prompt
stringlengths
51
10k
completion
stringlengths
8
362
api
stringlengths
18
90
from langchain.agents import create_spark_sql_agent from langchain_community.agent_toolkits import SparkSQLToolkit from langchain_community.utilities.spark_sql import SparkSQL from langchain_openai import ChatOpenAI from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() schema = "langchain_example" spark.sql(f"CREATE DATABASE IF NOT EXISTS {schema}") spark.sql(f"USE {schema}") csv_file_path = "titanic.csv" table = "titanic" spark.read.csv(csv_file_path, header=True, inferSchema=True).write.saveAsTable(table) spark.table(table).show() spark_sql = SparkSQL(schema=schema) llm = ChatOpenAI(temperature=0) toolkit = SparkSQLToolkit(db=spark_sql, llm=llm) agent_executor =
create_spark_sql_agent(llm=llm, toolkit=toolkit, verbose=True)
langchain.agents.create_spark_sql_agent
get_ipython().run_line_magic('pip', 'install --upgrade --quiet clearml') get_ipython().run_line_magic('pip', 'install --upgrade --quiet pandas') get_ipython().run_line_magic('pip', 'install --upgrade --quiet textstat') get_ipython().run_line_magic('pip', 'install --upgrade --quiet spacy') get_ipython().system('python -m spacy download en_core_web_sm') import os os.environ["CLEARML_API_ACCESS_KEY"] = "" os.environ["CLEARML_API_SECRET_KEY"] = "" os.environ["OPENAI_API_KEY"] = "" os.environ["SERPAPI_API_KEY"] = "" from langchain.callbacks import ClearMLCallbackHandler from langchain.callbacks import StdOutCallbackHandler from langchain_openai import OpenAI clearml_callback = ClearMLCallbackHandler( task_type="inference", project_name="langchain_callback_demo", task_name="llm", tags=["test"], visualize=True, complexity_metrics=True, stream_logs=True, ) callbacks = [
StdOutCallbackHandler()
langchain.callbacks.StdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet amadeus > /dev/null') import os os.environ["AMADEUS_CLIENT_ID"] = "CLIENT_ID" os.environ["AMADEUS_CLIENT_SECRET"] = "CLIENT_SECRET" os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY" from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit toolkit =
AmadeusToolkit()
langchain_community.agent_toolkits.amadeus.toolkit.AmadeusToolkit
get_ipython().run_line_magic('pip', 'install --upgrade --quiet amadeus > /dev/null') import os os.environ["AMADEUS_CLIENT_ID"] = "CLIENT_ID" os.environ["AMADEUS_CLIENT_SECRET"] = "CLIENT_SECRET" os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY" from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit toolkit = AmadeusToolkit() tools = toolkit.get_tools() from langchain_community.llms import HuggingFaceHub os.environ["HUGGINGFACEHUB_API_TOKEN"] = "YOUR_HF_API_TOKEN" llm = HuggingFaceHub( repo_id="tiiuae/falcon-7b-instruct", model_kwargs={"temperature": 0.5, "max_length": 64}, ) toolkit_hf = AmadeusToolkit(llm=llm) from langchain import hub from langchain.agents import AgentExecutor, create_react_agent from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser from langchain.tools.render import render_text_description_and_args from langchain_openai import ChatOpenAI llm = ChatOpenAI(temperature=0) prompt = hub.pull("hwchase17/react-json") agent = create_react_agent( llm, tools, prompt, tools_renderer=render_text_description_and_args, output_parser=
ReActJsonSingleInputOutputParser()
langchain.agents.output_parsers.ReActJsonSingleInputOutputParser
from langchain_community.llms.llamafile import Llamafile llm =
Llamafile()
langchain_community.llms.llamafile.Llamafile
get_ipython().run_line_magic('pip', "install --upgrade --quiet langchain-openai 'deeplake[enterprise]' tiktoken") from langchain_community.vectorstores import DeepLake from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") activeloop_token = getpass.getpass("activeloop token:") embeddings = OpenAIEmbeddings() from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() db = DeepLake(dataset_path="./my_deeplake/", embedding=embeddings, overwrite=True) db.add_documents(docs) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) db = DeepLake(dataset_path="./my_deeplake/", embedding=embeddings, read_only=True) docs = db.similarity_search(query) from langchain.chains import RetrievalQA from langchain_openai import OpenAIChat qa = RetrievalQA.from_chain_type( llm=OpenAIChat(model="gpt-3.5-turbo"), chain_type="stuff", retriever=db.as_retriever(), ) query = "What did the president say about Ketanji Brown Jackson" qa.run(query) import random for d in docs: d.metadata["year"] = random.randint(2012, 2014) db = DeepLake.from_documents( docs, embeddings, dataset_path="./my_deeplake/", overwrite=True ) db.similarity_search( "What did the president say about Ketanji Brown Jackson", filter={"metadata": {"year": 2013}}, ) db.similarity_search( "What did the president say about Ketanji Brown Jackson?", distance_metric="cos" ) db.max_marginal_relevance_search( "What did the president say about Ketanji Brown Jackson?" ) db.delete_dataset() DeepLake.force_delete_by_path("./my_deeplake") os.environ["ACTIVELOOP_TOKEN"] = activeloop_token username = "<USERNAME_OR_ORG>" # your username on app.activeloop.ai dataset_path = f"hub://{username}/langchain_testing_python" # could be also ./local/path (much faster locally), s3://bucket/path/to/dataset, gcs://path/to/dataset, etc. docs = text_splitter.split_documents(documents) embedding = OpenAIEmbeddings() db = DeepLake(dataset_path=dataset_path, embedding=embeddings, overwrite=True) ids = db.add_documents(docs) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) username = "<USERNAME_OR_ORG>" # your username on app.activeloop.ai dataset_path = f"hub://{username}/langchain_testing" docs = text_splitter.split_documents(documents) embedding = OpenAIEmbeddings() db = DeepLake( dataset_path=dataset_path, embedding=embeddings, overwrite=True, runtime={"tensor_db": True}, ) ids = db.add_documents(docs) search_id = db.vectorstore.dataset.id[0].numpy() search_id[0] docs = db.similarity_search( query=None, tql=f"SELECT * WHERE id == '{search_id[0]}'", ) db.vectorstore.summary() dataset_path = "s3://BUCKET/langchain_test" # could be also ./local/path (much faster locally), hub://bucket/path/to/dataset, gcs://path/to/dataset, etc. embedding = OpenAIEmbeddings() db = DeepLake.from_documents( docs, dataset_path=dataset_path, embedding=embeddings, overwrite=True, creds={ "aws_access_key_id": os.environ["AWS_ACCESS_KEY_ID"], "aws_secret_access_key": os.environ["AWS_SECRET_ACCESS_KEY"], "aws_session_token": os.environ["AWS_SESSION_TOKEN"], # Optional }, ) db.vectorstore.summary() embeds = db.vectorstore.dataset.embedding.numpy() import deeplake username = "davitbun" # your username on app.activeloop.ai source = f"hub://{username}/langchain_testing" # could be local, s3, gcs, etc. destination = f"hub://{username}/langchain_test_copy" # could be local, s3, gcs, etc. deeplake.deepcopy(src=source, dest=destination, overwrite=True) db =
DeepLake(dataset_path=destination, embedding=embeddings)
langchain_community.vectorstores.DeepLake
from langchain.callbacks import HumanApprovalCallbackHandler from langchain.tools import ShellTool tool = ShellTool() print(tool.run("echo Hello World!")) tool = ShellTool(callbacks=[
HumanApprovalCallbackHandler()
langchain.callbacks.HumanApprovalCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pandoc') from langchain_community.document_loaders import UnstructuredEPubLoader loader =
UnstructuredEPubLoader("winter-sports.epub")
langchain_community.document_loaders.UnstructuredEPubLoader
get_ipython().system(' pip install langchain replicate') from langchain_community.chat_models import ChatOllama llama2_chat = ChatOllama(model="llama2:13b-chat") llama2_code = ChatOllama(model="codellama:7b-instruct") from langchain_community.llms import Replicate replicate_id = "meta/llama-2-13b-chat:f4e2de70d66816a838a89eeeb621910adffb0dd0baba3976c96980970978018d" llama2_chat_replicate = Replicate( model=replicate_id, input={"temperature": 0.01, "max_length": 500, "top_p": 1} ) llm = llama2_chat from langchain_community.utilities import SQLDatabase db =
SQLDatabase.from_uri("sqlite:///nba_roster.db", sample_rows_in_table_info=0)
langchain_community.utilities.SQLDatabase.from_uri
import zipfile import requests def download_and_unzip(url: str, output_path: str = "file.zip") -> None: file_id = url.split("/")[-2] download_url = f"https://drive.google.com/uc?export=download&id={file_id}" response = requests.get(download_url) if response.status_code != 200: print("Failed to download the file.") return with open(output_path, "wb") as file: file.write(response.content) print(f"File {output_path} downloaded.") with zipfile.ZipFile(output_path, "r") as zip_ref: zip_ref.extractall() print(f"File {output_path} has been unzipped.") url = ( "https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing" ) download_and_unzip(url) directory_path = "./hogwarts" from langchain_community.chat_loaders.facebook_messenger import ( FolderFacebookMessengerChatLoader, SingleFileFacebookMessengerChatLoader, ) loader = SingleFileFacebookMessengerChatLoader( path="./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json", ) chat_session = loader.load()[0] chat_session["messages"][:3] loader = FolderFacebookMessengerChatLoader( path="./hogwarts", ) chat_sessions = loader.load() len(chat_sessions) from langchain_community.chat_loaders.utils import ( map_ai_messages, merge_chat_runs, ) merged_sessions = merge_chat_runs(chat_sessions) alternating_sessions = list(map_ai_messages(merged_sessions, "Harry Potter")) alternating_sessions[0]["messages"][:3] from langchain.adapters.openai import convert_messages_for_finetuning training_data =
convert_messages_for_finetuning(alternating_sessions)
langchain.adapters.openai.convert_messages_for_finetuning
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai argilla') import os os.environ["ARGILLA_API_URL"] = "..." os.environ["ARGILLA_API_KEY"] = "..." os.environ["OPENAI_API_KEY"] = "..." import argilla as rg from packaging.version import parse as parse_version if parse_version(rg.__version__) < parse_version("1.8.0"): raise RuntimeError( "`FeedbackDataset` is only available in Argilla v1.8.0 or higher, please " "upgrade `argilla` as `pip install argilla --upgrade`." ) dataset = rg.FeedbackDataset( fields=[ rg.TextField(name="prompt"), rg.TextField(name="response"), ], questions=[ rg.RatingQuestion( name="response-rating", description="How would you rate the quality of the response?", values=[1, 2, 3, 4, 5], required=True, ), rg.TextQuestion( name="response-feedback", description="What feedback do you have for the response?", required=False, ), ], guidelines="You're asked to rate the quality of the response and provide feedback.", ) rg.init( api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) dataset.push_to_argilla("langchain-dataset") from langchain.callbacks import ArgillaCallbackHandler argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler from langchain_openai import OpenAI argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) callbacks = [StdOutCallbackHandler(), argilla_callback] llm = OpenAI(temperature=0.9, callbacks=callbacks) llm.generate(["Tell me a joke", "Tell me a poem"] * 3) from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI argilla_callback = ArgillaCallbackHandler( dataset_name="langchain-dataset", api_url=os.environ["ARGILLA_API_URL"], api_key=os.environ["ARGILLA_API_KEY"], ) callbacks = [
StdOutCallbackHandler()
langchain.callbacks.StdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() from operator import itemgetter from langchain.output_parsers import JsonOutputToolsParser from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough from langchain_core.tools import tool from langchain_openai import ChatOpenAI @tool def count_emails(last_n_days: int) -> int: """Multiply two integers together.""" return last_n_days * 2 @tool def send_email(message: str, recipient: str) -> str: "Add two integers." return f"Successfully sent email to {recipient}." tools = [count_emails, send_email] model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0).bind_tools(tools) def call_tool(tool_invocation: dict) -> Runnable: """Function for dynamically constructing the end of the chain based on the model-selected tool.""" tool_map = {tool.name: tool for tool in tools} tool = tool_map[tool_invocation["type"]] return RunnablePassthrough.assign(output=itemgetter("args") | tool) call_tool_list =
RunnableLambda(call_tool)
langchain_core.runnables.RunnableLambda
from langchain_core.messages import ( AIMessage, BaseMessage, FunctionMessage, HumanMessage, SystemMessage, ToolMessage, ) from langchain_core.messages import ( AIMessageChunk, FunctionMessageChunk, HumanMessageChunk, SystemMessageChunk, ToolMessageChunk, ) AIMessageChunk(content="Hello") + AIMessageChunk(content=" World!") from typing import Any, AsyncIterator, Dict, Iterator, List, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun, ) from langchain_core.language_models import BaseChatModel, SimpleChatModel from langchain_core.messages import AIMessageChunk, BaseMessage, HumanMessage from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult from langchain_core.runnables import run_in_executor class CustomChatModelAdvanced(BaseChatModel): """A custom chat model that echoes the first `n` characters of the input. When contributing an implementation to LangChain, carefully document the model including the initialization parameters, include an example of how to initialize the model and include any relevant links to the underlying models documentation or API. Example: .. code-block:: python model = CustomChatModel(n=2) result = model.invoke([HumanMessage(content="hello")]) result = model.batch([[HumanMessage(content="hello")], [HumanMessage(content="world")]]) """ n: int """The number of characters from the last message of the prompt to be echoed.""" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Override the _generate method to implement the chat model logic. This can be a call to an API, a call to a local model, or any other implementation that generates a response to the input prompt. Args: messages: the prompt composed of a list of messages. stop: a list of strings on which the model should stop generating. If generation stops due to a stop token, the stop token itself SHOULD BE INCLUDED as part of the output. This is not enforced across models right now, but it's a good practice to follow since it makes it much easier to parse the output of the model downstream and understand why generation stopped. run_manager: A run manager with callbacks for the LLM. """ last_message = messages[-1] tokens = last_message.content[: self.n] message = AIMessage(content=tokens) generation =
ChatGeneration(message=message)
langchain_core.outputs.ChatGeneration
from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate from langchain_core.runnables import RunnableLambda from langchain_openai import ChatOpenAI examples = [ { "input": "Could the members of The Police perform lawful arrests?", "output": "what can the members of The Police do?", }, { "input": "Jan Sindel’s was born in what country?", "output": "what is Jan Sindel’s personal history?", }, ] example_prompt = ChatPromptTemplate.from_messages( [ ("human", "{input}"), ("ai", "{output}"), ] ) few_shot_prompt = FewShotChatMessagePromptTemplate( example_prompt=example_prompt, examples=examples, ) prompt = ChatPromptTemplate.from_messages( [ ( "system", """You are an expert at world knowledge. Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. Here are a few examples:""", ), few_shot_prompt, ("user", "{question}"), ] ) question_gen = prompt | ChatOpenAI(temperature=0) | StrOutputParser() question = "was chatgpt around while trump was president?" question_gen.invoke({"question": question}) from langchain_community.utilities import DuckDuckGoSearchAPIWrapper search = DuckDuckGoSearchAPIWrapper(max_results=4) def retriever(query): return search.run(query) retriever(question) retriever(question_gen.invoke({"question": question})) from langchain import hub response_prompt = hub.pull("langchain-ai/stepback-answer") chain = ( { "normal_context":
RunnableLambda(lambda x: x["question"])
langchain_core.runnables.RunnableLambda
from langchain.agents import Tool from langchain_experimental.utilities import PythonREPL python_repl = PythonREPL() python_repl.run("print(1+1)") repl_tool =
Tool( name="python_repl", description="A Python shell. Use this to execute python commands. Input should be a valid python command. If you want to see the output of a value, you should print it out with `print(...)
