml_tags=True)
len(chunks)
category_counts = {}
for element in chunks:
category = element.structure
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
category_counts
table_elements = [c for c in chunks if "table" in c.structure.split()]
print(f"There are {len(table_elements)} tables")
text_elements = [c for c in chunks if "table" not in c.structure.split()]
print(f"There are {len(text_elements)} text elements")
for element in text_elements[:20]:
print(element.text)
print(table_elements[0].text)
chunks_as_text = get_chunks_str(dgml, include_xml_tags=False)
table_elements_as_text = [c for c in chunks_as_text if "table" in c.structure.split()]
print(table_elements_as_text[0].text)
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0, model="gpt-4")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
tables = [i.text for i in table_elements]
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.vectorstores.chroma import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
def build_retriever(text_elements, tables, table_summaries):
vectorstore = Chroma(
collection_name="summaries", embedding_function=OpenAIEmbeddings()
)
store = | InMemoryStore() | langchain.storage.InMemoryStore |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet clickhouse-connect')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["OPENAI_API_BASE"] = getpass.getpass("OpenAI Base:")
os.environ["MYSCALE_HOST"] = getpass.getpass("MyScale Host:")
os.environ["MYSCALE_PORT"] = getpass.getpass("MyScale Port:")
os.environ["MYSCALE_USERNAME"] = getpass.getpass("MyScale Username:")
os.environ["MYSCALE_PASSWORD"] = getpass.getpass("MyScale Password:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import MyScale
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
for d in docs:
d.metadata = {"some": "metadata"}
docsearch = | MyScale.from_documents(docs, embeddings) | langchain_community.vectorstores.MyScale.from_documents |
from langchain.memory import ConversationKGMemory
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
memory = ConversationKGMemory(llm=llm)
memory.save_context({"input": "say hi to sam"}, {"output": "who is sam"})
memory.save_context({"input": "sam is a friend"}, {"output": "okay"})
memory.load_memory_variables({"input": "who is sam"})
memory = ConversationKGMemory(llm=llm, return_messages=True)
memory.save_context({"input": "say hi to sam"}, {"output": "who is sam"})
memory.save_context({"input": "sam is a friend"}, {"output": "okay"})
memory.load_memory_variables({"input": "who is sam"})
memory.get_current_entities("what's Sams favorite color?")
memory.get_knowledge_triplets("her favorite color is red")
llm = OpenAI(temperature=0)
from langchain.chains import ConversationChain
from langchain.prompts.prompt import PromptTemplate
template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context.
If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate.
Relevant Information:
{history}
Conversation:
Human: {input}
AI:"""
prompt = | PromptTemplate(input_variables=["history", "input"], template=template) | langchain.prompts.prompt.PromptTemplate |
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://www.espn.com/")
data = loader.load()
data
"""
import requests
from bs4 import BeautifulSoup
html_doc = requests.get("{INSERT_NEW_URL_HERE}")
soup = BeautifulSoup(html_doc.text, 'html.parser')
"""
loader = | WebBaseLoader(["https://www.espn.com/", "https://google.com"]) | langchain_community.document_loaders.WebBaseLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet docx2txt')
from langchain_community.document_loaders import Docx2txtLoader
loader = Docx2txtLoader("example_data/fake.docx")
data = loader.load()
data
from langchain_community.document_loaders import UnstructuredWordDocumentLoader
loader = | UnstructuredWordDocumentLoader("example_data/fake.docx") | langchain_community.document_loaders.UnstructuredWordDocumentLoader |
get_ipython().system('pip install -U openai langchain langchain-experimental')
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=256)
chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "What is this image showing"},
{
"type": "image_url",
"image_url": {
"url": "https://raw.githubusercontent.com/langchain-ai/langchain/master/docs/static/img/langchain_stack.png",
"detail": "auto",
},
},
]
)
]
)
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
interpreter_assistant = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=[{"type": "code_interpreter"}],
model="gpt-4-1106-preview",
)
output = interpreter_assistant.invoke({"content": "What's 10 - 4 raised to the 2.7"})
output
get_ipython().system('pip install e2b duckduckgo-search')
from langchain.tools import DuckDuckGoSearchRun, E2BDataAnalysisTool
tools = [E2BDataAnalysisTool(api_key="..."), DuckDuckGoSearchRun()]
agent = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant e2b tool",
instructions="You are a personal math tutor. Write and run code to answer math questions. You can also search the internet.",
tools=tools,
model="gpt-4-1106-preview",
as_agent=True,
)
from langchain.agents import AgentExecutor
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke({"content": "What's the weather in SF today divided by 2.7"})
agent = OpenAIAssistantRunnable.create_assistant(
name="langchain assistant e2b tool",
instructions="You are a personal math tutor. Write and run code to answer math questions.",
tools=tools,
model="gpt-4-1106-preview",
as_agent=True,
)
from langchain_core.agents import AgentFinish
def execute_agent(agent, tools, input):
tool_map = {tool.name: tool for tool in tools}
response = agent.invoke(input)
while not isinstance(response, AgentFinish):
tool_outputs = []
for action in response:
tool_output = tool_map[action.tool].invoke(action.tool_input)
print(action.tool, action.tool_input, tool_output, end="\n\n")
tool_outputs.append(
{"output": tool_output, "tool_call_id": action.tool_call_id}
)
response = agent.invoke(
{
"tool_outputs": tool_outputs,
"run_id": action.run_id,
"thread_id": action.thread_id,
}
)
return response
response = execute_agent(agent, tools, {"content": "What's 10 - 4 raised to the 2.7"})
print(response.return_values["output"])
next_response = execute_agent(
agent, tools, {"content": "now add 17.241", "thread_id": response.thread_id}
)
print(next_response.return_values["output"])
chat = ChatOpenAI(model="gpt-3.5-turbo-1106").bind(
response_format={"type": "json_object"}
)
output = chat.invoke(
[
SystemMessage(
content="Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list."
),
HumanMessage(
content="Google was founded in the USA, while Deepmind was founded in the UK"
),
]
)
print(output.content)
import json
json.loads(output.content)
chat = ChatOpenAI(model="gpt-3.5-turbo-1106")
output = chat.generate(
[
[
SystemMessage(
content="Extract the 'name' and 'origin' of any companies mentioned in the following statement. Return a JSON list."
),
HumanMessage(
content="Google was founded in the USA, while Deepmind was founded in the UK"
),
]
]
)
print(output.llm_output)
from typing import Literal
from langchain.output_parsers.openai_tools import PydanticToolsParser
from langchain.utils.openai_functions import convert_pydantic_to_openai_tool
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
class GetCurrentWeather(BaseModel):
"""Get the current weather in a location."""
location: str = Field(description="The city and state, e.g. San Francisco, CA")
unit: Literal["celsius", "fahrenheit"] = Field(
default="fahrenheit", description="The temperature unit, default to fahrenheit"
)
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful assistant"), ("user", "{input}")]
)
model = ChatOpenAI(model="gpt-3.5-turbo-1106").bind(
tools=[convert_pydantic_to_openai_tool(GetCurrentWeather)]
)
chain = prompt | model | | PydanticToolsParser(tools=[GetCurrentWeather]) | langchain.output_parsers.openai_tools.PydanticToolsParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints')
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvapi_key = getpass.getpass("Enter your NVIDIA API key: ")
assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvapi_key
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
print(llm.batch(["What's 2*3?", "What's 2*6?"]))
for chunk in llm.stream("How far can a seagull fly in one day?"):
print(chunk.content, end="|")
async for chunk in llm.astream(
"How long does it take for monarch butterflies to migrate?"
