|
import os |
|
|
|
|
|
from models.psp import pSp |
|
import torch |
|
import dlib |
|
import cv2 |
|
import PIL |
|
import argparse |
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch.nn.functional as F |
|
import torchvision |
|
from torchvision import transforms, utils |
|
from argparse import Namespace |
|
from datasets import augmentations |
|
from scripts.align_all_parallel import align_face |
|
from latent_optimization import latent_optimization |
|
from utils.inference_utils import save_image, load_image, visualize, get_video_crop_parameter, tensor2cv2, tensor2label, labelcolormap |
|
|
|
class TestOptions(): |
|
def __init__(self): |
|
|
|
self.parser = argparse.ArgumentParser(description="StyleGANEX Image Translation") |
|
self.parser.add_argument("--data_path", type=str, default='./data/ILip77SbmOE.png', help="path of the target image") |
|
self.parser.add_argument("--ckpt", type=str, default='pretrained_models/styleganex_sr32.pt', help="path of the saved model") |
|
self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images") |
|
self.parser.add_argument("--cpu", action="store_true", help="if true, only use cpu") |
|
self.parser.add_argument("--use_raw_data", action="store_true", help="if true, input image needs no pre-procssing") |
|
self.parser.add_argument("--resize_factor", type=int, default=32, help="super resolution resize factor") |
|
self.parser.add_argument("--number", type=int, default=4, help="output number of multi-modal translation") |
|
self.parser.add_argument("--parsing_model_ckpt", type=str, default='pretrained_models/faceparsing.pth', help="path of the parsing model") |
|
|
|
def parse(self): |
|
self.opt = self.parser.parse_args() |
|
args = vars(self.opt) |
|
print('Load options') |
|
for name, value in sorted(args.items()): |
|
print('%s: %s' % (str(name), str(value))) |
|
return self.opt |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = TestOptions() |
|
args = parser.parse() |
|
print('*'*98) |
|
|
|
device = "cpu" if args.cpu else "cuda" |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), |
|
]) |
|
|
|
|
|
ckpt = torch.load(args.ckpt, map_location='cpu') |
|
opts = ckpt['opts'] |
|
opts['checkpoint_path'] = args.ckpt |
|
opts['device'] = device |
|
opts = Namespace(**opts) |
|
pspex = pSp(opts).to(device).eval() |
|
pspex.latent_avg = pspex.latent_avg.to(device) |
|
|
|
|
|
image_path = args.data_path |
|
save_name = '%s/%s_%s'%(args.output_path, os.path.basename(image_path).split('.')[0], os.path.basename(args.ckpt).split('.')[0]) |
|
|
|
modelname = 'pretrained_models/shape_predictor_68_face_landmarks.dat' |
|
if not os.path.exists(modelname): |
|
import wget, bz2 |
|
wget.download('http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', modelname+'.bz2') |
|
zipfile = bz2.BZ2File(modelname+'.bz2') |
|
data = zipfile.read() |
|
open(modelname, 'wb').write(data) |
|
landmarkpredictor = dlib.shape_predictor(modelname) |
|
|
|
if opts.dataset_type == 'ffhq_seg_to_face' and not args.use_raw_data: |
|
from models.bisenet.model import BiSeNet |
|
maskpredictor = BiSeNet(n_classes=19) |
|
maskpredictor.load_state_dict(torch.load(args.parsing_model_ckpt)) |
|
maskpredictor.to(device).eval() |
|
to_tensor = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), |
|
]) |
|
|
|
if opts.dataset_type == 'ffhq_super_resolution': |
|
frame = cv2.imread(image_path) |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
