ameerazam08's picture
Upload folder using huggingface_hub
3ea3e11
raw
history blame
7.19 kB
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from io import BytesIO
import PIL
from PIL import ImageSequence, Image
import requests
import os
def get_image(img_path) -> PIL.Image.Image:
if img_path.startswith("http"):
return PIL.Image.open(requests.get(img_path, stream=True).raw)
if os.path.exists(img_path):
return Image.open(img_path)
raise Exception("File not found")
def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes:
with BytesIO() as output_buffer:
# Save the first image
images[0].save(output_buffer,
format='GIF',
save_all=True,
append_images=images[1:],
duration=duration,
loop=0) # 0 means the GIF will loop indefinitely
# Get the byte array from the buffer
gif_bytes = output_buffer.getvalue()
return gif_bytes
def save_as_gif(images: List, file_path: str, duration: int = 1000):
with open(file_path, "wb") as f:
f.write(images_to_gif_bytes(images, duration))
def scale_aspect_fill(img, new_width, new_height):
new_width = int(new_width)
new_height = int(new_height)
original_width, original_height = img.size
ratio_w = float(new_width) / original_width
ratio_h = float(new_height) / original_height
if ratio_w > ratio_h:
# It must be fixed by width
resize_width = new_width
resize_height = round(original_height * ratio_w)
else:
# Fixed by height
resize_width = round(original_width * ratio_h)
resize_height = new_height
img_resized = img.resize((resize_width, resize_height), Image.LANCZOS)
# Calculate cropping boundaries and do crop
left = (resize_width - new_width) / 2
top = (resize_height - new_height) / 2
right = (resize_width + new_width) / 2
bottom = (resize_height + new_height) / 2
img_cropped = img_resized.crop((left, top, right, bottom))
return img_cropped
def extract_gif_frames_from_midpoint(image: Union[str, PIL.Image.Image], fps: int=8, target_duration: int=1000) -> list:
# Load the GIF
image = get_image(image) if type(image) is str else image
frames = []
estimated_frame_time = None
# some gifs contain the duration - others don't
# so if there is a duration we will grab it otherwise we will fall back
for frame in ImageSequence.Iterator(image):
frames.append(frame.copy())
if 'duration' in frame.info:
frame_info_duration = frame.info['duration']
if frame_info_duration > 0:
estimated_frame_time = frame_info_duration
if estimated_frame_time is None:
if len(frames) <= 16:
# assume it's 8fps
estimated_frame_time = 1000 // 8
else:
# assume it's 15 fps
estimated_frame_time = 70
if len(frames) < fps:
raise ValueError(f"fps of {fps} is too small for this gif as it only has {len(frames)} frames.")
skip = len(frames) // fps
upper_bound_index = len(frames) - 1
best_indices = [x for x in range(0, len(frames), skip)][:fps]
offset = int(upper_bound_index - best_indices[-1]) // 2
best_indices = [x + offset for x in best_indices]
best_duration = (best_indices[-1] - best_indices[0]) * estimated_frame_time
while True:
skip -= 1
if skip == 0:
break
indices = [x for x in range(0, len(frames), skip)][:fps]
# center the indices, so we sample the middle of the gif...
offset = int(upper_bound_index - indices[-1]) // 2
if offset == 0:
# can't shift
break
indices = [x + offset for x in indices]
# is the new duration closer to the target than last guess?
duration = (indices[-1] - indices[0]) * estimated_frame_time
if abs(duration - target_duration) > abs(best_duration - target_duration):
break
best_indices = indices
best_duration = duration
return [frames[index] for index in best_indices]
def get_crop_coordinates(old_size: tuple, new_size: tuple) -> tuple:
"""
Calculate the crop coordinates after scaling an image to fit a new size.
:param old_size: tuple of the form (width, height) representing the original size of the image.
:param new_size: tuple of the form (width, height) representing the desired size after scaling.
:return: tuple of the form (left, upper, right, lower) representing the normalized crop coordinates.
"""
# Check if the input tuples have the right form (width, height)
if not (isinstance(old_size, tuple) and isinstance(new_size, tuple) and
len(old_size) == 2 and len(new_size) == 2):
raise ValueError("old_size and new_size should be tuples of the form (width, height)")
# Extract the width and height from the old and new sizes
old_width, old_height = old_size
new_width, new_height = new_size
# Calculate the ratios for width and height
ratio_w = float(new_width) / old_width
ratio_h = float(new_height) / old_height
# Determine which dimension is fixed (width or height)
if ratio_w > ratio_h:
# It must be fixed by width
resize_width = new_width
resize_height = round(old_height * ratio_w)
else:
# Fixed by height
resize_width = round(old_width * ratio_h)
resize_height = new_height
# Calculate cropping boundaries in the resized image space
left = (resize_width - new_width) / 2
upper = (resize_height - new_height) / 2
right = (resize_width + new_width) / 2
lower = (resize_height + new_height) / 2
# Normalize the cropping coordinates
# Return the normalized coordinates as a tuple
return (left, upper, right, lower)
aspect_ratio_to_1024_map = {
"0.42": [640, 1536],
"0.57": [768, 1344],
"0.68": [832, 1216],
"1.00": [1024, 1024],
"1.46": [1216, 832],
"1.75": [1344, 768],
"2.40": [1536, 640]
}
res_to_aspect_map = {
1024: aspect_ratio_to_1024_map,
512: {key: [value[0] // 2, value[1] // 2] for key, value in aspect_ratio_to_1024_map.items()},
}
def best_aspect_ratio(aspect_ratio: float, resolution: int):
map = res_to_aspect_map[resolution]
d = 99999999
res = None
for key, value in map.items():
ar = value[0] / value[1]
diff = abs(aspect_ratio - ar)
if diff < d:
d = diff
res = value
ar = res[0] / res[1]
return f"{ar:.2f}", res