ameerazam08
commited on
Commit
•
3ea3e11
1
Parent(s):
96982d5
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Hotshot-XL/.gitignore +6 -0
- Hotshot-XL/1.gif +3 -0
- Hotshot-XL/2.gif +3 -0
- Hotshot-XL/LICENSE +201 -0
- Hotshot-XL/README.md +257 -0
- Hotshot-XL/build/lib/hotshot_xl/__init__.py +25 -0
- Hotshot-XL/build/lib/hotshot_xl/models/__init__.py +0 -0
- Hotshot-XL/build/lib/hotshot_xl/models/resnet.py +134 -0
- Hotshot-XL/build/lib/hotshot_xl/models/transformer_3d.py +75 -0
- Hotshot-XL/build/lib/hotshot_xl/models/transformer_temporal.py +192 -0
- Hotshot-XL/build/lib/hotshot_xl/models/unet.py +975 -0
- Hotshot-XL/build/lib/hotshot_xl/models/unet_blocks.py +740 -0
- Hotshot-XL/build/lib/hotshot_xl/pipelines/__init__.py +0 -0
- Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py +1389 -0
- Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_pipeline.py +975 -0
- Hotshot-XL/build/lib/hotshot_xl/utils.py +213 -0
- Hotshot-XL/dist/hotshot_xl-1.0-py3.8.egg +0 -0
- Hotshot-XL/docker/Dockerfile +5 -0
- Hotshot-XL/docker/Readme.md +41 -0
- Hotshot-XL/docker/requirements.txt +8 -0
- Hotshot-XL/fine_tune.py +987 -0
- Hotshot-XL/hotshot_xl.egg-info/PKG-INFO +5 -0
- Hotshot-XL/hotshot_xl.egg-info/SOURCES.txt +19 -0
- Hotshot-XL/hotshot_xl.egg-info/dependency_links.txt +1 -0
- Hotshot-XL/hotshot_xl.egg-info/requires.txt +5 -0
- Hotshot-XL/hotshot_xl.egg-info/top_level.txt +1 -0
- Hotshot-XL/hotshot_xl/__init__.py +25 -0
- Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/__pycache__/utils.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__init__.py +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-38.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-39.pyc +0 -0
- Hotshot-XL/hotshot_xl/models/resnet.py +134 -0
- Hotshot-XL/hotshot_xl/models/transformer_3d.py +75 -0
- Hotshot-XL/hotshot_xl/models/transformer_temporal.py +192 -0
- Hotshot-XL/hotshot_xl/models/unet.py +975 -0
- Hotshot-XL/hotshot_xl/models/unet_blocks.py +740 -0
- Hotshot-XL/hotshot_xl/pipelines/__init__.py +0 -0
- Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-38.pyc +0 -0
Hotshot-XL/.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
venv
|
3 |
+
.idea
|
4 |
+
__pycache__
|
5 |
+
build
|
6 |
+
*.egg-info
|
Hotshot-XL/1.gif
ADDED
Git LFS Details
|
Hotshot-XL/2.gif
ADDED
Git LFS Details
|
Hotshot-XL/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
Hotshot-XL/README.md
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<h1 align="center"><img src="https://i.imgur.com/HsWXQTW.png" width="24px" alt="logo" /> Hotshot-XL</h1>
|
2 |
+
|
3 |
+
<h1 align="center">
|
4 |
+
<a href="https://www.hotshot.co">🌐 Try it</a>
|
5 |
+
|
6 |
+
<a href="https://huggingface.co/hotshotco/Hotshot-XL">🃏 Model card</a>
|
7 |
+
|
8 |
+
<a href="https://discord.gg/85pqA3GG">💬 Discord</a>
|
9 |
+
</h1>
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_e8a50e1e-0b2e-4ebc-8229-817703585405.gif" alt="a barbie doll smiling in kitchen, oven on fire, disaster, pink wes anderson vibes, cinematic" width="195px" height="111.42px"/>
|
13 |
+
|
14 |
+
<img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_f6ca56a3-30b8-4b2a-9342-111353e85b96.gif" alt="a teddy bear writing a letter" width="195px" height="111.42px"/>
|
15 |
+
|
16 |
+
<img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_6c219102-7f72-45e9-b4fa-b7a07c004ae1.gif" alt="dslr photo of mark zuckerberg happy, pulling on threads, lots of threads everywhere, laughing, hd, 8k" width="195px" height="111.42px"/>
|
17 |
+
|
18 |
+
<img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_2dd3c30f-42c5-4f37-8fa6-b2494fcac4b4.gif" alt="a cat laughing" width="195px" height="111.42px"/>
|
19 |
+
|
20 |
+
</p>
|
21 |
+
|
22 |
+
Hotshot-XL is an AI text-to-GIF model trained to work alongside [Stable Diffusion XL](https://stability.ai/stable-diffusion).
|
23 |
+
|
24 |
+
Hotshot-XL can generate GIFs with any fine-tuned SDXL model. This means two things:
|
25 |
+
1. You’ll be able to make GIFs with any existing or newly fine-tuned SDXL model you may want to use.
|
26 |
+
2. If you'd like to make GIFs of personalized subjects, you can load your own SDXL based LORAs, and not have to worry about fine-tuning Hotshot-XL. This is awesome because it’s usually much easier to find suitable images for training data than it is to find videos. It also hopefully fits into everyone's existing LORA usage/workflows :) See more [here](#text-to-gif-with-personalized-loras).
|
27 |
+
|
28 |
+
Hotshot-XL is compatible with SDXL ControlNet to make GIFs in the composition/layout you’d like. See the [ControlNet](#text-to-gif-with-controlnet) section below.
|
29 |
+
|
30 |
+
Hotshot-XL was trained to generate 1 second GIFs at 8 FPS.
|
31 |
+
|
32 |
+
Hotshot-XL was trained on various aspect ratios. For best results with the base Hotshot-XL model, we recommend using it with an SDXL model that has been fine-tuned with 512x512 images. You can find an SDXL model we fine-tuned for 512x512 resolutions [here](https://huggingface.co/hotshotco/SDXL-512).
|
33 |
+
|
34 |
+
# 🌐 Try It
|
35 |
+
|
36 |
+
Try Hotshot-XL yourself here: https://www.hotshot.co
|
37 |
+
|
38 |
+
Or, if you'd like to run Hotshot-XL yourself locally, continue on to the sections below.
|
39 |
+
|
40 |
+
If you’re running Hotshot-XL yourself, you are going to be able to have a lot more flexibility/control with the model. As a very simple example, you’ll be able to change the sampler. We’ve seen best results with Euler-A so far, but you may find interesting results with some other ones.
