|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
# Overview |
|
|
|
Original from the sentences-transformers library. |
|
|
|
Only for researching purposes. |
|
|
|
Adapter by Aisuko |
|
|
|
# Installation |
|
|
|
```python |
|
!pip install sentence-transformers==2.3.1 |
|
``` |
|
|
|
# Computing Embeddings for a large set of sentences |
|
|
|
```python |
|
import os |
|
import csv |
|
import time |
|
|
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import http_get |
|
|
|
if __name__=='__main__': |
|
url='http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv' |
|
dataset_path='quora_duplicate_questions.tsv' |
|
# max_corpus_size=50000 # max number of sentences to deal with |
|
|
|
if not os.path.exists(dataset_path): |
|
http_get(url, dataset_path) |
|
|
|
# get all unique sentences from the file |
|
corpus_sentences=set() |
|
with open(dataset_path, encoding='utf8') as fIn: |
|
reader=csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_MINIMAL) |
|
for row in reader: |
|
corpus_sentences.add(row['question1']) |
|
corpus_sentences.add(row['question2']) |
|
# if len(corpus_sentences)>=max_corpus_size: |
|
# break |
|
|
|
corpus_sentences=list(corpus_sentences) |
|
model=SentenceTransformer('all-MiniLM-L6-v2').to('cuda') |
|
model.max_seq_length=256 |
|
|
|
pool=model.start_multi_process_pool() |
|
|
|
# computing the embeddings using the multi-process pool |
|
emb=model.encode_multi_process(corpus_sentences, pool,batch_size=128,chunk_size=1024,normalize_embeddings=True) |
|
print('Embeddings computed. Shape:', emb.shape) |
|
|
|
# optional : stop the processes in the pool |
|
model.stop_multi_process_pool(pool) |
|
``` |
|
|
|
# Save the csv file |
|
|
|
```python |
|
import pandas as pd |
|
|
|
corpus_embedding=pd.DataFrame(emb) |
|
corpus_embedding.to_csv('quora_questions.csv',index=False) |
|
``` |