Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
sentiment-classification
Languages:
Polish
Size:
1K - 10K
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- other | |
language: | |
- pl | |
license: | |
- cc-by-sa-4.0 | |
multilinguality: | |
- monolingual | |
pretty_name: 'PolEmo2.0-IN' | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- original | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
# klej-polemo2-in | |
## Description | |
The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. It comprises over 8000 reviews, about 85% from the medicine and hotel domains. | |
We use the PolEmo2.0 dataset to form two tasks. Both use the same training dataset, i.e., reviews from medicine and hotel domains, but are evaluated on a different test set. | |
**In-Domain** is the first task, and we use accuracy to evaluate model performance within the in-domain context, i.e., on a test set of reviews from medicine and hotels domains. | |
## Tasks (input, output, and metrics) | |
The task is to predict the correct label of the review. | |
**Input** ('*text'* column): sentence | |
**Output** ('*target'* column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous) | |
**Domain**: Online reviews | |
**Measurements**: Accuracy | |
**Example***: | |
Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .* → a*mb* | |
## Data splits | |
| Subset | Cardinality | | |
|:-----------|--------------:| | |
| train | 5783 | | |
| test | 722 | | |
| validation | 723 | | |
## Class distribution in train | |
| Class | Sentiment | train | validation | test | | |
|:------|:----------|------:|-----------:|------:| | |
| minus | positive | 0.379 | 0.375 | 0.416 | | |
| plus | negative | 0.271 | 0.289 | 0.273 | | |
| amb | ambiguous | 0.182 | 0.160 | 0.150 | | |
| zero | neutral | 0.168 | 0.176 | 0.162 | | |
## Citation | |
``` | |
@inproceedings{kocon-etal-2019-multi, | |
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews", | |
author = "Koco{\'n}, Jan and | |
Mi{\l}kowski, Piotr and | |
Za{\'s}ko-Zieli{\'n}ska, Monika", | |
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)", | |
month = nov, | |
year = "2019", | |
address = "Hong Kong, China", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/K19-1092", | |
doi = "10.18653/v1/K19-1092", | |
pages = "980--991", | |
abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).", | |
} | |
``` | |
## License | |
``` | |
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
``` | |
## Links | |
[HuggingFace](https://huggingface.co/datasets/allegro/klej-polemo2-in) | |
[Source](https://clarin-pl.eu/dspace/handle/11321/710) | |
[Paper](https://aclanthology.org/K19-1092/) | |
## Examples | |
### Loading | |
```python | |
from pprint import pprint | |
from datasets import load_dataset | |
dataset = load_dataset("allegro/klej-polemo2-in") | |
pprint(dataset['train'][0]) | |
# {'sentence': 'Super lekarz i człowiek przez duże C . Bardzo duże doświadczenie ' | |
# 'i trafne diagnozy . Wielka cierpliwość do ludzi starszych . Od ' | |
# 'lat opiekuje się moją Mamą staruszką , i twierdzę , że mamy duże ' | |
# 'szczęście , że mamy takiego lekarza . Naprawdę nie wiem cobyśmy ' | |
# 'zrobili , gdyby nie Pan doktor . Dzięki temu , moja mama żyje . ' | |
# 'Każda wizyta u specjalisty jest u niego konsultowana i uważam , ' | |
# 'że jest lepszy od każdego z nich . Mamy do Niego prawie ' | |
# 'nieograniczone zaufanie . Można wiele dobrego o Panu doktorze ' | |
# 'jeszcze napisać . Niestety , ma bardzo dużo pacjentów , jest ' | |
# 'przepracowany ( z tego powodu nawet obawiam się o jego zdrowie ) ' | |
# 'i dostęp do niego jest trudny , ale zawsze możliwy .', | |
# 'target': '__label__meta_plus_m'} | |
``` | |
### Evaluation | |
```python | |
import random | |
from pprint import pprint | |
from datasets import load_dataset, load_metric | |
dataset = load_dataset("allegro/klej-polemo2-in") | |
dataset = dataset.class_encode_column("target") | |
references = dataset["test"]["target"] | |
# generate random predictions | |
predictions = [random.randrange(max(references) + 1) for _ in range(len(references))] | |
acc = load_metric("accuracy") | |
f1 = load_metric("f1") | |
acc_score = acc.compute(predictions=predictions, references=references) | |
f1_score = f1.compute(predictions=predictions, references=references, average="macro") | |
pprint(acc_score) | |
pprint(f1_score) | |
# {'accuracy': 0.25069252077562326} | |
# {'f1': 0.23760962219870274} | |
``` |