|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
import cv2 |
|
import random |
|
import math |
|
import argparse |
|
import torch |
|
from torch.utils import data |
|
from torch.nn import functional as F |
|
from torch import autograd |
|
from torch.nn import init |
|
import torchvision.transforms as transforms |
|
from scripts.align_all_parallel import get_landmark |
|
|
|
def visualize(img_arr, dpi): |
|
plt.figure(figsize=(10,10),dpi=dpi) |
|
plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)) |
|
plt.axis('off') |
|
plt.show() |
|
|
|
def save_image(img, filename): |
|
tmp = ((img.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8) |
|
cv2.imwrite(filename, cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR)) |
|
|
|
def load_image(filename): |
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), |
|
]) |
|
|
|
img = Image.open(filename) |
|
img = transform(img) |
|
return img.unsqueeze(dim=0) |
|
|
|
def get_video_crop_parameter(filepath, predictor, padding=[256,256,256,256]): |
|
if type(filepath) == str: |
|
img = dlib.load_rgb_image(filepath) |
|
else: |
|
img = filepath |
|
lm = get_landmark(img, predictor) |
|
if lm is None: |
|
return None |
|
lm_chin = lm[0 : 17] |
|
lm_eyebrow_left = lm[17 : 22] |
|
lm_eyebrow_right = lm[22 : 27] |
|
lm_nose = lm[27 : 31] |
|
lm_nostrils = lm[31 : 36] |
|
lm_eye_left = lm[36 : 42] |
|
lm_eye_right = lm[42 : 48] |
|
lm_mouth_outer = lm[48 : 60] |
|
lm_mouth_inner = lm[60 : 68] |
|
|
|
scale = 64. / (np.mean(lm_eye_right[:,0])-np.mean(lm_eye_left[:,0])) |
|
center = ((np.mean(lm_eye_right, axis=0)+np.mean(lm_eye_left, axis=0)) / 2) * scale |
|
h, w = round(img.shape[0] * scale), round(img.shape[1] * scale) |
|
left = max(round(center[0] - padding[0]), 0) // 8 * 8 |
|
right = min(round(center[0] + padding[1]), w) // 8 * 8 |
|
top = max(round(center[1] - padding[2]), 0) // 8 * 8 |
|
bottom = min(round(center[1] + padding[3]), h) // 8 * 8 |
|
return h,w,top,bottom,left,right,scale |
|
|
|
def tensor2cv2(img): |
|
tmp = ((img.cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8) |
|
return cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR) |
|
|
|
def noise_regularize(noises): |
|
loss = 0 |
|
|
|
for noise in noises: |
|
size = noise.shape[2] |
|
|
|
while True: |
|
loss = ( |
|
loss |
|
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2) |
|
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2) |
|
) |
|
|
|
if size <= 8: |
|
break |
|
|
|
|
|
|
|
noise = F.interpolate(noise, scale_factor=0.5, mode='bilinear') |
|
size //= 2 |
|
|
|
return loss |
|
|
|
|
|
def noise_normalize_(noises): |
|
for noise in noises: |
|
mean = noise.mean() |
|
std = noise.std() |
|
|
|
noise.data.add_(-mean).div_(std) |
|
|
|
|
|
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05): |
|
lr_ramp = min(1, (1 - t) / rampdown) |
|
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi) |
|
lr_ramp = lr_ramp * min(1, t / rampup) |
|
|
|
return initial_lr * lr_ramp |
|
|
|
|
|
def latent_noise(latent, strength): |
|
noise = torch.randn_like(latent) * strength |
|
|
|
return latent + noise |
|
|
|
|
|
def make_image(tensor): |
|
return ( |
|
tensor.detach() |
|
.clamp_(min=-1, max=1) |
|
.add(1) |
|
.div_(2) |
|
.mul(255) |
|
.type(torch.uint8) |
|
.permute(0, 2, 3, 1) |
|
.to("cpu") |
|
.numpy() |
|
) |
|
|
|
|
|
|
|
|
|
def tensor2label(label_tensor, n_label, imtype=np.uint8): |
|
if n_label == 0: |
|
return tensor2im(label_tensor, imtype) |
|
label_tensor = label_tensor.cpu().float() |
|
if label_tensor.size()[0] > 1: |
|
label_tensor = label_tensor.max(0, keepdim=True)[1] |
|
label_tensor = Colorize(n_label)(label_tensor) |
|
label_numpy = np.transpose(label_tensor.numpy(), (1, 2, 0)) |
|
return label_numpy.astype(imtype) |
|
|
|
def uint82bin(n, count=8): |
|
"""returns the binary of integer n, count refers to amount of bits""" |
|
return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)]) |
|
|
|
def labelcolormap(N): |
|
if N == 35: |
|
cmap = np.array([( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), (111, 74, 0), ( 81, 0, 81), |
|
(128, 64,128), (244, 35,232), (250,170,160), (230,150,140), ( 70, 70, 70), (102,102,156), (190,153,153), |
|
(180,165,180), (150,100,100), (150,120, 90), (153,153,153), (153,153,153), (250,170, 30), (220,220, 0), |
|
(107,142, 35), (152,251,152), ( 70,130,180), (220, 20, 60), (255, 0, 0), ( 0, 0,142), ( 0, 0, 70), |
|
( 0, 60,100), ( 0, 0, 90), ( 0, 0,110), ( 0, 80,100), ( 0, 0,230), (119, 11, 32), ( 0, 0,142)], |
|
dtype=np.uint8) |
|
else: |
|
cmap = np.zeros((N, 3), dtype=np.uint8) |
|
for i in range(N): |
|
r, g, b = 0, 0, 0 |
|
id = i |
|
for j in range(7): |
|
str_id = uint82bin(id) |
|
r = r ^ (np.uint8(str_id[-1]) << (7-j)) |
|
g = g ^ (np.uint8(str_id[-2]) << (7-j)) |
|
b = b ^ (np.uint8(str_id[-3]) << (7-j)) |
|
id = id >> 3 |
|
cmap[i, 0] = r |
|
cmap[i, 1] = g |
|
cmap[i, 2] = b |
|
return cmap |
|
|
|
class Colorize(object): |
|
def __init__(self, n=35): |
|
self.cmap = labelcolormap(n) |
|
self.cmap = torch.from_numpy(self.cmap[:n]) |
|
|
|
def __call__(self, gray_image): |
|
size = gray_image.size() |
|
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) |
|
|
|
for label in range(0, len(self.cmap)): |
|
mask = (label == gray_image[0]).cpu() |
|
color_image[0][mask] = self.cmap[label][0] |
|
color_image[1][mask] = self.cmap[label][1] |
|
color_image[2][mask] = self.cmap[label][2] |
|
|
|
return color_image |