|
41 |
+
|
42 |
+
# 🔧 Setup
|
43 |
+
|
44 |
+
### Environment Setup
|
45 |
+
```
|
46 |
+
pip install virtualenv --upgrade
|
47 |
+
virtualenv -p $(which python3) venv
|
48 |
+
source venv/bin/activate
|
49 |
+
pip install -r requirements.txt
|
50 |
+
```
|
51 |
+
|
52 |
+
### Download the Hotshot-XL Weights
|
53 |
+
|
54 |
+
```
|
55 |
+
# Make sure you have git-lfs installed (https://git-lfs.com)
|
56 |
+
git lfs install
|
57 |
+
git clone https://huggingface.co/hotshotco/Hotshot-XL
|
58 |
+
```
|
59 |
+
|
60 |
+
or visit [https://huggingface.co/hotshotco/Hotshot-XL](https://huggingface.co/hotshotco/Hotshot-XL)
|
61 |
+
|
62 |
+
### Download our fine-tuned SDXL model (or BYOSDXL)
|
63 |
+
|
64 |
+
- *Note*: To maximize data and training efficiency, Hotshot-XL was trained at various aspect ratios around 512x512 resolution. For best results with the base Hotshot-XL model, we recommend using it with an SDXL model that has been fine-tuned with images around the 512x512 resolution. You can download an SDXL model we trained with images at 512x512 resolution below, or bring your own SDXL base model.
|
65 |
+
|
66 |
+
```
|
67 |
+
# Make sure you have git-lfs installed (https://git-lfs.com)
|
68 |
+
git lfs install
|
69 |
+
git clone https://huggingface.co/hotshotco/SDXL-512
|
70 |
+
```
|
71 |
+
|
72 |
+
or visit [https://huggingface.co/hotshotco/SDXL-512](https://huggingface.co/hotshotco/SDXL-512)
|
73 |
+
|
74 |
+
# 🔮 Inference
|
75 |
+
|
76 |
+
### Text-to-GIF
|
77 |
+
```
|
78 |
+
python inference.py \
|
79 |
+
--prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \
|
80 |
+
--output="output.gif"
|
81 |
+
```
|
82 |
+
|
83 |
+
*What to Expect:*
|
84 |
+
| **Prompt** | Sasquatch scuba diving | a camel smoking a cigarette | Ronald McDonald sitting at a vanity mirror putting on lipstick | drake licking his lips and staring through a window at a cupcake |
|
85 |
+
|-----------|----------|----------|----------|----------|
|
86 |
+
| **Output** | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_441b7ea2-9887-4124-a52b-14c9db1d15aa.gif" /> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_7956a022-0464-4441-88b8-15a6de953335.gif"/> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_35f55a64-7ed9-498e-894e-6ec7a8026fba.gif"/> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/image-gen/gif_df5f52cb-d74d-40b5-a066-2ce567dae512.gif"/> |
|
87 |
+
|
88 |
+
### Text-to-GIF with personalized LORAs
|
89 |
+
|
90 |
+
```
|
91 |
+
python inference.py \
|
92 |
+
--prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \
|
93 |
+
--output="output.gif" \
|
94 |
+
--spatial_unet_base="path/to/stabilityai/stable-diffusion-xl-base-1.0/unet" \
|
95 |
+
--lora="path/to/lora"
|
96 |
+
```
|
97 |
+
|
98 |
+
*What to Expect:*
|
99 |
+
|
100 |
+
*Note*: The outputs below use the DDIMScheduler.
|
101 |
+
|
102 |
+
| **Prompt** | sks person screaming at a capri sun | sks person kissing kermit the frog | sks person wearing a tuxedo holding up a glass of champagne, fireworks in background, hd, high quality, 4K |
|
103 |
+
|-----------|----------|----------|----------|
|
104 |
+
| **Output** | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/79a20eae-ffeb-4d24-8d22-609fa77c292f.gif" /> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/r/aakash.gif" /> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/4fa34a16-2835-4a12-8c59-348caa4f3891.gif" /> |
|
105 |
+
|
106 |
+
### Text-to-GIF with ControlNet
|
107 |
+
```
|
108 |
+
python inference.py \
|
109 |
+
--prompt="a girl jumping up and down and pumping her fist, hd, high quality" \
|
110 |
+
--output="output.gif" \
|
111 |
+
--control_type="depth" \
|
112 |
+
--gif="https://media1.giphy.com/media/v1.Y2lkPTc5MGI3NjExbXNneXJicG1mOHJ2dzQ2Y2JteDY1ZWlrdjNjMjl3ZWxyeWFxY2EzdyZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/YOTAoXBgMCmFeQQzuZ/giphy.gif"
|
113 |
+
```
|
114 |
+
|
115 |
+
By default, Hotshot-XL will create key frames from your source gif using 8 equally spaced frames and crop the keyframes to the default aspect ratio. For finer grained control, learn how to [vary aspect ratios](#varying-aspect-ratios) and [vary frame rates/lengths](#varying-frame-rates--lengths-experimental).
|
116 |
+
|
117 |
+
Hotshot-XL currently supports the use of one ControlNet model at a time; supporting Multi-ControlNet would be [exciting](#-further-work).
|
118 |
+
|
119 |
+
*What to Expect:*
|
120 |
+
| **Prompt** | pixar style girl putting two thumbs up, happy, high quality, 8k, 3d, animated disney render | keanu reaves holding a sign that says "HELP", hd, high quality | a woman laughing, hd, high quality | barack obama making a rainbow with their hands, the word "MAGIC" in front of them, wearing a blue and white striped hoodie, hd, high quality |
|
121 |
+
|-----------|----------|----------|----------|----------|
|
122 |
+
| **Output** | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/387d8b68-7289-45e3-9b21-1a9e6ad8a782.gif"/> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot%2Finf-temp/047543b2-d499-4de8-8fd2-3712c3a6c446.gif"/> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/8f50f4d8-4b86-4df7-a643-aae3e9d8634d.gif"> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/c133d8b7-46ad-4469-84fd-b7f7444a47a0.gif"/> |
|
123 |
+
| **Control** |<img src="https://media1.giphy.com/media/3o6Zt8qDiPE2d3kayI/giphy.gif?cid=ecf05e47igskj73xpl62pv8kyk9m39brlualxcz1j68vk8ul&ep=v1_gifs_related&rid=giphy.gif&ct=g"/> | <img src="https://media2.giphy.com/media/IoXVrbzUIuvTy/giphy.gif?cid=ecf05e47ill5r35i1bhxk0tr7quqbpruqivjtuy7gcgkfmx5&ep=v1_gifs_search&rid=giphy.gif&ct=g"/> | <img src="https://media0.giphy.com/media/12msOFU8oL1eww/giphy.gif"> | <img src="https://media4.giphy.com/media/3o84U6421OOWegpQhq/giphy.gif?cid=ecf05e47eufup08cz2up9fn9bitkgltb88ez37829mxz43cc&ep=v1_gifs_related&rid=giphy.gif&ct=g"/> |
|
124 |
+
|
125 |
+
### Varying Aspect Ratios
|
126 |
+
|
127 |
+
- *Note*: The base SDXL model is trained to best create images around 1024x1024 resolution. To maximize data and training efficiency, Hotshot-XL was trained at aspect ratios around 512x512 resolution. Please see [Additional Notes](#supported-aspect-ratios) for a list of aspect ratios the base Hotshot-XL model was trained with.
