prompt
stringlengths 70
19.8k
| completion
stringlengths 8
1.03k
| api
stringlengths 23
93
|
---|---|---|
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index')
import pandas as pd
pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
pd.set_option("display.max_colwidth", None)
get_ipython().system('wget "https://www.dropbox.com/scl/fi/mlaymdy1ni1ovyeykhhuk/tesla_2021_10k.htm?rlkey=qf9k4zn0ejrbm716j0gg7r802&dl=1" -O tesla_2021_10k.htm')
get_ipython().system('wget "https://www.dropbox.com/scl/fi/rkw0u959yb4w8vlzz76sa/tesla_2020_10k.htm?rlkey=tfkdshswpoupav5tqigwz1mp7&dl=1" -O tesla_2020_10k.htm')
from llama_index.readers.file import FlatReader
from pathlib import Path
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.readers.file import FlatReader
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
from llama_index.core.ingestion import IngestionPipeline
from pathlib import Path
import nest_asyncio
nest_asyncio.apply()
reader = FlatReader()
docs = reader.load_data(Path("./tesla_2020_10k.htm"))
pipeline = IngestionPipeline(
documents=docs,
transformations=[
HTMLNodeParser.from_defaults(),
SentenceSplitter(chunk_size=1024, chunk_overlap=200),
OpenAIEmbedding(),
],
)
eval_nodes = pipeline.run(documents=docs)
eval_llm = OpenAI(model="gpt-3.5-turbo")
dataset_generator = DatasetGenerator(
eval_nodes[:100],
llm=eval_llm,
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=100)
len(eval_dataset.qr_pairs)
eval_dataset.save_json("data/tesla10k_eval_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/tesla10k_eval_dataset.json"
)
eval_qs = eval_dataset.questions
qr_pairs = eval_dataset.qr_pairs
ref_response_strs = [r for (_, r) in qr_pairs]
from llama_index.core.evaluation import (
CorrectnessEvaluator,
SemanticSimilarityEvaluator,
)
from llama_index.core.evaluation.eval_utils import (
get_responses,
get_results_df,
)
from llama_index.core.evaluation import BatchEvalRunner
evaluator_c = CorrectnessEvaluator(llm=eval_llm)
evaluator_s = SemanticSimilarityEvaluator(llm=eval_llm)
evaluator_dict = {
"correctness": evaluator_c,
"semantic_similarity": evaluator_s,
}
batch_eval_runner = BatchEvalRunner(
evaluator_dict, workers=2, show_progress=True
)
from llama_index.core import VectorStoreIndex
async def run_evals(
pipeline, batch_eval_runner, docs, eval_qs, eval_responses_ref
):
nodes = pipeline.run(documents=docs)
vector_index = VectorStoreIndex(nodes)
query_engine = vector_index.as_query_engine()
pred_responses = get_responses(eval_qs, query_engine, show_progress=True)
eval_results = await batch_eval_runner.aevaluate_responses(
eval_qs, responses=pred_responses, reference=eval_responses_ref
)
return eval_results
from llama_index.core.node_parser import HTMLNodeParser, SentenceSplitter
sent_parser_o0 = SentenceSplitter(chunk_size=1024, chunk_overlap=0)
sent_parser_o200 = SentenceSplitter(chunk_size=1024, chunk_overlap=200)
sent_parser_o500 = SentenceSplitter(chunk_size=1024, chunk_overlap=600)
html_parser = HTMLNodeParser.from_defaults()
parser_dict = {
"sent_parser_o0": sent_parser_o0,
"sent_parser_o200": sent_parser_o200,
"sent_parser_o500": sent_parser_o500,
}
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.ingestion import IngestionPipeline
pipeline_dict = {}
for k, parser in parser_dict.items():
pipeline = IngestionPipeline(
documents=docs,
transformations=[
html_parser,
parser,
| OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
get_ipython().system('pip install "llama_index>=0.9.7"')
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.extractors import TitleExtractor, SummaryExtractor
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import MetadataMode
def build_pipeline():
llm = OpenAI(model="gpt-3.5-turbo-1106", temperature=0.1)
transformations = [
SentenceSplitter(chunk_size=1024, chunk_overlap=20),
TitleExtractor(
llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8
),
SummaryExtractor(
llm=llm, metadata_mode=MetadataMode.EMBED, num_workers=8
),
| OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-colbert')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-llms-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-gemini')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-vectara')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-google')
get_ipython().run_line_magic('pip', 'install llama-index-indices-managed-google')
get_ipython().run_line_magic('pip', 'install llama-index-response-synthesizers-google')
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install "google-ai-generativelanguage>=0.4,<=1.0"')
get_ipython().run_line_magic('pip', 'install torch sentence-transformers')
get_ipython().run_line_magic('pip', 'install google-auth-oauthlib')
from google.oauth2 import service_account
from llama_index.indices.managed.google import GoogleIndex
from llama_index.vector_stores.google import set_google_config
credentials = service_account.Credentials.from_service_account_file(
"service_account_key.json",
scopes=[
"https://www.googleapis.com/auth/cloud-platform",
"https://www.googleapis.com/auth/generative-language.retriever",
],
)
set_google_config(auth_credentials=credentials)
project_name = "TODO-your-project-name" # @param {type:"string"}
email = "ht@runllama.ai" # @param {type:"string"}
client_file_name = "client_secret.json"
get_ipython().system('gcloud config set project $project_name')
get_ipython().system('gcloud config set account $email')
get_ipython().system('gcloud auth application-default login --no-browser --client-id-file=$client_file_name --scopes="https://www.googleapis.com/auth/generative-language.retriever,https://www.googleapis.com/auth/cloud-platform"')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import os
GOOGLE_API_KEY = "" # add your GOOGLE API key here
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
from llama_index.core import SimpleDirectoryReader
from llama_index.indices.managed.google import GoogleIndex
google_index = GoogleIndex.create_corpus(display_name="My first corpus!")
print(f"Newly created corpus ID is {google_index.corpus_id}.")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
google_index.insert_documents(documents)
google_index = GoogleIndex.from_corpus(corpus_id="")
query_engine = google_index.as_query_engine()
response = query_engine.query("which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.VERBOSE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from google.ai.generativelanguage import (
GenerateAnswerRequest,
)
query_engine = google_index.as_query_engine(
temperature=0.3,
answer_style=GenerateAnswerRequest.AnswerStyle.EXTRACTIVE,
)
response = query_engine.query("Which program did this author attend?")
print(response)
from llama_index.core.response.notebook_utils import display_source_node
for r in response.source_nodes:
display_source_node(r, source_length=1000)
from llama_index.response_synthesizers.google import GoogleTextSynthesizer
from llama_index.vector_stores.google import GoogleVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.llms.gemini import Gemini
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.embeddings.gemini import GeminiEmbedding
response_synthesizer = GoogleTextSynthesizer.from_defaults(
temperature=0.7, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE
)
reranker = LLMRerank(
top_n=5,
llm=Gemini(api_key=GOOGLE_API_KEY),
)
retriever = google_index.as_retriever(similarity_top_k=5)
query_engine = RetrieverQueryEngine.from_args(
retriever=retriever,
response_synthesizer=response_synthesizer,
node_postprocessors=[reranker],
)
response = query_engine.query("Which program did this author attend?")
print(response.response)
from llama_index.core.postprocessor import SentenceTransformerRerank
sbert_rerank = SentenceTransformerRerank(
model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5
)
from llama_index.response_synthesizers.google import GoogleTextSynthesizer
from llama_index.vector_stores.google import GoogleVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.llms.gemini import Gemini
from llama_index.core.postprocessor import LLMRerank
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.embeddings.gemini import GeminiEmbedding
response_synthesizer = GoogleTextSynthesizer.from_defaults(
temperature=0.1, answer_style=GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE
)
retriever = google_index.as_retriever(similarity_top_k=5)
query_engine = RetrieverQueryEngine.from_args(
retriever=retriever,
response_synthesizer=response_synthesizer,
node_postprocessors=[sbert_rerank],
)
response = query_engine.query("Which program did this author attend?")
print(response.response)
import os
OPENAI_API_TOKEN = "sk-"
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import Settings
import qdrant_client
Settings.chunk_size = 256
client = qdrant_client.QdrantClient(path="qdrant_retrieval_2")
vector_store = QdrantVectorStore(client=client, collection_name="collection")
qdrant_index = VectorStoreIndex.from_documents(documents)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
query_engine = qdrant_index.as_query_engine()
response = query_engine.query("Which program did this author attend?")
print(response)
for r in response.source_nodes:
display_source_node(r, source_length=1000)
query_engine = qdrant_index.as_query_engine()
response = query_engine.query(
"Which universities or schools or programs did this author attend?"
)
print(response)
from llama_index.core import get_response_synthesizer
reranker = | LLMRerank(top_n=3) | llama_index.core.postprocessor.LLMRerank |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.response.pprint_utils import pprint_response
from llama_index.llms.openai import OpenAI
llm = OpenAI(temperature=0, model="gpt-4")
get_ipython().system("mkdir -p 'data/10q/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_march_2022.pdf' -O 'data/10q/uber_10q_march_2022.pdf'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_june_2022.pdf' -O 'data/10q/uber_10q_june_2022.pdf'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/10q/uber_10q_sept_2022.pdf' -O 'data/10q/uber_10q_sept_2022.pdf'")
march_2022 = SimpleDirectoryReader(
input_files=["./data/10q/uber_10q_march_2022.pdf"]
).load_data()
june_2022 = SimpleDirectoryReader(
input_files=["./data/10q/uber_10q_june_2022.pdf"]
).load_data()
sept_2022 = SimpleDirectoryReader(
input_files=["./data/10q/uber_10q_sept_2022.pdf"]
).load_data()
march_index = VectorStoreIndex.from_documents(march_2022)
june_index = VectorStoreIndex.from_documents(june_2022)
sept_index = | VectorStoreIndex.from_documents(sept_2022) | llama_index.core.VectorStoreIndex.from_documents |
import os
os.environ["OPENAI_API_KEY"] = ""
os.environ["VIDEO_DB_API_KEY"] = ""
get_ipython().run_line_magic('pip', 'install llama-index')
get_ipython().run_line_magic('pip', 'install videodb')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-videodb')
from videodb import connect
conn = connect()
print("uploading first video")
video1 = conn.upload(url="https://www.youtube.com/watch?v=lsODSDmY4CY")
print("uploading second video")
video2 = conn.upload(url="https://www.youtube.com/watch?v=vZ4kOr38JhY")
print("Indexing the videos...")
video1.index_spoken_words()
video2.index_spoken_words()
from llama_index.retrievers.videodb import VideoDBRetriever
from llama_index.core import get_response_synthesizer
from llama_index.core.query_engine import RetrieverQueryEngine
retriever = | VideoDBRetriever() | llama_index.retrievers.videodb.VideoDBRetriever |
get_ipython().system('pip install llama-index llama-hub')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('wget "https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl=1" -O paul_graham_essay.txt')
from llama_index.core import SimpleDirectoryReader
from llama_index.core.node_parser import SimpleNodeParser
reader = | SimpleDirectoryReader(input_files=["paul_graham_essay.txt"]) | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = LlamaDebugHandler()
openai_callback = CallbackManager([openai_handler])
openai_llm = OpenAI(model="gpt-4", callback_manager=openai_callback)
gradient_handler = LlamaDebugHandler()
gradient_callback = CallbackManager([gradient_handler])
base_model_slug = "llama2-7b-chat"
gradient_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug,
max_tokens=300,
callback_manager=gradient_callback,
is_chat_model=True,
)
from llama_index.core.llms import LLMMetadata
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=openai_llm,
verbose=True,
)
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=gradient_llm,
verbose=True,
)
response = openai_program(movie_name="The Shining")
print(str(response))
tmp = openai_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
response = gradient_program(movie_name="The Shining")
print(str(response))
tmp = gradient_handler.get_llm_inputs_outputs()
print(tmp[0][0].payload["messages"][0])
from llama_index.core.program import LLMTextCompletionProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import GradientAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.output_parsers import PydanticOutputParser
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = GradientAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm_gpt4 = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
openai_program = LLMTextCompletionProgram.from_defaults(
output_parser=PydanticOutputParser(Album),
prompt_template_str=prompt_template_str,
llm=llm_gpt4,
verbose=True,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = openai_program(movie_name=movie_name)
print(output.json())
events = finetuning_handler.get_finetuning_events()
events
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
base_model_slug = "llama2-7b-chat"
base_llm = GradientBaseModelLLM(
base_model_slug=base_model_slug, max_tokens=500, is_chat_model=True
)
from llama_index.finetuning import GradientFinetuneEngine
finetune_engine = GradientFinetuneEngine(
base_model_slug=base_model_slug,
name="movies_structured",
data_path="mock_finetune_songs.jsonl",
verbose=True,
max_steps=200,
batch_size=1,
)
finetune_engine.model_adapter_id
epochs = 2
for i in range(epochs):
print(f"** EPOCH {i} **")
finetune_engine.finetune()
ft_llm = finetune_engine.get_finetuned_model(
max_tokens=500, is_chat_model=True
)
from llama_index.llms.gradient import GradientModelAdapterLLM
new_prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
Please only generate one album.
"""
gradient_program = LLMTextCompletionProgram.from_defaults(
output_parser= | PydanticOutputParser(Album) | llama_index.core.output_parsers.PydanticOutputParser |
get_ipython().run_line_magic('pip', 'install llama-index-readers-github')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
import os
os.environ["GITHUB_TOKEN"] = "<your github token>"
import os
from llama_index.readers.github import (
GitHubRepositoryIssuesReader,
GitHubIssuesClient,
)
github_client = GitHubIssuesClient()
loader = GitHubRepositoryIssuesReader(
github_client,
owner="jerryjliu",
repo="llama_index",
verbose=True,
)
docs = loader.load_data()
docs[10].text
docs[10].metadata
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
from pydantic import BaseModel
from typing import List
from tqdm.asyncio import asyncio
from llama_index.program.openai import OpenAIPydanticProgram
from llama_index.llms.openai import OpenAI
from llama_index.core.async_utils import batch_gather
prompt_template_str = """\
Here is a Github Issue ticket.