):
print(chunk.content, end="|")
ChatNVIDIA.get_available_models()
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser()
for txt in chain.stream({"input": "What's your name?"}):
print(txt, end="")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert coding AI. Respond only in valid python; no narration whatsoever.",
),
("user", "{input}"),
]
)
chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser()
for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}):
print(txt, end="")
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="nemotron_steerlm_8b")
complex_result = llm.invoke(
"What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0}
)
print("Un-creative\n")
print(complex_result.content)
print("\n\nCreative\n")
creative_result = llm.invoke(
"What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9}
)
print(creative_result.content)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")]
)
chain = (
prompt
| ChatNVIDIA(model="nemotron_steerlm_8b").bind(
labels={"creativity": 9, "complexity": 0, "verbosity": 9}
)
| StrOutputParser()
)
for txt in chain.stream({"input": "Why is a PB&J?"}):
print(txt, end="")
import IPython
import requests
image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/nvidia-picasso-3c33-p@2x.jpg" ## Large Image
image_content = requests.get(image_url).content
IPython.display.Image(image_content)
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="playground_neva_22b")
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
]
)
from langchain_core.messages import HumanMessage
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
],
labels={"creativity": 0, "quality": 9, "complexity": 0, "verbosity": 0},
)
import IPython
import requests
image_url = "https://picsum.photos/seed/kitten/300/200"
image_content = requests.get(image_url).content
IPython.display.Image(image_content)
import base64
from langchain_core.messages import HumanMessage
b64_string = base64.b64encode(image_content).decode("utf-8")
llm.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{b64_string}"},
},
]
)
]
)
base64_with_mime_type = f"data:image/png;base64,{b64_string}"
llm.invoke(f'What\'s in this image?\n<img src="{base64_with_mime_type}" />')
from langchain_nvidia_ai_endpoints import ChatNVIDIA
kosmos = ChatNVIDIA(model="kosmos_2")
from langchain_core.messages import HumanMessage
def drop_streaming_key(d):
"""Takes in payload dictionary, outputs new payload dictionary"""
if "stream" in d:
d.pop("stream")
return d
kosmos = ChatNVIDIA(model="kosmos_2")
kosmos.client.payload_fn = drop_streaming_key
kosmos.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": "Describe this image:"},
{"type": "image_url", "image_url": {"url": image_url}},
]
)
]
)
import base64
from io import BytesIO
from PIL import Image
img_gen = ChatNVIDIA(model="sdxl_turbo")
def to_sdxl_payload(d):
if d:
d = {"prompt": d.get("messages", [{}])[0].get("content")}
d["inference_steps"] = 4 ## why not add another argument?
return d
img_gen.client.payload_fn = to_sdxl_payload
def to_pil_img(d):
return Image.open(BytesIO(base64.b64decode(d)))
(img_gen | StrOutputParser() | to_pil_img).invoke("white cat playing")
from langchain_core.messages import ChatMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_nvidia_ai_endpoints import ChatNVIDIA
prompt = ChatPromptTemplate.from_messages(
[
ChatMessage(
role="context", content="Parrots and Cats have signed the peace accord."
),
("user", "{input}"),
]
)
llm = ChatNVIDIA(model="nemotron_qa_8b")
chain = prompt | llm | StrOutputParser()
chain.invoke({"input": "What was signed?"})
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain')
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
chat = ChatNVIDIA(model="mixtral_8x7b", temperature=0.1, max_tokens=100, top_p=1.0)
conversation = ConversationChain(llm=chat, memory= | ConversationBufferMemory() | langchain.memory.ConversationBufferMemory |
from typing import Callable, List
import tenacity
from langchain.output_parsers import RegexParser
from langchain.prompts import PromptTemplate
from langchain.schema import (
HumanMessage,
SystemMessage,
)
from langchain_openai import ChatOpenAI
class DialogueAgent:
def __init__(
self,
name: str,
system_message: SystemMessage,
model: ChatOpenAI,
) -> None:
self.name = name
self.system_message = system_message
self.model = model
self.prefix = f"{self.name}: "
self.reset()
def reset(self):
self.message_history = ["Here is the conversation so far."]
def send(self) -> str:
"""
Applies the chatmodel to the message history
and returns the message string
"""
message = self.model(
[
self.system_message,
HumanMessage(content="\n".join(self.message_history + [self.prefix])),
]
)
return message.content
def receive(self, name: str, message: str) -> None:
"""
Concatenates {message} spoken by {name} into message history
"""
self.message_history.append(f"{name}: {message}")
class DialogueSimulator:
def __init__(
self,
agents: List[DialogueAgent],
selection_function: Callable[[int, List[DialogueAgent]], int],
) -> None:
self.agents = agents
self._step = 0
self.select_next_speaker = selection_function
def reset(self):
for agent in self.agents:
agent.reset()
def inject(self, name: str, message: str):
"""
Initiates the conversation with a {message} from {name}
"""
for agent in self.agents:
agent.receive(name, message)
self._step += 1
def step(self) -> tuple[str, str]:
speaker_idx = self.select_next_speaker(self._step, self.agents)
speaker = self.agents[speaker_idx]
message = speaker.send()
for receiver in self.agents:
receiver.receive(speaker.name, message)
self._step += 1
return speaker.name, message
class BiddingDialogueAgent(DialogueAgent):
def __init__(
self,
name,
system_message: SystemMessage,
bidding_template: PromptTemplate,
model: ChatOpenAI,
) -> None:
super().__init__(name, system_message, model)
self.bidding_template = bidding_template
def bid(self) -> str:
"""
Asks the chat model to output a bid to speak
"""
prompt = PromptTemplate(
input_variables=["message_history", "recent_message"],
template=self.bidding_template,
).format(
message_history="\n".join(self.message_history),
recent_message=self.message_history[-1],
)
bid_string = self.model([ | SystemMessage(content=prompt) | langchain.schema.SystemMessage |
get_ipython().system('poetry run pip install dgml-utils==0.3.0 --upgrade --quiet')
import os
from langchain_community.document_loaders import DocugamiLoader
DOCUGAMI_API_KEY = os.environ.get("DOCUGAMI_API_KEY")
docset_id = "26xpy3aes7xp"
document_ids = ["d7jqdzcj50sj", "cgd1eacfkchw"]
loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids)
chunks = loader.load()
len(chunks)
loader.min_text_length = 64
loader.include_xml_tags = True
chunks = loader.load()
for chunk in chunks[:5]:
print(chunk)
get_ipython().system('poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib')
loader = DocugamiLoader(docset_id="zo954yqy53wp")
chunks = loader.load()
for chunk in chunks:
stripped_metadata = chunk.metadata.copy()
for key in chunk.metadata:
if key not in ["name", "xpath", "id", "structure"]:
del stripped_metadata[key]
chunk.metadata = stripped_metadata
print(len(chunks))
from langchain.chains import RetrievalQA
from langchain_community.vectorstores.chroma import Chroma
from langchain_openai import OpenAI, OpenAIEmbeddings
embedding = OpenAIEmbeddings()
vectordb = Chroma.from_documents(documents=chunks, embedding=embedding)
retriever = vectordb.as_retriever()
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=retriever, return_source_documents=True
)
qa_chain("What can tenants do with signage on their properties?")