|
128 |
+
|
129 |
+
Like SDXL, Hotshot-XL was trained at various aspect ratios with aspect ratio bucketing, and includes support for SDXL parameters like target-size and original-size. This means you can create GIFs at several different aspect ratios and resolutions, just with the base Hotshot-XL model.
|
130 |
+
|
131 |
+
```
|
132 |
+
python inference.py \
|
133 |
+
--prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \
|
134 |
+
--output="output.gif" \
|
135 |
+
--width=<WIDTH> \
|
136 |
+
--height=<HEIGHT>
|
137 |
+
```
|
138 |
+
|
139 |
+
*What to Expect:*
|
140 |
+
| | 512x512 | 672x384 | 384x672 |
|
141 |
+
|-----------|----------|----------|----------|
|
142 |
+
| **a monkey playing guitar, nature footage, hd, high quality** | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/2295c6af-c345-47a4-8afe-62e77f84141b.gif"/> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/909a86c5-60df-459a-b662-ce4e85706303.gif"/> | <img src="https://dvfx9cgvtgnyd.cloudfront.net/hotshot/inf-temp/8512854d-66ea-41ff-919e-6e36d6e6a541.gif"> |
|
143 |
+
|
144 |
+
### Varying frame rates & lengths (*Experimental*)
|
145 |
+
By default, Hotshot-XL is trained to generate GIFs that are 1 second long with 8FPS. If you'd like to play with generating GIFs with varying frame rates and time lengths, you can try out the parameters `video_length` and `video_duration`.
|
146 |
+
|
147 |
+
`video_length` sets the number of frames. The default value is 8.
|
148 |
+
|
149 |
+
`video_duration` sets the runtime of the output gif in milliseconds. The default value is 1000.
|
150 |
+
|
151 |
+
Please note that you should expect unstable/"jittery" results when modifying these parameters as the model was only trained with 1s videos @ 8fps. You'll be able to improve the stability of results for different time lengths and frame rates by [fine-tuning Hotshot-XL](#-fine-tuning). Please let us know if you do!
|
152 |
+
|
153 |
+
```
|
154 |
+
python inference.py \
|
155 |
+
--prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \
|
156 |
+
--output="output.gif" \
|
157 |
+
--video_length=16 \
|
158 |
+
--video_duration=2000
|
159 |
+
```
|
160 |
+
|
161 |
+
### Spatial Layers Only
|
162 |
+
Hotshot-XL is trained to generate GIFs alongside SDXL. If you'd like to generate just an image, you can simply set `video_length=1` in your inference call and the Hotshot-XL temporal layers will be ignored, as you'd expect.
|
163 |
+
|
164 |
+
```
|
165 |
+
python inference.py \
|
166 |
+
--prompt="a bulldog in the captains chair of a spaceship, hd, high quality" \
|
167 |
+
--output="output.jpg" \
|
168 |
+
--video_length=1
|
169 |
+
```
|
170 |
+
|
171 |
+
### Additional Notes
|
172 |
+
|
173 |
+
#### Supported Aspect Ratios
|
174 |
+
Hotshot-XL was trained at the following aspect ratios; to reliably generate GIFs outside the range of these aspect ratios, you will want to fine-tune Hotshot-XL with videos at the resolution of your desired aspect ratio.
|
175 |
+
|
176 |
+
| Aspect Ratio | Size |
|
177 |
+
|--------------|------|
|
178 |
+
| 0.42 |320 x 768|
|
179 |
+
| 0.57 |384 x 672|
|
180 |
+
| 0.68 |416 x 608|
|
181 |
+
| 1.00 |512 x 512|
|
182 |
+
| 1.46 |608 x 416|
|
183 |
+
| 1.75 |672 x 384|
|
184 |
+
| 2.40 |768 x 320|
|
185 |
+
|
186 |
+
|
187 |
+
# 💪 Fine-Tuning
|
188 |
+
The following section relates to fine-tuning the Hotshot-XL temporal model with additional text/video pairs. If you're trying to generate GIFs of personalized concepts/subjects, we'd recommend not fine-tuning Hotshot-XL, but instead training your own SDXL based LORAs and [just loading those](#text-to-gif-with-personalized-loras).
|
189 |
+
|
190 |
+
### Fine-Tuning Hotshot-XL
|
191 |
+
|
192 |
+
#### Dataset Preparation
|
193 |
+
|
194 |
+
The `fine_tune.py` script expects your samples to be structured like this:
|
195 |
+
|
196 |
+
```
|
197 |
+
fine_tune_dataset
|
198 |
+
├── sample_001
|
199 |
+
│ ├── 0.jpg
|
200 |
+
│ ├── 1.jpg
|
201 |
+
│ ├── 2.jpg
|
202 |
+
...
|
203 |
+
...
|
204 |
+
│ ├── n.jpg
|
205 |
+
│ └── prompt.txt
|
206 |
+
```
|
207 |
+
|
208 |
+
Each sample directory should contain your **n key frames** and a `prompt.txt` file which contains the prompt.
|
209 |
+
The final checkpoint will be saved to `output_dir`.
|
210 |
+
We've found it useful to send validation GIFs to [Weights & Biases](www.wandb.ai) every so often. If you choose to use validation with Weights & Biases, you can set how often this runs with the `validate_every_steps` parameter.
|
211 |
+
|
212 |
+
```
|
213 |
+
accelerate launch fine_tune.py \
|
214 |
+
--output_dir="<OUTPUT_DIR>" \
|
215 |
+
--data_dir="fine_tune_dataset" \
|
216 |
+
--report_to="wandb" \
|
217 |
+
--run_validation_at_start \
|
218 |
+
--resolution=512 \
|
219 |
+
--mixed_precision=fp16 \
|
220 |
+
--train_batch_size=4 \
|
221 |
+
--learning_rate=1.25e-05 \
|
222 |
+
--lr_scheduler="constant" \
|
223 |
+
--lr_warmup_steps=0 \
|
224 |
+
--max_train_steps=1000 \
|
225 |
+
--save_n_steps=20 \
|
226 |
+
--validate_every_steps=50 \
|
227 |
+
--vae_b16 \
|
228 |
+
--gradient_checkpointing \
|
229 |
+
--noise_offset=0.05 \
|
230 |
+
--snr_gamma \
|
231 |
+
--test_prompts="man sits at a table in a cafe, he greets another man with a smile and a handshakes"
|
232 |
+
```
|
233 |
+
|
234 |
+
# 📝 Further work
|
235 |
+
There are lots of ways we are excited about improving Hotshot-XL. For example:
|
236 |
+
|
237 |
+
- [ ] Fine-Tuning Hotshot-XL at larger frame rates to create longer/higher frame-rate GIFs
|
238 |
+
- [ ] Fine-Tuning Hotshot-XL at larger resolutions to create higher resolution GIFs
|
239 |
+
- [ ] Training temporal layers for a latent upscaler to produce higher resolution GIFs
|
240 |
+
- [ ] Training an image conditioned "frame prediction" model for more coherent, longer GIFs
|
241 |
+
- [ ] Training temporal layers for a VAE to mitigate flickering/dithering in outputs
|
242 |
+
- [ ] Supporting Multi-ControlNet for greater control over GIF generation
|
243 |
+
- [ ] Training & integrating different ControlNet models for further control over GIF generation (finer facial expression control would be very cool)
|
244 |
+
- [ ] Moving Hotshot-XL into [AITemplate](https://github.com/facebookincubator/AITemplate) for faster inference times
|
245 |
+
|
246 |
+
We 💗 contributions from the open-source community! Please let us know in the issues or PRs if you're interested in working on these improvements or anything else!