{ticket}
Please extract central themes and output a list of tags.\
"""
class TagList(BaseModel):
"""A list of tags corresponding to central themes of an issue."""
tags: List[str]
program = OpenAIPydanticProgram.from_defaults(
prompt_template_str=prompt_template_str,
output_cls=TagList,
)
tasks = [program.acall(ticket=doc) for doc in docs]
output = await | batch_gather(tasks, batch_size=10, verbose=True) | llama_index.core.async_utils.batch_gather |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex
from llama_index.core import PromptTemplate
from IPython.display import Markdown, display
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
import openai
openai.api_key = "sk-your-key"
from llama_index.agent import OpenAIAgent
from llama_index.tools import QueryEngineTool, ToolMetadata
from llama_index import SimpleDirectoryReader, VectorStoreIndex
import requests
response = requests.get(
"https://www.dropbox.com/s/f6bmb19xdg0xedm/paul_graham_essay.txt?dl=1"
)
essay_txt = response.text
with open("pg_essay.txt", "w") as fp:
fp.write(essay_txt)
documents = | SimpleDirectoryReader(input_files=["pg_essay.txt"]) | llama_index.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-deeplake')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install deeplake')
import os
import textwrap
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Document
from llama_index.vector_stores.deeplake import DeepLakeVectorStore
os.environ["OPENAI_API_KEY"] = "sk-********************************"
os.environ["ACTIVELOOP_TOKEN"] = "********************************"
import urllib.request
urllib.request.urlretrieve(
"https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt",
"data/paul_graham/paul_graham_essay.txt",
)
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(
"Document ID:",
documents[0].doc_id,
"Document Hash:",
documents[0].hash,
)
from llama_index.core import StorageContext
dataset_path = "./dataset/paul_graham"
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
storage_context = | StorageContext.from_defaults(vector_store=vector_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SQLDatabase
from llama_index.readers.wikipedia import WikipediaReader
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
get_ipython().system('pip install wikipedia')
cities = ["Toronto", "Berlin", "Tokyo"]
wiki_docs = WikipediaReader().load_data(pages=cities)
sql_database = | SQLDatabase(engine, include_tables=["city_stats"]) | llama_index.core.SQLDatabase |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('pip install llama-index')
get_ipython().system('pip install spacy')
wiki_titles = [
"Toronto",
"Seattle",
"Chicago",
"Boston",
"Houston",
"Tokyo",
"Berlin",
"Lisbon",
]
from pathlib import Path
import requests
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
data_path = Path("data")
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
from llama_index.core import SimpleDirectoryReader
city_docs = {}
for wiki_title in wiki_titles:
city_docs[wiki_title] = SimpleDirectoryReader(
input_files=[f"data/{wiki_title}.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
city_descs_dict = {}
choices = []
choice_to_id_dict = {}
for idx, wiki_title in enumerate(wiki_titles):
vector_desc = (
"Useful for questions related to specific aspects of"
f" {wiki_title} (e.g. the history, arts and culture,"
" sports, demographics, or more)."
)
summary_desc = (
"Useful for any requests that require a holistic summary"
f" of EVERYTHING about {wiki_title}. For questions about"
" more specific sections, please use the vector_tool."
)
doc_id_vector = f"{wiki_title}_vector"
doc_id_summary = f"{wiki_title}_summary"
city_descs_dict[doc_id_vector] = vector_desc
city_descs_dict[doc_id_summary] = summary_desc
choices.extend([vector_desc, summary_desc])
choice_to_id_dict[idx * 2] = f"{wiki_title}_vector"
choice_to_id_dict[idx * 2 + 1] = f"{wiki_title}_summary"
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
llm = OpenAI(model_name="gpt-3.5-turbo")
summary_q_tmpl = """\
You are a summary question generator. Given an existing question which asks for a summary of a given topic, \
generate {num_vary} related queries that also ask for a summary of the topic.
For example, assuming we're generating 3 related questions:
Base Question: Can you tell me more about Boston?
Question Variations:
Give me an overview of Boston as a city.
Can you describe different aspects of Boston, from the history to the sports scene to the food?
Write a concise summary of Boston; I've never been.
Now let's give it a shot!
Base Question: {base_question}
Question Variations:
"""
summary_q_prompt = | PromptTemplate(summary_q_tmpl) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-epsilla')
get_ipython().system('pip/pip3 install pyepsilla')
get_ipython().system('pip install llama-index')
import logging
import sys
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.epsilla import EpsillaVectorStore
import textwrap
import openai
import getpass
OPENAI_API_KEY = getpass.getpass("OpenAI API Key:")
openai.api_key = OPENAI_API_KEY
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
from pyepsilla import vectordb
client = vectordb.Client()
vector_store = EpsillaVectorStore(client=client, db_path="/tmp/llamastore")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("Who is the author?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("How did the author learn about AI?")
print(textwrap.fill(str(response), 100))
vector_store = EpsillaVectorStore(client=client, overwrite=True)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
single_doc = | Document(text="Epsilla is the vector database we are using.") | llama_index.core.Document |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
from llama_index.core import StorageContext, VectorStoreIndex
from llama_index.core import SummaryIndex
Settings.llm = OpenAI()
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
summary_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize",
use_async=True,
)
vector_query_engine = vector_index.as_query_engine()
from llama_index.core.tools import QueryEngineTool
summary_tool = QueryEngineTool.from_defaults(
query_engine=summary_query_engine,
name="summary_tool",
description=(
"Useful for summarization questions related to the author's life"
),
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
name="vector_tool",
description=(
"Useful for retrieving specific context to answer specific questions about the author's life"
),
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="QA bot",
instructions="You are a bot designed to answer questions about the author",
openai_tools=[],
tools=[summary_tool, vector_tool],
verbose=True,
run_retrieve_sleep_time=1.0,
)
response = agent.chat("Can you give me a summary about the author's life?")
print(str(response))
response = agent.query("What did the author do after RICS?")
print(str(response))
import pinecone
import os
api_key = os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=api_key, environment="us-west1-gcp")
try:
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
except Exception:
pass
pinecone_index = pinecone.Index("quickstart")
pinecone_index.delete(deleteAll=True, namespace="test")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text=(
"Michael Jordan is a retired professional basketball player,"
" widely regarded as one of the greatest basketball players of all"
" time."
),
metadata={
"category": "Sports",
"country": "United States",
},
),
TextNode(
text=(
"Angelina Jolie is an American actress, filmmaker, and"
" humanitarian. She has received numerous awards for her acting"
" and is known for her philanthropic work."
),
metadata={
"category": "Entertainment",
"country": "United States",
},
),
TextNode(
text=(
"Elon Musk is a business magnate, industrial designer, and"
" engineer. He is the founder, CEO, and lead designer of SpaceX,"
" Tesla, Inc., Neuralink, and The Boring Company."
),
metadata={
"category": "Business",
"country": "United States",
},
),
TextNode(
text=(
"Rihanna is a Barbadian singer, actress, and businesswoman. She"
" has achieved significant success in the music industry and is"
" known for her versatile musical style."
),
metadata={
"category": "Music",
"country": "Barbados",
},
),
TextNode(
text=(
"Cristiano Ronaldo is a Portuguese professional footballer who is"
" considered one of the greatest football players of all time. He"
" has won numerous awards and set multiple records during his"
" career."
),
metadata={
"category": "Sports",
"country": "Portugal",
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index, namespace="test"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes, storage_context=storage_context)
from llama_index.core.tools import FunctionTool
from llama_index.core.vector_stores import (
VectorStoreInfo,
MetadataInfo,
ExactMatchFilter,
MetadataFilters,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from typing import List, Tuple, Any
from pydantic import BaseModel, Field
top_k = 3
vector_store_info = VectorStoreInfo(
content_info="brief biography of celebrities",
metadata_info=[
MetadataInfo(
name="category",
type="str",
description=(
"Category of the celebrity, one of [Sports, Entertainment,"
" Business, Music]"
),
),
MetadataInfo(
name="country",
type="str",
description=(
"Country of the celebrity, one of [United States, Barbados,"
" Portugal]"
),
),
],
)
class AutoRetrieveModel(BaseModel):
query: str = Field(..., description="natural language query string")
filter_key_list: List[str] = Field(
..., description="List of metadata filter field names"
)
filter_value_list: List[str] = Field(
...,
description=(
"List of metadata filter field values (corresponding to names"
" specified in filter_key_list)"
),
)
def auto_retrieve_fn(
query: str, filter_key_list: List[str], filter_value_list: List[str]
):
"""Auto retrieval function.
Performs auto-retrieval from a vector database, and then applies a set of filters.
"""
query = query or "Query"
exact_match_filters = [
ExactMatchFilter(key=k, value=v)
for k, v in zip(filter_key_list, filter_value_list)
]
retriever = VectorIndexRetriever(
index,
filters=MetadataFilters(filters=exact_match_filters),
top_k=top_k,
)
results = retriever.retrieve(query)
return [r.get_content() for r in results]
description = f"""\
Use this tool to look up biographical information about celebrities.
The vector database schema is given below:
{vector_store_info.json()}
"""
auto_retrieve_tool = FunctionTool.from_defaults(
fn=auto_retrieve_fn,
name="celebrity_bios",
description=description,
fn_schema=AutoRetrieveModel,
)
auto_retrieve_fn(
"celebrity from the United States",
filter_key_list=["country"],
filter_value_list=["United States"],
)
from llama_index.agent.openai import OpenAIAssistantAgent
agent = OpenAIAssistantAgent.from_new(
name="Celebrity bot",
instructions="You are a bot designed to answer questions about celebrities.",
tools=[auto_retrieve_tool],
verbose=True,
)
response = agent.chat("Tell me about two celebrities from the United States. ")
print(str(response))
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
from llama_index.core import SQLDatabase
from llama_index.core.indices import SQLStructStoreIndex
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
metadata_obj.tables.keys()
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from llama_index.core.query_engine import NLSQLTableQueryEngine
query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["city_stats"],
)
get_ipython().system('pip install wikipedia')
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
cities = ["Toronto", "Berlin", "Tokyo"]
wiki_docs = WikipediaReader().load_data(pages=cities)
from llama_index.core import Settings
from llama_index.core import StorageContext
from llama_index.core.node_parser import TokenTextSplitter
from llama_index.llms.openai import OpenAI
Settings.chunk_size = 1024
Settings.llm = OpenAI(temperature=0, model="gpt-4")
text_splitter = TokenTextSplitter(chunk_size=1024)
storage_context = | StorageContext.from_defaults() | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-chroma')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().system('pip install llama-index')
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display
import chromadb
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import openai
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install llama-index llama-hub')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
domain = "docs.llamaindex.ai"
docs_url = "https://docs.llamaindex.ai/en/latest/"
get_ipython().system('wget -e robots=off --recursive --no-clobber --page-requisites --html-extension --convert-links --restrict-file-names=windows --domains {domain} --no-parent {docs_url}')
from llama_index.readers.file import UnstructuredReader
reader = UnstructuredReader()
from pathlib import Path
all_files_gen = Path("./docs.llamaindex.ai/").rglob("*")
all_files = [f.resolve() for f in all_files_gen]
all_html_files = [f for f in all_files if f.suffix.lower() == ".html"]
len(all_html_files)
from llama_index.core import Document
doc_limit = 100
docs = []
for idx, f in enumerate(all_html_files):
if idx > doc_limit:
break
print(f"Idx {idx}/{len(all_html_files)}")
loaded_docs = reader.load_data(file=f, split_documents=True)
start_idx = 72
loaded_doc = Document(
text="\n\n".join([d.get_content() for d in loaded_docs[72:]]),
metadata={"path": str(f)},
)
print(loaded_doc.metadata["path"])
docs.append(loaded_doc)
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import nest_asyncio
nest_asyncio.apply()
from llama_index.llms.openai import OpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = | OpenAIEmbedding(model="text-embedding-3-small") | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index llama-index-callbacks-langfuse')
import os
os.environ["LANGFUSE_SECRET_KEY"] = "sk-lf-..."
os.environ["LANGFUSE_PUBLIC_KEY"] = "pk-lf-..."
os.environ[
"LANGFUSE_HOST"
] = "https://cloud.langfuse.com" # 🇪🇺 EU region, 🇺🇸 US region: "https://us.cloud.langfuse.com"
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import global_handler, set_global_handler
set_global_handler("langfuse")
langfuse_callback_handler = global_handler
from llama_index.core import Settings
from llama_index.core.callbacks import CallbackManager
from langfuse.llama_index import LlamaIndexCallbackHandler
langfuse_callback_handler = LlamaIndexCallbackHandler()
Settings.callback_manager = CallbackManager([langfuse_callback_handler])
langfuse_callback_handler.flush()
get_ipython().system("mkdir -p 'data/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
documents = | SimpleDirectoryReader("data") | llama_index.core.SimpleDirectoryReader |
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system('curl https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_Chapter03.pdf --output IPCC_AR6_WGII_Chapter03.pdf')
from llama_index.core import SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import DatasetGenerator
documents = SimpleDirectoryReader(
input_files=["IPCC_AR6_WGII_Chapter03.pdf"]
).load_data()
import random
random.seed(42)
random.shuffle(documents)
gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
question_gen_query = (
"You are a Teacher/ Professor. Your task is to setup "
"a quiz/examination. Using the provided context from a "
"report on climate change and the oceans, formulate "
"a single question that captures an important fact from the "
"context. Restrict the question to the context information provided."