chain_response = qa_chain("What is rentable area for the property owned by DHA Group?")
chain_response["result"] # correct answer should be 13,500 sq ft
chain_response["source_documents"]
loader = DocugamiLoader(docset_id="zo954yqy53wp")
loader.include_xml_tags = (
True # for additional semantics from the Docugami knowledge graph
)
chunks = loader.load()
print(chunks[0].metadata)
get_ipython().system('poetry run pip install --upgrade lark --quiet')
from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_community.vectorstores.chroma import Chroma
EXCLUDE_KEYS = ["id", "xpath", "structure"]
metadata_field_info = [
AttributeInfo(
name=key,
description=f"The {key} for this chunk",
type="string",
)
for key in chunks[0].metadata
if key.lower() not in EXCLUDE_KEYS
]
document_content_description = "Contents of this chunk"
llm = OpenAI(temperature=0)
vectordb = | Chroma.from_documents(documents=chunks, embedding=embedding) | langchain_community.vectorstores.chroma.Chroma.from_documents |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet titan-iris')
from langchain_community.llms import TitanTakeoff
llm = TitanTakeoff(
base_url="http://localhost:8000", generate_max_length=128, temperature=1.0
)
prompt = "What is the largest planet in the solar system?"
llm(prompt)
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = TitanTakeoff(
callback_manager=CallbackManager([ | StreamingStdOutCallbackHandler() | langchain.callbacks.streaming_stdout.StreamingStdOutCallbackHandler |
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pypdf pymongo langchain-openai tiktoken')
import getpass
MONGODB_ATLAS_CLUSTER_URI = getpass.getpass("MongoDB Atlas Cluster URI:")
from pymongo import MongoClient
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
from langchain_community.document_loaders import PyPDFLoader
loader = | PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf") | langchain_community.document_loaders.PyPDFLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints')
import getpass
import os
if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"):
nvapi_key = getpass.getpass("Enter your NVIDIA API key: ")
assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key"
os.environ["NVIDIA_API_KEY"] = nvapi_key
from langchain_nvidia_ai_endpoints import ChatNVIDIA
llm = ChatNVIDIA(model="mixtral_8x7b")
result = llm.invoke("Write a ballad about LangChain.")
print(result.content)
print(llm.batch(["What's 2*3?", "What's 2*6?"]))
for chunk in llm.stream("How far can a seagull fly in one day?"):
print(chunk.content, end="|")
async for chunk in llm.astream(
"How long does it take for monarch butterflies to migrate?"
):
print(chunk.content, end="|")
| ChatNVIDIA.get_available_models() | langchain_nvidia_ai_endpoints.ChatNVIDIA.get_available_models |
from langchain_community.tools.edenai import (
EdenAiExplicitImageTool,
EdenAiObjectDetectionTool,
EdenAiParsingIDTool,
EdenAiParsingInvoiceTool,
EdenAiSpeechToTextTool,
EdenAiTextModerationTool,
EdenAiTextToSpeechTool,
)
from langchain.agents import AgentType, initialize_agent
from langchain_community.llms import EdenAI
llm = EdenAI(
feature="text", provider="openai", params={"temperature": 0.2, "max_tokens": 250}
)
tools = [
EdenAiTextModerationTool(providers=["openai"], language="en"),
EdenAiObjectDetectionTool(providers=["google", "api4ai"]),
EdenAiTextToSpeechTool(providers=["amazon"], language="en", voice="MALE"),
| EdenAiExplicitImageTool(providers=["amazon", "google"]) | langchain_community.tools.edenai.EdenAiExplicitImageTool |
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-openai langchain-anthropic langchain-community wikipedia')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_community.retrievers import WikipediaRetriever
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
wiki = WikipediaRetriever(top_k_results=6, doc_content_chars_max=2000)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, answer the user question. If none of the articles answer the question, just say you don't know.\n\nHere are the Wikipedia articles:{context}",
),
("human", "{question}"),
]
)
prompt.pretty_print()
from operator import itemgetter
from typing import List
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import (
RunnableLambda,
RunnableParallel,
RunnablePassthrough,
)
def format_docs(docs: List[Document]) -> str:
"""Convert Documents to a single string.:"""
formatted = [
f"Article Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}"
for doc in docs
]
return "\n\n" + "\n\n".join(formatted)
format = itemgetter("docs") | RunnableLambda(format_docs)
answer = prompt | llm | StrOutputParser()
chain = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format)
.assign(answer=answer)
.pick(["answer", "docs"])
)
chain.invoke("How fast are cheetahs?")
from langchain_core.pydantic_v1 import BaseModel, Field
class cited_answer(BaseModel):
"""Answer the user question based only on the given sources, and cite the sources used."""
answer: str = Field(
...,
description="The answer to the user question, which is based only on the given sources.",
)
citations: List[int] = Field(
...,
description="The integer IDs of the SPECIFIC sources which justify the answer.",
)
llm_with_tool = llm.bind_tools(
[cited_answer],
tool_choice="cited_answer",
)
example_q = """What Brian's height?
Source: 1
Information: Suzy is 6'2"
Source: 2
Information: Jeremiah is blonde
Source: 3
Information: Brian is 3 inches shorted than Suzy"""
llm_with_tool.invoke(example_q)
from langchain.output_parsers.openai_tools import JsonOutputKeyToolsParser
output_parser = JsonOutputKeyToolsParser(key_name="cited_answer", return_single=True)
(llm_with_tool | output_parser).invoke(example_q)
def format_docs_with_id(docs: List[Document]) -> str:
formatted = [
f"Source ID: {i}\nArticle Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}"
for i, doc in enumerate(docs)
]
return "\n\n" + "\n\n".join(formatted)
format_1 = itemgetter("docs") | RunnableLambda(format_docs_with_id)
answer_1 = prompt | llm_with_tool | output_parser
chain_1 = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format_1)
.assign(cited_answer=answer_1)
.pick(["cited_answer", "docs"])
)
chain_1.invoke("How fast are cheetahs?")
class Citation(BaseModel):
source_id: int = Field(
...,
description="The integer ID of a SPECIFIC source which justifies the answer.",
)
quote: str = Field(
...,
description="The VERBATIM quote from the specified source that justifies the answer.",
)
class quoted_answer(BaseModel):
"""Answer the user question based only on the given sources, and cite the sources used."""
answer: str = Field(
...,
description="The answer to the user question, which is based only on the given sources.",
)
citations: List[Citation] = Field(
..., description="Citations from the given sources that justify the answer."