langchain.agents.Tool
from langchain.agents import Tool from langchain_community.tools.file_management.read import ReadFileTool from langchain_community.tools.file_management.write import WriteFileTool from langchain_community.utilities import SerpAPIWrapper search = SerpAPIWrapper() tools = [ Tool( name="search", func=search.run, description="useful for when you need to answer questions about current events. You should ask targeted questions", ),
WriteFileTool()
langchain_community.tools.file_management.write.WriteFileTool
import getpass import os os.environ["ALPHAVANTAGE_API_KEY"] = getpass.getpass() from langchain_community.utilities.alpha_vantage import AlphaVantageAPIWrapper alpha_vantage =
AlphaVantageAPIWrapper()
langchain_community.utilities.alpha_vantage.AlphaVantageAPIWrapper
from langchain.callbacks import get_openai_callback from langchain_openai import ChatOpenAI llm = ChatOpenAI(model_name="gpt-4") with get_openai_callback() as cb: result = llm.invoke("Tell me a joke") print(cb) with get_openai_callback() as cb: result = llm.invoke("Tell me a joke") result2 = llm.invoke("Tell me a joke") print(cb.total_tokens) from langchain.agents import AgentType, initialize_agent, load_tools from langchain_openai import OpenAI tools = load_tools(["serpapi", "llm-math"], llm=llm) agent = initialize_agent(tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True) with
get_openai_callback()
langchain.callbacks.get_openai_callback
import asyncio import os import nest_asyncio import pandas as pd from langchain.docstore.document import Document from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain_experimental.autonomous_agents import AutoGPT from langchain_openai import ChatOpenAI nest_asyncio.apply() llm = ChatOpenAI(model_name="gpt-4", temperature=1.0) import os from contextlib import contextmanager from typing import Optional from langchain.agents import tool from langchain_community.tools.file_management.read import ReadFileTool from langchain_community.tools.file_management.write import WriteFileTool ROOT_DIR = "./data/" @contextmanager def pushd(new_dir): """Context manager for changing the current working directory.""" prev_dir = os.getcwd() os.chdir(new_dir) try: yield finally: os.chdir(prev_dir) @tool def process_csv( csv_file_path: str, instructions: str, output_path: Optional[str] = None ) -> str: """Process a CSV by with pandas in a limited REPL.\ Only use this after writing data to disk as a csv file.\ Any figures must be saved to disk to be viewed by the human.\ Instructions should be written in natural language, not code. Assume the dataframe is already loaded.""" with pushd(ROOT_DIR): try: df = pd.read_csv(csv_file_path) except Exception as e: return f"Error: {e}" agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=True) if output_path is not None: instructions += f" Save output to disk at {output_path}" try: result = agent.run(instructions) return result except Exception as e: return f"Error: {e}" async def async_load_playwright(url: str) -> str: """Load the specified URLs using Playwright and parse using BeautifulSoup.""" from bs4 import BeautifulSoup from playwright.async_api import async_playwright results = "" async with async_playwright() as p: browser = await p.chromium.launch(headless=True) try: page = await browser.new_page() await page.goto(url) page_source = await page.content() soup = BeautifulSoup(page_source, "html.parser") for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) results = "\n".join(chunk for chunk in chunks if chunk) except Exception as e: results = f"Error: {e}" await browser.close() return results def run_async(coro): event_loop = asyncio.get_event_loop() return event_loop.run_until_complete(coro) @tool def browse_web_page(url: str) -> str: """Verbose way to scrape a whole webpage. Likely to cause issues parsing.""" return run_async(async_load_playwright(url)) from langchain.chains.qa_with_sources.loading import ( BaseCombineDocumentsChain, load_qa_with_sources_chain, ) from langchain.tools import BaseTool, DuckDuckGoSearchRun from langchain_text_splitters import RecursiveCharacterTextSplitter from pydantic import Field def _get_text_splitter(): return RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=20, length_function=len, ) class WebpageQATool(BaseTool): name = "query_webpage" description = ( "Browse a webpage and retrieve the information relevant to the question." ) text_splitter: RecursiveCharacterTextSplitter = Field( default_factory=_get_text_splitter ) qa_chain: BaseCombineDocumentsChain def _run(self, url: str, question: str) -> str: """Useful for browsing websites and scraping the text information.""" result = browse_web_page.run(url) docs = [Document(page_content=result, metadata={"source": url})] web_docs = self.text_splitter.split_documents(docs) results = [] for i in range(0, len(web_docs), 4): input_docs = web_docs[i : i + 4] window_result = self.qa_chain( {"input_documents": input_docs, "question": question}, return_only_outputs=True, ) results.append(f"Response from window {i} - {window_result}") results_docs = [ Document(page_content="\n".join(results), metadata={"source": url}) ] return self.qa_chain( {"input_documents": results_docs, "question": question}, return_only_outputs=True, ) async def _arun(self, url: str, question: str) -> str: raise NotImplementedError query_website_tool = WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)) import faiss from langchain.docstore import InMemoryDocstore from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings embeddings_model = OpenAIEmbeddings() embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index,
InMemoryDocstore({})
langchain.docstore.InMemoryDocstore
get_ipython().system('pip install gymnasium') import tenacity from langchain.output_parsers import RegexParser from langchain.schema import ( HumanMessage, SystemMessage, ) class GymnasiumAgent: @classmethod def get_docs(cls, env): return env.unwrapped.__doc__ def __init__(self, model, env): self.model = model self.env = env self.docs = self.get_docs(env) self.instructions = """ Your goal is to maximize your return, i.e. the sum of the rewards you receive. I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as: Observation: <observation> Reward: <reward> Termination: <termination> Truncation: <truncation> Return: <sum_of_rewards> You will respond with an action, formatted as: Action: <action> where you replace <action> with your actual action. Do nothing else but return the action. """ self.action_parser = RegexParser( regex=r"Action: (.*)", output_keys=["action"], default_output_key="action" ) self.message_history = [] self.ret = 0 def random_action(self): action = self.env.action_space.sample() return action def reset(self): self.message_history = [ SystemMessage(content=self.docs),
SystemMessage(content=self.instructions)
langchain.schema.SystemMessage
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() from langchain_core.tools import tool @tool def complex_tool(int_arg: int, float_arg: float, dict_arg: dict) -> int: """Do something complex with a complex tool.""" return int_arg * float_arg from langchain_openai import ChatOpenAI model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) model_with_tools = model.bind_tools( [complex_tool], tool_choice="complex_tool", ) from operator import itemgetter from langchain.output_parsers import JsonOutputKeyToolsParser from langchain_core.runnables import Runnable, RunnableLambda, RunnablePassthrough chain = ( model_with_tools | JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True) | complex_tool ) chain.invoke( "use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg" ) from typing import Any from langchain_core.runnables import RunnableConfig def try_except_tool(tool_args: dict, config: RunnableConfig) -> Runnable: try: complex_tool.invoke(tool_args, config=config) except Exception as e: return f"Calling tool with arguments:\n\n{tool_args}\n\nraised the following error:\n\n{type(e)}: {e}" chain = ( model_with_tools | JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True) | try_except_tool ) print( chain.invoke( "use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg" ) ) chain = ( model_with_tools | JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True) | complex_tool ) better_model = ChatOpenAI(model="gpt-4-1106-preview", temperature=0).bind_tools( [complex_tool], tool_choice="complex_tool" ) better_chain = ( better_model | JsonOutputKeyToolsParser(key_name="complex_tool", return_single=True) | complex_tool ) chain_with_fallback = chain.with_fallbacks([better_chain]) chain_with_fallback.invoke( "use complex tool. the args are 5, 2.1, empty dictionary. don't forget dict_arg" ) import json from typing import Any from langchain_core.messages import AIMessage, HumanMessage, ToolMessage from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables import RunnablePassthrough class CustomToolException(Exception): """Custom LangChain tool exception.""" def __init__(self, tool_call: dict, exception: Exception) -> None: super().__init__() self.tool_call = tool_call self.exception = exception def tool_custom_exception(tool_call: dict, config: RunnableConfig) -> Runnable: try: return complex_tool.invoke(tool_call["args"], config=config) except Exception as e: raise CustomToolException(tool_call, e) def exception_to_messages(inputs: dict) -> dict: exception = inputs.pop("exception") tool_call = { "type": "function", "function": { "name": "complex_tool", "arguments": json.dumps(exception.tool_call["args"]), }, "id": exception.tool_call["id"], } messages = [ AIMessage(content="", additional_kwargs={"tool_calls": [tool_call]}), ToolMessage(tool_call_id=tool_call["id"], content=str(exception.exception)), HumanMessage( content="The last tool calls raised exceptions. Try calling the tools again with corrected arguments." ), ] inputs["last_output"] = messages return inputs prompt = ChatPromptTemplate.from_messages( [("human", "{input}"),
MessagesPlaceholder("last_output", optional=True)
langchain_core.prompts.MessagesPlaceholder
get_ipython().system('pip3 install clickhouse-sqlalchemy InstructorEmbedding sentence_transformers openai langchain-experimental') import getpass from os import environ from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.utilities import SQLDatabase from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain from langchain_openai import OpenAI from sqlalchemy import MetaData, create_engine MYSCALE_HOST = "msc-4a9e710a.us-east-1.aws.staging.myscale.cloud" MYSCALE_PORT = 443 MYSCALE_USER = "chatdata" MYSCALE_PASSWORD = "myscale_rocks" OPENAI_API_KEY = getpass.getpass("OpenAI API Key:") engine = create_engine( f"clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/default?protocol=https" ) metadata = MetaData(bind=engine) environ["OPENAI_API_KEY"] = OPENAI_API_KEY from langchain_community.embeddings import HuggingFaceInstructEmbeddings from langchain_experimental.sql.vector_sql import VectorSQLOutputParser output_parser = VectorSQLOutputParser.from_embeddings( model=HuggingFaceInstructEmbeddings( model_name="hkunlp/instructor-xl", model_kwargs={"device": "cpu"} ) ) from langchain.callbacks import StdOutCallbackHandler from langchain_community.utilities.sql_database import SQLDatabase from langchain_experimental.sql.prompt import MYSCALE_PROMPT from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain from langchain_openai import OpenAI chain = VectorSQLDatabaseChain( llm_chain=LLMChain( llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0), prompt=MYSCALE_PROMPT, ), top_k=10, return_direct=True, sql_cmd_parser=output_parser, database=SQLDatabase(engine, None, metadata), ) import pandas as pd pd.DataFrame( chain.run( "Please give me 10 papers to ask what is PageRank?", callbacks=[
StdOutCallbackHandler()
langchain.callbacks.StdOutCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas') ORG_ID = "..." import getpass import os from langchain.chains import RetrievalQA from langchain.vectorstores.deeplake import DeepLake from langchain_openai import OpenAIChat, OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ") os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass( "Enter your ActiveLoop API token: " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens" token = os.getenv("ACTIVELOOP_TOKEN") openai_embeddings = OpenAIEmbeddings() db = DeepLake( dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop embedding=openai_embeddings, runtime={"tensor_db": True}, token=token, read_only=False, ) from urllib.parse import urljoin import requests from bs4 import BeautifulSoup def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links base_url = "https://docs.deeplake.ai/en/latest/" all_links = get_all_links(base_url) from langchain.document_loaders import AsyncHtmlLoader loader = AsyncHtmlLoader(all_links) docs = loader.load() from langchain.document_transformers import Html2TextTransformer html2text =
Html2TextTransformer()
langchain.document_transformers.Html2TextTransformer
get_ipython().system('pip install --upgrade langchain langchain-google-vertexai') project: str = "PUT_YOUR_PROJECT_ID_HERE" # @param {type:"string"} endpoint_id: str = "PUT_YOUR_ENDPOINT_ID_HERE" # @param {type:"string"} location: str = "PUT_YOUR_ENDPOINT_LOCAtION_HERE" # @param {type:"string"} from langchain_google_vertexai import ( GemmaChatVertexAIModelGarden, GemmaVertexAIModelGarden, ) llm = GemmaVertexAIModelGarden( endpoint_id=endpoint_id, project=project, location=location, ) output = llm.invoke("What is the meaning of life?") print(output) from langchain_core.messages import HumanMessage llm = GemmaChatVertexAIModelGarden( endpoint_id=endpoint_id, project=project, location=location, ) message1 = HumanMessage(content="How much is 2+2?") answer1 = llm.invoke([message1]) print(answer1) message2 = HumanMessage(content="How much is 3+3?") answer2 = llm.invoke([message1, answer1, message2]) print(answer2) answer1 = llm.invoke([message1], parse_response=True) print(answer1) answer2 = llm.invoke([message1, answer1, message2], parse_response=True) print(answer2) get_ipython().system('mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json') get_ipython().system('pip install keras>=3 keras_nlp') from langchain_google_vertexai import GemmaLocalKaggle keras_backend: str = "jax" # @param {type:"string"} model_name: str = "gemma_2b_en" # @param {type:"string"} llm = GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend) output = llm.invoke("What is the meaning of life?", max_tokens=30) print(output) from langchain_google_vertexai import GemmaChatLocalKaggle keras_backend: str = "jax" # @param {type:"string"} model_name: str = "gemma_2b_en" # @param {type:"string"} llm =
GemmaChatLocalKaggle(model_name=model_name, keras_backend=keras_backend)
langchain_google_vertexai.GemmaChatLocalKaggle
from typing import Optional from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_experimental.autonomous_agents import BabyAGI from langchain_openai import OpenAI, OpenAIEmbeddings get_ipython().run_line_magic('pip', 'install faiss-cpu > /dev/null') get_ipython().run_line_magic('pip', 'install google-search-results > /dev/null') from langchain.docstore import InMemoryDocstore from langchain_community.vectorstores import FAISS embeddings_model = OpenAIEmbeddings() import faiss embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import LLMChain from langchain_community.utilities import SerpAPIWrapper from langchain_openai import OpenAI todo_prompt =
PromptTemplate.from_template( "You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}" )
langchain.prompts.PromptTemplate.from_template
from langchain_community.document_loaders import HuggingFaceDatasetLoader dataset_name = "imdb" page_content_column = "text" loader =
HuggingFaceDatasetLoader(dataset_name, page_content_column)
langchain_community.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory from langchain_community.chat_message_histories import RedisChatMessageHistory from langchain_community.utilities import GoogleSearchAPIWrapper from langchain_openai import OpenAI search = GoogleSearchAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ) ] prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"], ) message_history = RedisChatMessageHistory( url="redis://localhost:6379/0", ttl=600, session_id="my-session" ) memory = ConversationBufferMemory( memory_key="chat_history", chat_memory=message_history ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent =
ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
langchain.agents.ZeroShotAgent
get_ipython().run_line_magic('pip', 'install --upgrade --quiet boto3 nltk') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain_experimental') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain pydantic') import os import boto3 comprehend_client = boto3.client("comprehend", region_name="us-east-1") from langchain_experimental.comprehend_moderation import AmazonComprehendModerationChain comprehend_moderation = AmazonComprehendModerationChain( client=comprehend_client, verbose=True, # optional ) from langchain.prompts import PromptTemplate from langchain_community.llms.fake import FakeListLLM from langchain_experimental.comprehend_moderation.base_moderation_exceptions import ( ModerationPiiError, ) template = """Question: {question} Answer:""" prompt = PromptTemplate.from_template(template) responses = [ "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", "Final Answer: This is a really <expletive> way of constructing a birdhouse. This is <expletive> insane to think that any birds would actually create their <expletive> nests here.", ] llm = FakeListLLM(responses=responses) chain = ( prompt | comprehend_moderation | {"input": (lambda x: x["output"]) | llm} | comprehend_moderation ) try: response = chain.invoke( { "question": "A sample SSN number looks like this 123-22-3345. Can you give me some more samples?" } ) except ModerationPiiError as e: print(str(e)) else: print(response["output"]) from langchain_experimental.comprehend_moderation import ( BaseModerationConfig, ModerationPiiConfig, ModerationPromptSafetyConfig, ModerationToxicityConfig, ) pii_config = ModerationPiiConfig(labels=["SSN"], redact=True, mask_character="X") toxicity_config =
ModerationToxicityConfig(threshold=0.5)
langchain_experimental.comprehend_moderation.ModerationToxicityConfig
from langchain.agents import Tool from langchain.chains import RetrievalQA from langchain_community.document_loaders import PyPDFLoader from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter from pydantic import BaseModel, Field class DocumentInput(BaseModel): question: str = Field() llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") tools = [] files = [ { "name": "alphabet-earnings", "path": "/Users/harrisonchase/Downloads/2023Q1_alphabet_earnings_release.pdf", }, { "name": "tesla-earnings", "path": "/Users/harrisonchase/Downloads/TSLA-Q1-2023-Update.pdf", }, ] for file in files: loader = PyPDFLoader(file["path"]) pages = loader.load_and_split() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(pages) embeddings = OpenAIEmbeddings() retriever =
FAISS.from_documents(docs, embeddings)
langchain_community.vectorstores.FAISS.from_documents
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-community') import os os.environ["YDC_API_KEY"] = "" os.environ["OPENAI_API_KEY"] = "" from langchain_community.utilities.you import YouSearchAPIWrapper utility = YouSearchAPIWrapper(num_web_results=1) utility import json response = utility.raw_results(query="What is the weather in NY") hits = response["hits"] print(len(hits)) print(json.dumps(hits, indent=2)) response = utility.results(query="What is the weather in NY") print(len(response)) print(response) from langchain_community.retrievers.you import YouRetriever retriever = YouRetriever(num_web_results=1) retriever response = retriever.invoke("What is the weather in NY") print(len(response)) print(response) get_ipython().system('pip install --upgrade --quiet langchain-openai') from langchain_community.retrievers.you import YouRetriever from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI runnable = RunnablePassthrough retriever = YouRetriever(num_web_results=1) model = ChatOpenAI(model="gpt-3.5-turbo-16k") output_parser = StrOutputParser() prompt =
ChatPromptTemplate.from_template( """Answer the question based only on the context provided. Context: {context} Question: {question}""" )
langchain_core.prompts.ChatPromptTemplate.from_template
import getpass import os os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or getpass.getpass( "OpenAI API Key:" ) from langchain.sql_database import SQLDatabase from langchain_openai import ChatOpenAI CONNECTION_STRING = "postgresql+psycopg2://postgres:test@localhost:5432/vectordb" # Replace with your own db = SQLDatabase.from_uri(CONNECTION_STRING) from langchain_openai import OpenAIEmbeddings embeddings_model = OpenAIEmbeddings() tracks = db.run('SELECT "Name" FROM "Track"') song_titles = [s[0] for s in eval(tracks)] title_embeddings = embeddings_model.embed_documents(song_titles) len(title_embeddings) from tqdm import tqdm for i in tqdm(range(len(title_embeddings))): title = song_titles[i].replace("'", "''") embedding = title_embeddings[i] sql_command = ( f'UPDATE "Track" SET "embeddings" = ARRAY{embedding} WHERE "Name" =' + f"'{title}'" ) db.run(sql_command) embeded_title = embeddings_model.embed_query("hope about the future") query = ( 'SELECT "Track"."Name" FROM "Track" WHERE "Track"."embeddings" IS NOT NULL ORDER BY "embeddings" <-> ' + f"'{embeded_title}' LIMIT 5" ) db.run(query) def get_schema(_): return db.get_table_info() def run_query(query): return db.run(query) from langchain_core.prompts import ChatPromptTemplate template = """You are a Postgres expert. Given an input question, first create a syntactically correct Postgres query to run, then look at the results of the query and return the answer to the input question. Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per Postgres. You can order the results to return the most informative data in the database. Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers. Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Pay attention to use date('now') function to get the current date, if the question involves "today". You can use an extra extension which allows you to run semantic similarity using <-> operator on tables containing columns named "embeddings". <-> operator can ONLY be used on embeddings columns. The embeddings value for a given row typically represents the semantic meaning of that row. The vector represents an embedding representation of the question, given below. Do NOT fill in the vector values directly, but rather specify a `[search_word]` placeholder, which should contain the word that would be embedded for filtering. For example, if the user asks for songs about 'the feeling of loneliness' the query could be: 'SELECT "[whatever_table_name]"."SongName" FROM "[whatever_table_name]" ORDER BY "embeddings" <-> '[loneliness]' LIMIT 5' Use the following format: Question: <Question here> SQLQuery: <SQL Query to run> SQLResult: <Result of the SQLQuery> Answer: <Final answer here> Only use the following tables: {schema} """ prompt = ChatPromptTemplate.from_messages( [("system", template), ("human", "{question}")] ) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI db = SQLDatabase.from_uri( CONNECTION_STRING ) # We reconnect to db so the new columns are loaded as well. llm = ChatOpenAI(model_name="gpt-4", temperature=0) sql_query_chain = ( RunnablePassthrough.assign(schema=get_schema) | prompt | llm.bind(stop=["\nSQLResult:"]) | StrOutputParser() ) sql_query_chain.invoke( { "question": "Which are the 5 rock songs with titles about deep feeling of dispair?" } ) import re from langchain_core.runnables import RunnableLambda def replace_brackets(match): words_inside_brackets = match.group(1).split(", ") embedded_words = [ str(embeddings_model.embed_query(word)) for word in words_inside_brackets ] return "', '".join(embedded_words) def get_query(query): sql_query = re.sub(r"\[([\w\s,]+)\]", replace_brackets, query) return sql_query template = """Based on the table schema below, question, sql query, and sql response, write a natural language response: {schema} Question: {question} SQL Query: {query} SQL Response: {response}""" prompt = ChatPromptTemplate.from_messages( [("system", template), ("human", "{question}")] ) full_chain = (
RunnablePassthrough.assign(query=sql_query_chain)
langchain_core.runnables.RunnablePassthrough.assign
get_ipython().run_line_magic('pip', 'install --upgrade --quiet sodapy') get_ipython().run_line_magic('pip', 'install --upgrade --quiet pandas') get_ipython().run_line_magic('pip', 'install --upgrade --quiet geopandas') import ast import geopandas as gpd import pandas as pd from langchain_community.document_loaders import OpenCityDataLoader dataset = "tmnf-yvry" # San Francisco crime data loader =
OpenCityDataLoader(city_id="data.sfgov.org", dataset_id=dataset, limit=5000)
langchain_community.document_loaders.OpenCityDataLoader
import os import yaml get_ipython().system('wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml') get_ipython().system('wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml') get_ipython().system('wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml') from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec with open("openai_openapi.yaml") as f: raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader) openai_api_spec = reduce_openapi_spec(raw_openai_api_spec) with open("klarna_openapi.yaml") as f: raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader) klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec) with open("spotify_openapi.yaml") as f: raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader) spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec) import spotipy.util as util from langchain.requests import RequestsWrapper def construct_spotify_auth_headers(raw_spec: dict): scopes = list( raw_spec["components"]["securitySchemes"]["oauth_2_0"]["flows"][ "authorizationCode" ]["scopes"].keys() ) access_token = util.prompt_for_user_token(scope=",".join(scopes)) return {"Authorization": f"Bearer {access_token}"} headers = construct_spotify_auth_headers(raw_spotify_api_spec) requests_wrapper = RequestsWrapper(headers=headers) endpoints = [ (route, operation) for route, operations in raw_spotify_api_spec["paths"].items() for operation in operations if operation in ["get", "post"] ] len(endpoints) import tiktoken enc = tiktoken.encoding_for_model("gpt-4") def count_tokens(s): return len(enc.encode(s)) count_tokens(yaml.dump(raw_spotify_api_spec)) from langchain_community.agent_toolkits.openapi import planner from langchain_openai import OpenAI llm = OpenAI(model_name="gpt-4", temperature=0.0) spotify_agent = planner.create_openapi_agent(spotify_api_spec, requests_wrapper, llm) user_query = ( "make me a playlist with the first song from kind of blue. call it machine blues." ) spotify_agent.run(user_query) user_query = "give me a song I'd like, make it blues-ey" spotify_agent.run(user_query) headers = {"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"} openai_requests_wrapper =
RequestsWrapper(headers=headers)
langchain.requests.RequestsWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet wikibase-rest-api-client mediawikiapi') from langchain_community.tools.wikidata.tool import WikidataAPIWrapper, WikidataQueryRun wikidata = WikidataQueryRun(api_wrapper=
WikidataAPIWrapper()
langchain_community.tools.wikidata.tool.WikidataAPIWrapper
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai deepeval') get_ipython().system('deepeval login') from deepeval.metrics.answer_relevancy import AnswerRelevancy answer_relevancy_metric = AnswerRelevancy(minimum_score=0.5) from langchain.callbacks.confident_callback import DeepEvalCallbackHandler deepeval_callback = DeepEvalCallbackHandler( implementation_name="langchainQuickstart", metrics=[answer_relevancy_metric] ) from langchain_openai import OpenAI llm = OpenAI( temperature=0, callbacks=[deepeval_callback], verbose=True, openai_api_key="<YOUR_API_KEY>", ) output = llm.generate( [ "What is the best evaluation tool out there? (no bias at all)", ] ) answer_relevancy_metric.is_successful() import requests from langchain.chains import RetrievalQA from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Chroma from langchain_openai import OpenAI, OpenAIEmbeddings from langchain_text_splitters import CharacterTextSplitter text_file_url = "https://raw.githubusercontent.com/hwchase17/chat-your-data/master/state_of_the_union.txt" openai_api_key = "sk-XXX" with open("state_of_the_union.txt", "w") as f: response = requests.get(text_file_url) f.write(response.text) loader = TextLoader("state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) docsearch =
Chroma.from_documents(texts, embeddings)
langchain_community.vectorstores.Chroma.from_documents
from langchain.agents import AgentType, initialize_agent, load_tools from langchain.tools import AIPluginTool from langchain_openai import ChatOpenAI tool =
AIPluginTool.from_plugin_url("https://www.klarna.com/.well-known/ai-plugin.json")
langchain.tools.AIPluginTool.from_plugin_url
import asyncio import os import nest_asyncio import pandas as pd from langchain.docstore.document import Document from langchain_community.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain_experimental.autonomous_agents import AutoGPT from langchain_openai import ChatOpenAI nest_asyncio.apply() llm = ChatOpenAI(model_name="gpt-4", temperature=1.0) import os from contextlib import contextmanager from typing import Optional from langchain.agents import tool from langchain_community.tools.file_management.read import ReadFileTool from langchain_community.tools.file_management.write import WriteFileTool ROOT_DIR = "./data/" @contextmanager def pushd(new_dir): """Context manager for changing the current working directory.""" prev_dir = os.getcwd() os.chdir(new_dir) try: yield finally: os.chdir(prev_dir) @tool def process_csv( csv_file_path: str, instructions: str, output_path: Optional[str] = None ) -> str: """Process a CSV by with pandas in a limited REPL.\ Only use this after writing data to disk as a csv file.\ Any figures must be saved to disk to be viewed by the human.\ Instructions should be written in natural language, not code. Assume the dataframe is already loaded.""" with pushd(ROOT_DIR): try: df = pd.read_csv(csv_file_path) except Exception as e: return f"Error: {e}" agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=True) if output_path is not None: instructions += f" Save output to disk at {output_path}" try: result = agent.run(instructions) return result except Exception as e: return f"Error: {e}" async def async_load_playwright(url: str) -> str: """Load the specified URLs using Playwright and parse using BeautifulSoup.""" from bs4 import BeautifulSoup from playwright.async_api import async_playwright results = "" async with async_playwright() as p: browser = await p.chromium.launch(headless=True) try: page = await browser.new_page() await page.goto(url) page_source = await page.content() soup = BeautifulSoup(page_source, "html.parser") for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) results = "\n".join(chunk for chunk in chunks if chunk) except Exception as e: results = f"Error: {e}" await browser.close() return results def run_async(coro): event_loop = asyncio.get_event_loop() return event_loop.run_until_complete(coro) @tool def browse_web_page(url: str) -> str: """Verbose way to scrape a whole webpage. Likely to cause issues parsing.""" return run_async(async_load_playwright(url)) from langchain.chains.qa_with_sources.loading import ( BaseCombineDocumentsChain, load_qa_with_sources_chain, ) from langchain.tools import BaseTool, DuckDuckGoSearchRun from langchain_text_splitters import RecursiveCharacterTextSplitter from pydantic import Field def _get_text_splitter(): return RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=20, length_function=len, ) class WebpageQATool(BaseTool): name = "query_webpage" description = ( "Browse a webpage and retrieve the information relevant to the question." ) text_splitter: RecursiveCharacterTextSplitter = Field( default_factory=_get_text_splitter ) qa_chain: BaseCombineDocumentsChain def _run(self, url: str, question: str) -> str: """Useful for browsing websites and scraping the text information.""" result = browse_web_page.run(url) docs = [