)
dataset_generator = DatasetGenerator.from_documents(
documents[:50],
question_gen_query=question_gen_query,
llm=gpt_35_llm,
)
questions = dataset_generator.generate_questions_from_nodes(num=40)
print("Generated ", len(questions), " questions")
with open("train_questions.txt", "w") as f:
for question in questions:
f.write(question + "\n")
dataset_generator = DatasetGenerator.from_documents(
documents[
50:
], # since we generated ~1 question for 40 documents, we can skip the first 40
question_gen_query=question_gen_query,
llm=gpt_35_llm,
)
questions = dataset_generator.generate_questions_from_nodes(num=40)
print("Generated ", len(questions), " questions")
with open("eval_questions.txt", "w") as f:
for question in questions:
f.write(question + "\n")
questions = []
with open("eval_questions.txt", "r") as f:
for line in f:
questions.append(line.strip())
from llama_index.core import VectorStoreIndex, Settings
Settings.context_window = 2048
gpt_35_llm = | OpenAI(model="gpt-3.5-turbo", temperature=0.3) | llama_index.llms.openai.OpenAI |
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.indices.query.query_transform import HyDEQueryTransform
from llama_index.core.query_engine import TransformQueryEngine
from IPython.display import Markdown, display
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = | VectorStoreIndex.from_documents(documents) | llama_index.core.VectorStoreIndex.from_documents |
import os
os.environ["OPENAI_API_KEY"] = "YOUR OPENAI API KEY"
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2312.04511.pdf" -O "llm_compiler.pdf"')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2312.06648.pdf" -O "dense_x_retrieval.pdf"')
from llama_index.core import SimpleDirectoryReader
reader = | SimpleDirectoryReader(input_files=["dense_x_retrieval.pdf"]) | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-storage-kvstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
from llama_index.storage.kvstore.firestore import FirestoreKVStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.index_store.firestore import FirestoreIndexStore
kvstore = FirestoreKVStore()
storage_context = StorageContext.from_defaults(
docstore=FirestoreDocumentStore(kvstore),
index_store=FirestoreIndexStore(kvstore),
)
storage_context.docstore.add_documents(nodes)
summary_index = | SummaryIndex(nodes, storage_context=storage_context) | llama_index.core.SummaryIndex |
import os
print(os.listdir("./discord_dumps"))
import json
with open("./discord_dumps/help_channel_dump_05_25_23.json", "r") as f:
data = json.load(f)
print("JSON keys: ", data.keys(), "\n")
print("Message Count: ", len(data["messages"]), "\n")
print("Sample Message Keys: ", data["messages"][0].keys(), "\n")
print("First Message: ", data["messages"][0]["content"], "\n")
print("Last Message: ", data["messages"][-1]["content"])
get_ipython().system('python ./group_conversations.py ./discord_dumps/help_channel_dump_05_25_23.json')
with open("conversation_docs.json", "r") as f:
threads = json.load(f)
print("Thread keys: ", threads[0].keys(), "\n")
print(threads[0]["metadata"], "\n")
print(threads[0]["thread"], "\n")
from llama_index.core import Document
documents = []
for thread in threads:
thread_text = thread["thread"]
thread_id = thread["metadata"]["id"]
timestamp = thread["metadata"]["timestamp"]
documents.append(
Document(text=thread_text, id_=thread_id, metadata={"date": timestamp})
)
from llama_index.core import VectorStoreIndex
index = | VectorStoreIndex.from_documents(documents) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.program.openai import OpenAIPydanticProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
llm=llm,
verbose=False,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = program(movie_name=movie_name)
print(output.json())
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
from llama_index.finetuning import OpenAIFinetuneEngine
finetune_engine = OpenAIFinetuneEngine(
"gpt-3.5-turbo",
"mock_finetune_songs.jsonl",
validate_json=False, # openai validate json code doesn't support function calling yet
)
finetune_engine.finetune()
finetune_engine.get_current_job()
ft_llm = finetune_engine.get_finetuned_model(temperature=0.3)
ft_program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
llm=ft_llm,
verbose=False,
)
ft_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
from pathlib import Path
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
metadata = {
"paper_title": "Llama 2: Open Foundation and Fine-Tuned Chat Models"
}
docs = [Document(text=doc_text, metadata=metadata)]
chunk_size = 1024
node_parser = SentenceSplitter(chunk_size=chunk_size)
nodes = node_parser.get_nodes_from_documents(docs)
len(nodes)
from llama_index.core import Settings
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
Settings.chunk_size = chunk_size
gpt_4_llm = OpenAI(
model="gpt-4-0613", temperature=0.3, callback_manager=callback_manager
)
gpt_35_llm = OpenAI(
model="gpt-3.5-turbo-0613",
temperature=0.3,
callback_manager=callback_manager,
)
eval_llm = OpenAI(model="gpt-4-0613", temperature=0)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.core import SummaryIndex
from llama_index.core import PromptTemplate
from tqdm.notebook import tqdm
from tqdm.asyncio import tqdm_asyncio
fp = open("data/qa_pairs.jsonl", "w")
question_gen_prompt = PromptTemplate(
"""
{query_str}
Context:
{context_str}
Questions:
"""
)
question_gen_query = """\
Snippets from a research paper is given below. It contains citations.
Please generate questions from the text asking about these citations.
For instance, here are some sample questions:
Which citations correspond to related works on transformer models?
Tell me about authors that worked on advancing RLHF.
Can you tell me citations corresponding to all computer vision works? \
"""
qr_pairs = []
node_questions_tasks = []
for idx, node in enumerate(nodes[:39]):
num_questions = 1 # change this number to increase number of nodes
dataset_generator = DatasetGenerator(
[node],
question_gen_query=question_gen_query,
text_question_template=question_gen_prompt,
llm=eval_llm,
metadata_mode="all",
num_questions_per_chunk=num_questions,
)
task = dataset_generator.agenerate_questions_from_nodes(num=num_questions)
node_questions_tasks.append(task)
node_questions_lists = await tqdm_asyncio.gather(*node_questions_tasks)
node_questions_lists
from llama_index.core import VectorStoreIndex
gpt4_index = | VectorStoreIndex(nodes=nodes) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
import nest_asyncio
nest_asyncio.apply()
import os
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
import pandas as pd
def display_eval_df(question, source, answer_a, answer_b, result) -> None:
"""Pretty print question/answer + gpt-4 judgement dataset."""
eval_df = pd.DataFrame(
{
"Question": question,
"Source": source,
"Model A": answer_a["model"],
"Answer A": answer_a["text"],
"Model B": answer_b["model"],
"Answer B": answer_b["text"],
"Score": result.score,
"Judgement": result.feedback,
},
index=[0],
)
eval_df = eval_df.style.set_properties(
**{
"inline-size": "300px",
"overflow-wrap": "break-word",
},
subset=["Answer A", "Answer B"]
)
display(eval_df)
get_ipython().system('pip install wikipedia -q')
from llama_index.readers.wikipedia import WikipediaReader
train_cities = [
"San Francisco",
"Toronto",
"New York",
"Vancouver",
"Montreal",
"Boston",
]
test_cities = [
"Tokyo",
"Singapore",
"Paris",
]
train_documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in train_cities]
)
test_documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in test_cities]
)
QUESTION_GEN_PROMPT = (
"You are a Teacher/ Professor. Your task is to setup "
"a quiz/examination. Using the provided context, formulate "
"a single question that captures an important fact from the "
"context. Restrict the question to the context information provided."
)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
train_dataset_generator = DatasetGenerator.from_documents(
train_documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=llm,
show_progress=True,
num_questions_per_chunk=25,
)
test_dataset_generator = DatasetGenerator.from_documents(
test_documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=llm,
show_progress=True,
num_questions_per_chunk=25,
)
train_questions = train_dataset_generator.generate_questions_from_nodes(
num=200
)
test_questions = test_dataset_generator.generate_questions_from_nodes(num=150)
len(train_questions), len(test_questions)
train_questions[:3]
test_questions[:3]
from llama_index.core import VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
train_index = VectorStoreIndex.from_documents(documents=train_documents)
train_retriever = VectorIndexRetriever(
index=train_index,
similarity_top_k=2,
)
test_index = VectorStoreIndex.from_documents(documents=test_documents)
test_retriever = VectorIndexRetriever(
index=test_index,
similarity_top_k=2,
)
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
def create_query_engine(
hf_name: str, retriever: VectorIndexRetriever, hf_llm_generators: dict
) -> RetrieverQueryEngine:
"""Create a RetrieverQueryEngine using the HuggingFaceInferenceAPI LLM"""
if hf_name not in hf_llm_generators:
raise KeyError("model not listed in hf_llm_generators")
llm = HuggingFaceInferenceAPI(
model_name=hf_llm_generators[hf_name],
context_window=2048, # to use refine
token=HUGGING_FACE_TOKEN,
)
return RetrieverQueryEngine.from_args(retriever=retriever, llm=llm)
hf_llm_generators = {
"mistral-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf",
}
train_query_engines = {
mdl: create_query_engine(mdl, train_retriever, hf_llm_generators)
for mdl in hf_llm_generators.keys()
}
test_query_engines = {
mdl: create_query_engine(mdl, test_retriever, hf_llm_generators)
for mdl in hf_llm_generators.keys()
}
import tqdm
import random
train_dataset = []
for q in tqdm.tqdm(train_questions):
model_versus = random.sample(list(train_query_engines.items()), 2)
data_entry = {"question": q}
responses = []
source = None
for name, engine in model_versus:
response = engine.query(q)
response_struct = {}
response_struct["model"] = name
response_struct["text"] = str(response)
if source is not None:
assert source == response.source_nodes[0].node.text[:1000] + "..."
else:
source = response.source_nodes[0].node.text[:1000] + "..."
responses.append(response_struct)
data_entry["answers"] = responses
data_entry["source"] = source
train_dataset.append(data_entry)
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.core import Settings
main_finetuning_handler = OpenAIFineTuningHandler()
callback_manager = | CallbackManager([main_finetuning_handler]) | llama_index.core.callbacks.CallbackManager |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import camelot
from llama_index.core import VectorStoreIndex
from llama_index.core.query_engine import PandasQueryEngine
from llama_index.core.schema import IndexNode
from llama_index.llms.openai import OpenAI
from llama_index.readers.file import PyMuPDFReader
from typing import List
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"')
from llama_index.core import download_loader
from llama_index.readers.file import PyMuPDFReader
llama2_docs = PyMuPDFReader().load_data(
file_path="./llama2.pdf", metadata=True
)
attention_docs = PyMuPDFReader().load_data(
file_path="./attention.pdf", metadata=True
)
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core.node_parser import TokenTextSplitter
nodes = TokenTextSplitter(
chunk_size=1024, chunk_overlap=128
).get_nodes_from_documents(llama2_docs + attention_docs)
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore
docstore = | SimpleDocumentStore() | llama_index.core.storage.docstore.SimpleDocumentStore |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-replicate')
get_ipython().run_line_magic('', 'pip install replicate')
import os
REPLICATE_API_TOKEN = "" # Your Relicate API token here
os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
from PIL import Image
import requests
from io import BytesIO
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
from llama_index.core.schema import ImageDocument
if not os.path.exists("test_images"):
os.makedirs("test_images")
image_urls = [
"https://www.sportsnet.ca/wp-content/uploads/2023/11/CP1688996471-1040x572.jpg",
"https://res.cloudinary.com/hello-tickets/image/upload/c_limit,f_auto,q_auto,w_1920/v1640835927/o3pfl41q7m5bj8jardk0.jpg",
"https://www.cleverfiles.com/howto/wp-content/uploads/2018/03/minion.jpg",
]
for idx, image_url in enumerate(image_urls):
response = requests.get(image_url)
img = Image.open(BytesIO(response.content))
img.save(f"test_images/{idx}.png")
image_documents = [
| ImageDocument(image_path=f"test_images/{idx}.png") | llama_index.core.schema.ImageDocument |
get_ipython().run_line_magic('pip', 'install llama-index-llms-clarifai')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install clarifai')
import os
os.environ["CLARIFAI_PAT"] = "<YOUR CLARIFAI PAT>"
from llama_index.llms.clarifai import Clarifai
params = dict(
user_id="clarifai",
app_id="ml",
model_name="llama2-7b-alternative-4k",
model_url=(
"https://clarifai.com/clarifai/ml/models/llama2-7b-alternative-4k"
),
)
llm_model = Clarifai(model_url=params["model_url"])
llm_model = Clarifai(
model_name=params["model_name"],
app_id=params["app_id"],
user_id=params["user_id"],
)
llm_reponse = llm_model.complete(
prompt="write a 10 line rhyming poem about science"
)
print(llm_reponse)
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(role="user", content="write about climate change in 50 lines")
]
Response = llm_model.chat(messages)
print(Response)
inference_params = dict(temperature=str(0.3), max_tokens=20)
llm_reponse = llm_model.complete(
prompt="What is nuclear fission and fusion?",
inference_params=params,
)
messages = [ | ChatMessage(role="user", content="Explain about the big bang") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-neo4j')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai')
import os
os.environ["OPENAI_API_KEY"] = "API_KEY_HERE"
import logging
import sys
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = llm
Settings.chunk_size = 512
import os
import json
import openai
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
KnowledgeGraphIndex,
)
import logging
import sys
from IPython.display import Markdown, display
logging.basicConfig(
stream=sys.stdout, level=logging.INFO
) # logging.DEBUG for more verbose output
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
openai.api_type = "azure"
openai.api_base = "https://<foo-bar>.openai.azure.com"
openai.api_version = "2022-12-01"
os.environ["OPENAI_API_KEY"] = "<your-openai-key>"
openai.api_key = os.getenv("OPENAI_API_KEY")
llm = AzureOpenAI(
deployment_name="<foo-bar-deployment>",
temperature=0,
openai_api_version=openai.api_version,
model_kwargs={
"api_key": openai.api_key,
"api_base": openai.api_base,
"api_type": openai.api_type,
"api_version": openai.api_version,
},
)
embedding_llm = OpenAIEmbedding(
model="text-embedding-ada-002",
deployment_name="<foo-bar-deployment>",
api_key=openai.api_key,
api_base=openai.api_base,
api_type=openai.api_type,
api_version=openai.api_version,
)
Settings.llm = llm
Settings.embed_model = embedding_llm
Settings.chunk_size = 512
from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader
from llama_index.core import StorageContext
from llama_index.graph_stores.neo4j import Neo4jGraphStore
from llama_index.llms.openai import OpenAI
from IPython.display import Markdown, display
documents = SimpleDirectoryReader(
"../../../../examples/paul_graham_essay/data"
).load_data()
get_ipython().run_line_magic('pip', 'install neo4j')
username = "neo4j"
password = "retractor-knot-thermocouples"
url = "bolt://44.211.44.239:7687"
database = "neo4j"
graph_store = Neo4jGraphStore(
username=username,
password=password,
url=url,
database=database,
)
storage_context = StorageContext.from_defaults(graph_store=graph_store)
index = KnowledgeGraphIndex.from_documents(
documents,
storage_context=storage_context,
max_triplets_per_chunk=2,
)
query_engine = index.as_query_engine(
include_text=False, response_mode="tree_summarize"
)
response = query_engine.query("Tell me more about Interleaf")
display(Markdown(f"<b>{response}</b>"))
query_engine = index.as_query_engine(
include_text=True, response_mode="tree_summarize"
)
response = query_engine.query(
"Tell me more about what the author worked on at Interleaf"
)
display(Markdown(f"<b>{response}</b>"))
graph_store.query(
"""
MATCH (n) DETACH DELETE n
"""
)
index = KnowledgeGraphIndex.from_documents(
documents,
storage_context=storage_context,
max_triplets_per_chunk=2,
include_embeddings=True,
)
query_engine = index.as_query_engine(
include_text=True,
response_mode="tree_summarize",
embedding_mode="hybrid",
similarity_top_k=5,
)
response = query_engine.query(
"Tell me more about what the author worked on at Interleaf"
)
display(Markdown(f"<b>{response}</b>"))
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter()
nodes = node_parser.get_nodes_from_documents(documents)
index = | KnowledgeGraphIndex.from_documents([], storage_context=storage_context) | llama_index.core.KnowledgeGraphIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-storage-index-store-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.core import ComposableGraph
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
MONGO_URI = os.environ["MONGO_URI"]
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.index_store.mongodb import MongoIndexStore
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
storage_context.docstore.add_documents(nodes)
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
len(storage_context.docstore.docs)
storage_context.persist()
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
from llama_index.core import load_index_from_storage
storage_context = StorageContext.from_defaults(
docstore=MongoDocumentStore.from_uri(uri=MONGO_URI),
index_store=MongoIndexStore.from_uri(uri=MONGO_URI),
)
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
vector_index = load_index_from_storage(
storage_context=storage_context, vector_id=vector_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, keyword_id=keyword_id
)
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
display_response(list_response)
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
| display_response(vector_response) | llama_index.core.response.notebook_utils.display_response |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
from llama_index.program.openai import OpenAIPydanticProgram
from pydantic import BaseModel
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_seconds: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
llm = OpenAI(model="gpt-4", callback_manager=callback_manager)
prompt_template_str = """\
Generate an example album, with an artist and a list of songs. \
Using the movie {movie_name} as inspiration.\
"""
program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
llm=llm,
verbose=False,
)
movie_names = [
"The Shining",
"The Departed",
"Titanic",
"Goodfellas",
"Pretty Woman",
"Home Alone",
"Caged Fury",
"Edward Scissorhands",
"Total Recall",
"Ghost",
"Tremors",
"RoboCop",
"Rocky V",
]
from tqdm.notebook import tqdm
for movie_name in tqdm(movie_names):
output = program(movie_name=movie_name)
print(output.json())
finetuning_handler.save_finetuning_events("mock_finetune_songs.jsonl")
get_ipython().system('cat mock_finetune_songs.jsonl')
from llama_index.finetuning import OpenAIFinetuneEngine
finetune_engine = OpenAIFinetuneEngine(
"gpt-3.5-turbo",
"mock_finetune_songs.jsonl",
validate_json=False, # openai validate json code doesn't support function calling yet
)
finetune_engine.finetune()
finetune_engine.get_current_job()
ft_llm = finetune_engine.get_finetuned_model(temperature=0.3)
ft_program = OpenAIPydanticProgram.from_defaults(
output_cls=Album,
prompt_template_str=prompt_template_str,
llm=ft_llm,
verbose=False,
)
ft_program(movie_name="Goodfellas")
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pydantic import Field
from typing import List
class Citation(BaseModel):
"""Citation class."""
author: str = Field(
..., description="Inferred first author (usually last name"
)
year: int = Field(..., description="Inferred year")
desc: str = Field(
...,
description=(
"Inferred description from the text of the work that the author is"
" cited for"
),
)
class Response(BaseModel):
"""List of author citations.