)
output_parser_2 = | JsonOutputKeyToolsParser(key_name="quoted_answer", return_single=True) | langchain.output_parsers.openai_tools.JsonOutputKeyToolsParser |
get_ipython().system('pip3 install cerebrium')
import os
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import CerebriumAI
os.environ["CEREBRIUMAI_API_KEY"] = "YOUR_KEY_HERE"
llm = CerebriumAI(endpoint_url="YOUR ENDPOINT URL HERE")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = | PromptTemplate.from_template(template) | langchain.prompts.PromptTemplate.from_template |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet dingodb')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet git+https://git@github.com/dingodb/pydingo.git')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Dingo
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
documents = TextLoader("../../state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
retriever = FAISS.from_documents(texts, OpenAIEmbeddings()).as_retriever()
docs = retriever.get_relevant_documents(
"What did the president say about Ketanji Brown Jackson"
)
pretty_print_docs(docs)
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
compressed_docs = compression_retriever.get_relevant_documents(
"What did the president say about Ketanji Jackson Brown"
)
pretty_print_docs(compressed_docs)
from langchain.retrievers.document_compressors import LLMChainFilter
_filter = LLMChainFilter.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=_filter, base_retriever=retriever
)
compressed_docs = compression_retriever.get_relevant_documents(
"What did the president say about Ketanji Jackson Brown"
)
pretty_print_docs(compressed_docs)
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
embeddings_filter = EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76)
compression_retriever = ContextualCompressionRetriever(
base_compressor=embeddings_filter, base_retriever=retriever
)
compressed_docs = compression_retriever.get_relevant_documents(
"What did the president say about Ketanji Jackson Brown"
)
pretty_print_docs(compressed_docs)
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_text_splitters import CharacterTextSplitter
splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0, separator=". ")
redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings)
relevant_filter = | EmbeddingsFilter(embeddings=embeddings, similarity_threshold=0.76) | langchain.retrievers.document_compressors.EmbeddingsFilter |
import os
import chromadb
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain.retrievers.merger_retriever import MergerRetriever
from langchain_community.document_transformers import (
EmbeddingsClusteringFilter,
EmbeddingsRedundantFilter,
)
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
all_mini = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
multi_qa_mini = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-dot-v1")
filter_embeddings = OpenAIEmbeddings()
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "db")
client_settings = chromadb.config.Settings(
is_persistent=True,
persist_directory=DB_DIR,
anonymized_telemetry=False,
)
db_all = Chroma(
collection_name="project_store_all",
persist_directory=DB_DIR,
client_settings=client_settings,
embedding_function=all_mini,
)
db_multi_qa = Chroma(
collection_name="project_store_multi",
persist_directory=DB_DIR,
client_settings=client_settings,
embedding_function=multi_qa_mini,
)
retriever_all = db_all.as_retriever(
search_type="similarity", search_kwargs={"k": 5, "include_metadata": True}
)
retriever_multi_qa = db_multi_qa.as_retriever(
search_type="mmr", search_kwargs={"k": 5, "include_metadata": True}
)
lotr = MergerRetriever(retrievers=[retriever_all, retriever_multi_qa])
filter = EmbeddingsRedundantFilter(embeddings=filter_embeddings)
pipeline = | DocumentCompressorPipeline(transformers=[filter]) | langchain.retrievers.document_compressors.DocumentCompressorPipeline |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sentence-transformers > /dev/null')
from langchain.chains import LLMChain, StuffDocumentsChain
from langchain.prompts import PromptTemplate
from langchain_community.document_transformers import (
LongContextReorder,
)
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAI
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
texts = [
"Basquetball is a great sport.",
"Fly me to the moon is one of my favourite songs.",
"The Celtics are my favourite team.",
"This is a document about the Boston Celtics",
"I simply love going to the movies",
"The Boston Celtics won the game by 20 points",
"This is just a random text.",
"Elden Ring is one of the best games in the last 15 years.",
"L. Kornet is one of the best Celtics players.",
"Larry Bird was an iconic NBA player.",
]
retriever = Chroma.from_texts(texts, embedding=embeddings).as_retriever(
search_kwargs={"k": 10}
)
query = "What can you tell me about the Celtics?"
docs = retriever.get_relevant_documents(query)
docs
reordering = | LongContextReorder() | langchain_community.document_transformers.LongContextReorder |
import runhouse as rh
from langchain_community.embeddings import (
SelfHostedEmbeddings,
SelfHostedHuggingFaceEmbeddings,
SelfHostedHuggingFaceInstructEmbeddings,
)
gpu = rh.cluster(name="rh-a10x", instance_type="A100:1", use_spot=False)
embeddings = SelfHostedHuggingFaceEmbeddings(hardware=gpu)
text = "This is a test document."
query_result = embeddings.embed_query(text)
embeddings = | SelfHostedHuggingFaceInstructEmbeddings(hardware=gpu) | langchain_community.embeddings.SelfHostedHuggingFaceInstructEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet scikit-learn')
from langchain_community.retrievers import TFIDFRetriever
retriever = TFIDFRetriever.from_texts(["foo", "bar", "world", "hello", "foo bar"])
from langchain_core.documents import Document
retriever = TFIDFRetriever.from_documents(
[
Document(page_content="foo"),
Document(page_content="bar"),
Document(page_content="world"),
Document(page_content="hello"),
Document(page_content="foo bar"),
]
)
result = retriever.get_relevant_documents("foo")
result
retriever.save_local("testing.pkl")
retriever_copy = | TFIDFRetriever.load_local("testing.pkl") | langchain_community.retrievers.TFIDFRetriever.load_local |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet redis redisvl langchain-openai tiktoken')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redis_url = "redis://localhost:6379"
redis_url = "redis://:secret@redis:7379/2"
redis_url = "redis://joe:secret@redis/0"
redis_url = "redis+sentinel://localhost:26379"
redis_url = "redis+sentinel://joe:secret@redis"
redis_url = "redis+sentinel://redis:26379/zone-1/2"
redis_url = "rediss://localhost:6379"
redis_url = "rediss+sentinel://localhost"
metadata = [
{
"user": "john",
"age": 18,
"job": "engineer",
"credit_score": "high",
},
{
"user": "derrick",
"age": 45,
"job": "doctor",
"credit_score": "low",
},
{
"user": "nancy",
"age": 94,
"job": "doctor",
"credit_score": "high",
},
{
"user": "tyler",
"age": 100,
"job": "engineer",
"credit_score": "high",
},
{
"user": "joe",
"age": 35,
"job": "dentist",
"credit_score": "medium",
},
]
texts = ["foo", "foo", "foo", "bar", "bar"]
from langchain_community.vectorstores.redis import Redis
rds = Redis.from_texts(
texts,
embeddings,
metadatas=metadata,
redis_url="redis://localhost:6379",
index_name="users",
)
rds.index_name
get_ipython().system('rvl index listall')
get_ipython().system('rvl index info -i users')
get_ipython().system('rvl stats -i users')
results = rds.similarity_search("foo")
print(results[0].page_content)
results = rds.similarity_search("foo", k=3)
meta = results[1].metadata
print("Key of the document in Redis: ", meta.pop("id"))
print("Metadata of the document: ", meta)
results = rds.similarity_search_with_score("foo", k=5)
for result in results:
print(f"Content: {result[0].page_content} --- Score: {result[1]}")
results = rds.similarity_search_with_score("foo", k=5, distance_threshold=0.1)
for result in results:
print(f"Content: {result[0].page_content} --- Score: {result[1]}")
results = rds.similarity_search_with_relevance_scores("foo", k=5)
for result in results:
print(f"Content: {result[0].page_content} --- Similiarity: {result[1]}")
results = rds.similarity_search_with_relevance_scores("foo", k=5, score_threshold=0.9)
for result in results:
print(f"Content: {result[0].page_content} --- Similarity: {result[1]}")
new_document = ["baz"]
new_metadata = [{"user": "sam", "age": 50, "job": "janitor", "credit_score": "high"}]