|
247 |
+
|
248 |
+
# 🙏 Acknowledgements
|
249 |
+
Text-to-Video models are improving quickly and the development of Hotshot-XL has been greatly inspired by the following amazing works and teams:
|
250 |
+
|
251 |
+
- [SDXL](https://stability.ai/stable-diffusion)
|
252 |
+
- [Align Your Latents](https://research.nvidia.com/labs/toronto-ai/VideoLDM/)
|
253 |
+
- [Make-A-Video](https://makeavideo.studio/)
|
254 |
+
- [AnimateDiff](https://animatediff.github.io/)
|
255 |
+
- [Imagen Video](https://imagen.research.google/video/)
|
256 |
+
|
257 |
+
We hope that releasing this model/codebase helps the community to continue pushing these creative tools forward in an open and responsible way.
|
Hotshot-XL/build/lib/hotshot_xl/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# don't remove these imports - they are needed to load from pretrain.
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from .models.unet import UNet3DConditionModel
|
18 |
+
|
19 |
+
from diffusers.utils import (
|
20 |
+
BaseOutput,
|
21 |
+
)
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class HotshotPipelineXLOutput(BaseOutput):
|
25 |
+
videos: Union[torch.Tensor, np.ndarray]
|
Hotshot-XL/build/lib/hotshot_xl/models/__init__.py
ADDED
File without changes
|
Hotshot-XL/build/lib/hotshot_xl/models/resnet.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from diffusers.models.resnet import Upsample2D, Downsample2D, LoRACompatibleConv
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
|
15 |
+
class Upsample3D(Upsample2D):
|
16 |
+
def forward(self, hidden_states, output_size=None, scale: float = 1.0):
|
17 |
+
f = hidden_states.shape[2]
|
18 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
19 |
+
hidden_states = super(Upsample3D, self).forward(hidden_states, output_size, scale)
|
20 |
+
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
21 |
+
|
22 |
+
|
23 |
+
class Downsample3D(Downsample2D):
|
24 |
+
|
25 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
26 |
+
f = hidden_states.shape[2]
|
27 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
28 |
+
hidden_states = super(Downsample3D, self).forward(hidden_states, scale)
|
29 |
+
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
30 |
+
|
31 |
+
|
32 |
+
class Conv3d(LoRACompatibleConv):
|
33 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
34 |
+
f = hidden_states.shape[2]
|
35 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
36 |
+
hidden_states = super().forward(hidden_states, scale)
|
37 |
+
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
38 |
+
|
39 |
+
|
40 |
+
class ResnetBlock3D(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
*,
|
44 |
+
in_channels,
|
45 |
+
out_channels=None,
|
46 |
+
conv_shortcut=False,
|
47 |
+
dropout=0.0,
|
48 |
+
temb_channels=512,
|
49 |
+
groups=32,
|
50 |
+
groups_out=None,
|
51 |
+
pre_norm=True,
|
52 |
+
eps=1e-6,
|
53 |
+
non_linearity="silu",
|
54 |
+
time_embedding_norm="default",
|
55 |
+
output_scale_factor=1.0,
|
56 |
+
use_in_shortcut=None,
|
57 |
+
conv_shortcut_bias: bool = True,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
self.pre_norm = pre_norm
|
61 |
+
self.pre_norm = True
|
62 |
+
self.in_channels = in_channels
|
63 |
+
out_channels = in_channels if out_channels is None else out_channels
|
64 |
+
self.out_channels = out_channels
|
65 |
+
self.use_conv_shortcut = conv_shortcut
|
66 |
+
self.time_embedding_norm = time_embedding_norm
|
67 |
+
self.output_scale_factor = output_scale_factor
|
68 |
+
|
69 |
+
if groups_out is None:
|
70 |
+
groups_out = groups
|
71 |
+
|
72 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
73 |
+
self.conv1 = Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
74 |
+
|
75 |
+
if temb_channels is not None:
|
76 |
+
if self.time_embedding_norm == "default":
|
77 |
+
time_emb_proj_out_channels = out_channels
|
78 |
+
elif self.time_embedding_norm == "scale_shift":
|
79 |
+
time_emb_proj_out_channels = out_channels * 2
|
80 |
+
else:
|
81 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
82 |
+
|
83 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
84 |
+
else:
|
85 |
+
self.time_emb_proj = None
|
86 |
+
|
87 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
88 |
+
self.dropout = torch.nn.Dropout(dropout)
|
89 |
+
self.conv2 = Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
90 |
+
|
91 |
+
assert non_linearity == "silu"
|
92 |
+
|
93 |
+
self.nonlinearity = nn.SiLU()
|
94 |
+
|
95 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
96 |
+
|
97 |
+
self.conv_shortcut = None
|
98 |
+
if self.use_in_shortcut:
|
99 |
+
self.conv_shortcut = Conv3d(
|
100 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, input_tensor, temb):
|
104 |
+
hidden_states = input_tensor
|
105 |
+
|
106 |
+
hidden_states = self.norm1(hidden_states)
|
107 |
+
hidden_states = self.nonlinearity(hidden_states)
|
108 |
+
|
109 |
+
hidden_states = self.conv1(hidden_states)
|
110 |
+
|
111 |
+
if temb is not None:
|
112 |
+
temb = self.nonlinearity(temb)
|
113 |
+
temb = self.time_emb_proj(temb)[:, :, None, None, None]
|
114 |
+
|
115 |
+
if temb is not None and self.time_embedding_norm == "default":
|
116 |
+
hidden_states = hidden_states + temb
|
117 |
+
|
118 |
+
hidden_states = self.norm2(hidden_states)
|
119 |
+
|
120 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
121 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
122 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
123 |
+
|
124 |
+
hidden_states = self.nonlinearity(hidden_states)
|
125 |
+
|
126 |
+
hidden_states = self.dropout(hidden_states)
|
127 |
+
hidden_states = self.conv2(hidden_states)
|
128 |
+
|
129 |
+
if self.conv_shortcut is not None:
|
130 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
131 |
+
|
132 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
133 |
+
|
134 |
+
return output_tensor
|
Hotshot-XL/build/lib/hotshot_xl/models/transformer_3d.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Optional
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
from typing import Dict, Any
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class Transformer3DModelOutput(BaseOutput):
|
21 |
+
"""
|
22 |
+
The output of [`Transformer3DModel`].