Document(page_content=result, metadata={"source": url})
langchain.docstore.document.Document
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer') import os import promptlayer from langchain_community.llms import PromptLayerOpenAI from getpass import getpass PROMPTLAYER_API_KEY = getpass() os.environ["PROMPTLAYER_API_KEY"] = PROMPTLAYER_API_KEY from getpass import getpass OPENAI_API_KEY = getpass() os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY llm = PromptLayerOpenAI(pl_tags=["langchain"]) llm("I am a cat and I want") llm =
PromptLayerOpenAI(return_pl_id=True)
langchain_community.llms.PromptLayerOpenAI
get_ipython().run_line_magic('pip', 'install --upgrade --quiet marqo') from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Marqo from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) import marqo marqo_url = "http://localhost:8882" # if using marqo cloud replace with your endpoint (console.marqo.ai) marqo_api_key = "" # if using marqo cloud replace with your api key (console.marqo.ai) client = marqo.Client(url=marqo_url, api_key=marqo_api_key) index_name = "langchain-demo" docsearch =
Marqo.from_documents(docs, index_name=index_name)
langchain_community.vectorstores.Marqo.from_documents
get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-memorystore-redis') PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') from google.colab import auth auth.authenticate_user() import redis from langchain_google_memorystore_redis import ( DistanceStrategy, HNSWConfig, RedisVectorStore, ) redis_client = redis.from_url("redis://127.0.0.1:6379") index_config = HNSWConfig( name="my_vector_index", distance_strategy=DistanceStrategy.COSINE, vector_size=128 ) RedisVectorStore.init_index(client=redis_client, index_config=index_config) from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("./state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) from langchain_community.embeddings.fake import FakeEmbeddings embeddings =
FakeEmbeddings(size=128)
langchain_community.embeddings.fake.FakeEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet rspace_client') from langchain_community.document_loaders.rspace import RSpaceLoader rspace_ids = ["NB1932027", "FL1921314", "SD1932029", "GL1932384"] for rs_id in rspace_ids: loader =
RSpaceLoader(global_id=rs_id)
langchain_community.document_loaders.rspace.RSpaceLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results') import os from langchain_community.tools.google_finance import GoogleFinanceQueryRun from langchain_community.utilities.google_finance import GoogleFinanceAPIWrapper os.environ["SERPAPI_API_KEY"] = "" tool = GoogleFinanceQueryRun(api_wrapper=GoogleFinanceAPIWrapper()) tool.run("Google") import os from langchain.agents import AgentType, initialize_agent, load_tools from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = "" os.environ["SERP_API_KEY"] = "" llm = OpenAI() tools =
load_tools(["google-scholar", "google-finance"], llm=llm)
langchain.agents.load_tools
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory from langchain.prompts import PromptTemplate from langchain_community.utilities import GoogleSearchAPIWrapper from langchain_openai import OpenAI template = """This is a conversation between a human and a bot: {chat_history} Write a summary of the conversation for {input}: """ prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template) memory = ConversationBufferMemory(memory_key="chat_history") readonlymemory = ReadOnlySharedMemory(memory=memory) summary_chain = LLMChain( llm=OpenAI(), prompt=prompt, verbose=True, memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory ) search = GoogleSearchAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="Summary", func=summary_chain.run, description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.", ), ] prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"], ) llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True, memory=memory ) agent_chain.run(input="What is ChatGPT?") agent_chain.run(input="Who developed it?") agent_chain.run( input="Thanks. Summarize the conversation, for my daughter 5 years old." ) print(agent_chain.memory.buffer) template = """This is a conversation between a human and a bot: {chat_history} Write a summary of the conversation for {input}: """ prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template) memory =
ConversationBufferMemory(memory_key="chat_history")
langchain.memory.ConversationBufferMemory
get_ipython().run_line_magic('pip', 'install --upgrade --quiet airbyte-source-typeform') from langchain_community.document_loaders.airbyte import AirbyteTypeformLoader config = { } loader = AirbyteTypeformLoader( config=config, stream_name="forms" ) # check the documentation linked above for a list of all streams docs = loader.load() docs_iterator = loader.lazy_load() from langchain.docstore.document import Document def handle_record(record, id): return
Document(page_content=record.data["title"], metadata=record.data)
langchain.docstore.document.Document
from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain_openai import OpenAI llm = OpenAI(temperature=0) conversation = ConversationChain( llm=llm, verbose=True, memory=ConversationBufferMemory() ) conversation.predict(input="Hi there!") conversation.predict(input="What's the weather?") from langchain.prompts.prompt import PromptTemplate template = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. Current conversation: {history} Human: {input} AI Assistant:""" PROMPT =
PromptTemplate(input_variables=["history", "input"], template=template)
langchain.prompts.prompt.PromptTemplate
from langchain_community.chat_models import ChatDatabricks from langchain_core.messages import HumanMessage from mlflow.deployments import get_deploy_client client = get_deploy_client("databricks") secret = "secrets/<scope>/openai-api-key" # replace `<scope>` with your scope name = "my-chat" # rename this if my-chat already exists client.create_endpoint( name=name, config={ "served_entities": [ { "name": "my-chat", "external_model": { "name": "gpt-4", "provider": "openai", "task": "llm/v1/chat", "openai_config": { "openai_api_key": "{{" + secret + "}}", }, }, } ], }, ) chat = ChatDatabricks( target_uri="databricks", endpoint=name, temperature=0.1, ) chat([HumanMessage(content="hello")]) from langchain_community.embeddings import DatabricksEmbeddings embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en") embeddings.embed_query("hello")[:3] from langchain_community.llms import Databricks llm = Databricks(endpoint_name="dolly") llm("How are you?") llm("How are you?", stop=["."]) import os import dbutils os.environ["DATABRICKS_TOKEN"] = dbutils.secrets.get("myworkspace", "api_token") llm = Databricks(host="myworkspace.cloud.databricks.com", endpoint_name="dolly") llm("How are you?") llm = Databricks(endpoint_name="dolly", model_kwargs={"temperature": 0.1}) llm("How are you?") def transform_input(**request): full_prompt = f"""{request["prompt"]} Be Concise. """ request["prompt"] = full_prompt return request llm = Databricks(endpoint_name="dolly", transform_input_fn=transform_input) llm("How are you?") llm =
Databricks(cluster_driver_port="7777")
langchain_community.llms.Databricks
get_ipython().system('poetry run pip install dgml-utils==0.3.0 --upgrade --quiet') import os from langchain_community.document_loaders import DocugamiLoader DOCUGAMI_API_KEY = os.environ.get("DOCUGAMI_API_KEY") docset_id = "26xpy3aes7xp" document_ids = ["d7jqdzcj50sj", "cgd1eacfkchw"] loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids) chunks = loader.load() len(chunks) loader.min_text_length = 64 loader.include_xml_tags = True chunks = loader.load() for chunk in chunks[:5]: print(chunk) get_ipython().system('poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib') loader = DocugamiLoader(docset_id="zo954yqy53wp") chunks = loader.load() for chunk in chunks: stripped_metadata = chunk.metadata.copy() for key in chunk.metadata: if key not in ["name", "xpath", "id", "structure"]: del stripped_metadata[key] chunk.metadata = stripped_metadata print(len(chunks)) from langchain.chains import RetrievalQA from langchain_community.vectorstores.chroma import Chroma from langchain_openai import OpenAI, OpenAIEmbeddings embedding = OpenAIEmbeddings() vectordb =
Chroma.from_documents(documents=chunks, embedding=embedding)
langchain_community.vectorstores.chroma.Chroma.from_documents
get_ipython().run_line_magic('pip', 'install --upgrade --quiet marqo') from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import Marqo from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) import marqo marqo_url = "http://localhost:8882" # if using marqo cloud replace with your endpoint (console.marqo.ai) marqo_api_key = "" # if using marqo cloud replace with your api key (console.marqo.ai) client = marqo.Client(url=marqo_url, api_key=marqo_api_key) index_name = "langchain-demo" docsearch = Marqo.from_documents(docs, index_name=index_name) query = "What did the president say about Ketanji Brown Jackson" result_docs = docsearch.similarity_search(query) print(result_docs[0].page_content) result_docs = docsearch.similarity_search_with_score(query) print(result_docs[0][0].page_content, result_docs[0][1], sep="\n") index_name = "langchain-multimodal-demo" try: client.delete_index(index_name) except Exception: print(f"Creating {index_name}") settings = {"treat_urls_and_pointers_as_images": True, "model": "ViT-L/14"} client.create_index(index_name, **settings) client.index(index_name).add_documents( [ { "caption": "Bus", "image": "https://raw.githubusercontent.com/marqo-ai/marqo/mainline/examples/ImageSearchGuide/data/image4.jpg", }, { "caption": "Plane", "image": "https://raw.githubusercontent.com/marqo-ai/marqo/mainline/examples/ImageSearchGuide/data/image2.jpg", }, ], ) def get_content(res): """Helper to format Marqo's documents into text to be used as page_content""" return f"{res['caption']}: {res['image']}" docsearch = Marqo(client, index_name, page_content_builder=get_content) query = "vehicles that fly" doc_results = docsearch.similarity_search(query) for doc in doc_results: print(doc.page_content) index_name = "langchain-byo-index-demo" try: client.delete_index(index_name) except Exception: print(f"Creating {index_name}") client.create_index(index_name) client.index(index_name).add_documents( [ { "Title": "Smartphone", "Description": "A smartphone is a portable computer device that combines mobile telephone " "functions and computing functions into one unit.", }, { "Title": "Telephone", "Description": "A telephone is a telecommunications device that permits two or more users to" "conduct a conversation when they are too far apart to be easily heard directly.", }, ], ) def get_content(res): """Helper to format Marqo's documents into text to be used as page_content""" if "text" in res: return res["text"] return res["Description"] docsearch = Marqo(client, index_name, page_content_builder=get_content) docsearch.add_texts(["This is a document that is about elephants"]) query = "modern communications devices" doc_results = docsearch.similarity_search(query) print(doc_results[0].page_content) query = "elephants" doc_results = docsearch.similarity_search(query, page_content_builder=get_content) print(doc_results[0].page_content) query = {"communications devices": 1.0} doc_results = docsearch.similarity_search(query) print(doc_results[0].page_content) query = {"communications devices": 1.0, "technology post 2000": -1.0} doc_results = docsearch.similarity_search(query) print(doc_results[0].page_content) import getpass import os from langchain.chains import RetrievalQAWithSourcesChain from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") with open("../../modules/state_of_the_union.txt") as f: state_of_the_union = f.read() text_splitter =
CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
langchain_text_splitters.CharacterTextSplitter
get_ipython().system(' pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)') get_ipython().system(' pip install "unstructured[all-docs]==0.10.19" pillow pydantic lxml pillow matplotlib tiktoken open_clip_torch torch') path = "/Users/rlm/Desktop/photos/" from unstructured.partition.pdf import partition_pdf raw_pdf_elements = partition_pdf( filename=path + "photos.pdf", extract_images_in_pdf=True, infer_table_structure=True, chunking_strategy="by_title", max_characters=4000, new_after_n_chars=3800, combine_text_under_n_chars=2000, image_output_dir_path=path, ) tables = [] texts = [] for element in raw_pdf_elements: if "unstructured.documents.elements.Table" in str(type(element)): tables.append(str(element)) elif "unstructured.documents.elements.CompositeElement" in str(type(element)): texts.append(str(element)) import os import uuid import chromadb import numpy as np from langchain_community.vectorstores import Chroma from langchain_experimental.open_clip import OpenCLIPEmbeddings from PIL import Image as _PILImage vectorstore = Chroma( collection_name="mm_rag_clip_photos", embedding_function=OpenCLIPEmbeddings() ) image_uris = sorted( [ os.path.join(path, image_name) for image_name in os.listdir(path) if image_name.endswith(".jpg") ] ) vectorstore.add_images(uris=image_uris) vectorstore.add_texts(texts=texts) retriever = vectorstore.as_retriever() import base64 import io from io import BytesIO import numpy as np from PIL import Image def resize_base64_image(base64_string, size=(128, 128)): """ Resize an image encoded as a Base64 string. Args: base64_string (str): Base64 string of the original image. size (tuple): Desired size of the image as (width, height). Returns: str: Base64 string of the resized image. """ img_data = base64.b64decode(base64_string) img = Image.open(io.BytesIO(img_data)) resized_img = img.resize(size, Image.LANCZOS) buffered = io.BytesIO() resized_img.save(buffered, format=img.format) return base64.b64encode(buffered.getvalue()).decode("utf-8") def is_base64(s): """Check if a string is Base64 encoded""" try: return base64.b64encode(base64.b64decode(s)) == s.encode() except Exception: return False def split_image_text_types(docs): """Split numpy array images and texts""" images = [] text = [] for doc in docs: doc = doc.page_content # Extract Document contents if is_base64(doc): images.append( resize_base64_image(doc, size=(250, 250)) ) # base64 encoded str else: text.append(doc) return {"images": images, "texts": text} from operator import itemgetter from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import ChatOpenAI def prompt_func(data_dict): formatted_texts = "\n".join(data_dict["context"]["texts"]) messages = [] if data_dict["context"]["images"]: image_message = { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{data_dict['context']['images'][0]}" }, } messages.append(image_message) text_message = { "type": "text", "text": ( "As an expert art critic and historian, your task is to analyze and interpret images, " "considering their historical and cultural significance. Alongside the images, you will be " "provided with related text to offer context. Both will be retrieved from a vectorstore based " "on user-input keywords. Please use your extensive knowledge and analytical skills to provide a " "comprehensive summary that includes:\n" "- A detailed description of the visual elements in the image.\n" "- The historical and cultural context of the image.\n" "- An interpretation of the image's symbolism and meaning.\n" "- Connections between the image and the related text.\n\n" f"User-provided keywords: {data_dict['question']}\n\n" "Text and / or tables:\n" f"{formatted_texts}" ), } messages.append(text_message) return [HumanMessage(content=messages)] model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens=1024) chain = ( { "context": retriever |
RunnableLambda(split_image_text_types)
langchain_core.runnables.RunnableLambda