Extracted over unstructured text.
"""
citations: List[Citation] = Field(
...,
description=(
"List of author citations (organized by author, year, and"
" description)."
),
)
from llama_index.readers.file import PyMuPDFReader
from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
from pathlib import Path
loader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-readers-pathway')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install pathway')
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/'")
get_ipython().system("wget 'https://gist.githubusercontent.com/janchorowski/dd22a293f3d99d1b726eedc7d46d2fc0/raw/pathway_readme.md' -O 'data/pathway_readme.md'")
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.ERROR)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import getpass
import os
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
import pathway as pw
data_sources = []
data_sources.append(
pw.io.fs.read(
"./data",
format="binary",
mode="streaming",
with_metadata=True,
) # This creates a `pathway` connector that tracks
)
from llama_index.core.retrievers import PathwayVectorServer
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.node_parser import TokenTextSplitter
embed_model = OpenAIEmbedding(embed_batch_size=10)
transformations_example = [
TokenTextSplitter(
chunk_size=150,
chunk_overlap=10,
separator=" ",
),
embed_model,
]
processing_pipeline = PathwayVectorServer(
*data_sources,
transformations=transformations_example,
)
PATHWAY_HOST = "127.0.0.1"
PATHWAY_PORT = 8754
processing_pipeline.run_server(
host=PATHWAY_HOST, port=PATHWAY_PORT, with_cache=False, threaded=True
)
from llama_index.readers.pathway import PathwayReader
reader = | PathwayReader(host=PATHWAY_HOST, port=PATHWAY_PORT) | llama_index.readers.pathway.PathwayReader |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
import nest_asyncio
nest_asyncio.apply()
import cProfile, pstats
from pstats import SortKey
get_ipython().system('llamaindex-cli download-llamadataset PatronusAIFinanceBenchDataset --download-dir ./data')
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(input_dir="./data/source_files").load_data()
from llama_index.core import Document
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.extractors import TitleExtractor
from llama_index.core.ingestion import IngestionPipeline
pipeline = IngestionPipeline(
transformations=[
SentenceSplitter(chunk_size=1024, chunk_overlap=20),
TitleExtractor(),
| OpenAIEmbedding() | llama_index.embeddings.openai.OpenAIEmbedding |
get_ipython().system('pip install -U llama-index-multi-modal-llms-dashscope')
get_ipython().run_line_magic('env', 'DASHSCOPE_API_KEY=YOUR_DASHSCOPE_API_KEY')
from llama_index.multi_modal_llms.dashscope import (
DashScopeMultiModal,
DashScopeMultiModalModels,
)
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
image_urls = [
"https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg",
]
image_documents = load_image_urls(image_urls)
dashscope_multi_modal_llm = DashScopeMultiModal(
model_name=DashScopeMultiModalModels.QWEN_VL_MAX,
)
complete_response = dashscope_multi_modal_llm.complete(
prompt="What's in the image?",
image_documents=image_documents,
)
print(complete_response)
multi_image_urls = [
"https://dashscope.oss-cn-beijing.aliyuncs.com/images/dog_and_girl.jpeg",
"https://dashscope.oss-cn-beijing.aliyuncs.com/images/panda.jpeg",
]
multi_image_documents = load_image_urls(multi_image_urls)
complete_response = dashscope_multi_modal_llm.complete(
prompt="What animals are in the pictures?",
image_documents=multi_image_documents,
)
print(complete_response)
stream_complete_response = dashscope_multi_modal_llm.stream_complete(
prompt="What's in the image?",
image_documents=image_documents,
)
for r in stream_complete_response:
print(r.delta, end="")
from llama_index.core.base.llms.types import MessageRole
from llama_index.multi_modal_llms.dashscope.utils import (
create_dashscope_multi_modal_chat_message,
)
chat_message_user_1 = create_dashscope_multi_modal_chat_message(
"What's in the image?", MessageRole.USER, image_documents
)
chat_response = dashscope_multi_modal_llm.chat([chat_message_user_1])
print(chat_response.message.content[0]["text"])
chat_message_assistent_1 = create_dashscope_multi_modal_chat_message(
chat_response.message.content[0]["text"], MessageRole.ASSISTANT, None
)
chat_message_user_2 = create_dashscope_multi_modal_chat_message(
"what are they doing?", MessageRole.USER, None
)
chat_response = dashscope_multi_modal_llm.chat(
[chat_message_user_1, chat_message_assistent_1, chat_message_user_2]
)
print(chat_response.message.content[0]["text"])
stream_chat_response = dashscope_multi_modal_llm.stream_chat(
[chat_message_user_1, chat_message_assistent_1, chat_message_user_2]
)
for r in stream_chat_response:
print(r.delta, end="")
from llama_index.multi_modal_llms.dashscope.utils import load_local_images
local_images = [
"file://THE_FILE_PATH1",
"file://THE_FILE_PATH2",
]
image_documents = | load_local_images(local_images) | llama_index.multi_modal_llms.dashscope.utils.load_local_images |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-tools-metaphor')
get_ipython().system('wget "https://images.openai.com/blob/a2e49de2-ba5b-4869-9c2d-db3b4b5dcc19/new-models-and-developer-products-announced-at-devday.jpg?width=2000" -O other_images/openai/dev_day.png')
get_ipython().system('wget "https://drive.google.com/uc\\?id\\=1B4f5ZSIKN0zTTPPRlZ915Ceb3_uF9Zlq\\&export\\=download" -O other_images/adidas.png')
from llama_index.readers.web import SimpleWebPageReader
url = "https://openai.com/blog/new-models-and-developer-products-announced-at-devday"
reader = SimpleWebPageReader(html_to_text=True)
documents = reader.load_data(urls=[url])
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
vector_index = VectorStoreIndex.from_documents(
documents,
)
query_tool = QueryEngineTool(
query_engine=vector_index.as_query_engine(),
metadata=ToolMetadata(
name=f"vector_tool",
description=(
"Useful to lookup new features announced by OpenAI"
),
),
)
from llama_index.core.agent.react_multimodal.step import (
MultimodalReActAgentWorker,
)
from llama_index.core.agent import AgentRunner
from llama_index.core.multi_modal_llms import MultiModalLLM
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.agent import Task
mm_llm = OpenAIMultiModal(model="gpt-4-vision-preview", max_new_tokens=1000)
react_step_engine = MultimodalReActAgentWorker.from_tools(
[query_tool],
multi_modal_llm=mm_llm,
verbose=True,
)
agent = | AgentRunner(react_step_engine) | llama_index.core.agent.AgentRunner |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data && wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama_hub')
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.readers.file import UnstructuredReader
from llama_index.readers.file import PyMuPDFReader
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
index = VectorStoreIndex(base_nodes)
query_engine = index.as_query_engine(similarity_top_k=2)
from llama_index.core.evaluation import DatasetGenerator, QueryResponseDataset
from llama_index.core.node_parser import SimpleNodeParser
dataset_generator = DatasetGenerator(
base_nodes[:20],
llm=OpenAI(model="gpt-4"),
show_progress=True,
num_questions_per_chunk=3,
)
eval_dataset = await dataset_generator.agenerate_dataset_from_nodes(num=60)
eval_dataset.save_json("data/llama2_eval_qr_dataset.json")
eval_dataset = QueryResponseDataset.from_json(
"data/llama2_eval_qr_dataset.json"
)
import random
full_qr_pairs = eval_dataset.qr_pairs
num_exemplars = 2
num_eval = 40
exemplar_qr_pairs = random.sample(full_qr_pairs, num_exemplars)
eval_qr_pairs = random.sample(full_qr_pairs, num_eval)
len(exemplar_qr_pairs)
from llama_index.core.evaluation.eval_utils import get_responses
from llama_index.core.evaluation import CorrectnessEvaluator, BatchEvalRunner
evaluator_c = CorrectnessEvaluator(llm= | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install llama-index-readers-papers')
get_ipython().system('pip install llama_index transformers wikipedia html2text pyvis')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import KnowledgeGraphIndex
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core.graph_stores import SimpleGraphStore
from llama_index.core import StorageContext
from llama_index.llms.openai import OpenAI
from transformers import pipeline
triplet_extractor = pipeline(
"text2text-generation",
model="Babelscape/rebel-large",
tokenizer="Babelscape/rebel-large",
device="cuda:0",
)
def extract_triplets(input_text):
text = triplet_extractor.tokenizer.batch_decode(
[
triplet_extractor(
input_text, return_tensors=True, return_text=False
)[0]["generated_token_ids"]
]
)[0]
triplets = []
relation, subject, relation, object_ = "", "", "", ""
text = text.strip()
current = "x"
for token in (
text.replace("<s>", "")
.replace("<pad>", "")
.replace("</s>", "")
.split()
):
if token == "<triplet>":
current = "t"
if relation != "":
triplets.append(
(subject.strip(), relation.strip(), object_.strip())
)
relation = ""
subject = ""
elif token == "<subj>":
current = "s"
if relation != "":
triplets.append(
(subject.strip(), relation.strip(), object_.strip())
)
object_ = ""
elif token == "<obj>":
current = "o"
relation = ""
else:
if current == "t":
subject += " " + token
elif current == "s":
object_ += " " + token
elif current == "o":
relation += " " + token
if subject != "" and relation != "" and object_ != "":
triplets.append((subject.strip(), relation.strip(), object_.strip()))
return triplets
import wikipedia
class WikiFilter:
def __init__(self):
self.cache = {}
def filter(self, candidate_entity):
if candidate_entity in self.cache:
return self.cache[candidate_entity]["title"]
try:
page = wikipedia.page(candidate_entity, auto_suggest=False)
entity_data = {
"title": page.title,
"url": page.url,
"summary": page.summary,
}
self.cache[candidate_entity] = entity_data
self.cache[page.title] = entity_data
return entity_data["title"]
except:
return None
wiki_filter = WikiFilter()
def extract_triplets_wiki(text):
relations = extract_triplets(text)
filtered_relations = []
for relation in relations:
(subj, rel, obj) = relation
filtered_subj = wiki_filter.filter(subj)
filtered_obj = wiki_filter.filter(obj)
if filtered_subj is None and filtered_obj is None:
continue
filtered_relations.append(
(
filtered_subj or subj,
rel,
filtered_obj or obj,
)
)
return filtered_relations
from llama_index.core import download_loader
from llama_index.readers.papers import ArxivReader
loader = | ArxivReader() | llama_index.readers.papers.ArxivReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-ai21')
get_ipython().system('pip install llama-index')
from llama_index.llms.ai21 import AI21
api_key = "Your api key"
resp = AI21(api_key=api_key).complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
from llama_index.llms.ai21 import AI21
messages = [
ChatMessage(role="user", content="hello there"),
ChatMessage(
role="assistant", content="Arrrr, matey! How can I help ye today?"
),
ChatMessage(role="user", content="What is your name"),
]
resp = AI21(api_key=api_key).chat(
messages, preamble_override="You are a pirate with a colorful personality"
)
print(resp)
from llama_index.llms.ai21 import AI21
llm = | AI21(model="j2-mid", api_key=api_key) | llama_index.llms.ai21.AI21 |
get_ipython().system('pip install llama-index')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import nest_asyncio
nest_asyncio.apply()
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.query_engine import SubQuestionQueryEngine
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.core import Settings
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([llama_debug])
Settings.callback_manager = callback_manager
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
pg_essay = | SimpleDirectoryReader(input_dir="./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
from llama_index.core import SQLDatabase
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("sqlite:///chinook.db")
sql_database = SQLDatabase(engine)
from llama_index.core.query_pipeline import QueryPipeline
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('curl "https://www.sqlitetutorial.net/wp-content/uploads/2018/03/chinook.zip" -O ./chinook.zip')
get_ipython().system('unzip ./chinook.zip')
from llama_index.core.settings import Settings
from llama_index.core.callbacks import CallbackManager
callback_manager = CallbackManager()
Settings.callback_manager = callback_manager
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.tools import QueryEngineTool
sql_query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["albums", "tracks", "artists"],
verbose=True,
)
sql_tool = QueryEngineTool.from_defaults(
query_engine=sql_query_engine,
name="sql_tool",
description=(
"Useful for translating a natural language query into a SQL query"
),
)
from llama_index.core.query_pipeline import QueryPipeline as QP
qp = QP(verbose=True)
from llama_index.core.agent.react.types import (
ActionReasoningStep,
ObservationReasoningStep,
ResponseReasoningStep,
)
from llama_index.core.agent import Task, AgentChatResponse
from llama_index.core.query_pipeline import (
AgentInputComponent,
AgentFnComponent,
CustomAgentComponent,
QueryComponent,
ToolRunnerComponent,
)
from llama_index.core.llms import MessageRole
from typing import Dict, Any, Optional, Tuple, List, cast
def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict[str, Any]:
"""Agent input function.
Returns:
A Dictionary of output keys and values. If you are specifying
src_key when defining links between this component and other
components, make sure the src_key matches the specified output_key.