|
23 |
+
|
24 |
+
Args:
|
25 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
26 |
+
The hidden states output conditioned on the `encoder_hidden_states` input.
|
27 |
+
"""
|
28 |
+
|
29 |
+
sample: torch.FloatTensor
|
30 |
+
|
31 |
+
|
32 |
+
class Transformer3DModel(Transformer2DModel):
|
33 |
+
|
34 |
+
def __init__(self, *args, **kwargs):
|
35 |
+
super(Transformer3DModel, self).__init__(*args, **kwargs)
|
36 |
+
nn.init.zeros_(self.proj_out.weight.data)
|
37 |
+
nn.init.zeros_(self.proj_out.bias.data)
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self,
|
41 |
+
hidden_states: torch.Tensor,
|
42 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
43 |
+
timestep: Optional[torch.LongTensor] = None,
|
44 |
+
class_labels: Optional[torch.LongTensor] = None,
|
45 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
47 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
48 |
+
enable_temporal_layers: bool = True,
|
49 |
+
positional_embedding: Optional[torch.Tensor] = None,
|
50 |
+
return_dict: bool = True,
|
51 |
+
):
|
52 |
+
|
53 |
+
is_video = len(hidden_states.shape) == 5
|
54 |
+
|
55 |
+
if is_video:
|
56 |
+
f = hidden_states.shape[2]
|
57 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
58 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=f)
|
59 |
+
|
60 |
+
hidden_states = super(Transformer3DModel, self).forward(hidden_states,
|
61 |
+
encoder_hidden_states,
|
62 |
+
timestep,
|
63 |
+
class_labels,
|
64 |
+
cross_attention_kwargs,
|
65 |
+
attention_mask,
|
66 |
+
encoder_attention_mask,
|
67 |
+
return_dict=False)[0]
|
68 |
+
|
69 |
+
if is_video:
|
70 |
+
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
71 |
+
|
72 |
+
if not return_dict:
|
73 |
+
return (hidden_states,)
|
74 |
+
|
75 |
+
return Transformer3DModelOutput(sample=hidden_states)
|
Hotshot-XL/build/lib/hotshot_xl/models/transformer_temporal.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import math
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from torch import nn
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
from diffusers.models.attention import Attention, FeedForward
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
from typing import Optional
|
17 |
+
|
18 |
+
|
19 |
+
class PositionalEncoding(nn.Module):
|
20 |
+
"""
|
21 |
+
Implements positional encoding as described in "Attention Is All You Need".
|
22 |
+
Adds sinusoidal based positional encodings to the input tensor.
|
23 |
+
"""
|
24 |
+
|
25 |
+
_SCALE_FACTOR = 10000.0 # Scale factor used in the positional encoding computation.
|
26 |
+
|
27 |
+
def __init__(self, dim: int, dropout: float = 0.0, max_length: int = 24):
|
28 |
+
super(PositionalEncoding, self).__init__()
|
29 |
+
|
30 |
+
self.dropout = nn.Dropout(p=dropout)
|
31 |
+
|
32 |
+
# The size is (1, max_length, dim) to allow easy addition to input tensors.
|
33 |
+
positional_encoding = torch.zeros(1, max_length, dim)
|
34 |
+
|
35 |
+
# Position and dim are used in the sinusoidal computation.
|
36 |
+
position = torch.arange(max_length).unsqueeze(1)
|
37 |
+
div_term = torch.exp(torch.arange(0, dim, 2) * (-math.log(self._SCALE_FACTOR) / dim))
|
38 |
+
|
39 |
+
positional_encoding[0, :, 0::2] = torch.sin(position * div_term)
|
40 |
+
positional_encoding[0, :, 1::2] = torch.cos(position * div_term)
|
41 |
+
|
42 |
+
# Register the positional encoding matrix as a buffer,
|
43 |
+
# so it's part of the model's state but not the parameters.
|
44 |
+
self.register_buffer('positional_encoding', positional_encoding)
|
45 |
+
|
46 |
+
def forward(self, hidden_states: torch.Tensor, length: int) -> torch.Tensor:
|
47 |
+
hidden_states = hidden_states + self.positional_encoding[:, :length]
|
48 |
+
return self.dropout(hidden_states)
|
49 |
+
|
50 |
+
|
51 |
+
class TemporalAttention(Attention):
|
52 |
+
def __init__(self, *args, **kwargs):
|
53 |
+
super().__init__(*args, **kwargs)
|
54 |
+
self.pos_encoder = PositionalEncoding(kwargs["query_dim"], dropout=0)
|
55 |
+
|
56 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=8):
|
57 |
+
sequence_length = hidden_states.shape[1]
|
58 |
+
hidden_states = rearrange(hidden_states, "(b f) s c -> (b s) f c", f=number_of_frames)
|
59 |
+
hidden_states = self.pos_encoder(hidden_states, length=number_of_frames)
|
60 |
+
|
61 |
+
if encoder_hidden_states:
|
62 |
+
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b s) n c", s=sequence_length)
|
63 |
+
|
64 |
+
hidden_states = super().forward(hidden_states, encoder_hidden_states, attention_mask=attention_mask)
|
65 |
+
|
66 |
+
return rearrange(hidden_states, "(b s) f c -> (b f) s c", s=sequence_length)
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class TransformerTemporalOutput(BaseOutput):
|
71 |
+
sample: torch.FloatTensor
|
72 |
+
|
73 |
+
|
74 |
+
class TransformerTemporal(nn.Module):
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_attention_heads: int,
|
78 |
+
attention_head_dim: int,
|
79 |
+
in_channels: int,
|
80 |
+
num_layers: int = 1,
|
81 |
+
dropout: float = 0.0,
|
82 |
+
norm_num_groups: int = 32,
|
83 |
+
cross_attention_dim: Optional[int] = None,
|
84 |
+
attention_bias: bool = False,
|
85 |
+
activation_fn: str = "geglu",
|
86 |
+
upcast_attention: bool = False,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
inner_dim = num_attention_heads * attention_head_dim
|
91 |
+
|
92 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
93 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
94 |
+
|
95 |
+
self.transformer_blocks = nn.ModuleList(
|
96 |
+
[
|
97 |
+
TransformerBlock(
|
98 |
+
dim=inner_dim,
|
99 |
+
num_attention_heads=num_attention_heads,
|
100 |
+
attention_head_dim=attention_head_dim,
|
101 |
+
dropout=dropout,
|
102 |
+
activation_fn=activation_fn,
|
103 |
+
attention_bias=attention_bias,
|
104 |
+
upcast_attention=upcast_attention,
|
105 |
+
cross_attention_dim=cross_attention_dim
|
106 |
+
)
|
107 |
+
for _ in range(num_layers)
|
108 |
+
]
|
109 |
+
)
|
110 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
111 |
+
|
112 |
+
def forward(self, hidden_states, encoder_hidden_states=None):
|
113 |
+
_, num_channels, f, height, width = hidden_states.shape
|
114 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
115 |
+
|
116 |
+
skip = hidden_states
|
117 |
+
|
118 |
+
hidden_states = self.norm(hidden_states)
|
119 |
+
hidden_states = rearrange(hidden_states, "bf c h w -> bf (h w) c")
|
120 |
+
hidden_states = self.proj_in(hidden_states)
|
121 |
+
|
122 |
+
for block in self.transformer_blocks:
|
123 |
+
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, number_of_frames=f)