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-community') import os os.environ["YDC_API_KEY"] = "" os.environ["OPENAI_API_KEY"] = "" from langchain_community.utilities.you import YouSearchAPIWrapper utility = YouSearchAPIWrapper(num_web_results=1) utility import json response = utility.raw_results(query="What is the weather in NY") hits = response["hits"] print(len(hits)) print(json.dumps(hits, indent=2)) response = utility.results(query="What is the weather in NY") print(len(response)) print(response) from langchain_community.retrievers.you import YouRetriever retriever = YouRetriever(num_web_results=1) retriever response = retriever.invoke("What is the weather in NY") print(len(response)) print(response) get_ipython().system('pip install --upgrade --quiet langchain-openai') from langchain_community.retrievers.you import YouRetriever from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI runnable = RunnablePassthrough retriever =
YouRetriever(num_web_results=1)
langchain_community.retrievers.you.YouRetriever
get_ipython().system(' nomic login') get_ipython().system(' nomic login token') get_ipython().system(' pip install -U langchain-nomic langchain_community tiktoken langchain-openai chromadb langchain') import os os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "api_key" from langchain_community.document_loaders import WebBaseLoader urls = [ "https://lilianweng.github.io/posts/2023-06-23-agent/", "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/", "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/", ] docs = [WebBaseLoader(url).load() for url in urls] docs_list = [item for sublist in docs for item in sublist] from langchain_text_splitters import CharacterTextSplitter text_splitter = CharacterTextSplitter.from_tiktoken_encoder( chunk_size=7500, chunk_overlap=100 ) doc_splits = text_splitter.split_documents(docs_list) import tiktoken encoding = tiktoken.get_encoding("cl100k_base") encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") for d in doc_splits: print("The document is %s tokens" % len(encoding.encode(d.page_content))) import os from langchain_community.vectorstores import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_nomic import NomicEmbeddings from langchain_nomic.embeddings import NomicEmbeddings vectorstore = Chroma.from_documents( documents=doc_splits, collection_name="rag-chroma", embedding=
NomicEmbeddings(model="nomic-embed-text-v1")
langchain_nomic.embeddings.NomicEmbeddings
from langchain.callbacks import FileCallbackHandler from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_openai import OpenAI from loguru import logger logfile = "output.log" logger.add(logfile, colorize=True, enqueue=True) handler =
FileCallbackHandler(logfile)
langchain.callbacks.FileCallbackHandler
get_ipython().run_line_magic('pip', 'install --upgrade --quiet lark') get_ipython().run_line_magic('pip', 'install --upgrade --quiet chromadb') import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") from langchain_community.vectorstores import Chroma from langchain_core.documents import Document from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() docs = [ Document( page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ), Document( page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}, ), Document( page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}, ), Document( page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}, ), Document( page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}, ), Document( page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={ "year": 1979, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9, }, ), ] vectorstore =
Chroma.from_documents(docs, embeddings)
langchain_community.vectorstores.Chroma.from_documents
get_ipython().system('pip install --upgrade langchain langchain-google-vertexai') project: str = "PUT_YOUR_PROJECT_ID_HERE" # @param {type:"string"} endpoint_id: str = "PUT_YOUR_ENDPOINT_ID_HERE" # @param {type:"string"} location: str = "PUT_YOUR_ENDPOINT_LOCAtION_HERE" # @param {type:"string"} from langchain_google_vertexai import ( GemmaChatVertexAIModelGarden, GemmaVertexAIModelGarden, ) llm = GemmaVertexAIModelGarden( endpoint_id=endpoint_id, project=project, location=location, ) output = llm.invoke("What is the meaning of life?") print(output) from langchain_core.messages import HumanMessage llm = GemmaChatVertexAIModelGarden( endpoint_id=endpoint_id, project=project, location=location, ) message1 = HumanMessage(content="How much is 2+2?") answer1 = llm.invoke([message1]) print(answer1) message2 = HumanMessage(content="How much is 3+3?") answer2 = llm.invoke([message1, answer1, message2]) print(answer2) answer1 = llm.invoke([message1], parse_response=True) print(answer1) answer2 = llm.invoke([message1, answer1, message2], parse_response=True) print(answer2) get_ipython().system('mkdir -p ~/.kaggle && cp kaggle.json ~/.kaggle/kaggle.json') get_ipython().system('pip install keras>=3 keras_nlp') from langchain_google_vertexai import GemmaLocalKaggle keras_backend: str = "jax" # @param {type:"string"} model_name: str = "gemma_2b_en" # @param {type:"string"} llm = GemmaLocalKaggle(model_name=model_name, keras_backend=keras_backend) output = llm.invoke("What is the meaning of life?", max_tokens=30) print(output) from langchain_google_vertexai import GemmaChatLocalKaggle keras_backend: str = "jax" # @param {type:"string"} model_name: str = "gemma_2b_en" # @param {type:"string"} llm = GemmaChatLocalKaggle(model_name=model_name, keras_backend=keras_backend) from langchain_core.messages import HumanMessage message1 = HumanMessage(content="Hi! Who are you?") answer1 = llm.invoke([message1], max_tokens=30) print(answer1) message2 = HumanMessage(content="What can you help me with?") answer2 = llm.invoke([message1, answer1, message2], max_tokens=60) print(answer2) answer1 = llm.invoke([message1], max_tokens=30, parse_response=True) print(answer1) answer2 = llm.invoke([message1, answer1, message2], max_tokens=60, parse_response=True) print(answer2) from langchain_google_vertexai import GemmaChatLocalHF, GemmaLocalHF hf_access_token: str = "PUT_YOUR_TOKEN_HERE" # @param {type:"string"} model_name: str = "google/gemma-2b" # @param {type:"string"} llm = GemmaLocalHF(model_name="google/gemma-2b", hf_access_token=hf_access_token) output = llm.invoke("What is the meaning of life?", max_tokens=50) print(output) llm =
GemmaChatLocalHF(model_name=model_name, hf_access_token=hf_access_token)
langchain_google_vertexai.GemmaChatLocalHF
import getpass import os os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or getpass.getpass( "OpenAI API Key:" ) from langchain.sql_database import SQLDatabase from langchain_openai import ChatOpenAI CONNECTION_STRING = "postgresql+psycopg2://postgres:test@localhost:5432/vectordb" # Replace with your own db = SQLDatabase.from_uri(CONNECTION_STRING) from langchain_openai import OpenAIEmbeddings embeddings_model = OpenAIEmbeddings() tracks = db.run('SELECT "Name" FROM "Track"') song_titles = [s[0] for s in eval(tracks)] title_embeddings = embeddings_model.embed_documents(song_titles) len(title_embeddings) from tqdm import tqdm for i in tqdm(range(len(title_embeddings))): title = song_titles[i].replace("'", "''") embedding = title_embeddings[i] sql_command = ( f'UPDATE "Track" SET "embeddings" = ARRAY{embedding} WHERE "Name" =' + f"'{title}'" ) db.run(sql_command) embeded_title = embeddings_model.embed_query("hope about the future") query = ( 'SELECT "Track"."Name" FROM "Track" WHERE "Track"."embeddings" IS NOT NULL ORDER BY "embeddings" <-> ' + f"'{embeded_title}' LIMIT 5" ) db.run(query) def get_schema(_): return db.get_table_info() def run_query(query): return db.run(query) from langchain_core.prompts import ChatPromptTemplate template = """You are a Postgres expert. Given an input question, first create a syntactically correct Postgres query to run, then look at the results of the query and return the answer to the input question. Unless the user specifies in the question a specific number of examples to obtain, query for at most 5 results using the LIMIT clause as per Postgres. You can order the results to return the most informative data in the database. Never query for all columns from a table. You must query only the columns that are needed to answer the question. Wrap each column name in double quotes (") to denote them as delimited identifiers. Pay attention to use only the column names you can see in the tables below. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table. Pay attention to use date('now') function to get the current date, if the question involves "today". You can use an extra extension which allows you to run semantic similarity using <-> operator on tables containing columns named "embeddings". <-> operator can ONLY be used on embeddings columns. The embeddings value for a given row typically represents the semantic meaning of that row. The vector represents an embedding representation of the question, given below. Do NOT fill in the vector values directly, but rather specify a `[search_word]` placeholder, which should contain the word that would be embedded for filtering. For example, if the user asks for songs about 'the feeling of loneliness' the query could be: 'SELECT "[whatever_table_name]"."SongName" FROM "[whatever_table_name]" ORDER BY "embeddings" <-> '[loneliness]' LIMIT 5' Use the following format: Question: <Question here> SQLQuery: <SQL Query to run> SQLResult: <Result of the SQLQuery> Answer: <Final answer here> Only use the following tables: {schema} """ prompt = ChatPromptTemplate.from_messages( [("system", template), ("human", "{question}")] ) from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI db = SQLDatabase.from_uri( CONNECTION_STRING ) # We reconnect to db so the new columns are loaded as well. llm = ChatOpenAI(model_name="gpt-4", temperature=0) sql_query_chain = (
RunnablePassthrough.assign(schema=get_schema)
langchain_core.runnables.RunnablePassthrough.assign
from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool from langchain_community.utilities import SerpAPIWrapper def random_word(query: str) -> str: print("\nNow I'm doing this!") return "foo" search = SerpAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="RandomWord", func=random_word, description="call this to get a random word.", ), ] from typing import Any, List, Tuple, Union from langchain_core.agents import AgentAction, AgentFinish class FakeAgent(BaseMultiActionAgent): """Fake Custom Agent.""" @property def input_keys(self): return ["input"] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ if len(intermediate_steps) == 0: return [ AgentAction(tool="Search", tool_input=kwargs["input"], log=""), AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""), ] else: return
AgentFinish(return_values={"output": "bar"}, log="")
langchain_core.agents.AgentFinish
from langchain.evaluation import RegexMatchStringEvaluator evaluator = RegexMatchStringEvaluator() from langchain.evaluation import load_evaluator evaluator = load_evaluator("regex_match") evaluator.evaluate_strings( prediction="The delivery will be made on 2024-01-05", reference=".*\\b\\d{4}-\\d{2}-\\d{2}\\b.*", ) evaluator.evaluate_strings( prediction="The delivery will be made on 2024-01-05", reference=".*\\b\\d{2}-\\d{2}-\\d{4}\\b.*", ) evaluator.evaluate_strings( prediction="The delivery will be made on 01-05-2024", reference=".*\\b\\d{2}-\\d{2}-\\d{4}\\b.*", ) evaluator.evaluate_strings( prediction="The delivery will be made on 01-05-2024", reference="|".join( [".*\\b\\d{4}-\\d{2}-\\d{2}\\b.*", ".*\\b\\d{2}-\\d{2}-\\d{4}\\b.*"] ), ) import re evaluator =
RegexMatchStringEvaluator(flags=re.IGNORECASE)
langchain.evaluation.RegexMatchStringEvaluator
get_ipython().system("python3 -m pip install --upgrade langchain 'deeplake[enterprise]' openai tiktoken") import getpass import os from langchain.chains import RetrievalQA from langchain_community.vectorstores import DeepLake from langchain_openai import OpenAI, OpenAIEmbeddings from langchain_text_splitters import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:") activeloop_token = getpass.getpass("Activeloop Token:") os.environ["ACTIVELOOP_TOKEN"] = activeloop_token os.environ["ACTIVELOOP_ORG"] = getpass.getpass("Activeloop Org:") org_id = os.environ["ACTIVELOOP_ORG"] embeddings = OpenAIEmbeddings() dataset_path = "hub://" + org_id + "/data" with open("messages.txt") as f: state_of_the_union = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) pages = text_splitter.split_text(state_of_the_union) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) texts = text_splitter.create_documents(pages) print(texts) dataset_path = "hub://" + org_id + "/data" embeddings =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install xmltodict') from langchain_community.tools.pubmed.tool import PubmedQueryRun tool =
PubmedQueryRun()
langchain_community.tools.pubmed.tool.PubmedQueryRun
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core langchain langchain-openai') from langchain.utils.math import cosine_similarity from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings physics_template = """You are a very smart physics professor. \ You are great at answering questions about physics in a concise and easy to understand manner. \ When you don't know the answer to a question you admit that you don't know. Here is a question: {query}""" math_template = """You are a very good mathematician. You are great at answering math questions. \ You are so good because you are able to break down hard problems into their component parts, \ answer the component parts, and then put them together to answer the broader question. Here is a question: {query}""" embeddings = OpenAIEmbeddings() prompt_templates = [physics_template, math_template] prompt_embeddings = embeddings.embed_documents(prompt_templates) def prompt_router(input): query_embedding = embeddings.embed_query(input["query"]) similarity = cosine_similarity([query_embedding], prompt_embeddings)[0] most_similar = prompt_templates[similarity.argmax()] print("Using MATH" if most_similar == math_template else "Using PHYSICS") return PromptTemplate.from_template(most_similar) chain = ( {"query":
RunnablePassthrough()
langchain_core.runnables.RunnablePassthrough
from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool from langchain_community.utilities import SerpAPIWrapper def random_word(query: str) -> str: print("\nNow I'm doing this!") return "foo" search = SerpAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="RandomWord", func=random_word, description="call this to get a random word.", ), ] from typing import Any, List, Tuple, Union from langchain_core.agents import AgentAction, AgentFinish class FakeAgent(BaseMultiActionAgent): """Fake Custom Agent.""" @property def input_keys(self): return ["input"] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ if len(intermediate_steps) == 0: return [ AgentAction(tool="Search", tool_input=kwargs["input"], log=""), AgentAction(tool="RandomWord", tool_input=kwargs["input"], log=""), ] else: return AgentFinish(return_values={"output": "bar"}, log="") async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ if len(intermediate_steps) == 0: return [ AgentAction(tool="Search", tool_input=kwargs["input"], log=""),
AgentAction(tool="RandomWord", tool_input=kwargs["input"], log="")
langchain_core.agents.AgentAction
from langchain_community.document_loaders.blob_loaders.youtube_audio import ( YoutubeAudioLoader, ) from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers import ( OpenAIWhisperParser, OpenAIWhisperParserLocal, ) get_ipython().run_line_magic('pip', 'install --upgrade --quiet yt_dlp') get_ipython().run_line_magic('pip', 'install --upgrade --quiet pydub') get_ipython().run_line_magic('pip', 'install --upgrade --quiet librosa') local = False urls = ["https://youtu.be/kCc8FmEb1nY", "https://youtu.be/VMj-3S1tku0"] save_dir = "~/Downloads/YouTube" if local: loader = GenericLoader(
YoutubeAudioLoader(urls, save_dir)
langchain_community.document_loaders.blob_loaders.youtube_audio.YoutubeAudioLoader