"""
if "current_reasoning" not in state:
state["current_reasoning"] = []
reasoning_step = ObservationReasoningStep(observation=task.input)
state["current_reasoning"].append(reasoning_step)
return {"input": task.input}
agent_input_component = AgentInputComponent(fn=agent_input_fn)
from llama_index.core.agent import ReActChatFormatter
from llama_index.core.query_pipeline import InputComponent, Link
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import BaseTool
def react_prompt_fn(
task: Task, state: Dict[str, Any], input: str, tools: List[BaseTool]
) -> List[ChatMessage]:
chat_formatter = ReActChatFormatter()
return chat_formatter.format(
tools,
chat_history=task.memory.get() + state["memory"].get_all(),
current_reasoning=state["current_reasoning"],
)
react_prompt_component = AgentFnComponent(
fn=react_prompt_fn, partial_dict={"tools": [sql_tool]}
)
from typing import Set, Optional
from llama_index.core.agent.react.output_parser import ReActOutputParser
from llama_index.core.llms import ChatResponse
from llama_index.core.agent.types import Task
def parse_react_output_fn(
task: Task, state: Dict[str, Any], chat_response: ChatResponse
):
"""Parse ReAct output into a reasoning step."""
output_parser = ReActOutputParser()
reasoning_step = output_parser.parse(chat_response.message.content)
return {"done": reasoning_step.is_done, "reasoning_step": reasoning_step}
parse_react_output = AgentFnComponent(fn=parse_react_output_fn)
def run_tool_fn(
task: Task, state: Dict[str, Any], reasoning_step: ActionReasoningStep
):
"""Run tool and process tool output."""
tool_runner_component = ToolRunnerComponent(
[sql_tool], callback_manager=task.callback_manager
)
tool_output = tool_runner_component.run_component(
tool_name=reasoning_step.action,
tool_input=reasoning_step.action_input,
)
observation_step = ObservationReasoningStep(observation=str(tool_output))
state["current_reasoning"].append(observation_step)
return {"response_str": observation_step.get_content(), "is_done": False}
run_tool = AgentFnComponent(fn=run_tool_fn)
def process_response_fn(
task: Task, state: Dict[str, Any], response_step: ResponseReasoningStep
):
"""Process response."""
state["current_reasoning"].append(response_step)
response_str = response_step.response
state["memory"].put(ChatMessage(content=task.input, role=MessageRole.USER))
state["memory"].put(
ChatMessage(content=response_str, role=MessageRole.ASSISTANT)
)
return {"response_str": response_str, "is_done": True}
process_response = AgentFnComponent(fn=process_response_fn)
def process_agent_response_fn(
task: Task, state: Dict[str, Any], response_dict: dict
):
"""Process agent response."""
return (
AgentChatResponse(response_dict["response_str"]),
response_dict["is_done"],
)
process_agent_response = AgentFnComponent(fn=process_agent_response_fn)
from llama_index.core.query_pipeline import QueryPipeline as QP
from llama_index.llms.openai import OpenAI
qp.add_modules(
{
"agent_input": agent_input_component,
"react_prompt": react_prompt_component,
"llm": OpenAI(model="gpt-4-1106-preview"),
"react_output_parser": parse_react_output,
"run_tool": run_tool,
"process_response": process_response,
"process_agent_response": process_agent_response,
}
)
qp.add_chain(["agent_input", "react_prompt", "llm", "react_output_parser"])
qp.add_link(
"react_output_parser",
"run_tool",
condition_fn=lambda x: not x["done"],
input_fn=lambda x: x["reasoning_step"],
)
qp.add_link(
"react_output_parser",
"process_response",
condition_fn=lambda x: x["done"],
input_fn=lambda x: x["reasoning_step"],
)
qp.add_link("process_response", "process_agent_response")
qp.add_link("run_tool", "process_agent_response")
from pyvis.network import Network
net = Network(notebook=True, cdn_resources="in_line", directed=True)
net.from_nx(qp.clean_dag)
net.show("agent_dag.html")
from llama_index.core.agent import QueryPipelineAgentWorker, AgentRunner
from llama_index.core.callbacks import CallbackManager
agent_worker = QueryPipelineAgentWorker(qp)
agent = AgentRunner(
agent_worker, callback_manager=CallbackManager([]), verbose=True
)
task = agent.create_task(
"What are some tracks from the artist AC/DC? Limit it to 3"
)
step_output = agent.run_step(task.task_id)
step_output = agent.run_step(task.task_id)
step_output.is_last
response = agent.finalize_response(task.task_id)
print(str(response))
agent.reset()
response = agent.chat(
"What are some tracks from the artist AC/DC? Limit it to 3"
)
print(str(response))
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4-1106-preview")
from llama_index.core.agent import Task, AgentChatResponse
from typing import Dict, Any
from llama_index.core.query_pipeline import (
AgentInputComponent,
AgentFnComponent,
)
def agent_input_fn(task: Task, state: Dict[str, Any]) -> Dict:
"""Agent input function."""
if "convo_history" not in state:
state["convo_history"] = []
state["count"] = 0
state["convo_history"].append(f"User: {task.input}")
convo_history_str = "\n".join(state["convo_history"]) or "None"
return {"input": task.input, "convo_history": convo_history_str}
agent_input_component = AgentInputComponent(fn=agent_input_fn)
from llama_index.core import PromptTemplate
retry_prompt_str = """\
You are trying to generate a proper natural language query given a user input.
This query will then be interpreted by a downstream text-to-SQL agent which
will convert the query to a SQL statement. If the agent triggers an error,
then that will be reflected in the current conversation history (see below).
If the conversation history is None, use the user input. If its not None,
generate a new SQL query that avoids the problems of the previous SQL query.
Input: {input}
Convo history (failed attempts):
{convo_history}
New input: """
retry_prompt = PromptTemplate(retry_prompt_str)
from llama_index.core import Response
from typing import Tuple
validate_prompt_str = """\
Given the user query, validate whether the inferred SQL query and response from executing the query is correct and answers the query.
Answer with YES or NO.
Query: {input}
Inferred SQL query: {sql_query}
SQL Response: {sql_response}
Result: """
validate_prompt = | PromptTemplate(validate_prompt_str) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import camelot
from llama_index.core import VectorStoreIndex
from llama_index.core.query_engine import PandasQueryEngine
from llama_index.core.schema import IndexNode
from llama_index.llms.openai import OpenAI
from llama_index.readers.file import PyMuPDFReader
from typing import List
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
file_path = "billionaires_page.pdf"
reader = | PyMuPDFReader() | llama_index.readers.file.PyMuPDFReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().handlers = []
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
SimpleDirectoryReader,
StorageContext,
VectorStoreIndex,
)
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
llm = OpenAI(model="gpt-4")
splitter = SentenceSplitter(chunk_size=1024)
nodes = splitter.get_nodes_from_documents(documents)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
index = VectorStoreIndex(
nodes=nodes,
storage_context=storage_context,
)
retriever = | BM25Retriever.from_defaults(nodes=nodes, similarity_top_k=2) | llama_index.retrievers.bm25.BM25Retriever.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
texts = [
"The president in the year 2040 is John Cena.",
"The president in the year 2050 is Florence Pugh.",
'The president in the year 2060 is Dwayne "The Rock" Johnson.',
]
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-0613")
from llama_index.core import get_response_synthesizer
summarizer = get_response_synthesizer(
response_mode="refine", llm=llm, verbose=True
)
response = summarizer.get_response("who is president in the year 2050?", texts)
print(response)
from llama_index.core import get_response_synthesizer
summarizer = get_response_synthesizer(
response_mode="refine",
llm=llm,
verbose=True,
structured_answer_filtering=True,
)
response = summarizer.get_response("who is president in the year 2050?", texts)
print(response)
instruct_llm = | OpenAI(model="gpt-3.5-turbo-instruct") | llama_index.llms.openai.OpenAI |
get_ipython().system('pip install llama-index')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import Settings
nodes = | Settings.get_nodes_from_documents(documents) | llama_index.core.Settings.get_nodes_from_documents |
import os
from getpass import getpass
if os.getenv("OPENAI_API_KEY") is None:
os.environ["OPENAI_API_KEY"] = getpass(
"Paste your OpenAI key from:"
" https://platform.openai.com/account/api-keys\n"
)
assert os.getenv("OPENAI_API_KEY", "").startswith(
"sk-"
), "This doesn't look like a valid OpenAI API key"
print("OpenAI API key configured")
get_ipython().run_line_magic('pip', 'install -q html2text llama-index pandas pyarrow tqdm')
get_ipython().run_line_magic('pip', 'install -q llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install -q llama-index-callbacks-openinference')
import hashlib
import json
from pathlib import Path
import os
import textwrap
from typing import List, Union
import llama_index.core
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.callbacks import CallbackManager
from llama_index.callbacks.openinference import OpenInferenceCallbackHandler
from llama_index.callbacks.openinference.base import (
as_dataframe,
QueryData,
NodeData,
)
from llama_index.core.node_parser import SimpleNodeParser
import pandas as pd
from tqdm import tqdm
documents = SimpleWebPageReader().load_data(
[
"https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt"
]
)
print(documents[0].text)
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)
print(nodes[0].text)
callback_handler = OpenInferenceCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llama_index.core.Settings.callback_manager = callback_manager
index = | VectorStoreIndex.from_documents(documents) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-agent-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("mkdir -p 'data/'")
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.core import Document, VectorStoreIndex
from llama_index.readers.file import PyMuPDFReader
from llama_index.core.node_parser import SimpleNodeParser
from llama_index.llms.openai import OpenAI
loader = PyMuPDFReader()
docs0 = loader.load(file_path=Path("./data/llama2.pdf"))
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
node_parser = | SimpleNodeParser.from_defaults() | llama_index.core.node_parser.SimpleNodeParser.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().system('pip install llama-index')
from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool
from llama_index.readers.wikipedia import WikipediaReader
from typing import List
from pydantic import BaseModel
reader = | WikipediaReader() | llama_index.readers.wikipedia.WikipediaReader |
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-mongodb')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-qdrant')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-firestore')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-redis')
get_ipython().run_line_magic('pip', 'install llama-index-storage-docstore-dynamodb')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "./llama2.pdf"')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/1706.03762.pdf" -O "./attention.pdf"')
from llama_index.core import download_loader
from llama_index.readers.file import PyMuPDFReader
llama2_docs = PyMuPDFReader().load_data(
file_path="./llama2.pdf", metadata=True
)
attention_docs = PyMuPDFReader().load_data(
file_path="./attention.pdf", metadata=True
)
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core.node_parser import TokenTextSplitter
nodes = TokenTextSplitter(
chunk_size=1024, chunk_overlap=128
).get_nodes_from_documents(llama2_docs + attention_docs)
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.storage.docstore.redis import RedisDocumentStore
from llama_index.storage.docstore.mongodb import MongoDocumentStore
from llama_index.storage.docstore.firestore import FirestoreDocumentStore
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore
docstore = SimpleDocumentStore()
docstore.add_documents(nodes)
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
client = QdrantClient(path="./qdrant_data")
vector_store = QdrantVectorStore("composable", client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(nodes=nodes)
vector_retriever = index.as_retriever(similarity_top_k=2)
bm25_retriever = BM25Retriever.from_defaults(
docstore=docstore, similarity_top_k=2
)
from llama_index.core.schema import IndexNode
vector_obj = IndexNode(
index_id="vector", obj=vector_retriever, text="Vector Retriever"
)
bm25_obj = IndexNode(
index_id="bm25", obj=bm25_retriever, text="BM25 Retriever"
)
from llama_index.core import SummaryIndex
summary_index = SummaryIndex(objects=[vector_obj, bm25_obj])
query_engine = summary_index.as_query_engine(
response_mode="tree_summarize", verbose=True
)
response = await query_engine.aquery(
"How does attention work in transformers?"
)
print(str(response))
response = await query_engine.aquery(
"What is the architecture of Llama2 based on?"
)
print(str(response))
response = await query_engine.aquery(
"What was used before attention in transformers?"
)
print(str(response))
docstore.persist("./docstore.json")
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
docstore = | SimpleDocumentStore.from_persist_path("./docstore.json") | llama_index.core.storage.docstore.SimpleDocumentStore.from_persist_path |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system("wget 'https://raw.githubusercontent.com/jerryjliu/llama_index/main/examples/gatsby/gatsby_full.txt' -O 'gatsby_full.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./gatsby_full.txt"]
).load_data()
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
from llama_index.core import StorageContext
storage_context = | StorageContext.from_defaults() | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-pinecone')
import phoenix as px
import llama_index.core
px.launch_app()
llama_index.core.set_global_handler("arize_phoenix")
import os
os.environ[
"PINECONE_API_KEY"
] = "<Your Pinecone API key, from app.pinecone.io>"
from pinecone import Pinecone
from pinecone import ServerlessSpec
api_key = os.environ["PINECONE_API_KEY"]
pc = Pinecone(api_key=api_key)
try:
pc.create_index(
"quickstart-index",
dimension=1536,
metric="euclidean",
spec=ServerlessSpec(cloud="aws", region="us-west-2"),
)
except Exception as e:
print(e)
pass
pinecone_index = pc.Index("quickstart-index")
from llama_index.core import VectorStoreIndex, StorageContext
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core.schema import TextNode
nodes = [
TextNode(
text="The Shawshank Redemption",
metadata={
"author": "Stephen King",
"theme": "Friendship",
"year": 1994,
},
),
TextNode(
text="The Godfather",
metadata={
"director": "Francis Ford Coppola",
"theme": "Mafia",
"year": 1972,
},
),
TextNode(
text="Inception",
metadata={
"director": "Christopher Nolan",
"theme": "Fiction",
"year": 2010,
},
),
TextNode(
text="To Kill a Mockingbird",
metadata={
"author": "Harper Lee",
"theme": "Fiction",
"year": 1960,
},
),
TextNode(
text="1984",
metadata={
"author": "George Orwell",
"theme": "Totalitarianism",
"year": 1949,
},
),
TextNode(
text="The Great Gatsby",
metadata={
"author": "F. Scott Fitzgerald",
"theme": "The American Dream",
"year": 1925,
},
),
TextNode(
text="Harry Potter and the Sorcerer's Stone",
metadata={
"author": "J.K. Rowling",
"theme": "Fiction",
"year": 1997,
},
),
]
vector_store = PineconeVectorStore(
pinecone_index=pinecone_index,
namespace="test",
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = | VectorStoreIndex(nodes, storage_context=storage_context) | llama_index.core.VectorStoreIndex |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import LLMRerank
from llama_index.llms.openai import OpenAI
from IPython.display import Markdown, display
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.chunk_size = 512
documents = SimpleDirectoryReader("../../../examples/gatsby/data").load_data()
documents
index = VectorStoreIndex.from_documents(
documents,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import QueryBundle
import pandas as pd
from IPython.display import display, HTML
pd.set_option("display.max_colwidth", -1)
def get_retrieved_nodes(
query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False
):
query_bundle = | QueryBundle(query_str) | llama_index.core.QueryBundle |
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().system('pip install openai matplotlib')
import os
OPENAI_API_TOKEN = "sk-" # Your OpenAI API token here
os.environ["OPENAI_API_TOKEN"] = OPENAI_API_TOKEN
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.core.multi_modal_llms.generic_utils import load_image_urls
image_urls = [
"https://res.cloudinary.com/hello-tickets/image/upload/c_limit,f_auto,q_auto,w_1920/v1640835927/o3pfl41q7m5bj8jardk0.jpg",
]
image_documents = | load_image_urls(image_urls) | llama_index.core.multi_modal_llms.generic_utils.load_image_urls |
get_ipython().run_line_magic('pip', 'install -U llama-index llama-index-embeddings-nomic')
nomic_api_key = "<NOMIC API KEY>"
import nest_asyncio
nest_asyncio.apply()
from llama_index.embeddings.nomic import NomicEmbedding
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
print(len(embedding))
embedding[:5]
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=256,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
print(len(embedding))
embedding[:5]
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=768,
model_name="nomic-embed-text-v1.5",
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
print(len(embedding))
embedding[:5]
embed_model = NomicEmbedding(
api_key=nomic_api_key, model_name="nomic-embed-text-v1"
)
embedding = embed_model.get_text_embedding("Nomic Embeddings")
print(len(embedding))
embedding[:5]
from llama_index.core import settings
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
import os
os.environ["OPENAI_API_KEY"] = "<YOUR OPENAI API KEY>"
embed_model = NomicEmbedding(
api_key=nomic_api_key,
dimensionality=128,
model_name="nomic-embed-text-v1.5",
)
llm = OpenAI(model="gpt-3.5-turbo")
settings.llm = llm
settings.embed_model = embed_model
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-portkey')
get_ipython().system('pip install llama-index')
get_ipython().system('pip install -U llama_index')
get_ipython().system('pip install -U portkey-ai')
from llama_index.llms.portkey import Portkey
from llama_index.core.llms import ChatMessage
import portkey as pk
import os
os.environ["PORTKEY_API_KEY"] = "PORTKEY_API_KEY"
openai_virtual_key_a = ""
openai_virtual_key_b = ""
anthropic_virtual_key_a = ""
anthropic_virtual_key_b = ""
cohere_virtual_key_a = ""
cohere_virtual_key_b = ""
os.environ["OPENAI_API_KEY"] = ""
os.environ["ANTHROPIC_API_KEY"] = ""
portkey_client = Portkey(
mode="single",
)
openai_llm = pk.LLMOptions(
provider="openai",
model="gpt-4",
virtual_key=openai_virtual_key_a,
)
portkey_client.add_llms(openai_llm)
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
print("Testing Portkey Llamaindex integration:")
response = portkey_client.chat(messages)
print(response)
prompt = "Why is the sky blue?"
