The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
MVTec Capsule Category
Dataset Labels
{0: "normal", 1: "abnormal"}
Number of Images
{'train': 219, 'test': 132}
How to Use
- Install datasets:
pip install datasets
- Load the dataset:
from datasets import load_dataset
ds = load_dataset("alexsu52/mvtec_capsule")
example = ds['train'][0]
MVTEC Dataset Page
https://www.mvtec.com/company/research/datasets/mvtec-ad
Citation
Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten Steger: The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection; in: International Journal of Computer Vision 129(4):1038-1059, 2021, DOI: 10.1007/s11263-020-01400-4.
Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger: MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection; in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9584-9592, 2019, DOI: 10.1109/CVPR.2019.00982.
License
CC BY-NC-SA 4.0
Dataset Summary
MVTec AD is a dataset for benchmarking anomaly detection methods with a focus on industrial inspection. It contains over 5000 high-resolution images divided into fifteen different object and texture categories. Each category comprises a set of defect-free training images and a test set of images with various kinds of defects as well as images without defects.
Pixel-precise annotations of all anomalies are also provided. More information can be in our paper "MVTec AD – A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection" and its extended version "The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection".
- Downloads last month
- 131