rds.add_texts(new_document, new_metadata)
results = rds.similarity_search("baz", k=3)
print(results[0].metadata)
results = rds.max_marginal_relevance_search("foo")
results = rds.max_marginal_relevance_search("foo", lambda_mult=0.1)
rds.write_schema("redis_schema.yaml")
new_rds = Redis.from_existing_index(
embeddings,
index_name="users",
redis_url="redis://localhost:6379",
schema="redis_schema.yaml",
)
results = new_rds.similarity_search("foo", k=3)
print(results[0].metadata)
new_rds.schema == rds.schema
index_schema = {
"tag": [{"name": "credit_score"}],
"text": [{"name": "user"}, {"name": "job"}],
"numeric": [{"name": "age"}],
}
rds, keys = Redis.from_texts_return_keys(
texts,
embeddings,
metadatas=metadata,
redis_url="redis://localhost:6379",
index_name="users_modified",
index_schema=index_schema, # pass in the new index schema
)
from langchain_community.vectorstores.redis import RedisText
is_engineer = RedisText("job") == "engineer"
results = rds.similarity_search("foo", k=3, filter=is_engineer)
print("Job:", results[0].metadata["job"])
print("Engineers in the dataset:", len(results))
starts_with_doc = RedisText("job") % "doc*"
results = rds.similarity_search("foo", k=3, filter=starts_with_doc)
for result in results:
print("Job:", result.metadata["job"])
print("Jobs in dataset that start with 'doc':", len(results))
from langchain_community.vectorstores.redis import RedisNum
is_over_18 = | RedisNum("age") | langchain_community.vectorstores.redis.RedisNum |
from langchain.prompts import ChatMessagePromptTemplate
prompt = "May the {subject} be with you"
chat_message_prompt = ChatMessagePromptTemplate.from_template(
role="Jedi", template=prompt
)
chat_message_prompt.format(subject="force")
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
human_prompt = "Summarize our conversation so far in {word_count} words."
human_message_template = | HumanMessagePromptTemplate.from_template(human_prompt) | langchain.prompts.HumanMessagePromptTemplate.from_template |
from getpass import getpass
from langchain_community.document_loaders.larksuite import LarkSuiteDocLoader
DOMAIN = input("larksuite domain")
ACCESS_TOKEN = getpass("larksuite tenant_access_token or user_access_token")
DOCUMENT_ID = input("larksuite document id")
from pprint import pprint
larksuite_loader = LarkSuiteDocLoader(DOMAIN, ACCESS_TOKEN, DOCUMENT_ID)
docs = larksuite_loader.load()
pprint(docs)
from langchain.chains.summarize import load_summarize_chain
from langchain_community.llms.fake import FakeListLLM
llm = FakeListLLM()
chain = | load_summarize_chain(llm, chain_type="map_reduce") | langchain.chains.summarize.load_summarize_chain |
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from typing import List, Tuple
from dotenv import load_dotenv
load_dotenv()
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Lantern
from langchain_core.documents import Document
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = | OpenAIEmbeddings() | langchain_community.embeddings.OpenAIEmbeddings |
from typing import List
from langchain.output_parsers import YamlOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0)
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = | Field(description="answer to resolve the joke") | langchain_core.pydantic_v1.Field |
from langchain_community.document_loaders import AirbyteJSONLoader
get_ipython().system('ls /tmp/airbyte_local/json_data/')
loader = | AirbyteJSONLoader("/tmp/airbyte_local/json_data/_airbyte_raw_pokemon.jsonl") | langchain_community.document_loaders.AirbyteJSONLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langsmith langchainhub --quiet')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai tiktoken pandas duckduckgo-search --quiet')
import os
from uuid import uuid4
unique_id = uuid4().hex[0:8]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = f"Tracing Walkthrough - {unique_id}"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = "<YOUR-API-KEY>" # Update to your API key
os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>"
from langsmith import Client
client = Client()
from langchain import hub
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_openai import ChatOpenAI
prompt = hub.pull("wfh/langsmith-agent-prompt:5d466cbc")
llm = ChatOpenAI(
model="gpt-3.5-turbo-16k",
temperature=0,
)
tools = [
DuckDuckGoSearchResults(
name="duck_duck_go"
), # General internet search using DuckDuckGo
]
llm_with_tools = llm.bind_tools(tools)
runnable_agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_to_openai_tool_messages(
x["intermediate_steps"]
),
}
| prompt
| llm_with_tools
| | OpenAIToolsAgentOutputParser() | langchain.agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser |
REGION = "us-central1" # @param {type:"string"}
INSTANCE = "test-instance" # @param {type:"string"}
DATABASE = "test" # @param {type:"string"}
TABLE_NAME = "test-default" # @param {type:"string"}
get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-cloud-sql-mysql')
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
from google.colab import auth
auth.authenticate_user()
get_ipython().system('gcloud services enable sqladmin.googleapis.com')
from langchain_google_cloud_sql_mysql import MySQLEngine
engine = MySQLEngine.from_instance(
project_id=PROJECT_ID, region=REGION, instance=INSTANCE, database=DATABASE
)
engine.init_document_table(TABLE_NAME, overwrite_existing=True)
from langchain_core.documents import Document
from langchain_google_cloud_sql_mysql import MySQLDocumentSaver
test_docs = [
Document(
page_content="Apple Granny Smith 150 0.99 1",
metadata={"fruit_id": 1},
),
Document(
page_content="Banana Cavendish 200 0.59 0",
metadata={"fruit_id": 2},
),
Document(
page_content="Orange Navel 80 1.29 1",
metadata={"fruit_id": 3},
),
]
saver = MySQLDocumentSaver(engine=engine, table_name=TABLE_NAME)
saver.add_documents(test_docs)
from langchain_google_cloud_sql_mysql import MySQLLoader
loader = MySQLLoader(engine=engine, table_name=TABLE_NAME)
docs = loader.lazy_load()
for doc in docs:
print("Loaded documents:", doc)
from langchain_google_cloud_sql_mysql import MySQLLoader
loader = | MySQLLoader(
engine=engine,
query=f"select * from `{TABLE_NAME}` where JSON_EXTRACT(langchain_metadata, '$.fruit_id') | langchain_google_cloud_sql_mysql.MySQLLoader |
from langchain.agents import AgentType, initialize_agent
from langchain.chains import LLMMathChain
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.tools import Tool
from langchain_openai import ChatOpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet numexpr')
llm = ChatOpenAI(temperature=0, model="gpt-4")
llm_math_chain = | LLMMathChain.from_llm(llm=llm, verbose=True) | langchain.chains.LLMMathChain.from_llm |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet transformers huggingface_hub > /dev/null')
from langchain.agents import load_huggingface_tool
tool = | load_huggingface_tool("lysandre/hf-model-downloads") | langchain.agents.load_huggingface_tool |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer --upgrade')
import promptlayer # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.schema import (
HumanMessage,
)
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
temperature=0,
callbacks=[ | PromptLayerCallbackHandler(pl_tags=["chatopenai"]) | langchain.callbacks.PromptLayerCallbackHandler |
from langchain_community.document_loaders import UnstructuredURLLoader
urls = [
"https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-8-2023",
"https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-9-2023",
]
loader = | UnstructuredURLLoader(urls=urls) | langchain_community.document_loaders.UnstructuredURLLoader |
from langchain_experimental.pal_chain import PALChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0, max_tokens=512)
pal_chain = PALChain.from_math_prompt(llm, verbose=True)
question = "Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have?"
pal_chain.run(question)
pal_chain = | PALChain.from_colored_object_prompt(llm, verbose=True) | langchain_experimental.pal_chain.PALChain.from_colored_object_prompt |
from langchain.chains import LLMSummarizationCheckerChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2)
text = """
Your 9-year old might like these recent discoveries made by The James Webb Space Telescope (JWST):
• In 2023, The JWST spotted a number of galaxies nicknamed "green peas." They were given this name because they are small, round, and green, like peas.