print("\nTesting Stream Complete:\n")
response = portkey_client.stream_complete(prompt)
for i in response:
print(i.delta, end="", flush=True)
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
print("\nTesting Stream Chat:\n")
response = portkey_client.stream_chat(messages)
for i in response:
print(i.delta, end="", flush=True)
portkey_client = Portkey(mode="fallback")
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
ChatMessage(role="user", content="What can you do?"),
]
llm1 = pk.LLMOptions(
provider="openai",
model="gpt-4",
retry_settings={"on_status_codes": [429, 500], "attempts": 2},
virtual_key=openai_virtual_key_a,
)
llm2 = pk.LLMOptions(
provider="openai",
model="gpt-3.5-turbo",
virtual_key=openai_virtual_key_b,
)
portkey_client.add_llms(llm_params=[llm1, llm2])
print("Testing Fallback & Retry functionality:")
response = portkey_client.chat(messages)
print(response)
portkey_client = Portkey(mode="ab_test")
messages = [
ChatMessage(role="system", content="You are a helpful assistant"),
| ChatMessage(role="user", content="What can you do?") | llama_index.core.llms.ChatMessage |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy')
import nest_asyncio
nest_asyncio.apply()
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Response,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
gpt4 = OpenAI(temperature=0, model="gpt-4")
evaluator_gpt4 = FaithfulnessEvaluator(llm=gpt4)
documents = | SimpleDirectoryReader("./test_wiki_data/") | llama_index.core.SimpleDirectoryReader |
get_ipython().system('pip install llama-index')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
import nltk
nltk.download("stopwords")
import llama_index.core
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
load_index_from_storage,
StorageContext,
)
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents)
index.set_index_id("vector_index")
index.storage_context.persist("./storage")
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = | load_index_from_storage(storage_context, index_id="vector_index") | llama_index.core.load_index_from_storage |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-postgres')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-cpp')
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = | HuggingFaceEmbedding(model_name="BAAI/bge-small-en") | llama_index.embeddings.huggingface.HuggingFaceEmbedding |
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-cohere-rerank')
get_ipython().system('pip install llama-index')
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
pprint_response,
)
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = | VectorStoreIndex.from_documents(documents=documents) | llama_index.core.VectorStoreIndex.from_documents |
from llama_index.llms.openai import OpenAI
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.postprocessor import LLMRerank
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.pinecone import PineconeVectorStore
from llama_index.core import Settings
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.packs.koda_retriever import KodaRetriever
import os
from pinecone import Pinecone
pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
index = pc.Index("sample-movies")
Settings.llm = OpenAI()
Settings.embed_model = OpenAIEmbedding()
vector_store = | PineconeVectorStore(pinecone_index=index, text_key="summary") | llama_index.vector_stores.pinecone.PineconeVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
import nest_asyncio
nest_asyncio.apply()
import os
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
get_ipython().system('pip install wikipedia -q')
from llama_index.readers.wikipedia import WikipediaReader
cities = [
"San Francisco",
"Toronto",
"New York",
"Vancouver",
"Montreal",
"Tokyo",
"Singapore",
"Paris",
]
documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in cities]
)
QUESTION_GEN_PROMPT = (
"You are a Teacher/ Professor. Your task is to setup "
"a quiz/examination. Using the provided context, formulate "
"a single question that captures an important fact from the "
"context. Restrict the question to the context information provided."
)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.llms.openai import OpenAI
gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
dataset_generator = DatasetGenerator.from_documents(
documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=gpt_35_llm,
num_questions_per_chunk=25,
)
qrd = dataset_generator.generate_dataset_from_nodes(num=350)
from llama_index.core import VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
the_index = VectorStoreIndex.from_documents(documents=documents)
the_retriever = VectorIndexRetriever(
index=the_index,
similarity_top_k=2,
)
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Llama-2-7b-chat-hf",
context_window=2048, # to use refine
token=HUGGING_FACE_TOKEN,
)
query_engine = RetrieverQueryEngine.from_args(retriever=the_retriever, llm=llm)
import tqdm
train_dataset = []
num_train_questions = int(0.65 * len(qrd.qr_pairs))
for q, a in tqdm.tqdm(qrd.qr_pairs[:num_train_questions]):
data_entry = {"question": q, "reference": a}
response = query_engine.query(q)
response_struct = {}
response_struct["model"] = "llama-2"
response_struct["text"] = str(response)
response_struct["context"] = (
response.source_nodes[0].node.text[:1000] + "..."
)
data_entry["response_data"] = response_struct
train_dataset.append(data_entry)
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.evaluation import CorrectnessEvaluator
finetuning_handler = | OpenAIFineTuningHandler() | llama_index.finetuning.callbacks.OpenAIFineTuningHandler |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-retrievers-bm25')
import os
import openai
os.environ["OPENAI_API_KEY"] = "sk-..."
openai.api_key = os.environ["OPENAI_API_KEY"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
splitter = SentenceSplitter(chunk_size=256)
index = VectorStoreIndex.from_documents(documents, transformations=[splitter])
from llama_index.retrievers.bm25 import BM25Retriever
vector_retriever = index.as_retriever(similarity_top_k=2)
bm25_retriever = BM25Retriever.from_defaults(
docstore=index.docstore, similarity_top_k=2
)
from llama_index.core.retrievers import QueryFusionRetriever
retriever = QueryFusionRetriever(
[vector_retriever, bm25_retriever],
similarity_top_k=2,
num_queries=4, # set this to 1 to disable query generation
mode="reciprocal_rerank",
use_async=True,
verbose=True,
)
import nest_asyncio
nest_asyncio.apply()
nodes_with_scores = retriever.retrieve(
"What happened at Interleafe and Viaweb?"
)
for node in nodes_with_scores:
print(f"Score: {node.score:.2f} - {node.text}...\n-----\n")
from llama_index.core.query_engine import RetrieverQueryEngine
query_engine = | RetrieverQueryEngine.from_args(retriever) | llama_index.core.query_engine.RetrieverQueryEngine.from_args |
get_ipython().run_line_magic('pip', 'install llama-index-llms-everlyai')
get_ipython().system('pip install llama-index')
from llama_index.llms.everlyai import EverlyAI
from llama_index.core.llms import ChatMessage
llm = | EverlyAI(api_key="your-api-key") | llama_index.llms.everlyai.EverlyAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-predibase')
get_ipython().system('pip install llama-index --quiet')
get_ipython().system('pip install predibase --quiet')
get_ipython().system('pip install sentence-transformers --quiet')
import os
os.environ["PREDIBASE_API_TOKEN"] = "{PREDIBASE_API_TOKEN}"
from llama_index.llms.predibase import PredibaseLLM
llm = PredibaseLLM(
model_name="llama-2-13b", temperature=0.3, max_new_tokens=512
)
result = llm.complete("Can you recommend me a nice dry white wine?")
print(result)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.embeddings import resolve_embed_model
from llama_index.core.node_parser import SentenceSplitter
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
llm = PredibaseLLM(
model_name="llama-2-13b",
temperature=0.3,
max_new_tokens=400,
context_window=1024,
)
embed_model = | resolve_embed_model("local:BAAI/bge-small-en-v1.5") | llama_index.core.embeddings.resolve_embed_model |
get_ipython().run_line_magic('pip', 'install llama-index-program-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-llama-api')
get_ipython().system('pip install llama-index')
from llama_index.llms.llama_api import LlamaAPI
api_key = "LL-your-key"
llm = LlamaAPI(api_key=api_key)
resp = llm.complete("Paul Graham is ")
print(resp)
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = llm.chat(messages)
print(resp)
from pydantic import BaseModel
from llama_index.core.llms.openai_utils import to_openai_function
class Song(BaseModel):
"""A song with name and artist"""
name: str
artist: str
song_fn = to_openai_function(Song)
llm = LlamaAPI(api_key=api_key)
response = llm.complete("Generate a song", functions=[song_fn])
function_call = response.additional_kwargs["function_call"]
print(function_call)
from pydantic import BaseModel
from typing import List
class Song(BaseModel):
"""Data model for a song."""
title: str
length_mins: int
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
songs: List[Song]
from llama_index.program.openai import OpenAIPydanticProgram
prompt_template_str = """\
Extract album and songs from the text provided.
For each song, make sure to specify the title and the length_mins.
{text}
"""
llm = | LlamaAPI(api_key=api_key, temperature=0.0) | llama_index.llms.llama_api.LlamaAPI |
get_ipython().system('pip install llama-index')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.indices.query.query_transform import HyDEQueryTransform
from llama_index.core.query_engine import TransformQueryEngine
from IPython.display import Markdown, display
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
index = VectorStoreIndex.from_documents(documents)
query_str = "what did paul graham do after going to RISD"
query_engine = index.as_query_engine()
response = query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
hyde = HyDEQueryTransform(include_original=True)
hyde_query_engine = TransformQueryEngine(query_engine, hyde)
response = hyde_query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
query_bundle = hyde(query_str)
hyde_doc = query_bundle.embedding_strs[0]
hyde_doc
query_str = "What is Bel?"
response = query_engine.query(query_str)
display(Markdown(f"<b>{response}</b>"))
hyde = HyDEQueryTransform(include_original=True)
hyde_query_engine = | TransformQueryEngine(query_engine, hyde) | llama_index.core.query_engine.TransformQueryEngine |
get_ipython().run_line_magic('pip', 'install llama-index-readers-wikipedia')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
import nest_asyncio
nest_asyncio.apply()
import os
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
import pandas as pd
def display_eval_df(question, source, answer_a, answer_b, result) -> None:
"""Pretty print question/answer + gpt-4 judgement dataset."""
eval_df = pd.DataFrame(
{
"Question": question,
"Source": source,
"Model A": answer_a["model"],
"Answer A": answer_a["text"],
"Model B": answer_b["model"],
"Answer B": answer_b["text"],
"Score": result.score,
"Judgement": result.feedback,
},
index=[0],
)
eval_df = eval_df.style.set_properties(
**{
"inline-size": "300px",
"overflow-wrap": "break-word",
},
subset=["Answer A", "Answer B"]
)
display(eval_df)
get_ipython().system('pip install wikipedia -q')
from llama_index.readers.wikipedia import WikipediaReader
train_cities = [
"San Francisco",
"Toronto",
"New York",
"Vancouver",
"Montreal",
"Boston",
]
test_cities = [
"Tokyo",
"Singapore",
"Paris",
]
train_documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in train_cities]
)
test_documents = WikipediaReader().load_data(
pages=[f"History of {x}" for x in test_cities]
)
QUESTION_GEN_PROMPT = (
"You are a Teacher/ Professor. Your task is to setup "
"a quiz/examination. Using the provided context, formulate "
"a single question that captures an important fact from the "
"context. Restrict the question to the context information provided."