|
124 |
+
|
125 |
+
hidden_states = self.proj_out(hidden_states)
|
126 |
+
hidden_states = rearrange(hidden_states, "bf (h w) c -> bf c h w", h=height, w=width).contiguous()
|
127 |
+
|
128 |
+
output = hidden_states + skip
|
129 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=f)
|
130 |
+
|
131 |
+
return output
|
132 |
+
|
133 |
+
|
134 |
+
class TransformerBlock(nn.Module):
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
dim,
|
138 |
+
num_attention_heads,
|
139 |
+
attention_head_dim,
|
140 |
+
dropout=0.0,
|
141 |
+
activation_fn="geglu",
|
142 |
+
attention_bias=False,
|
143 |
+
upcast_attention=False,
|
144 |
+
depth=2,
|
145 |
+
cross_attention_dim: Optional[int] = None
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.is_cross = cross_attention_dim is not None
|
150 |
+
|
151 |
+
attention_blocks = []
|
152 |
+
norms = []
|
153 |
+
|
154 |
+
for _ in range(depth):
|
155 |
+
attention_blocks.append(
|
156 |
+
TemporalAttention(
|
157 |
+
query_dim=dim,
|
158 |
+
cross_attention_dim=cross_attention_dim,
|
159 |
+
heads=num_attention_heads,
|
160 |
+
dim_head=attention_head_dim,
|
161 |
+
dropout=dropout,
|
162 |
+
bias=attention_bias,
|
163 |
+
upcast_attention=upcast_attention,
|
164 |
+
)
|
165 |
+
)
|
166 |
+
norms.append(nn.LayerNorm(dim))
|
167 |
+
|
168 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
169 |
+
self.norms = nn.ModuleList(norms)
|
170 |
+
|
171 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
172 |
+
self.ff_norm = nn.LayerNorm(dim)
|
173 |
+
|
174 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=None):
|
175 |
+
|
176 |
+
if not self.is_cross:
|
177 |
+
encoder_hidden_states = None
|
178 |
+
|
179 |
+
for block, norm in zip(self.attention_blocks, self.norms):
|
180 |
+
norm_hidden_states = norm(hidden_states)
|
181 |
+
hidden_states = block(
|
182 |
+
norm_hidden_states,
|
183 |
+
encoder_hidden_states=encoder_hidden_states,
|
184 |
+
attention_mask=attention_mask,
|
185 |
+
number_of_frames=number_of_frames
|
186 |
+
) + hidden_states
|
187 |
+
|
188 |
+
norm_hidden_states = self.ff_norm(hidden_states)
|
189 |
+
hidden_states = self.ff(norm_hidden_states) + hidden_states
|
190 |
+
|
191 |
+
output = hidden_states
|
192 |
+
return output
|
Hotshot-XL/build/lib/hotshot_xl/models/unet.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modifications:
|
16 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
17 |
+
# - Unet now supports SDXL
|
18 |
+
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
|
26 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
27 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
28 |
+
from diffusers.utils import BaseOutput, logging
|
29 |
+
from diffusers.models.activations import get_activation
|
30 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
31 |
+
from diffusers.models.embeddings import (
|
32 |
+
GaussianFourierProjection,
|
33 |
+
ImageHintTimeEmbedding,
|
34 |
+
ImageProjection,
|
35 |
+
ImageTimeEmbedding,
|
36 |
+
TextImageProjection,
|
37 |
+
TextImageTimeEmbedding,
|
38 |
+
TextTimeEmbedding,
|
39 |
+
TimestepEmbedding,
|
40 |
+
Timesteps,
|
41 |
+
)
|
42 |
+
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
45 |
+
from .unet_blocks import (
|
46 |
+
CrossAttnDownBlock3D,
|
47 |
+
CrossAttnUpBlock3D,
|
48 |
+
DownBlock3D,
|
49 |
+
UNetMidBlock3DCrossAttn,
|
50 |
+
UpBlock3D,
|
51 |
+
get_down_block,
|
52 |
+
get_up_block,
|
53 |
+
)
|
54 |
+
|
55 |
+
from .resnet import Conv3d
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class UNet3DConditionOutput(BaseOutput):
|
62 |
+
"""
|
63 |
+
The output of [`UNet2DConditionModel`].
|
64 |
+
|
65 |
+
Args:
|
66 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
67 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
68 |
+
"""
|
69 |
+
|
70 |
+
sample: torch.FloatTensor = None
|
71 |
+
|
72 |
+
|
73 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
74 |
+
_supports_gradient_checkpointing = True
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
sample_size: Optional[int] = None,
|
80 |
+
in_channels: int = 4,
|
81 |
+
out_channels: int = 4,
|
82 |
+
center_input_sample: bool = False,
|
83 |
+
flip_sin_to_cos: bool = True,
|
84 |
+
freq_shift: int = 0,
|
85 |
+
down_block_types: Tuple[str] = (
|
86 |
+
"CrossAttnDownBlock3D",
|
87 |
+
"CrossAttnDownBlock3D",
|
88 |
+
"DownBlock3D",
|
89 |
+
),
|
90 |
+
mid_block_type: Optional[str] = "UNetMidBlock3DCrossAttn",
|
91 |
+
up_block_types: Tuple[str] = (
|
92 |
+
"UpBlock3D",
|
93 |
+
"CrossAttnUpBlock3D",
|
94 |
+
"CrossAttnUpBlock3D",
|
95 |
+
),
|
96 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
97 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
98 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
99 |
+
downsample_padding: int = 1,
|
100 |
+
mid_block_scale_factor: float = 1,
|
101 |
+
act_fn: str = "silu",
|
102 |
+
norm_num_groups: Optional[int] = 32,
|
103 |
+
norm_eps: float = 1e-5,
|
104 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
105 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
106 |
+
encoder_hid_dim: Optional[int] = None,
|
107 |
+
encoder_hid_dim_type: Optional[str] = None,
|
108 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
109 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
110 |
+
dual_cross_attention: bool = False,
|
111 |
+
use_linear_projection: bool = False,
|
112 |
+
class_embed_type: Optional[str] = None,
|
113 |
+
addition_embed_type: Optional[str] = None,
|
114 |
+
addition_time_embed_dim: Optional[int] = None,
|
115 |
+
num_class_embeds: Optional[int] = None,
|
116 |
+
upcast_attention: bool = False,
|
117 |
+
resnet_time_scale_shift: str = "default",
|
118 |
+
resnet_skip_time_act: bool = False,
|
119 |
+
resnet_out_scale_factor: int = 1.0,
|
120 |
+
time_embedding_type: str = "positional",
|
121 |
+
time_embedding_dim: Optional[int] = None,
|
122 |
+
time_embedding_act_fn: Optional[str] = None,
|
123 |
+
timestep_post_act: Optional[str] = None,
|
124 |
+
time_cond_proj_dim: Optional[int] = None,
|
125 |
+
conv_in_kernel: int = 3,
|
126 |
+
conv_out_kernel: int = 3,
|
127 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
128 |
+
class_embeddings_concat: bool = False,
|
129 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
130 |
+
cross_attention_norm: Optional[str] = None,
|
131 |
+
addition_embed_type_num_heads=64,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
|
135 |
+
self.sample_size = sample_size
|
136 |
+
|
137 |
+
if num_attention_heads is not None:
|
138 |
+
raise ValueError(
|
139 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
140 |
+
)