• The telescope captured images of galaxies that are over 13 billion years old. This means that the light from these galaxies has been traveling for over 13 billion years to reach us.
• JWST took the very first pictures of a planet outside of our own solar system. These distant worlds are called "exoplanets." Exo means "from outside."
These discoveries can spark a child's imagination about the infinite wonders of the universe."""
checker_chain.run(text)
from langchain.chains import LLMSummarizationCheckerChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3)
text = "The Greenland Sea is an outlying portion of the Arctic Ocean located between Iceland, Norway, the Svalbard archipelago and Greenland. It has an area of 465,000 square miles and is one of five oceans in the world, alongside the Pacific Ocean, Atlantic Ocean, Indian Ocean, and the Southern Ocean. It is the smallest of the five oceans and is covered almost entirely by water, some of which is frozen in the form of glaciers and icebergs. The sea is named after the island of Greenland, and is the Arctic Ocean's main outlet to the Atlantic. It is often frozen over so navigation is limited, and is considered the northern branch of the Norwegian Sea."
checker_chain.run(text)
from langchain.chains import LLMSummarizationCheckerChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
checker_chain = | LLMSummarizationCheckerChain.from_llm(llm, max_checks=3, verbose=True) | langchain.chains.LLMSummarizationCheckerChain.from_llm |
from langchain_community.utilities.dataforseo_api_search import DataForSeoAPIWrapper
import os
os.environ["DATAFORSEO_LOGIN"] = "your_api_access_username"
os.environ["DATAFORSEO_PASSWORD"] = "your_api_access_password"
wrapper = | DataForSeoAPIWrapper() | langchain_community.utilities.dataforseo_api_search.DataForSeoAPIWrapper |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas')
ORG_ID = "..."
import getpass
import os
from langchain.chains import RetrievalQA
from langchain.vectorstores.deeplake import DeepLake
from langchain_openai import OpenAIChat, OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ")
os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass(
"Enter your ActiveLoop API token: "
) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens"
token = os.getenv("ACTIVELOOP_TOKEN")
openai_embeddings = OpenAIEmbeddings()
db = DeepLake(
dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop
embedding=openai_embeddings,
runtime={"tensor_db": True},
token=token,
read_only=False,
)
from urllib.parse import urljoin
import requests
from bs4 import BeautifulSoup
def get_all_links(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Failed to retrieve the page: {url}")
return []
soup = BeautifulSoup(response.content, "html.parser")
links = [
urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"]
]
return links
base_url = "https://docs.deeplake.ai/en/latest/"
all_links = get_all_links(base_url)
from langchain.document_loaders import AsyncHtmlLoader
loader = AsyncHtmlLoader(all_links)
docs = loader.load()
from langchain.document_transformers import Html2TextTransformer
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)
from langchain_text_splitters import RecursiveCharacterTextSplitter
chunk_size = 4096
docs_new = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
)
for doc in docs_transformed:
if len(doc.page_content) < chunk_size:
docs_new.append(doc)
else:
docs = text_splitter.create_documents([doc.page_content])
docs_new.extend(docs)
docs = db.add_documents(docs_new)
from typing import List
from langchain.chains.openai_functions import (
create_structured_output_chain,
)
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
docs = db.vectorstore.dataset.text.data(fetch_chunks=True, aslist=True)["value"]
ids = db.vectorstore.dataset.id.data(fetch_chunks=True, aslist=True)["value"]
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
class Questions(BaseModel):
"""Identifying information about a person."""
question: str = Field(..., description="Questions about text")
prompt_msgs = [
SystemMessage(
content="You are a world class expert for generating questions based on provided context. \
You make sure the question can be answered by the text."
),
HumanMessagePromptTemplate.from_template(
"Use the given text to generate a question from the following input: {input}"
),
HumanMessage(content="Tips: Make sure to answer in the correct format"),
]
prompt = ChatPromptTemplate(messages=prompt_msgs)
chain = | create_structured_output_chain(Questions, llm, prompt, verbose=True) | langchain.chains.openai_functions.create_structured_output_chain |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain.prompts import PromptTemplate
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import OpenAI
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
readonlymemory = ReadOnlySharedMemory(memory=memory)
summary_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory
)
search = | GoogleSearchAPIWrapper() | langchain_community.utilities.GoogleSearchAPIWrapper |
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"}
get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-firestore')
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
from google.colab import auth
auth.authenticate_user()
get_ipython().system('gcloud services enable firestore.googleapis.com')
from langchain_core.documents.base import Document
from langchain_google_firestore import FirestoreSaver
saver = FirestoreSaver()
data = [Document(page_content="Hello, World!")]
saver.upsert_documents(data)
saver = | FirestoreSaver("Collection") | langchain_google_firestore.FirestoreSaver |
from langchain.chains import LLMSummarizationCheckerChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
checker_chain = LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=2)
text = """
Your 9-year old might like these recent discoveries made by The James Webb Space Telescope (JWST):
• In 2023, The JWST spotted a number of galaxies nicknamed "green peas." They were given this name because they are small, round, and green, like peas.
• The telescope captured images of galaxies that are over 13 billion years old. This means that the light from these galaxies has been traveling for over 13 billion years to reach us.
• JWST took the very first pictures of a planet outside of our own solar system. These distant worlds are called "exoplanets." Exo means "from outside."
