|
--- |
|
license: odc-by |
|
viewer: true |
|
task_categories: |
|
- text-generation |
|
language: |
|
- en |
|
tags: |
|
- language-modeling |
|
- casual-lm |
|
- llm |
|
pretty_name: Dolma |
|
size_categories: |
|
- n>1T |
|
--- |
|
|
|
# Dolma |
|
|
|
<img alt="Dolma's official logo. It's dolma written in yellow, round lowercase letters over a blue background." src="https://raw.githubusercontent.com/allenai/dolma/main/docs/assets/AI2_Blog_1400x685_2x.webp" width="100%"> |
|
|
|
Dolma is a dataset of 3 trillion tokens from a diverse mix of web content, academic publications, code, books, and encyclopedic materials. |
|
|
|
More information: |
|
|
|
- Read Dolma **manuscript** and its **Data Sheet** [on ArXiv](https://arxiv.org/abs/2402.00159); |
|
- Explore the [**open source tools**](https://github.com/allenai/dolma) we created to curate Dolma. |
|
- Want to request removal of personal data? Use [this form](https://forms.gle/q4BNUUxUxKwKkfdT6) to notify us of documents containing PII about a specific user. |
|
|
|
To learn more about the toolkit used to create Dolma, including how to replicate this dataset, head over our [GitHub project page](https://github.com/allenai/dolma/tree/main/docs)! |
|
|
|
**2024-04-17: Dolma v1.7 Release.** We have released an updated version of Dolma that we used to train our latest [OLMo 7B-v1.7](https://huggingface.co/allenai/OLMo-7b-v1.7) model. |
|
|
|
**2024-04-15: License Change.** We have updated the license of Dolma to [ODC-BY](https://opendatacommons.org/licenses/by/1-0/). Please see this [blog post](https://blog.allenai.org/making-a-switch-dolma-moves-to-odc-by-8f0e73852f44) for more information. |
|
|
|
|
|
## Versions |
|
|
|
At the moment, there are six versions of Dolma available: |
|
|
|
| **Version** | **Default?** | **Release Date** | **Size** (gzip) | **Description** | |
|
|--|:--:|--|--|--| |
|
| `v1_7` | ✅ | 2024-04-15 | X.X TB | Used to train [OLMo-7B-v1.7](https://huggingface.co/allenai/OLMo-7b-v1.7). | |
|
| `v1_6` | | 2024-01-31 | 5.4 TB | An update to v1.5 with some bug-fixes. | |
|
| `v1_6-sample` | | 2024-01-31 | 16.4 GB | A smaller sample of Dolma, with roughly 10 billion tokens. Useful for data exploration. | |
|
| `v1_5` | | 2023-10-31 | 6.4 TB | The version of Dolma used to train [OLMo-1B](https://huggingface.co/allenai/OLMo-1B). Roughly 3 trillion tokens. | |
|
| `v1_5-sample` | | 2023-10-31 | 2.9 TB | A sample of roughly 1.9 trillion tokens used to train [OLMo-7B](https://huggingface.co/allenai/OLMo-7B) | |
|
| `v1` | | 2023-08-18 | 6.0 TB | The first version of Dolma. | |
|
|
|
|
|
## Summary Statistics (v1.7) |
|
|
|
| **Source** | **Provenance** | **New?** | **Documents** (millions) | **OLMo tokens** (billions) | **Sample Proportion** | **Cutoff Date** | **Processing** |
|
|--|--|--|--|--|--|--|--| |
|
| Dolma's CC | [Common Crawl](https://commoncrawl.org/) via Dolma v1.6 | Updated | | 1,195.5 | 50% | Mar 2023 | Extracted using the Dolma pipeline; new quality filtering and deduplication steps. | |
|
| Refined Web | [Refined Web](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | Yes | | 456.4 | 100% | Feb 2023 | | |
|
| StarCoder | [StarCoder](https://huggingface.co/blog/starcoder) | Yes | | 263.8 | 100% | May 2023 | No further processing | |
|
| C4 | [C4](https://huggingface.co/datasets/c4) via Dolma v1.6 | Updated | | 138.4 | 50% | Apr 2019 | Filtered using the Dolma pipeline; new quality filtering and deduplication steps. | |