|
141 |
+
|
142 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
143 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
144 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
145 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
146 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
147 |
+
# which is why we correct for the naming here.
|
148 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
149 |
+
|
150 |
+
# Check inputs
|
151 |
+
if len(down_block_types) != len(up_block_types):
|
152 |
+
raise ValueError(
|
153 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
154 |
+
)
|
155 |
+
|
156 |
+
if len(block_out_channels) != len(down_block_types):
|
157 |
+
raise ValueError(
|
158 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
159 |
+
)
|
160 |
+
|
161 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
162 |
+
raise ValueError(
|
163 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
164 |
+
)
|
165 |
+
|
166 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
167 |
+
raise ValueError(
|
168 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
169 |
+
)
|
170 |
+
|
171 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
172 |
+
raise ValueError(
|
173 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
174 |
+
)
|
175 |
+
|
176 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
177 |
+
raise ValueError(
|
178 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
179 |
+
)
|
180 |
+
|
181 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
182 |
+
raise ValueError(
|
183 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
184 |
+
)
|
185 |
+
|
186 |
+
# input
|
187 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
188 |
+
|
189 |
+
self.conv_in = Conv3d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding)
|
190 |
+
|
191 |
+
# time
|
192 |
+
if time_embedding_type == "fourier":
|
193 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
194 |
+
if time_embed_dim % 2 != 0:
|
195 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
196 |
+
self.time_proj = GaussianFourierProjection(
|
197 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
198 |
+
)
|
199 |
+
timestep_input_dim = time_embed_dim
|
200 |
+
elif time_embedding_type == "positional":
|
201 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
202 |
+
|
203 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
204 |
+
timestep_input_dim = block_out_channels[0]
|
205 |
+
else:
|
206 |
+
raise ValueError(
|
207 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
208 |
+
)
|
209 |
+
|
210 |
+
self.time_embedding = TimestepEmbedding(
|
211 |
+
timestep_input_dim,
|
212 |
+
time_embed_dim,
|
213 |
+
act_fn=act_fn,
|
214 |
+
post_act_fn=timestep_post_act,
|
215 |
+
cond_proj_dim=time_cond_proj_dim,
|
216 |
+
)
|
217 |
+
|
218 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
219 |
+
encoder_hid_dim_type = "text_proj"
|
220 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
221 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
222 |
+
|
223 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
224 |
+
raise ValueError(
|
225 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
226 |
+
)
|
227 |
+
|
228 |
+
if encoder_hid_dim_type == "text_proj":
|
229 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
230 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
231 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
232 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
233 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
234 |
+
self.encoder_hid_proj = TextImageProjection(
|
235 |
+
text_embed_dim=encoder_hid_dim,
|
236 |
+
image_embed_dim=cross_attention_dim,
|
237 |
+
cross_attention_dim=cross_attention_dim,
|
238 |
+
)
|
239 |
+
elif encoder_hid_dim_type == "image_proj":
|
240 |
+
# Kandinsky 2.2
|
241 |
+
self.encoder_hid_proj = ImageProjection(
|
242 |
+
image_embed_dim=encoder_hid_dim,
|
243 |
+
cross_attention_dim=cross_attention_dim,
|
244 |
+
)
|
245 |
+
elif encoder_hid_dim_type is not None:
|
246 |
+
raise ValueError(
|
247 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
self.encoder_hid_proj = None
|
251 |
+
|
252 |
+
# class embedding
|
253 |
+
if class_embed_type is None and num_class_embeds is not None:
|
254 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
255 |
+
elif class_embed_type == "timestep":
|
256 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
257 |
+
elif class_embed_type == "identity":
|
258 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
259 |
+
elif class_embed_type == "projection":
|
260 |
+
if projection_class_embeddings_input_dim is None:
|
261 |
+
raise ValueError(
|
262 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
263 |
+
)