These discoveries can spark a child's imagination about the infinite wonders of the universe."""
checker_chain.run(text)
from langchain.chains import LLMSummarizationCheckerChain
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
checker_chain = | LLMSummarizationCheckerChain.from_llm(llm, verbose=True, max_checks=3) | langchain.chains.LLMSummarizationCheckerChain.from_llm |
from langchain.output_parsers import XMLOutputParser
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatAnthropic
model = | ChatAnthropic(model="claude-2", max_tokens_to_sample=512, temperature=0.1) | langchain_community.chat_models.ChatAnthropic |
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = | FAISS.from_documents(docs, embeddings) | langchain_community.vectorstores.FAISS.from_documents |
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-openai langchain-anthropic langchain-community wikipedia')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_community.retrievers import WikipediaRetriever
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
wiki = WikipediaRetriever(top_k_results=6, doc_content_chars_max=2000)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, answer the user question. If none of the articles answer the question, just say you don't know.\n\nHere are the Wikipedia articles:{context}",
),
("human", "{question}"),
]
)
prompt.pretty_print()
from operator import itemgetter
from typing import List
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import (
RunnableLambda,
RunnableParallel,
RunnablePassthrough,
)
def format_docs(docs: List[Document]) -> str:
"""Convert Documents to a single string.:"""
formatted = [
f"Article Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}"
for doc in docs
]
return "\n\n" + "\n\n".join(formatted)
format = itemgetter("docs") | RunnableLambda(format_docs)
answer = prompt | llm | StrOutputParser()
chain = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format)
.assign(answer=answer)
.pick(["answer", "docs"])
)
chain.invoke("How fast are cheetahs?")
from langchain_core.pydantic_v1 import BaseModel, Field
class cited_answer(BaseModel):
"""Answer the user question based only on the given sources, and cite the sources used."""
answer: str = Field(
...,
description="The answer to the user question, which is based only on the given sources.",
)
citations: List[int] = Field(
...,
description="The integer IDs of the SPECIFIC sources which justify the answer.",
)
llm_with_tool = llm.bind_tools(
[cited_answer],
tool_choice="cited_answer",
)
example_q = """What Brian's height?
Source: 1
Information: Suzy is 6'2"
Source: 2
Information: Jeremiah is blonde
Source: 3
Information: Brian is 3 inches shorted than Suzy"""
llm_with_tool.invoke(example_q)
from langchain.output_parsers.openai_tools import JsonOutputKeyToolsParser
output_parser = JsonOutputKeyToolsParser(key_name="cited_answer", return_single=True)
(llm_with_tool | output_parser).invoke(example_q)
def format_docs_with_id(docs: List[Document]) -> str:
formatted = [
f"Source ID: {i}\nArticle Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}"
for i, doc in enumerate(docs)
]
return "\n\n" + "\n\n".join(formatted)
format_1 = itemgetter("docs") | RunnableLambda(format_docs_with_id)
answer_1 = prompt | llm_with_tool | output_parser
chain_1 = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format_1)
.assign(cited_answer=answer_1)
.pick(["cited_answer", "docs"])
)
chain_1.invoke("How fast are cheetahs?")
class Citation(BaseModel):
source_id: int = Field(
...,
description="The integer ID of a SPECIFIC source which justifies the answer.",
)
quote: str = Field(
...,
description="The VERBATIM quote from the specified source that justifies the answer.",
)
class quoted_answer(BaseModel):
"""Answer the user question based only on the given sources, and cite the sources used."""
answer: str = Field(
...,
description="The answer to the user question, which is based only on the given sources.",
)
citations: List[Citation] = Field(
..., description="Citations from the given sources that justify the answer."
)
output_parser_2 = JsonOutputKeyToolsParser(key_name="quoted_answer", return_single=True)
llm_with_tool_2 = llm.bind_tools(
[quoted_answer],
tool_choice="quoted_answer",
)
format_2 = itemgetter("docs") | RunnableLambda(format_docs_with_id)
answer_2 = prompt | llm_with_tool_2 | output_parser_2
chain_2 = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format_2)
.assign(quoted_answer=answer_2)
.pick(["quoted_answer", "docs"])
)
chain_2.invoke("How fast are cheetahs?")
from langchain_anthropic import ChatAnthropicMessages
anthropic = ChatAnthropicMessages(model_name="claude-instant-1.2")
system = """You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, \
answer the user question and provide citations. If none of the articles answer the question, just say you don't know.
Remember, you must return both an answer and citations. A citation consists of a VERBATIM quote that \
justifies the answer and the ID of the quote article. Return a citation for every quote across all articles \
that justify the answer. Use the following format for your final output:
<cited_answer>
<answer></answer>
<citations>
<citation><source_id></source_id><quote></quote></citation>
<citation><source_id></source_id><quote></quote></citation>
...
</citations>
</cited_answer>
Here are the Wikipedia articles:{context}"""
prompt_3 = ChatPromptTemplate.from_messages(
[("system", system), ("human", "{question}")]
)
from langchain_core.output_parsers import XMLOutputParser
def format_docs_xml(docs: List[Document]) -> str:
formatted = []
for i, doc in enumerate(docs):
doc_str = f"""\
<source id=\"{i}\">
<title>{doc.metadata['title']}</title>
<article_snippet>{doc.page_content}</article_snippet>
</source>"""
formatted.append(doc_str)
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
format_3 = itemgetter("docs") | RunnableLambda(format_docs_xml)
answer_3 = prompt_3 | anthropic | XMLOutputParser() | itemgetter("cited_answer")
chain_3 = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format_3)
.assign(cited_answer=answer_3)
.pick(["cited_answer", "docs"])
)
chain_3.invoke("How fast are cheetahs?")
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=0,
separators=["\n\n", "\n", ".", " "],
keep_separator=False,
)
compressor = EmbeddingsFilter(embeddings=OpenAIEmbeddings(), k=10)
def split_and_filter(input) -> List[Document]:
docs = input["docs"]
question = input["question"]
split_docs = splitter.split_documents(docs)
stateful_docs = compressor.compress_documents(split_docs, question)
return [stateful_doc for stateful_doc in stateful_docs]
retrieve = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki) | split_and_filter
)
docs = retrieve.invoke("How fast are cheetahs?")
for doc in docs:
print(doc.page_content)
print("\n\n")
chain_4 = (
RunnableParallel(question=RunnablePassthrough(), docs=retrieve)
.assign(context=format)
.assign(answer=answer)
.pick(["answer", "docs"])
)
chain_4.invoke("How fast are cheetahs?")
class Citation(BaseModel):
source_id: int = Field(
...,
description="The integer ID of a SPECIFIC source which justifies the answer.",
)
quote: str = Field(
...,
description="The VERBATIM quote from the specified source that justifies the answer.",
)
class annotated_answer(BaseModel):
"""Annotate the answer to the user question with quote citations that justify the answer."""
citations: List[Citation] = Field(
..., description="Citations from the given sources that justify the answer."