import os os.environ["LANGCHAIN_PROJECT"] = "movie-qa" import pandas as pd df = pd.read_csv("data/imdb_top_1000.csv") df["Released_Year"] = df["Released_Year"].astype(int, errors="ignore") from langchain.schema import Document from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() records = df.to_dict("records") documents = [Document(page_content=d["Overview"], metadata=d) for d in records] vectorstore = Chroma.from_documents(documents, embeddings) from langchain.chains.query_constructor.base import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_openai import ChatOpenAI metadata_field_info = [ AttributeInfo( name="Released_Year", description="The year the movie was released", type="int", ), AttributeInfo( name="Series_Title", description="The title of the movie", type="str", ), AttributeInfo( name="Genre", description="The genre of the movie", type="string", ), AttributeInfo( name="IMDB_Rating", description="A 1-10 rating for the movie", type="float" ), ] document_content_description = "Brief summary of a movie" llm = ChatOpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, verbose=True ) from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate prompt =
ChatPromptTemplate.from_template( """Answer the user's question based on the below information: Information: {info} Question: {question}""" )
langchain_core.prompts.ChatPromptTemplate.from_template
import os os.environ["GOOGLE_CSE_ID"] = "" os.environ["GOOGLE_API_KEY"] = "" from langchain.tools import Tool from langchain_community.utilities import GoogleSearchAPIWrapper search =
GoogleSearchAPIWrapper()
langchain_community.utilities.GoogleSearchAPIWrapper
import json from langchain.adapters.openai import convert_message_to_dict from langchain_core.messages import AIMessage with open("example_data/dataset_twitter-scraper_2023-08-23_22-13-19-740.json") as f: data = json.load(f) tweets = [d["full_text"] for d in data if "t.co" not in d["full_text"]] messages = [AIMessage(content=t) for t in tweets] system_message = {"role": "system", "content": "write a tweet"} data = [[system_message,
convert_message_to_dict(m)
langchain.adapters.openai.convert_message_to_dict
from langchain_community.embeddings.fake import FakeEmbeddings from langchain_community.vectorstores import Tair from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings =
FakeEmbeddings(size=128)
langchain_community.embeddings.fake.FakeEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas') ORG_ID = "..." import getpass import os from langchain.chains import RetrievalQA from langchain.vectorstores.deeplake import DeepLake from langchain_openai import OpenAIChat, OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ") os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass( "Enter your ActiveLoop API token: " ) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens" token = os.getenv("ACTIVELOOP_TOKEN") openai_embeddings = OpenAIEmbeddings() db = DeepLake( dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop embedding=openai_embeddings, runtime={"tensor_db": True}, token=token, read_only=False, ) from urllib.parse import urljoin import requests from bs4 import BeautifulSoup def get_all_links(url): response = requests.get(url) if response.status_code != 200: print(f"Failed to retrieve the page: {url}") return [] soup = BeautifulSoup(response.content, "html.parser") links = [ urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"] ] return links base_url = "https://docs.deeplake.ai/en/latest/" all_links = get_all_links(base_url) from langchain.document_loaders import AsyncHtmlLoader loader = AsyncHtmlLoader(all_links) docs = loader.load() from langchain.document_transformers import Html2TextTransformer html2text = Html2TextTransformer() docs_transformed = html2text.transform_documents(docs) from langchain_text_splitters import RecursiveCharacterTextSplitter chunk_size = 4096 docs_new = [] text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, ) for doc in docs_transformed: if len(doc.page_content) < chunk_size: docs_new.append(doc) else: docs = text_splitter.create_documents([doc.page_content]) docs_new.extend(docs) docs = db.add_documents(docs_new) from typing import List from langchain.chains.openai_functions import ( create_structured_output_chain, ) from langchain_core.messages import HumanMessage, SystemMessage from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain_openai import ChatOpenAI from pydantic import BaseModel, Field docs = db.vectorstore.dataset.text.data(fetch_chunks=True, aslist=True)["value"] ids = db.vectorstore.dataset.id.data(fetch_chunks=True, aslist=True)["value"] llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) class Questions(BaseModel): """Identifying information about a person.""" question: str = Field(..., description="Questions about text") prompt_msgs = [ SystemMessage( content="You are a world class expert for generating questions based on provided context. \ You make sure the question can be answered by the text." ), HumanMessagePromptTemplate.from_template( "Use the given text to generate a question from the following input: {input}" ), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] prompt = ChatPromptTemplate(messages=prompt_msgs) chain = create_structured_output_chain(Questions, llm, prompt, verbose=True) text = "# Understanding Hallucinations and Bias ## **Introduction** In this lesson, we'll cover the concept of **hallucinations** in LLMs, highlighting their influence on AI applications and demonstrating how to mitigate them using techniques like the retriever's architectures. We'll also explore **bias** within LLMs with examples." questions = chain.run(input=text) print(questions) import random from langchain_openai import OpenAIEmbeddings from tqdm import tqdm def generate_queries(docs: List[str], ids: List[str], n: int = 100): questions = [] relevances = [] pbar = tqdm(total=n) while len(questions) < n: r = random.randint(0, len(docs) - 1) text, label = docs[r], ids[r] generated_qs = [chain.run(input=text).question] questions.extend(generated_qs) relevances.extend([[(label, 1)] for _ in generated_qs]) pbar.update(len(generated_qs)) if len(questions) % 10 == 0: print(f"q: {len(questions)}") return questions[:n], relevances[:n] chain = create_structured_output_chain(Questions, llm, prompt, verbose=False) questions, relevances = generate_queries(docs, ids, n=200) train_questions, train_relevances = questions[:100], relevances[:100] test_questions, test_relevances = questions[100:], relevances[100:] job_id = db.vectorstore.deep_memory.train( queries=train_questions, relevance=train_relevances, ) db.vectorstore.deep_memory.status("6538939ca0b69a9ca45c528c") recall = db.vectorstore.deep_memory.evaluate( queries=test_questions, relevance=test_relevances, ) from ragas.langchain import RagasEvaluatorChain from ragas.metrics import ( context_recall, ) def convert_relevance_to_ground_truth(docs, relevance): ground_truths = [] for rel in relevance: ground_truth = [] for doc_id, _ in rel: ground_truth.append(docs[doc_id]) ground_truths.append(ground_truth) return ground_truths ground_truths = convert_relevance_to_ground_truth(docs, test_relevances) for deep_memory in [False, True]: print("\nEvaluating with deep_memory =", deep_memory) print("===================================") retriever = db.as_retriever() retriever.search_kwargs["deep_memory"] = deep_memory qa_chain = RetrievalQA.from_chain_type( llm=
OpenAIChat(model="gpt-3.5-turbo")
langchain_openai.OpenAIChat
import sentence_transformers from baidubce.auth.bce_credentials import BceCredentials from baidubce.bce_client_configuration import BceClientConfiguration from langchain.chains.retrieval_qa import RetrievalQA from langchain_community.document_loaders.baiducloud_bos_directory import ( BaiduBOSDirectoryLoader, ) from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings from langchain_community.llms.baidu_qianfan_endpoint import QianfanLLMEndpoint from langchain_community.vectorstores import BESVectorStore from langchain_text_splitters import RecursiveCharacterTextSplitter bos_host = "your bos eddpoint" access_key_id = "your bos access ak" secret_access_key = "your bos access sk" config = BceClientConfiguration( credentials=BceCredentials(access_key_id, secret_access_key), endpoint=bos_host ) loader = BaiduBOSDirectoryLoader(conf=config, bucket="llm-test", prefix="llm/") documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0) split_docs = text_splitter.split_documents(documents) embeddings =
HuggingFaceEmbeddings(model_name="shibing624/text2vec-base-chinese")
langchain_community.embeddings.huggingface.HuggingFaceEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langsmith langchainhub --quiet') get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai tiktoken pandas duckduckgo-search --quiet') import os from uuid import uuid4 unique_id = uuid4().hex[0:8] os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = f"Tracing Walkthrough - {unique_id}" os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com" os.environ["LANGCHAIN_API_KEY"] = "<YOUR-API-KEY>" # Update to your API key os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>" from langsmith import Client client = Client() from langchain import hub from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad.openai_tools import ( format_to_openai_tool_messages, ) from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser from langchain_community.tools import DuckDuckGoSearchResults from langchain_openai import ChatOpenAI prompt = hub.pull("wfh/langsmith-agent-prompt:5d466cbc") llm = ChatOpenAI( model="gpt-3.5-turbo-16k", temperature=0, ) tools = [ DuckDuckGoSearchResults( name="duck_duck_go" ), # General internet search using DuckDuckGo ] llm_with_tools = llm.bind_tools(tools) runnable_agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools | OpenAIToolsAgentOutputParser() ) agent_executor = AgentExecutor( agent=runnable_agent, tools=tools, handle_parsing_errors=True ) inputs = [ "What is LangChain?", "What's LangSmith?", "When was Llama-v2 released?", "What is the langsmith cookbook?", "When did langchain first announce the hub?", ] results = agent_executor.batch([{"input": x} for x in inputs], return_exceptions=True) results[:2] outputs = [ "LangChain is an open-source framework for building applications using large language models. It is also the name of the company building LangSmith.", "LangSmith is a unified platform for debugging, testing, and monitoring language model applications and agents powered by LangChain", "July 18, 2023", "The langsmith cookbook is a github repository containing detailed examples of how to use LangSmith to debug, evaluate, and monitor large language model-powered applications.", "September 5, 2023", ] dataset_name = f"agent-qa-{unique_id}" dataset = client.create_dataset( dataset_name, description="An example dataset of questions over the LangSmith documentation.", ) client.create_examples( inputs=[{"input": query} for query in inputs], outputs=[{"output": answer} for answer in outputs], dataset_id=dataset.id, ) from langchain import hub from langchain.agents import AgentExecutor, AgentType, initialize_agent, load_tools from langchain_openai import ChatOpenAI def create_agent(prompt, llm_with_tools): runnable_agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_to_openai_tool_messages( x["intermediate_steps"] ), } | prompt | llm_with_tools |
OpenAIToolsAgentOutputParser()
langchain.agents.output_parsers.openai_tools.OpenAIToolsAgentOutputParser
from langchain import hub from langchain.agents import AgentExecutor, create_openai_functions_agent from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper from langchain_openai import ChatOpenAI api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100) tool = WikipediaQueryRun(api_wrapper=api_wrapper) tools = [tool] prompt = hub.pull("hwchase17/openai-functions-agent") llm = ChatOpenAI(temperature=0) agent =
create_openai_functions_agent(llm, tools, prompt)
langchain.agents.create_openai_functions_agent
from langchain_community.embeddings.fake import FakeEmbeddings from langchain_community.vectorstores import Tair from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = FakeEmbeddings(size=128) tair_url = "redis://localhost:6379"
Tair.drop_index(tair_url=tair_url)
langchain_community.vectorstores.Tair.drop_index
from langchain_community.llms import AmazonAPIGateway api_url = "https://<api_gateway_id>.execute-api.<region>.amazonaws.com/LATEST/HF" llm =
AmazonAPIGateway(api_url=api_url)
langchain_community.llms.AmazonAPIGateway
from langchain_community.utils.openai_functions import ( convert_pydantic_to_openai_function, ) from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field, validator from langchain_openai import ChatOpenAI class Joke(BaseModel): """Joke to tell user.""" setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") openai_functions = [convert_pydantic_to_openai_function(Joke)] model = ChatOpenAI(temperature=0) prompt = ChatPromptTemplate.from_messages( [("system", "You are helpful assistant"), ("user", "{input}")] ) from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser parser = JsonOutputFunctionsParser() chain = prompt | model.bind(functions=openai_functions) | parser chain.invoke({"input": "tell me a joke"}) for s in chain.stream({"input": "tell me a joke"}): print(s) from typing import List from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser class Jokes(BaseModel): """Jokes to tell user.""" joke: List[Joke] funniness_level: int parser = JsonKeyOutputFunctionsParser(key_name="joke") openai_functions = [convert_pydantic_to_openai_function(Jokes)] chain = prompt | model.bind(functions=openai_functions) | parser chain.invoke({"input": "tell me two jokes"}) for s in chain.stream({"input": "tell me two jokes"}): print(s) from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser class Joke(BaseModel): """Joke to tell user.""" setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") @
validator("setup")
langchain_core.pydantic_v1.validator
from langchain_community.document_loaders import AsyncHtmlLoader urls = ["https://www.espn.com", "https://lilianweng.github.io/posts/2023-06-23-agent/"] loader =
AsyncHtmlLoader(urls)
langchain_community.document_loaders.AsyncHtmlLoader
from langchain_community.chat_models.human import HumanInputChatModel get_ipython().run_line_magic('pip', 'install wikipedia') from langchain.agents import AgentType, initialize_agent, load_tools tools = load_tools(["wikipedia"]) llm =
HumanInputChatModel()
langchain_community.chat_models.human.HumanInputChatModel
import json from pprint import pprint from langchain.globals import set_debug from langchain_community.llms import NIBittensorLLM set_debug(True) llm_sys = NIBittensorLLM( system_prompt="Your task is to determine response based on user prompt.Explain me like I am technical lead of a project" ) sys_resp = llm_sys( "What is bittensor and What are the potential benefits of decentralized AI?" ) print(f"Response provided by LLM with system prompt set is : {sys_resp}") """ { "choices": [ {"index": Bittensor's Metagraph index number, "uid": Unique Identifier of a miner, "responder_hotkey": Hotkey of a miner, "message":{"role":"assistant","content": Contains actual response}, "response_ms": Time in millisecond required to fetch response from a miner} ] } """ multi_response_llm = NIBittensorLLM(top_responses=10) multi_resp = multi_response_llm("What is Neural Network Feeding Mechanism?") json_multi_resp = json.loads(multi_resp) pprint(json_multi_resp) from langchain.chains import LLMChain from langchain.globals import set_debug from langchain.prompts import PromptTemplate from langchain_community.llms import NIBittensorLLM set_debug(True) template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) llm = NIBittensorLLM( system_prompt="Your task is to determine response based on user prompt." ) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What is bittensor?" llm_chain.run(question) from langchain.tools import Tool from langchain_community.utilities import GoogleSearchAPIWrapper search =
GoogleSearchAPIWrapper()
langchain_community.utilities.GoogleSearchAPIWrapper
import pprint from langchain_community.utilities import SearxSearchWrapper search =
SearxSearchWrapper(searx_host="http://127.0.0.1:8888")
langchain_community.utilities.SearxSearchWrapper