|
| Reddit | [PushShift API](https://github.com/pushshift/api) | Updated | | 79.9 | 100% | Mar 2023 | Extracted using the Dolma pipeline; new quality filtering and deduplication steps. | |
|
| Semantic Scholar | [S2AG/S2ORC](https://www.semanticscholar.org/product/api)/[peS2o](https://huggingface.co/datasets/allenai/peS2o) via Dolma v1.6 | No | 38.8 | 57.2 | 100% | Mar 2023 | Same as Dolma v1.6 | |
|
| Project Gutenberg | [Project Gutenberg](https://www.gutenberg.org/) | No | 0.056 | 6.0 | 100% | Mar 2023 | Same as Dolma v1.6 | |
|
|
|
|
|
## Summary Statistics (v1.6) |
|
|
|
| **Source** | **Doc Type** | **UTF-8 bytes** (GB) | **Documents** (millions) | **Unicode words** (billions) | **Llama tokens** (billions) | |
|
|--|--|--|--|--|--| |
|
| Common Crawl | web pages | 9,022 | 3,370 | 1,775 | 2,281 | |
|
| The Stack | code| 1,043| 210 | 260| 411 | |
|
| C4 | web pages | 790 | 364 | 153| 198 | |
|
| Reddit| social media| 339 | 377| 72| 89 | |
|
| PeS2o | STEM papers| 268 | 38.8| 50| 70 | |
|
| Project Gutenberg | books | 20.4 | 0.056 | 4.0 | 6.0 | |
|
| Wikipedia, Wikibooks | encyclopedic | 16.2 | 6.2 | 3.7 | 4.3 | |
|
| **Total** | | **11,519** | **4,367** | **2,318** | **3,059** | |
|
|
|
|
|
(Size difference between `v1_6` and `v1_5` is due to different set of metadata included in files: we removed redundant metadata in `v1_6`.) |
|
|
|
|
|
## Download |
|
|
|
The fastest way to download Dolma is to clone this repository and use the files in the `url` directory. |
|
We recommend using wget in parallel mode to download the files. For example: |
|
|
|
```bash |
|
DATA_DIR="<path_to_your_data_directory>" |
|
PARALLEL_DOWNLOADS="<number_of_parallel_downloads>" |
|
DOLMA_VERSION="<version_of_dolma_to_download>" |
|
|
|
git clone https://huggingface.co/datasets/allenai/dolma |
|
mkdir -p "${DATA_DIR}" |
|
|
|
|
|
cat "dolma/urls/${DOLMA_VERSION}.txt" | xargs -n 1 -P "${PARALLEL_DOWNLOADS}" wget -q -P "$DATA_DIR" |
|
``` |
|
|
|
Then, to load this data using HuggingFace's `datasets` library, you can use the following code: |
|
|
|
```python |
|
import os |
|
from datasets import load_dataset |
|
|
|
os.environ["DATA_DIR"] = "<path_to_your_data_directory>" |
|
dataset = load_dataset("allenai/dolma", split="train") |
|
``` |
|
|
|
### Licensing Information |
|
|
|
We are releasing this dataset under the terms of [ODC-BY](https://opendatacommons.org/licenses/by/1-0/). |
|
By using this dataset, you are also bound any license agreements and terms of use of the original data sources. |
|
|
|
## Bibtex |
|
|
|
If you use our dataset or tooling, please cite us at: |
|
|
|
```bibtex |
|
@article{dolma, |
|
title = {{Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}}, |
|
author={ |
|
Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and |
|
Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and |
|
Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and |
|
Nathan Lambert and Ian Magnusson and Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and |
|
Crystal Nam and Matthew E. Peters and Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and |
|
Emma Strubell and Nishant Subramani and Oyvind Tafjord and Pete Walsh and Luke Zettlemoyer and |
|
Noah A. Smith and Hannaneh Hajishirzi and Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo |
|
}, |
|
year = {2024}, |
|
journal={arXiv preprint}, |
|
} |
|
``` |
|
|
|
|