)
from llama_index.core.evaluation import DatasetGenerator
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
train_dataset_generator = DatasetGenerator.from_documents(
train_documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=llm,
show_progress=True,
num_questions_per_chunk=25,
)
test_dataset_generator = DatasetGenerator.from_documents(
test_documents,
question_gen_query=QUESTION_GEN_PROMPT,
llm=llm,
show_progress=True,
num_questions_per_chunk=25,
)
train_questions = train_dataset_generator.generate_questions_from_nodes(
num=200
)
test_questions = test_dataset_generator.generate_questions_from_nodes(num=150)
len(train_questions), len(test_questions)
train_questions[:3]
test_questions[:3]
from llama_index.core import VectorStoreIndex
from llama_index.core.retrievers import VectorIndexRetriever
train_index = VectorStoreIndex.from_documents(documents=train_documents)
train_retriever = VectorIndexRetriever(
index=train_index,
similarity_top_k=2,
)
test_index = VectorStoreIndex.from_documents(documents=test_documents)
test_retriever = VectorIndexRetriever(
index=test_index,
similarity_top_k=2,
)
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
def create_query_engine(
hf_name: str, retriever: VectorIndexRetriever, hf_llm_generators: dict
) -> RetrieverQueryEngine:
"""Create a RetrieverQueryEngine using the HuggingFaceInferenceAPI LLM"""
if hf_name not in hf_llm_generators:
raise KeyError("model not listed in hf_llm_generators")
llm = HuggingFaceInferenceAPI(
model_name=hf_llm_generators[hf_name],
context_window=2048, # to use refine
token=HUGGING_FACE_TOKEN,
)
return RetrieverQueryEngine.from_args(retriever=retriever, llm=llm)
hf_llm_generators = {
"mistral-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf",
}
train_query_engines = {
mdl: create_query_engine(mdl, train_retriever, hf_llm_generators)
for mdl in hf_llm_generators.keys()
}
test_query_engines = {
mdl: create_query_engine(mdl, test_retriever, hf_llm_generators)
for mdl in hf_llm_generators.keys()
}
import tqdm
import random
train_dataset = []
for q in tqdm.tqdm(train_questions):
model_versus = random.sample(list(train_query_engines.items()), 2)
data_entry = {"question": q}
responses = []
source = None
for name, engine in model_versus:
response = engine.query(q)
response_struct = {}
response_struct["model"] = name
response_struct["text"] = str(response)
if source is not None:
assert source == response.source_nodes[0].node.text[:1000] + "..."
else:
source = response.source_nodes[0].node.text[:1000] + "..."
responses.append(response_struct)
data_entry["answers"] = responses
data_entry["source"] = source
train_dataset.append(data_entry)
from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.evaluation import PairwiseComparisonEvaluator
from llama_index.core import Settings
main_finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([main_finetuning_handler])
Settings.callback_manager = callback_manager
llm_4 = OpenAI(temperature=0, model="gpt-4", callback_manager=callback_manager)
gpt4_judge = PairwiseComparisonEvaluator(llm=llm)
for data_entry in tqdm.tqdm(train_dataset):
final_eval_result = await gpt4_judge.aevaluate(
query=data_entry["question"],
response=data_entry["answers"][0]["text"],
second_response=data_entry["answers"][1]["text"],
reference=data_entry["source"],
)
judgement = {}
judgement["llm"] = "gpt_4"
judgement["score"] = final_eval_result.score
judgement["text"] = final_eval_result.response
judgement["source"] = final_eval_result.pairwise_source
data_entry["evaluations"] = [judgement]
display_eval_df(
question=data_entry["question"],
source=data_entry["source"],
answer_a=data_entry["answers"][0],
answer_b=data_entry["answers"][1],
result=final_eval_result,
)
main_finetuning_handler.save_finetuning_events(
"pairwise_finetuning_events.jsonl"
)
import json
with open("pairwise_finetuning_events.jsonl") as f:
combined_finetuning_events = [json.loads(line) for line in f]
finetuning_events = (
[]
) # for storing events using original order of presentation
flipped_finetuning_events = (
[]
) # for storing events using flipped order of presentation
for ix, event in enumerate(combined_finetuning_events):
if ix % 2 == 0: # we always do original ordering first
finetuning_events += [event]
else: # then we flip order and have GPT-4 make another judgement
flipped_finetuning_events += [event]
assert len(finetuning_events) == len(flipped_finetuning_events)
resolved_finetuning_events = []
for ix, data_entry in enumerate(train_dataset):
if data_entry["evaluations"][0]["source"] == "original":
resolved_finetuning_events += [finetuning_events[ix]]
elif data_entry["evaluations"][0]["source"] == "flipped":
resolved_finetuning_events += [flipped_finetuning_events[ix]]
else:
continue
with open("resolved_pairwise_finetuning_events.jsonl", "w") as outfile:
for entry in resolved_finetuning_events:
print(json.dumps(entry), file=outfile)
from llama_index.finetuning import OpenAIFinetuneEngine
finetune_engine = OpenAIFinetuneEngine(
"gpt-3.5-turbo",
"resolved_pairwise_finetuning_events.jsonl",
)
finetune_engine.finetune()
finetune_engine.get_current_job()
import random
test_dataset = []
for q in tqdm.tqdm(test_questions):
model_versus = random.sample(list(test_query_engines.items()), 2)
data_entry = {"question": q}
responses = []
source = None
for name, engine in model_versus:
response = engine.query(q)
response_struct = {}
response_struct["model"] = name
response_struct["text"] = str(response)
if source is not None:
assert source == response.source_nodes[0].node.text[:1000] + "..."
else:
source = response.source_nodes[0].node.text[:1000] + "..."
responses.append(response_struct)
data_entry["answers"] = responses
data_entry["source"] = source
test_dataset.append(data_entry)
for data_entry in tqdm.tqdm(test_dataset):
final_eval_result = await gpt4_judge.aevaluate(
query=data_entry["question"],
response=data_entry["answers"][0]["text"],
second_response=data_entry["answers"][1]["text"],
reference=data_entry["source"],
)
judgement = {}
judgement["llm"] = "gpt_4"
judgement["score"] = final_eval_result.score
judgement["text"] = final_eval_result.response
judgement["source"] = final_eval_result.pairwise_source
data_entry["evaluations"] = [judgement]
from llama_index.core.evaluation import EvaluationResult
ft_llm = finetune_engine.get_finetuned_model()
ft_gpt_3p5_judge = | PairwiseComparisonEvaluator(llm=ft_llm) | llama_index.core.evaluation.PairwiseComparisonEvaluator |
get_ipython().run_line_magic('pip', 'install llama-index-llms-gradient')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().system('pip install llama-index gradientai -q')
import os
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.finetuning import GradientFinetuneEngine
os.environ["GRADIENT_ACCESS_TOKEN"] = os.getenv("GRADIENT_API_KEY")
os.environ["GRADIENT_WORKSPACE_ID"] = "<insert_workspace_id>"
from pydantic import BaseModel
class Album(BaseModel):
"""Data model for an album."""
name: str
artist: str
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler
from llama_index.llms.openai import OpenAI
from llama_index.llms.gradient import GradientBaseModelLLM
from llama_index.core.program import LLMTextCompletionProgram
from llama_index.core.output_parsers import PydanticOutputParser
openai_handler = | LlamaDebugHandler() | llama_index.core.callbacks.LlamaDebugHandler |
get_ipython().system('pip install llama-index')
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
from llama_index.core import Settings
nodes = Settings.get_nodes_from_documents(documents)
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
from llama_index.core import SimpleKeywordTableIndex, VectorStoreIndex
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
keyword_index = | SimpleKeywordTableIndex(nodes, storage_context=storage_context) | llama_index.core.SimpleKeywordTableIndex |
get_ipython().run_line_magic('pip', 'install llama-index-readers-google')
get_ipython().system('pip install llama-index')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SummaryIndex
from llama_index.readers.google import GoogleDocsReader
from IPython.display import Markdown, display
import os
document_ids = ["<document_id>"]
documents = GoogleDocsReader().load_data(document_ids=document_ids)
index = | SummaryIndex.from_documents(documents) | llama_index.core.SummaryIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-finetuning')
get_ipython().run_line_magic('pip', 'install llama-index-finetuning-callbacks')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
from llama_index.core import (
SimpleDirectoryReader,
VectorStoreIndex,
StorageContext,
load_index_from_storage,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import QueryEngineTool, ToolMetadata
llm_35 = OpenAI(model="gpt-3.5-turbo-0613", temperature=0.3)
llm_4 = OpenAI(model="gpt-4-0613", temperature=0.3)
try:
storage_context = StorageContext.from_defaults(
persist_dir="./storage/march"
)
march_index = load_index_from_storage(storage_context)
storage_context = StorageContext.from_defaults(
persist_dir="./storage/june"
)
june_index = load_index_from_storage(storage_context)
storage_context = StorageContext.from_defaults(
persist_dir="./storage/sept"
)
sept_index = load_index_from_storage(storage_context)
index_loaded = True
except:
index_loaded = False
if not index_loaded:
march_docs = SimpleDirectoryReader(
input_files=["../../data/10q/uber_10q_march_2022.pdf"]
).load_data()
june_docs = SimpleDirectoryReader(
input_files=["../../data/10q/uber_10q_june_2022.pdf"]
).load_data()
sept_docs = SimpleDirectoryReader(
input_files=["../../data/10q/uber_10q_sept_2022.pdf"]
).load_data()
march_index = VectorStoreIndex.from_documents(
march_docs,
)
june_index = VectorStoreIndex.from_documents(
june_docs,
)
sept_index = VectorStoreIndex.from_documents(
sept_docs,
)
march_index.storage_context.persist(persist_dir="./storage/march")
june_index.storage_context.persist(persist_dir="./storage/june")
sept_index.storage_context.persist(persist_dir="./storage/sept")
march_engine = march_index.as_query_engine(similarity_top_k=3, llm=llm_35)
june_engine = june_index.as_query_engine(similarity_top_k=3, llm=llm_35)
sept_engine = sept_index.as_query_engine(similarity_top_k=3, llm=llm_35)
from llama_index.core.tools import QueryEngineTool
query_tool_sept = QueryEngineTool.from_defaults(
query_engine=sept_engine,
name="sept_2022",
description=(
f"Provides information about Uber quarterly financials ending"
f" September 2022"
),
)
query_tool_june = QueryEngineTool.from_defaults(
query_engine=june_engine,
name="june_2022",
description=(
f"Provides information about Uber quarterly financials ending June"
f" 2022"
),
)
query_tool_march = QueryEngineTool.from_defaults(
query_engine=march_engine,
name="march_2022",
description=(
f"Provides information about Uber quarterly financials ending March"
f" 2022"
),
)
query_engine_tools = [query_tool_march, query_tool_june, query_tool_sept]
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-0613")
base_agent = ReActAgent.from_tools(query_engine_tools, llm=llm, verbose=True)
response = base_agent.chat(
"Analyze Uber revenue growth over the last few quarters"
)
print(str(response))
print(str(response))
response = base_agent.chat(
"Can you tell me about the risk factors in the quarter with the highest"
" revenue growth?"
)
print(str(response))
from llama_index.core.evaluation import DatasetGenerator
base_question_gen_query = (
"You are a Teacher/ Professor. Your task is to setup a quiz/examination."
" Using the provided context from the Uber March 10Q filing, formulate a"
" single question that captures an important fact from the context."
" context. Restrict the question to the context information provided."
)
dataset_generator = DatasetGenerator.from_documents(
march_docs,
question_gen_query=base_question_gen_query,
llm=llm_35,
)
questions = dataset_generator.generate_questions_from_nodes(num=20)
questions
from llama_index.llms.openai import OpenAI
from llama_index.core import PromptTemplate
vary_question_tmpl = """\
You are a financial assistant. Given a question over a 2023 Uber 10Q filing, your goal
is to generate up to {num_vary} variations of that question that might span multiple 10Q's.
This can include compare/contrasting different 10Qs, replacing the current quarter with
another quarter, or generating questions that can only be answered over multiple quarters (be creative!)
You are given a valid set of 10Q filings. Please only generate question variations that can be
answered in that set.
For example:
Base Question: What was the free cash flow of Uber in March 2023?
Valid 10Qs: [March 2023, June 2023, September 2023]
Question Variations:
What was the free cash flow of Uber in June 2023?
Can you compare/contrast the free cash flow of Uber in June/September 2023 and offer explanations for the change?
Did the free cash flow of Uber increase of decrease in 2023?
Now let's give it a shot!
Base Question: {base_question}
Valid 10Qs: {valid_10qs}
Question Variations:
"""
def gen_question_variations(base_questions, num_vary=3):
"""Generate question variations."""