from langchain.chains import ConversationalRetrievalChain from langchain.chains.query_constructor.base import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_community.document_loaders import TextLoader from langchain_community.embeddings import FakeEmbeddings from langchain_community.vectorstores import Vectara from langchain_core.documents import Document from langchain_openai import OpenAI from langchain_text_splitters import CharacterTextSplitter docs = [ Document( page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}, ), Document( page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}, ), Document( page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}, ), Document( page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}, ), Document( page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}, ), Document( page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={ "year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", }, ), ] vectara = Vectara() for doc in docs: vectara.add_texts( [doc.page_content], embedding=
FakeEmbeddings(size=768)
langchain_community.embeddings.FakeEmbeddings
import json from pprint import pprint from langchain.globals import set_debug from langchain_community.llms import NIBittensorLLM set_debug(True) llm_sys = NIBittensorLLM( system_prompt="Your task is to determine response based on user prompt.Explain me like I am technical lead of a project" ) sys_resp = llm_sys( "What is bittensor and What are the potential benefits of decentralized AI?" ) print(f"Response provided by LLM with system prompt set is : {sys_resp}") """ { "choices": [ {"index": Bittensor's Metagraph index number, "uid": Unique Identifier of a miner, "responder_hotkey": Hotkey of a miner, "message":{"role":"assistant","content": Contains actual response}, "response_ms": Time in millisecond required to fetch response from a miner} ] } """ multi_response_llm =
NIBittensorLLM(top_responses=10)
langchain_community.llms.NIBittensorLLM
examples = [ {"input": "hi", "output": "ciao"}, {"input": "bye", "output": "arrivaderci"}, {"input": "soccer", "output": "calcio"}, ] from langchain_core.example_selectors.base import BaseExampleSelector class CustomExampleSelector(BaseExampleSelector): def __init__(self, examples): self.examples = examples def add_example(self, example): self.examples.append(example) def select_examples(self, input_variables): new_word = input_variables["input"] new_word_length = len(new_word) best_match = None smallest_diff = float("inf") for example in self.examples: current_diff = abs(len(example["input"]) - new_word_length) if current_diff < smallest_diff: smallest_diff = current_diff best_match = example return [best_match] example_selector = CustomExampleSelector(examples) example_selector.select_examples({"input": "okay"}) example_selector.add_example({"input": "hand", "output": "mano"}) example_selector.select_examples({"input": "okay"}) from langchain_core.prompts.few_shot import FewShotPromptTemplate from langchain_core.prompts.prompt import PromptTemplate example_prompt =
PromptTemplate.from_template("Input: {input} -> Output: {output}")
langchain_core.prompts.prompt.PromptTemplate.from_template
get_ipython().run_line_magic('pip', 'install --upgrade --quiet text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2') import os from langchain_community.llms import HuggingFaceTextGenInference ENDPOINT_URL = "<YOUR_ENDPOINT_URL_HERE>" HF_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") llm = HuggingFaceTextGenInference( inference_server_url=ENDPOINT_URL, max_new_tokens=512, top_k=50, temperature=0.1, repetition_penalty=1.03, server_kwargs={ "headers": { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": "application/json", } }, ) from langchain_community.llms import HuggingFaceEndpoint ENDPOINT_URL = "<YOUR_ENDPOINT_URL_HERE>" llm = HuggingFaceEndpoint( endpoint_url=ENDPOINT_URL, task="text-generation", model_kwargs={ "max_new_tokens": 512, "top_k": 50, "temperature": 0.1, "repetition_penalty": 1.03, }, ) from langchain_community.llms import HuggingFaceHub llm = HuggingFaceHub( repo_id="HuggingFaceH4/zephyr-7b-beta", task="text-generation", model_kwargs={ "max_new_tokens": 512, "top_k": 30, "temperature": 0.1, "repetition_penalty": 1.03, }, ) from langchain.schema import ( HumanMessage, SystemMessage, ) from langchain_community.chat_models.huggingface import ChatHuggingFace messages = [ SystemMessage(content="You're a helpful assistant"), HumanMessage( content="What happens when an unstoppable force meets an immovable object?" ), ] chat_model = ChatHuggingFace(llm=llm) chat_model.model_id chat_model._to_chat_prompt(messages) res = chat_model.invoke(messages) print(res.content) from langchain import hub from langchain.agents import AgentExecutor, load_tools from langchain.agents.format_scratchpad import format_log_to_str from langchain.agents.output_parsers import ( ReActJsonSingleInputOutputParser, ) from langchain.tools.render import render_text_description from langchain_community.utilities import SerpAPIWrapper tools = load_tools(["serpapi", "llm-math"], llm=llm) prompt = hub.pull("hwchase17/react-json") prompt = prompt.partial( tools=render_text_description(tools), tool_names=", ".join([t.name for t in tools]), ) chat_model_with_stop = chat_model.bind(stop=["\nObservation"]) agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x:
format_log_to_str(x["intermediate_steps"])
langchain.agents.format_scratchpad.format_log_to_str
get_ipython().run_line_magic('pip', 'install --upgrade --quiet predictionguard langchain') import os from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.llms import PredictionGuard os.environ["OPENAI_API_KEY"] = "<your OpenAI api key>" os.environ["PREDICTIONGUARD_TOKEN"] = "<your Prediction Guard access token>" pgllm = PredictionGuard(model="OpenAI-text-davinci-003") pgllm("Tell me a joke") template = """Respond to the following query based on the context. Context: EVERY comment, DM + email suggestion has led us to this EXCITING announcement! 🎉 We have officially added TWO new candle subscription box options! 📦 Exclusive Candle Box - $80 Monthly Candle Box - $45 (NEW!) Scent of The Month Box - $28 (NEW!) Head to stories to get ALLL the deets on each box! 👆 BONUS: Save 50% on your first box with code 50OFF! 🎉 Query: {query} Result: """ prompt = PromptTemplate.from_template(template) pgllm(prompt.format(query="What kind of post is this?")) pgllm = PredictionGuard( model="OpenAI-text-davinci-003", output={ "type": "categorical", "categories": ["product announcement", "apology", "relational"], }, ) pgllm(prompt.format(query="What kind of post is this?")) pgllm =
PredictionGuard(model="OpenAI-text-davinci-003")
langchain_community.llms.PredictionGuard
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-nvidia-ai-endpoints') import getpass import os if not os.environ.get("NVIDIA_API_KEY", "").startswith("nvapi-"): nvapi_key = getpass.getpass("Enter your NVIDIA API key: ") assert nvapi_key.startswith("nvapi-"), f"{nvapi_key[:5]}... is not a valid key" os.environ["NVIDIA_API_KEY"] = nvapi_key from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="mixtral_8x7b") result = llm.invoke("Write a ballad about LangChain.") print(result.content) print(llm.batch(["What's 2*3?", "What's 2*6?"])) for chunk in llm.stream("How far can a seagull fly in one day?"): print(chunk.content, end="|") async for chunk in llm.astream( "How long does it take for monarch butterflies to migrate?" ): print(chunk.content, end="|") ChatNVIDIA.get_available_models() from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = prompt | ChatNVIDIA(model="llama2_13b") | StrOutputParser() for txt in chain.stream({"input": "What's your name?"}): print(txt, end="") prompt = ChatPromptTemplate.from_messages( [ ( "system", "You are an expert coding AI. Respond only in valid python; no narration whatsoever.", ), ("user", "{input}"), ] ) chain = prompt | ChatNVIDIA(model="llama2_code_70b") | StrOutputParser() for txt in chain.stream({"input": "How do I solve this fizz buzz problem?"}): print(txt, end="") from langchain_nvidia_ai_endpoints import ChatNVIDIA llm = ChatNVIDIA(model="nemotron_steerlm_8b") complex_result = llm.invoke( "What's a PB&J?", labels={"creativity": 0, "complexity": 3, "verbosity": 0} ) print("Un-creative\n") print(complex_result.content) print("\n\nCreative\n") creative_result = llm.invoke( "What's a PB&J?", labels={"creativity": 9, "complexity": 3, "verbosity": 9} ) print(creative_result.content) from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_nvidia_ai_endpoints import ChatNVIDIA prompt = ChatPromptTemplate.from_messages( [("system", "You are a helpful AI assistant named Fred."), ("user", "{input}")] ) chain = ( prompt | ChatNVIDIA(model="nemotron_steerlm_8b").bind( labels={"creativity": 9, "complexity": 0, "verbosity": 9} ) | StrOutputParser() ) for txt in chain.stream({"input": "Why is a PB&J?"}): print(txt, end="") import IPython import requests image_url = "https://www.nvidia.com/content/dam/en-zz/Solutions/research/ai-playground/nvidia-picasso-3c33-p@2x.jpg" ## Large Image image_content = requests.get(image_url).content IPython.display.Image(image_content) from langchain_nvidia_ai_endpoints import ChatNVIDIA llm =
ChatNVIDIA(model="playground_neva_22b")
langchain_nvidia_ai_endpoints.ChatNVIDIA
import os import chromadb from langchain.retrievers import ContextualCompressionRetriever from langchain.retrievers.document_compressors import DocumentCompressorPipeline from langchain.retrievers.merger_retriever import MergerRetriever from langchain_community.document_transformers import ( EmbeddingsClusteringFilter, EmbeddingsRedundantFilter, ) from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings all_mini = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") multi_qa_mini = HuggingFaceEmbeddings(model_name="multi-qa-MiniLM-L6-dot-v1") filter_embeddings = OpenAIEmbeddings() ABS_PATH = os.path.dirname(os.path.abspath(__file__)) DB_DIR = os.path.join(ABS_PATH, "db") client_settings = chromadb.config.Settings( is_persistent=True, persist_directory=DB_DIR, anonymized_telemetry=False, ) db_all = Chroma( collection_name="project_store_all", persist_directory=DB_DIR, client_settings=client_settings, embedding_function=all_mini, ) db_multi_qa = Chroma( collection_name="project_store_multi", persist_directory=DB_DIR, client_settings=client_settings, embedding_function=multi_qa_mini, ) retriever_all = db_all.as_retriever( search_type="similarity", search_kwargs={"k": 5, "include_metadata": True} ) retriever_multi_qa = db_multi_qa.as_retriever( search_type="mmr", search_kwargs={"k": 5, "include_metadata": True} ) lotr = MergerRetriever(retrievers=[retriever_all, retriever_multi_qa]) filter = EmbeddingsRedundantFilter(embeddings=filter_embeddings) pipeline = DocumentCompressorPipeline(transformers=[filter]) compression_retriever = ContextualCompressionRetriever( base_compressor=pipeline, base_retriever=lotr ) filter_ordered_cluster = EmbeddingsClusteringFilter( embeddings=filter_embeddings, num_clusters=10, num_closest=1, ) filter_ordered_by_retriever = EmbeddingsClusteringFilter( embeddings=filter_embeddings, num_clusters=10, num_closest=1, sorted=True, ) pipeline = DocumentCompressorPipeline(transformers=[filter_ordered_by_retriever]) compression_retriever = ContextualCompressionRetriever( base_compressor=pipeline, base_retriever=lotr ) from langchain_community.document_transformers import LongContextReorder filter = EmbeddingsRedundantFilter(embeddings=filter_embeddings) reordering = LongContextReorder() pipeline =
DocumentCompressorPipeline(transformers=[filter, reordering])
langchain.retrievers.document_compressors.DocumentCompressorPipeline
from langchain_community.document_loaders.obs_file import OBSFileLoader endpoint = "your-endpoint" from obs import ObsClient obs_client = ObsClient( access_key_id="your-access-key", secret_access_key="your-secret-key", server=endpoint, ) loader =
OBSFileLoader("your-bucket-name", "your-object-key", client=obs_client)
langchain_community.document_loaders.obs_file.OBSFileLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet jsonformer > /dev/null') import logging logging.basicConfig(level=logging.ERROR) import json import os import requests from langchain.tools import tool HF_TOKEN = os.environ.get("HUGGINGFACE_API_KEY") @tool def ask_star_coder(query: str, temperature: float = 1.0, max_new_tokens: float = 250): """Query the BigCode StarCoder model about coding questions.""" url = "https://api-inference.huggingface.co/models/bigcode/starcoder" headers = { "Authorization": f"Bearer {HF_TOKEN}", "content-type": "application/json", } payload = { "inputs": f"{query}\n\nAnswer:", "temperature": temperature, "max_new_tokens": int(max_new_tokens), } response = requests.post(url, headers=headers, data=json.dumps(payload)) response.raise_for_status() return json.loads(response.content.decode("utf-8")) prompt = """You must respond using JSON format, with a single action and single action input. You may 'ask_star_coder' for help on coding problems. {arg_schema} EXAMPLES ---- Human: "So what's all this about a GIL?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What is a GIL?", "temperature": 0.0, "max_new_tokens": 100}}" }} Observation: "The GIL is python's Global Interpreter Lock" Human: "Could you please write a calculator program in LISP?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "Write a calculator program in LISP", "temperature": 0.0, "max_new_tokens": 250}} }} Observation: "(defun add (x y) (+ x y))\n(defun sub (x y) (- x y ))" Human: "What's the difference between an SVM and an LLM?" AI Assistant:{{ "action": "ask_star_coder", "action_input": {{"query": "What's the difference between SGD and an SVM?", "temperature": 1.0, "max_new_tokens": 250}} }} Observation: "SGD stands for stochastic gradient descent, while an SVM is a Support Vector Machine." BEGIN! Answer the Human's question as best as you are able. ------ Human: 'What's the difference between an iterator and an iterable?' AI Assistant:""".format(arg_schema=ask_star_coder.args) from langchain_community.llms import HuggingFacePipeline from transformers import pipeline hf_model = pipeline( "text-generation", model="cerebras/Cerebras-GPT-590M", max_new_tokens=200 ) original_model =
HuggingFacePipeline(pipeline=hf_model)
langchain_community.llms.HuggingFacePipeline
from langchain_community.document_loaders import NewsURLLoader urls = [ "https://www.bbc.com/news/world-us-canada-66388172", "https://www.bbc.com/news/entertainment-arts-66384971", ] loader = NewsURLLoader(urls=urls) data = loader.load() print("First article: ", data[0]) print("\nSecond article: ", data[1]) loader =
NewsURLLoader(urls=urls, nlp=True)
langchain_community.document_loaders.NewsURLLoader
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-alloydb-pg langchain-google-vertexai') from google.colab import auth auth.authenticate_user() PROJECT_ID = "my-project-id" # @param {type:"string"} get_ipython().system('gcloud config set project {PROJECT_ID}') get_ipython().system('gcloud services enable alloydb.googleapis.com') REGION = "us-central1" # @param {type: "string"} CLUSTER = "my-cluster" # @param {type: "string"} INSTANCE = "my-primary" # @param {type: "string"} DATABASE = "my-database" # @param {type: "string"} TABLE_NAME = "vector_store" # @param {type: "string"} from langchain_google_alloydb_pg import AlloyDBEngine engine = await AlloyDBEngine.afrom_instance( project_id=PROJECT_ID, region=REGION, cluster=CLUSTER, instance=INSTANCE, database=DATABASE, ) await engine.ainit_vectorstore_table( table_name=TABLE_NAME, vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest) ) get_ipython().system('gcloud services enable aiplatform.googleapis.com') from langchain_google_vertexai import VertexAIEmbeddings embedding = VertexAIEmbeddings( model_name="textembedding-gecko@latest", project=PROJECT_ID ) from langchain_google_alloydb_pg import AlloyDBVectorStore store = await AlloyDBVectorStore.create( engine=engine, table_name=TABLE_NAME, embedding_service=embedding, ) import uuid all_texts = ["Apples and oranges", "Cars and airplanes", "Pineapple", "Train", "Banana"] metadatas = [{"len": len(t)} for t in all_texts] ids = [str(uuid.uuid4()) for _ in all_texts] await store.aadd_texts(all_texts, metadatas=metadatas, ids=ids) await store.adelete([ids[1]]) query = "I'd like a fruit." docs = await store.asimilarity_search(query) print(docs) query_vector = embedding.embed_query(query) docs = await store.asimilarity_search_by_vector(query_vector, k=2) print(docs) from langchain_google_alloydb_pg.indexes import IVFFlatIndex index = IVFFlatIndex() await store.aapply_vector_index(index) await store.areindex() # Re-index using default index name await store.adrop_vector_index() # Delete index using default name from langchain_google_alloydb_pg import Column TABLE_NAME = "vectorstore_custom" await engine.ainit_vectorstore_table( table_name=TABLE_NAME, vector_size=768, # VertexAI model: textembedding-gecko@latest metadata_columns=[