)
llm_with_tools_5 = llm.bind_tools(
[annotated_answer],
tool_choice="annotated_answer",
)
from langchain_core.prompts import MessagesPlaceholder
prompt_5 = ChatPromptTemplate.from_messages(
[
(
"system",
"You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, answer the user question. If none of the articles answer the question, just say you don't know.\n\nHere are the Wikipedia articles:{context}",
),
("human", "{question}"),
MessagesPlaceholder("chat_history", optional=True),
]
)
answer_5 = prompt_5 | llm
annotation_chain = (
prompt_5
| llm_with_tools_5
| | JsonOutputKeyToolsParser(key_name="annotated_answer", return_single=True) | langchain.output_parsers.openai_tools.JsonOutputKeyToolsParser |
from langchain.agents import AgentType, initialize_agent
from langchain.tools import BearlyInterpreterTool
from langchain_openai import ChatOpenAI
bearly_tool = | BearlyInterpreterTool(api_key="...") | langchain.tools.BearlyInterpreterTool |
import os
from langchain.retrievers import AzureCognitiveSearchRetriever
os.environ["AZURE_COGNITIVE_SEARCH_SERVICE_NAME"] = "<YOUR_ACS_SERVICE_NAME>"
os.environ["AZURE_COGNITIVE_SEARCH_INDEX_NAME"] = "<YOUR_ACS_INDEX_NAME>"
os.environ["AZURE_COGNITIVE_SEARCH_API_KEY"] = "<YOUR_API_KEY>"
retriever = | AzureCognitiveSearchRetriever(content_key="content", top_k=10) | langchain.retrievers.AzureCognitiveSearchRetriever |
from langchain_community.document_loaders.chatgpt import ChatGPTLoader
loader = | ChatGPTLoader(log_file="./example_data/fake_conversations.json", num_logs=1) | langchain_community.document_loaders.chatgpt.ChatGPTLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sodapy')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pandas')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet geopandas')
import ast
import geopandas as gpd
import pandas as pd
from langchain_community.document_loaders import OpenCityDataLoader
dataset = "tmnf-yvry" # San Francisco crime data
loader = OpenCityDataLoader(city_id="data.sfgov.org", dataset_id=dataset, limit=5000)
docs = loader.load()
df = pd.DataFrame([ast.literal_eval(d.page_content) for d in docs])
df["Latitude"] = df["location"].apply(lambda loc: loc["coordinates"][1])
df["Longitude"] = df["location"].apply(lambda loc: loc["coordinates"][0])
gdf = gpd.GeoDataFrame(
df, geometry=gpd.points_from_xy(df.Longitude, df.Latitude), crs="EPSG:4326"
)
gdf = gdf[
(gdf["Longitude"] >= -123.173825)
& (gdf["Longitude"] <= -122.281780)
& (gdf["Latitude"] >= 37.623983)
& (gdf["Latitude"] <= 37.929824)
]
import matplotlib.pyplot as plt
sf = gpd.read_file("https://data.sfgov.org/resource/3psu-pn9h.geojson")
fig, ax = plt.subplots(figsize=(10, 10))
sf.plot(ax=ax, color="white", edgecolor="black")
gdf.plot(ax=ax, color="red", markersize=5)
plt.show()
from langchain_community.document_loaders import GeoDataFrameLoader
loader = | GeoDataFrameLoader(data_frame=gdf, page_content_column="geometry") | langchain_community.document_loaders.GeoDataFrameLoader |
meals = [
"Beef Enchiladas with Feta cheese. Mexican-Greek fusion",
"Chicken Flatbreads with red sauce. Italian-Mexican fusion",
"Veggie sweet potato quesadillas with vegan cheese",
"One-Pan Tortelonni bake with peppers and onions",
]
from langchain_openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-instruct")
from langchain.prompts import PromptTemplate
PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}".
Embed the meal into the given text: "{text_to_personalize}".
Prepend a personalized message including the user's name "{user}"
and their preference "{preference}".
Make it sound good.
"""
PROMPT = PromptTemplate(
input_variables=["meal", "text_to_personalize", "user", "preference"],
template=PROMPT_TEMPLATE,
)
import langchain_experimental.rl_chain as rl_chain
chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)
response = chain.run(
meal=rl_chain.ToSelectFrom(meals),
user=rl_chain.BasedOn("Tom"),
preference=rl_chain.BasedOn(["Vegetarian", "regular dairy is ok"]),
text_to_personalize="This is the weeks specialty dish, our master chefs \
believe you will love it!",
)
print(response["response"])
for _ in range(5):
try:
response = chain.run(
meal= | rl_chain.ToSelectFrom(meals) | langchain_experimental.rl_chain.ToSelectFrom |
get_ipython().run_line_magic('pip', 'install "pgvecto_rs[sdk]"')
from typing import List
from langchain.docstore.document import Document
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.fake import FakeEmbeddings
from langchain_community.vectorstores.pgvecto_rs import PGVecto_rs
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = | FakeEmbeddings(size=3) | langchain_community.embeddings.fake.FakeEmbeddings |
REGION = "us-central1" # @param {type:"string"}
INSTANCE = "test-instance" # @param {type:"string"}
DB_USER = "sqlserver" # @param {type:"string"}
DB_PASS = "password" # @param {type:"string"}
DATABASE = "test" # @param {type:"string"}
TABLE_NAME = "test-default" # @param {type:"string"}
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-cloud-sql-mssql')
from google.colab import auth
auth.authenticate_user()
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
get_ipython().system('gcloud services enable sqladmin.googleapis.com')
from langchain_google_cloud_sql_mssql import MSSQLEngine
engine = MSSQLEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=DB_USER,
password=DB_PASS,
)
engine.init_document_table(TABLE_NAME, overwrite_existing=True)
from langchain_core.documents import Document
from langchain_google_cloud_sql_mssql import MSSQLDocumentSaver
test_docs = [
Document(
page_content="Apple Granny Smith 150 0.99 1",
metadata={"fruit_id": 1},
),
Document(
page_content="Banana Cavendish 200 0.59 0",
metadata={"fruit_id": 2},
),
Document(
page_content="Orange Navel 80 1.29 1",
metadata={"fruit_id": 3},
),
]
saver = MSSQLDocumentSaver(engine=engine, table_name=TABLE_NAME)
saver.add_documents(test_docs)
from langchain_google_cloud_sql_mssql import MSSQLLoader
loader = MSSQLLoader(engine=engine, table_name=TABLE_NAME)
docs = loader.lazy_load()
for doc in docs:
print("Loaded documents:", doc)
from langchain_google_cloud_sql_mssql import MSSQLLoader
loader = | MSSQLLoader(
engine=engine,
query=f"select * from \"{TABLE_NAME}\" where JSON_VALUE(langchain_metadata, '$.fruit_id') | langchain_google_cloud_sql_mssql.MSSQLLoader |
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders import IuguLoader
iugu_loader = | IuguLoader("charges") | langchain_community.document_loaders.IuguLoader |
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pypdf pymongo langchain-openai tiktoken')
import getpass
MONGODB_ATLAS_CLUSTER_URI = getpass.getpass("MongoDB Atlas Cluster URI:")
from pymongo import MongoClient
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
DB_NAME = "langchain_db"
COLLECTION_NAME = "test"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "index_name"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf")
data = loader.load()
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = | RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) | langchain_text_splitters.RecursiveCharacterTextSplitter |
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
conversation = ConversationChain(
llm=llm, verbose=True, memory=ConversationBufferMemory()
)
conversation.predict(input="Hi there!")
conversation.predict(input="What's the weather?")
from langchain.prompts.prompt import PromptTemplate
template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
{history}
Human: {input}
AI Assistant:"""
PROMPT = PromptTemplate(input_variables=["history", "input"], template=template)
conversation = ConversationChain(
prompt=PROMPT,
llm=llm,
verbose=True,
memory=ConversationBufferMemory(ai_prefix="AI Assistant"),
)
conversation.predict(input="Hi there!")
conversation.predict(input="What's the weather?")
from langchain.prompts.prompt import PromptTemplate
template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
{history}
Friend: {input}
AI:"""
PROMPT = | PromptTemplate(input_variables=["history", "input"], template=template) | langchain.prompts.prompt.PromptTemplate |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pdfminer')
from langchain_community.document_loaders.image import UnstructuredImageLoader
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
data = loader.load()
data[0]
loader = | UnstructuredImageLoader("layout-parser-paper-fast.jpg", mode="elements") | langchain_community.document_loaders.image.UnstructuredImageLoader |