VALID_10Q_STR = "[March 2022, June 2022, September 2022]"
llm = OpenAI(model="gpt-4")
prompt_tmpl = | PromptTemplate(vary_question_tmpl) | llama_index.core.PromptTemplate |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-metal')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.metal import MetalVectorStore
from IPython.display import Markdown, display
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham/") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import camelot
from llama_index.core import VectorStoreIndex
from llama_index.core.query_engine import PandasQueryEngine
from llama_index.core.schema import IndexNode
from llama_index.llms.openai import OpenAI
from llama_index.readers.file import PyMuPDFReader
from typing import List
import os
os.environ["OPENAI_API_KEY"] = "YOUR_API_KEY"
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small")
file_path = "billionaires_page.pdf"
reader = PyMuPDFReader()
docs = reader.load(file_path)
def get_tables(path: str, pages: List[int]):
table_dfs = []
for page in pages:
table_list = camelot.read_pdf(path, pages=str(page))
table_df = table_list[0].df
table_df = (
table_df.rename(columns=table_df.iloc[0])
.drop(table_df.index[0])
.reset_index(drop=True)
)
table_dfs.append(table_df)
return table_dfs
table_dfs = get_tables(file_path, pages=[3, 25])
table_dfs[0]
table_dfs[1]
llm = | OpenAI(model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-typesense')
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from IPython.display import Markdown, display
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
from llama_index.vector_stores.typesense import TypesenseVectorStore
from typesense import Client
typesense_client = Client(
{
"api_key": "xyz",
"nodes": [{"host": "localhost", "port": "8108", "protocol": "http"}],
"connection_timeout_seconds": 2,
}
)
typesense_vector_store = | TypesenseVectorStore(typesense_client) | llama_index.vector_stores.typesense.TypesenseVectorStore |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('load_ext', 'autoreload')
get_ipython().run_line_magic('autoreload', '2')
get_ipython().run_line_magic('env', 'OPENAI_API_KEY=')
get_ipython().run_line_magic('env', 'BRAINTRUST_API_KEY=')
get_ipython().run_line_magic('env', 'TOKENIZERS_PARALLELISM=true # This is needed to avoid a warning message from Chroma')
get_ipython().run_line_magic('pip', 'install -U llama_hub llama_index braintrust autoevals pypdf pillow transformers torch torchvision')
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
from pathlib import Path
from llama_index.readers.file import PDFReader
from llama_index.core.response.notebook_utils import display_source_node
from llama_index.core.retrievers import RecursiveRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
import json
loader = PDFReader()
docs0 = loader.load_data(file=Path("./data/llama2.pdf"))
from llama_index.core import Document
doc_text = "\n\n".join([d.get_content() for d in docs0])
docs = [Document(text=doc_text)]
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
node_parser = SentenceSplitter(chunk_size=1024)
base_nodes = node_parser.get_nodes_from_documents(docs)
for idx, node in enumerate(base_nodes):
node.id_ = f"node-{idx}"
from llama_index.core.embeddings import resolve_embed_model
embed_model = resolve_embed_model("local:BAAI/bge-small-en")
llm = OpenAI(model="gpt-3.5-turbo")
base_index = VectorStoreIndex(base_nodes, embed_model=embed_model)
base_retriever = base_index.as_retriever(similarity_top_k=2)
retrievals = base_retriever.retrieve(
"Can you tell me about the key concepts for safety finetuning"
)
for n in retrievals:
display_source_node(n, source_length=1500)
query_engine_base = RetrieverQueryEngine.from_args(base_retriever, llm=llm)
response = query_engine_base.query(
"Can you tell me about the key concepts for safety finetuning"
)
print(str(response))
sub_chunk_sizes = [128, 256, 512]
sub_node_parsers = [SentenceSplitter(chunk_size=c) for c in sub_chunk_sizes]
all_nodes = []
for base_node in base_nodes:
for n in sub_node_parsers:
sub_nodes = n.get_nodes_from_documents([base_node])
sub_inodes = [
IndexNode.from_text_node(sn, base_node.node_id) for sn in sub_nodes
]
all_nodes.extend(sub_inodes)
original_node = IndexNode.from_text_node(base_node, base_node.node_id)
all_nodes.append(original_node)
all_nodes_dict = {n.node_id: n for n in all_nodes}
vector_index_chunk = VectorStoreIndex(all_nodes, embed_model=embed_model)
vector_retriever_chunk = vector_index_chunk.as_retriever(similarity_top_k=2)
retriever_chunk = RecursiveRetriever(
"vector",
retriever_dict={"vector": vector_retriever_chunk},
node_dict=all_nodes_dict,
verbose=True,
)
nodes = retriever_chunk.retrieve(
"Can you tell me about the key concepts for safety finetuning"
)
for node in nodes:
display_source_node(node, source_length=2000)
query_engine_chunk = RetrieverQueryEngine.from_args(retriever_chunk, llm=llm)
response = query_engine_chunk.query(
"Can you tell me about the key concepts for safety finetuning"
)
print(str(response))
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.schema import IndexNode
from llama_index.core.extractors import (
SummaryExtractor,
QuestionsAnsweredExtractor,
)
extractors = [
SummaryExtractor(summaries=["self"], show_progress=True),
QuestionsAnsweredExtractor(questions=5, show_progress=True),
]
metadata_dicts = []
for extractor in extractors:
metadata_dicts.extend(extractor.extract(base_nodes))
def save_metadata_dicts(path):
with open(path, "w") as fp:
for m in metadata_dicts:
fp.write(json.dumps(m) + "\n")
def load_metadata_dicts(path):
with open(path, "r") as fp:
metadata_dicts = [json.loads(l) for l in fp.readlines()]
return metadata_dicts
save_metadata_dicts("data/llama2_metadata_dicts.jsonl")
metadata_dicts = load_metadata_dicts("data/llama2_metadata_dicts.jsonl")
import copy
all_nodes = copy.deepcopy(base_nodes)
for idx, d in enumerate(metadata_dicts):
inode_q = IndexNode(
text=d["questions_this_excerpt_can_answer"],
index_id=base_nodes[idx].node_id,
)
inode_s = IndexNode(
text=d["section_summary"], index_id=base_nodes[idx].node_id
)
all_nodes.extend([inode_q, inode_s])
all_nodes_dict = {n.node_id: n for n in all_nodes}
from llama_index.core import VectorStoreIndex
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo")
vector_index_metadata = VectorStoreIndex(all_nodes)
vector_retriever_metadata = vector_index_metadata.as_retriever(
similarity_top_k=2
)
retriever_metadata = RecursiveRetriever(
"vector",
retriever_dict={"vector": vector_retriever_metadata},
node_dict=all_nodes_dict,
verbose=True,
)
nodes = retriever_metadata.retrieve(
"Can you tell me about the key concepts for safety finetuning"
)
for node in nodes:
display_source_node(node, source_length=2000)
query_engine_metadata = RetrieverQueryEngine.from_args(
retriever_metadata, llm=llm
)
response = query_engine_metadata.query(
"Can you tell me about the key concepts for safety finetuning"
)
print(str(response))
from llama_index.core.evaluation import (
generate_question_context_pairs,
EmbeddingQAFinetuneDataset,
)
import nest_asyncio
nest_asyncio.apply()
eval_dataset = | generate_question_context_pairs(base_nodes) | llama_index.core.evaluation.generate_question_context_pairs |
get_ipython().run_line_magic('pip', 'install llama-index-readers-file')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install rank-bm25 pymupdf')
import nest_asyncio
nest_asyncio.apply()
get_ipython().system('mkdir data')
get_ipython().system('wget --user-agent "Mozilla" "https://arxiv.org/pdf/2307.09288.pdf" -O "data/llama2.pdf"')
get_ipython().system('pip install llama-index')
from pathlib import Path
from llama_index.readers.file import PyMuPDFReader
loader = PyMuPDFReader()
documents = loader.load(file_path="./data/llama2.pdf")
from llama_index.core import VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
splitter = SentenceSplitter(chunk_size=1024)
index = | VectorStoreIndex.from_documents(documents, transformations=[splitter]) | llama_index.core.VectorStoreIndex.from_documents |
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-lantern')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().system('pip install psycopg2-binary llama-index asyncpg')
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lantern import LanternVectorStore
import textwrap
import openai
import os
os.environ["OPENAI_API_KEY"] = "<your_key>"
openai.api_key = "<your_key>"
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = | SimpleDirectoryReader("./data/paul_graham") | llama_index.core.SimpleDirectoryReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-packs-ragatouille-retriever')
from llama_index.packs.ragatouille_retriever import RAGatouilleRetrieverPack
from llama_index.core.llama_pack import download_llama_pack
get_ipython().system('wget "https://arxiv.org/pdf/2004.12832.pdf" -O colbertv1.pdf')
from llama_index.core import SimpleDirectoryReader
from llama_index.llms.openai import OpenAI
reader = SimpleDirectoryReader(input_files=["colbertv1.pdf"])
docs = reader.load_data()
index_name = "my_index"
ragatouille_pack = RAGatouilleRetrieverPack(
docs, llm= | OpenAI(model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-readers-web')
get_ipython().run_line_magic('pip', 'install llama-index-multi-modal-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-tools-metaphor')
get_ipython().system('wget "https://images.openai.com/blob/a2e49de2-ba5b-4869-9c2d-db3b4b5dcc19/new-models-and-developer-products-announced-at-devday.jpg?width=2000" -O other_images/openai/dev_day.png')
get_ipython().system('wget "https://drive.google.com/uc\\?id\\=1B4f5ZSIKN0zTTPPRlZ915Ceb3_uF9Zlq\\&export\\=download" -O other_images/adidas.png')
from llama_index.readers.web import SimpleWebPageReader
url = "https://openai.com/blog/new-models-and-developer-products-announced-at-devday"
reader = | SimpleWebPageReader(html_to_text=True) | llama_index.readers.web.SimpleWebPageReader |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-graph-stores-nebula')
get_ipython().run_line_magic('pip', 'install llama-index-llms-azure-openai')
import os
os.environ["OPENAI_API_KEY"] = "INSERT OPENAI KEY"
import logging
import sys
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = llm
Settings.chunk_size = 512
import os
import json
import openai
from llama_index.llms.azure_openai import AzureOpenAI
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
KnowledgeGraphIndex,
)
from llama_index.core import StorageContext
from llama_index.graph_stores.nebula import NebulaGraphStore
import logging
import sys
from IPython.display import Markdown, display
logging.basicConfig(
stream=sys.stdout, level=logging.INFO
) # logging.DEBUG for more verbose output
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
openai.api_type = "azure"
openai.api_base = "https://<foo-bar>.openai.azure.com"
openai.api_version = "2022-12-01"
os.environ["OPENAI_API_KEY"] = "<your-openai-key>"
openai.api_key = os.getenv("OPENAI_API_KEY")
llm = AzureOpenAI(
model="<foo-bar-model>",
engine="<foo-bar-deployment>",
temperature=0,
api_key=openai.api_key,
api_type=openai.api_type,
api_base=openai.api_base,
api_version=openai.api_version,
)
embedding_model = OpenAIEmbedding(
model="text-embedding-ada-002",
deployment_name="<foo-bar-deployment>",
api_key=openai.api_key,
api_base=openai.api_base,
api_type=openai.api_type,
api_version=openai.api_version,
)
Settings.llm = llm
Settings.chunk_size = chunk_size
Settings.embed_model = embedding_model
from llama_index.core import KnowledgeGraphIndex, SimpleDirectoryReader
from llama_index.core import StorageContext
from llama_index.graph_stores.nebula import NebulaGraphStore
from llama_index.llms.openai import OpenAI
from IPython.display import Markdown, display
documents = SimpleDirectoryReader(
"../../../../examples/paul_graham_essay/data"
).load_data()
get_ipython().run_line_magic('pip', 'install nebula3-python')
os.environ["NEBULA_USER"] = "root"
os.environ[
"NEBULA_PASSWORD"
] = "<password>" # replace with your password, by default it is "nebula"
os.environ[
"NEBULA_ADDRESS"
] = "127.0.0.1:9669" # assumed we have NebulaGraph 3.5.0 or newer installed locally
space_name = "paul_graham_essay"
edge_types, rel_prop_names = ["relationship"], [
"relationship"
] # default, could be omit if create from an empty kg
tags = ["entity"] # default, could be omit if create from an empty kg
graph_store = NebulaGraphStore(
space_name=space_name,
edge_types=edge_types,
rel_prop_names=rel_prop_names,
tags=tags,
)
storage_context = | StorageContext.from_defaults(graph_store=graph_store) | llama_index.core.StorageContext.from_defaults |
get_ipython().run_line_magic('pip', 'install llama-index-postprocessor-rankgpt-rerank')
get_ipython().run_line_magic('pip', 'install llama-index-llms-huggingface')
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().run_line_magic('pip', 'install llama-index-llms-ollama')
import nest_asyncio
nest_asyncio.apply()
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.postprocessor import LLMRerank
from llama_index.llms.openai import OpenAI
from IPython.display import Markdown, display
import os
OPENAI_API_TOKEN = "sk-"
os.environ["OPENAI_API_KEY"] = OPENAI_API_TOKEN
from llama_index.core import Settings
Settings.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.chunk_size = 512
from pathlib import Path
import requests
wiki_titles = [
"Vincent van Gogh",
]
data_path = Path("data_wiki")
for title in wiki_titles:
response = requests.get(
"https://en.wikipedia.org/w/api.php",
params={
"action": "query",
"format": "json",
"titles": title,
"prop": "extracts",
"explaintext": True,
},
).json()
page = next(iter(response["query"]["pages"].values()))
wiki_text = page["extract"]
if not data_path.exists():
Path.mkdir(data_path)
with open(data_path / f"{title}.txt", "w") as fp:
fp.write(wiki_text)
documents = SimpleDirectoryReader("./data_wiki/").load_data()
index = VectorStoreIndex.from_documents(
documents,
)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import QueryBundle
from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank
import pandas as pd
from IPython.display import display, HTML
def get_retrieved_nodes(
query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False
):
query_bundle = QueryBundle(query_str)
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=vector_top_k,
)
retrieved_nodes = retriever.retrieve(query_bundle)
if with_reranker:
reranker = RankGPTRerank(
llm=OpenAI(
model="gpt-3.5-turbo-16k",
temperature=0.0,
api_key=OPENAI_API_TOKEN,
),
top_n=reranker_top_n,
verbose=True,
)
retrieved_nodes = reranker.postprocess_nodes(
retrieved_nodes, query_bundle
)
return retrieved_nodes
def pretty_print(df):
return display(HTML(df.to_html().replace("\\n", "<br>")))
def visualize_retrieved_nodes(nodes) -> None:
result_dicts = []
for node in nodes:
result_dict = {"Score": node.score, "Text": node.node.get_text()}
result_dicts.append(result_dict)
pretty_print(pd.DataFrame(result_dicts))
new_nodes = get_retrieved_nodes(
"Which date did Paul Gauguin arrive in Arles?",
vector_top_k=3,
with_reranker=False,
)
visualize_retrieved_nodes(new_nodes)
new_nodes = get_retrieved_nodes(
"Which date did Paul Gauguin arrive in Arles ?",
vector_top_k=10,
reranker_top_n=3,
with_reranker=True,
)
visualize_retrieved_nodes(new_nodes)
from llama_index.llms.ollama import Ollama
llm = Ollama(model="mistral", request_timeout=30.0)
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import QueryBundle
import pandas as pd
from IPython.display import display, HTML
from llama_index.llms.huggingface import (
HuggingFaceInferenceAPI,
HuggingFaceLLM,
)
from llama_index.postprocessor.rankgpt_rerank import RankGPTRerank
def get_retrieved_nodes(
query_str, vector_top_k=5, reranker_top_n=3, with_reranker=False
):
query_bundle = | QueryBundle(query_str) | llama_index.core.QueryBundle |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
get_ipython().system('pip install llama-index')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.response.pprint_utils import pprint_response
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.query_engine import SubQuestionQueryEngine
import os
os.environ["OPENAI_API_KEY"] = "OPENAI_API_KEY"
from llama_index.core import Settings
Settings.llm = | OpenAI(temperature=0.2, model="gpt-3.5-turbo") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai')
import nest_asyncio
nest_asyncio.apply()
from llama_index.core.evaluation import generate_question_context_pairs
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.node_parser import SentenceSplitter
from llama_index.llms.openai import OpenAI
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
node_parser = SentenceSplitter(chunk_size=512)
nodes = node_parser.get_nodes_from_documents(documents)
for idx, node in enumerate(nodes):
node.id_ = f"node_{idx}"
llm = | OpenAI(model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-llms-openai pandas[jinja2] spacy')
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
TreeIndex,
VectorStoreIndex,
SimpleDirectoryReader,
Response,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import RelevancyEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
gpt3 = OpenAI(temperature=0, model="gpt-3.5-turbo")
gpt4 = | OpenAI(temperature=0, model="gpt-4") | llama_index.llms.openai.OpenAI |
get_ipython().run_line_magic('pip', 'install llama-index-embeddings-openai')
get_ipython().run_line_magic('pip', 'install llama-index-vector-stores-timescalevector')
get_ipython().system('pip install llama-index')
import timescale_vector
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.timescalevector import TimescaleVectorStore
from llama_index.core.vector_stores import VectorStoreQuery, MetadataFilters
import textwrap
import openai
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_key = os.environ["OPENAI_API_KEY"]
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
TIMESCALE_SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]
get_ipython().system("mkdir -p 'data/paul_graham/'")
get_ipython().system("wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'")
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
print("Document ID:", documents[0].doc_id)
vector_store = TimescaleVectorStore.from_params(
service_url=TIMESCALE_SERVICE_URL,
table_name="paul_graham_essay",
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
query_engine = index.as_query_engine()
response = query_engine.query("Did the author work at YC?")
print(textwrap.fill(str(response), 100))
response = query_engine.query("What did the author work on before college?")
print(textwrap.fill(str(response), 100))
vector_store = TimescaleVectorStore.from_params(
service_url=TIMESCALE_SERVICE_URL,
table_name="paul_graham_essay",
)
index = | VectorStoreIndex.from_vector_store(vector_store=vector_store) | llama_index.core.VectorStoreIndex.from_vector_store |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 39