Column("len", "INTEGER")
langchain_google_alloydb_pg.Column
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pygithub') import os from langchain.agents import AgentType, initialize_agent from langchain_community.agent_toolkits.github.toolkit import GitHubToolkit from langchain_community.utilities.github import GitHubAPIWrapper from langchain_openai import ChatOpenAI os.environ["GITHUB_APP_ID"] = "123456" os.environ["GITHUB_APP_PRIVATE_KEY"] = "path/to/your/private-key.pem" os.environ["GITHUB_REPOSITORY"] = "username/repo-name" os.environ["GITHUB_BRANCH"] = "bot-branch-name" os.environ["GITHUB_BASE_BRANCH"] = "main" os.environ["OPENAI_API_KEY"] = "" llm = ChatOpenAI(temperature=0, model="gpt-4-1106-preview") github = GitHubAPIWrapper() toolkit =
GitHubToolkit.from_github_api_wrapper(github)
langchain_community.agent_toolkits.github.toolkit.GitHubToolkit.from_github_api_wrapper
import os os.environ["LANGCHAIN_PROJECT"] = "movie-qa" import pandas as pd df = pd.read_csv("data/imdb_top_1000.csv") df["Released_Year"] = df["Released_Year"].astype(int, errors="ignore") from langchain.schema import Document from langchain_community.vectorstores import Chroma from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings() records = df.to_dict("records") documents = [Document(page_content=d["Overview"], metadata=d) for d in records] vectorstore = Chroma.from_documents(documents, embeddings) from langchain.chains.query_constructor.base import AttributeInfo from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain_openai import ChatOpenAI metadata_field_info = [ AttributeInfo( name="Released_Year", description="The year the movie was released", type="int", ), AttributeInfo( name="Series_Title", description="The title of the movie", type="str", ), AttributeInfo( name="Genre", description="The genre of the movie", type="string", ), AttributeInfo( name="IMDB_Rating", description="A 1-10 rating for the movie", type="float" ), ] document_content_description = "Brief summary of a movie" llm = ChatOpenAI(temperature=0) retriever = SelfQueryRetriever.from_llm( llm, vectorstore, document_content_description, metadata_field_info, verbose=True ) from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate prompt = ChatPromptTemplate.from_template( """Answer the user's question based on the below information: Information: {info} Question: {question}""" ) generator = (prompt | ChatOpenAI() | StrOutputParser()).with_config( run_name="generator" ) chain = (
RunnablePassthrough.assign(info=(lambda x: x["question"]) | retriever)
langchain_core.runnables.RunnablePassthrough.assign
get_ipython().system('poetry run pip install dgml-utils==0.3.0 --upgrade --quiet') import os from langchain_community.document_loaders import DocugamiLoader DOCUGAMI_API_KEY = os.environ.get("DOCUGAMI_API_KEY") docset_id = "26xpy3aes7xp" document_ids = ["d7jqdzcj50sj", "cgd1eacfkchw"] loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids) chunks = loader.load() len(chunks) loader.min_text_length = 64 loader.include_xml_tags = True chunks = loader.load() for chunk in chunks[:5]: print(chunk) get_ipython().system('poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib') loader = DocugamiLoader(docset_id="zo954yqy53wp") chunks = loader.load() for chunk in chunks: stripped_metadata = chunk.metadata.copy() for key in chunk.metadata: if key not in ["name", "xpath", "id", "structure"]: del stripped_metadata[key] chunk.metadata = stripped_metadata print(len(chunks)) from langchain.chains import RetrievalQA from langchain_community.vectorstores.chroma import Chroma from langchain_openai import OpenAI, OpenAIEmbeddings embedding =
OpenAIEmbeddings()
langchain_openai.OpenAIEmbeddings
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-core langchain langchain-openai') from langchain.utils.math import cosine_similarity from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import PromptTemplate from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_openai import ChatOpenAI, OpenAIEmbeddings physics_template = """You are a very smart physics professor. \ You are great at answering questions about physics in a concise and easy to understand manner. \ When you don't know the answer to a question you admit that you don't know. Here is a question: {query}""" math_template = """You are a very good mathematician. You are great at answering math questions. \ You are so good because you are able to break down hard problems into their component parts, \ answer the component parts, and then put them together to answer the broader question. Here is a question: {query}""" embeddings = OpenAIEmbeddings() prompt_templates = [physics_template, math_template] prompt_embeddings = embeddings.embed_documents(prompt_templates) def prompt_router(input): query_embedding = embeddings.embed_query(input["query"]) similarity =
cosine_similarity([query_embedding], prompt_embeddings)
langchain.utils.math.cosine_similarity
from langchain_community.utils.openai_functions import ( convert_pydantic_to_openai_function, ) from langchain_core.prompts import ChatPromptTemplate from langchain_core.pydantic_v1 import BaseModel, Field, validator from langchain_openai import ChatOpenAI class Joke(BaseModel): """Joke to tell user.""" setup: str = Field(description="question to set up a joke") punchline: str = Field(description="answer to resolve the joke") openai_functions = [
convert_pydantic_to_openai_function(Joke)
langchain_community.utils.openai_functions.convert_pydantic_to_openai_function
from langchain_community.document_loaders import TextLoader from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import Chroma from langchain_text_splitters import CharacterTextSplitter loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = Chroma.from_documents(docs, embedding_function) query = "What did the president say about Ketanji Brown Jackson" docs = db.similarity_search(query) print(docs[0].page_content) db2 = Chroma.from_documents(docs, embedding_function, persist_directory="./chroma_db") docs = db2.similarity_search(query) db3 =
Chroma(persist_directory="./chroma_db", embedding_function=embedding_function)
langchain_community.vectorstores.Chroma
from langchain_community.document_loaders import AcreomLoader loader =
AcreomLoader("<path-to-acreom-vault>", collect_metadata=False)
langchain_community.document_loaders.AcreomLoader
get_ipython().system('pip install boto3') from langchain_experimental.recommenders import AmazonPersonalize recommender_arn = "<insert_arn>" client = AmazonPersonalize( credentials_profile_name="default", region_name="us-west-2", recommender_arn=recommender_arn, ) client.get_recommendations(user_id="1") from langchain.llms.bedrock import Bedrock from langchain_experimental.recommenders import AmazonPersonalizeChain bedrock_llm = Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2") chain = AmazonPersonalizeChain.from_llm( llm=bedrock_llm, client=client, return_direct=False ) response = chain({"user_id": "1"}) print(response) from langchain.prompts.prompt import PromptTemplate RANDOM_PROMPT_QUERY = """ You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. The movies to recommend and their information is contained in the <movie> tag. All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. Put the email between <email> tags. <movie> {result} </movie> Assistant: """ RANDOM_PROMPT = PromptTemplate(input_variables=["result"], template=RANDOM_PROMPT_QUERY) chain = AmazonPersonalizeChain.from_llm( llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT ) chain.run({"user_id": "1", "item_id": "234"}) from langchain.chains import LLMChain, SequentialChain RANDOM_PROMPT_QUERY_2 = """ You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. You want the email to impress the user, so make it appealing to them. The movies to recommend and their information is contained in the <movie> tag. All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. Put the email between <email> tags. <movie> {result} </movie> Assistant: """ RANDOM_PROMPT_2 = PromptTemplate( input_variables=["result"], template=RANDOM_PROMPT_QUERY_2 ) personalize_chain_instance = AmazonPersonalizeChain.from_llm( llm=bedrock_llm, client=client, return_direct=True ) random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2) overall_chain = SequentialChain( chains=[personalize_chain_instance, random_chain_instance], input_variables=["user_id"], verbose=True, ) overall_chain.run({"user_id": "1", "item_id": "234"}) recommender_arn = "<insert_arn>" metadata_column_names = [ "<insert metadataColumnName-1>", "<insert metadataColumnName-2>", ] metadataMap = {"ITEMS": metadata_column_names} client = AmazonPersonalize( credentials_profile_name="default", region_name="us-west-2", recommender_arn=recommender_arn, ) client.get_recommendations(user_id="1", metadataColumns=metadataMap) bedrock_llm =
Bedrock(model_id="anthropic.claude-v2", region_name="us-west-2")
langchain.llms.bedrock.Bedrock
from langchain_community.document_loaders import JoplinLoader loader =
JoplinLoader(access_token="<access-token>")
langchain_community.document_loaders.JoplinLoader
from langchain_community.embeddings.fake import FakeEmbeddings from langchain_community.vectorstores import Tair from langchain_text_splitters import CharacterTextSplitter from langchain_community.document_loaders import TextLoader loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = FakeEmbeddings(size=128) tair_url = "redis://localhost:6379" Tair.drop_index(tair_url=tair_url) vector_store = Tair.from_documents(docs, embeddings, tair_url=tair_url) query = "What did the president say about Ketanji Brown Jackson" docs = vector_store.similarity_search(query) docs[0]
Tair.drop_index(tair_url=tair_url)
langchain_community.vectorstores.Tair.drop_index
get_ipython().system(' pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet') from pprint import pprint from docugami import Docugami from docugami.lib.upload import upload_to_named_docset, wait_for_dgml DOCSET_NAME = "NTSB Aviation Incident Reports" FILE_PATHS = [ "/Users/tjaffri/ntsb/Report_CEN23LA277_192541.pdf", "/Users/tjaffri/ntsb/Report_CEN23LA338_192753.pdf", "/Users/tjaffri/ntsb/Report_CEN23LA363_192876.pdf", "/Users/tjaffri/ntsb/Report_CEN23LA394_192995.pdf", "/Users/tjaffri/ntsb/Report_ERA23LA114_106615.pdf", "/Users/tjaffri/ntsb/Report_WPR23LA254_192532.pdf", ] assert len(FILE_PATHS) > 5, "Please provide at least 6 files" dg_client = Docugami() dg_docs = upload_to_named_docset(dg_client, FILE_PATHS, DOCSET_NAME) dgml_paths = wait_for_dgml(dg_client, dg_docs) pprint(dgml_paths) from pathlib import Path from dgml_utils.segmentation import get_chunks_str dgml_path = dgml_paths[Path(FILE_PATHS[0]).name] with open(dgml_path, "r") as file: contents = file.read().encode("utf-8") chunks = get_chunks_str( contents, include_xml_tags=True, # Ensures Docugami XML semantic tags are included in the chunked output (set to False for text-only chunks and tables as Markdown) max_text_length=1024 * 8, # 8k chars are ~2k tokens for OpenAI. ) print(f"found {len(chunks)} chunks, here are the first few") for chunk in chunks[:10]: print(chunk.text) with open(dgml_path, "r") as file: contents = file.read().encode("utf-8") chunks = get_chunks_str( contents, include_xml_tags=False, # text-only chunks and tables as Markdown max_text_length=1024 * 8, # 8k chars are ~2k tokens for OpenAI. Ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them ) print(f"found {len(chunks)} chunks, here are the first few") for chunk in chunks[:10]: print(chunk.text) import requests dgml = requests.get( "https://raw.githubusercontent.com/docugami/dgml-utils/main/python/tests/test_data/article/Jane%20Doe.xml" ).text chunks = get_chunks_str(dgml, include_xml_tags=True) len(chunks) category_counts = {} for element in chunks: category = element.structure if category in category_counts: category_counts[category] += 1 else: category_counts[category] = 1 category_counts table_elements = [c for c in chunks if "table" in c.structure.split()] print(f"There are {len(table_elements)} tables") text_elements = [c for c in chunks if "table" not in c.structure.split()] print(f"There are {len(text_elements)} text elements") for element in text_elements[:20]: print(element.text) print(table_elements[0].text) chunks_as_text = get_chunks_str(dgml, include_xml_tags=False) table_elements_as_text = [c for c in chunks_as_text if "table" in c.structure.split()] print(table_elements_as_text[0].text) from langchain.prompts import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain_core.output_parsers import StrOutputParser from langchain_openai import ChatOpenAI prompt_text = """You are an assistant tasked with summarizing tables and text. \ Give a concise summary of the table or text. Table or text chunk: {element} """ prompt = ChatPromptTemplate.from_template(prompt_text) model = ChatOpenAI(temperature=0, model="gpt-4") summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser() tables = [i.text for i in table_elements] table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5}) import uuid from langchain.retrievers.multi_vector import MultiVectorRetriever from langchain.storage import InMemoryStore from langchain_community.vectorstores.chroma import Chroma from langchain_core.documents import Document from langchain_openai import OpenAIEmbeddings def build_retriever(text_elements, tables, table_summaries): vectorstore = Chroma( collection_name="summaries", embedding_function=OpenAIEmbeddings() ) store = InMemoryStore() id_key = "doc_id" retriever = MultiVectorRetriever( vectorstore=vectorstore, docstore=store, id_key=id_key, ) texts = [i.text for i in text_elements] doc_ids = [str(uuid.uuid4()) for _ in texts] retriever.docstore.mset(list(zip(doc_ids, texts))) table_ids = [str(uuid.uuid4()) for _ in tables] summary_tables = [ Document(page_content=s, metadata={id_key: table_ids[i]}) for i, s in enumerate(table_summaries) ] retriever.vectorstore.add_documents(summary_tables) retriever.docstore.mset(list(zip(table_ids, tables))) return retriever retriever = build_retriever(text_elements, tables, table_summaries) from langchain_core.runnables import RunnablePassthrough system_prompt = SystemMessagePromptTemplate.from_template( "You are a helpful assistant that answers questions based on provided context. Your provided context can include text or tables, " "and may also contain semantic XML markup. Pay attention the semantic XML markup to understand more about the context semantics as " "well as structure (e.g. lists and tabular layouts expressed with HTML-like tags)" ) human_prompt = HumanMessagePromptTemplate.from_template( """Context: {context} Question: {question}""" ) def build_chain(retriever, model): prompt = ChatPromptTemplate.from_messages([system_prompt, human_prompt]) model = ChatOpenAI(temperature=0, model="gpt-4") chain = ( {"context": retriever, "question":
RunnablePassthrough()
langchain_core.runnables.RunnablePassthrough
import getpass import os os.environ["OPENAI_API_KEY"] = getpass.getpass() import dspy colbertv2 = dspy.ColBERTv2(url="http://20.102.90.50:2017/wiki17_abstracts") from langchain.cache import SQLiteCache from langchain.globals import set_llm_cache from langchain_openai import OpenAI set_llm_cache(
SQLiteCache(database_path="cache.db")
langchain.cache.SQLiteCache