if args.use_raw_data: |
|
x, y = frame.shape[0:2] |
|
tmp = PIL.Image.fromarray(np.uint8(frame)).resize((int(y) * args.resize_factor // 4, int(x) * args.resize_factor // 4)) |
|
frame = np.array(tmp) |
|
paras = get_video_crop_parameter(frame, landmarkpredictor) |
|
assert paras is not None, 'StyleGANEX uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. \ |
|
You can try several times or use other videos until a face is detected, \ |
|
then switch back to the original video.' |
|
h,w,top,bottom,left,right,scale = paras |
|
H, W = int(bottom-top), int(right-left) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
if not args.use_raw_data: |
|
x1 = PIL.Image.fromarray(np.uint8(frame)) |
|
x1 = augmentations.BilinearResize(factors=[args.resize_factor // 4])(x1) |
|
x1.save(save_name + '_input.png') |
|
x1_up = x1.resize((W, H)) |
|
x2_up = align_face(np.array(x1_up), landmarkpredictor) |
|
x1_up = transforms.ToTensor()(x1_up).unsqueeze(dim=0).to(device) * 2 - 1 |
|
else: |
|
x1_up = transform(frame).unsqueeze(0).to(device) |
|
x2_up = align_face(frame, landmarkpredictor) |
|
x2_up = transform(x2_up).unsqueeze(dim=0).to(device) |
|
x1 = x1_up |
|
x2 = x2_up |
|
elif opts.dataset_type == 'ffhq_sketch_to_face': |
|
|
|
x1 = transforms.ToTensor()(PIL.Image.open(image_path)).unsqueeze(0).to(device) |
|
x2 = None |
|
elif opts.dataset_type == 'ffhq_seg_to_face': |
|
if not args.use_raw_data: |
|
frame = cv2.imread(image_path) |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
paras = get_video_crop_parameter(frame, landmarkpredictor) |
|
assert paras is not None, 'StyleGANEX uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. \ |
|
You can try several times or use other videos until a face is detected, \ |
|
then switch back to the original video.' |
|
h,w,top,bottom,left,right,scale = paras |
|
H, W = int(bottom-top), int(right-left) |
|
frame = cv2.resize(frame, (w, h))[top:bottom, left:right] |
|
|
|
x1 = to_tensor(frame).unsqueeze(0).to(device) |
|
|
|
x1 = F.interpolate(x1, scale_factor=2, mode='bilinear') |
|
x1 = maskpredictor(x1)[0] |
|
x1 = F.interpolate(x1, scale_factor=0.5).argmax(dim=1) |
|
cv2.imwrite(save_name+'_input.png', x1.squeeze(0).cpu().numpy()) |
|
x1 = F.one_hot(x1, num_classes=19).permute(0, 3, 1, 2).float().to(device) |
|
else: |
|
x1 = PIL.Image.open(image_path) |
|
x1 = augmentations.ToOneHot(opts.label_nc)(x1) |
|
x1 = transforms.ToTensor()(x1).unsqueeze(dim=0).float().to(device) |
|
x1_viz = transform(tensor2label(x1[0], 19)/192) |
|
save_image(x1_viz, save_name+'_input_viz.jpg') |
|
x2 = None |
|
else: |
|
assert False, 'The input model %s does not support image translation task'%(args.ckpt) |
|
|
|
print('Load models successfully!') |
|
|
|
with torch.no_grad(): |
|
if opts.dataset_type == 'ffhq_super_resolution': |
|
y_hat = torch.clamp(pspex(x1=x1, x2=x2, use_skip=pspex.opts.use_skip, resize=False), -1, 1) |
|
save_image(y_hat[0].cpu(), save_name+'.jpg') |
|
else: |
|
pspex.train() |
|
for i in range(args.number): |
|
y_hat = pspex(x1=x1, x2=x2, resize=False, latent_mask=[8,9,10,11,12,13,14,15,16,17], use_skip=pspex.opts.use_skip, |
|
inject_latent = pspex.decoder.style(torch.randn(1, 512).to(device)).unsqueeze(1).repeat(1,18,1) * 0.7) |
|
y_hat = torch.clamp(y_hat, -1, 1) |
|
save_image(y_hat[0].cpu(), save_name+'_%d.jpg'%(i)) |
|
pspex.eval() |
|
|
|
print('Image translation successfully!') |
|
|