|
import models.stylegan2.lpips as lpips |
|
from torch import autograd, optim |
|
from torchvision import transforms, utils |
|
from tqdm import tqdm |
|
import torch |
|
from scripts.align_all_parallel import align_face |
|
from utils.inference_utils import noise_regularize, noise_normalize_, get_lr, latent_noise, visualize |
|
|
|
def latent_optimization(frame, pspex, landmarkpredictor, step=500, device='cuda'): |
|
percept = lpips.PerceptualLoss( |
|
model="net-lin", net="vgg", use_gpu=device.startswith("cuda") |
|
) |
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), |
|
]) |
|
|
|
with torch.no_grad(): |
|
|
|
noise_sample = torch.randn(1000, 512, device=device) |
|
latent_out = pspex.decoder.style(noise_sample) |
|
latent_mean = latent_out.mean(0) |
|
latent_std = ((latent_out - latent_mean).pow(2).sum() / 1000) ** 0.5 |
|
|
|
y = transform(frame).unsqueeze(dim=0).to(device) |
|
I_ = align_face(frame, landmarkpredictor) |
|
I_ = transform(I_).unsqueeze(dim=0).to(device) |
|
wplus = pspex.encoder(I_) + pspex.latent_avg.unsqueeze(0) |
|
_, f = pspex.encoder(y, return_feat=True) |
|
latent_in = wplus.detach().clone() |
|
feat = [f[0].detach().clone(), f[1].detach().clone()] |
|
|
|
|
|
|
|
|
|
latent_in.requires_grad = True |
|
feat[0].requires_grad = True |
|
feat[1].requires_grad = True |
|
|
|
noises_single = pspex.decoder.make_noise() |
|
basic_height, basic_width = int(y.shape[2]*32/256), int(y.shape[3]*32/256) |
|
noises = [] |
|
for noise in noises_single: |
|
noises.append(noise.new_empty(y.shape[0], 1, max(basic_height, int(y.shape[2]*noise.shape[2]/256)), |
|
max(basic_width, int(y.shape[3]*noise.shape[2]/256))).normal_()) |
|
for noise in noises: |
|
noise.requires_grad = True |
|
|
|
init_lr=0.05 |
|
optimizer = optim.Adam(feat + noises, lr=init_lr) |
|
optimizer2 = optim.Adam([latent_in], lr=init_lr) |
|
noise_weight = 0.05 * 0.2 |
|
|
|
pbar = tqdm(range(step)) |
|
latent_path = [] |
|
|
|
for i in pbar: |
|
t = i / step |
|
lr = get_lr(t, init_lr) |
|
optimizer.param_groups[0]["lr"] = lr |
|
optimizer2.param_groups[0]["lr"] = get_lr(t, init_lr) |
|
|
|
noise_strength = latent_std * noise_weight * max(0, 1 - t / 0.75) ** 2 |
|
latent_n = latent_noise(latent_in, noise_strength.item()) |
|
|
|
y_hat, _ = pspex.decoder([latent_n], input_is_latent=True, randomize_noise=False, |
|
first_layer_feature=feat, noise=noises) |
|
|
|
|
|
batch, channel, height, width = y_hat.shape |
|
|
|
if height > y.shape[2]: |
|
factor = height // y.shape[2] |
|
|
|
y_hat = y_hat.reshape( |
|
batch, channel, height // factor, factor, width // factor, factor |
|
) |
|
y_hat = y_hat.mean([3, 5]) |
|
|
|
p_loss = percept(y_hat, y).sum() |
|
n_loss = noise_regularize(noises) * 1e3 |
|
|
|
loss = p_loss + n_loss |
|
|
|
optimizer.zero_grad() |
|
optimizer2.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
optimizer2.step() |
|
|
|
noise_normalize_(noises) |
|
|
|
''' for visualization |
|
if (i + 1) % 100 == 0 or i == 0: |
|
viz = torch.cat((y_hat,y,y_hat-y), dim=3) |
|
visualize(torch.clamp(viz[0].cpu(),-1,1), 60) |
|
''' |
|
|
|
pbar.set_description( |
|
( |
|
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f};" |
|
f" lr: {lr:.4f}" |
|
) |
|
) |
|
|
|
return latent_n, feat, noises, wplus, f |