|
264 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
265 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
266 |
+
# 2. it projects from an arbitrary input dimension.
|
267 |
+
#
|
268 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
269 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
270 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
271 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
272 |
+
elif class_embed_type == "simple_projection":
|
273 |
+
if projection_class_embeddings_input_dim is None:
|
274 |
+
raise ValueError(
|
275 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
276 |
+
)
|
277 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
278 |
+
else:
|
279 |
+
self.class_embedding = None
|
280 |
+
|
281 |
+
if addition_embed_type == "text":
|
282 |
+
if encoder_hid_dim is not None:
|
283 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
284 |
+
else:
|
285 |
+
text_time_embedding_from_dim = cross_attention_dim
|
286 |
+
|
287 |
+
self.add_embedding = TextTimeEmbedding(
|
288 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
289 |
+
)
|
290 |
+
elif addition_embed_type == "text_image":
|
291 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
292 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
293 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
294 |
+
self.add_embedding = TextImageTimeEmbedding(
|
295 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
296 |
+
)
|
297 |
+
elif addition_embed_type == "text_time":
|
298 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
299 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
300 |
+
elif addition_embed_type == "image":
|
301 |
+
# Kandinsky 2.2
|
302 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
303 |
+
elif addition_embed_type == "image_hint":
|
304 |
+
# Kandinsky 2.2 ControlNet
|
305 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
306 |
+
elif addition_embed_type is not None:
|
307 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
308 |
+
|
309 |
+
if time_embedding_act_fn is None:
|
310 |
+
self.time_embed_act = None
|
311 |
+
else:
|
312 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
313 |
+
|
314 |
+
self.down_blocks = nn.ModuleList([])
|
315 |
+
self.up_blocks = nn.ModuleList([])
|
316 |
+
|
317 |
+
if isinstance(only_cross_attention, bool):
|
318 |
+
if mid_block_only_cross_attention is None:
|
319 |
+
mid_block_only_cross_attention = only_cross_attention
|
320 |
+
|
321 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
322 |
+
|
323 |
+
if mid_block_only_cross_attention is None:
|
324 |
+
mid_block_only_cross_attention = False
|
325 |
+
|
326 |
+
if isinstance(num_attention_heads, int):
|
327 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
328 |
+
|
329 |
+
if isinstance(attention_head_dim, int):
|
330 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
331 |
+
|
332 |
+
if isinstance(cross_attention_dim, int):
|
333 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
334 |
+
|
335 |
+
if isinstance(layers_per_block, int):
|
336 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
337 |
+
|
338 |
+
if isinstance(transformer_layers_per_block, int):
|
339 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
340 |
+
|
341 |
+
if class_embeddings_concat:
|
342 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
343 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
344 |
+
# regular time embeddings
|
345 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
346 |
+
else:
|
347 |
+
blocks_time_embed_dim = time_embed_dim
|
348 |
+
|
349 |
+
# down
|
350 |
+
output_channel = block_out_channels[0]
|
351 |
+
for i, down_block_type in enumerate(down_block_types):
|
352 |
+
res = 2 ** i
|
353 |
+
input_channel = output_channel
|
354 |
+
output_channel = block_out_channels[i]
|
355 |
+
is_final_block = i == len(block_out_channels) - 1
|
356 |
+
|
357 |
+
down_block = get_down_block(
|
358 |
+
down_block_type,
|
359 |
+
num_layers=layers_per_block[i],
|
360 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
361 |
+
in_channels=input_channel,
|
362 |
+
out_channels=output_channel,
|
363 |
+
temb_channels=blocks_time_embed_dim,
|
364 |
+
add_downsample=not is_final_block,
|
365 |
+
resnet_eps=norm_eps,
|
366 |
+
resnet_act_fn=act_fn,
|
367 |
+
resnet_groups=norm_num_groups,
|
368 |
+
cross_attention_dim=cross_attention_dim[i],
|
369 |
+
num_attention_heads=num_attention_heads[i],
|
370 |
+
downsample_padding=downsample_padding,
|
371 |
+
dual_cross_attention=dual_cross_attention,
|
372 |
+
use_linear_projection=use_linear_projection,
|
373 |
+
only_cross_attention=only_cross_attention[i],
|
374 |
+
upcast_attention=upcast_attention,
|
375 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
376 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
377 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
378 |
+
cross_attention_norm=cross_attention_norm,
|
379 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
380 |
+
)
|
381 |
+
self.down_blocks.append(down_block)
|
382 |
+
|
383 |
+
# mid
|
384 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
385 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
386 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
387 |
+
in_channels=block_out_channels[-1],
|
388 |
+
temb_channels=blocks_time_embed_dim,
|
389 |
+
resnet_eps=norm_eps,
|
390 |
+
resnet_act_fn=act_fn,
|
391 |
+
output_scale_factor=mid_block_scale_factor,
|
392 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
393 |
+
cross_attention_dim=cross_attention_dim[-1],
|
394 |
+
num_attention_heads=num_attention_heads[-1],
|
395 |
+
resnet_groups=norm_num_groups,
|
396 |
+
dual_cross_attention=dual_cross_attention,
|
397 |
+
use_linear_projection=use_linear_projection,
|
398 |
+
upcast_attention=upcast_attention,
|
399 |
+
)
|
400 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
401 |
+
raise ValueError("UNetMidBlock2DSimpleCrossAttn not supported")
|
402 |
+
|
403 |
+
elif mid_block_type is None:
|
404 |
+
self.mid_block = None
|
405 |
+
else:
|
406 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
407 |
+
|
408 |
+
# count how many layers upsample the images
|
409 |
+
self.num_upsamplers = 0
|
410 |
+
|
411 |
+
# up
|
412 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
413 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
414 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
415 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
416 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
417 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
418 |
+
|
419 |
+
output_channel = reversed_block_out_channels[0]
|
420 |
+
for i, up_block_type in enumerate(up_block_types):
|
421 |
+
res = 2 ** (len(up_block_types) - 1 - i)
|
422 |
+
is_final_block = i == len(block_out_channels) - 1
|
423 |
+
|
424 |
+
prev_output_channel = output_channel
|
425 |
+
output_channel = reversed_block_out_channels[i]
|
426 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
427 |
+
|
428 |
+
# add upsample block for all BUT final layer
|
429 |
+
if not is_final_block:
|
430 |
+
add_upsample = True
|
431 |
+
self.num_upsamplers += 1
|
432 |
+
else:
|
433 |
+
add_upsample = False
|
434 |
+
|
435 |
+
up_block = get_up_block(
|
436 |
+
up_block_type,
|
437 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
438 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
439 |
+
in_channels=input_channel,
|
440 |
+
out_channels=output_channel,
|
441 |
+
prev_output_channel=prev_output_channel,
|
442 |
+
temb_channels=blocks_time_embed_dim,
|
443 |
+
add_upsample=add_upsample,
|
444 |
+
resnet_eps=norm_eps,
|
445 |
+
resnet_act_fn=act_fn,
|
446 |
+
resnet_groups=norm_num_groups,
|
447 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
448 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
449 |
+
dual_cross_attention=dual_cross_attention,
|
450 |
+
use_linear_projection=use_linear_projection,
|
451 |
+
only_cross_attention=only_cross_attention[i],
|
452 |
+
upcast_attention=upcast_attention,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
455 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
456 |
+
cross_attention_norm=cross_attention_norm,
|
457 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
458 |
+
)
|
459 |
+
self.up_blocks.append(up_block)
|
460 |
+
prev_output_channel = output_channel
|
461 |
+
|
462 |
+
# out
|
463 |
+
if norm_num_groups is not None:
|
464 |
+
self.conv_norm_out = nn.GroupNorm(
|
465 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
466 |
+
)
|
467 |
+
|
468 |
+
self.conv_act = get_activation(act_fn)
|
469 |
+
|
470 |
+
else:
|
471 |
+
self.conv_norm_out = None
|
472 |
+
self.conv_act = None
|
473 |
+
|
474 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
475 |
+
|
476 |
+
self.conv_out = Conv3d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel,
|
477 |
+
padding=conv_out_padding)
|
478 |
+
|
479 |
+
def temporal_parameters(self) -> list:
|
480 |
+
output = []
|
481 |
+
all_blocks = self.down_blocks + self.up_blocks + [self.mid_block]
|
482 |
+
for block in all_blocks:
|
483 |
+
output.extend(block.temporal_parameters())
|
484 |
+
return output
|
485 |
+
|
486 |
+
@property
|
487 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
488 |
+
return self.get_attn_processors(include_temporal_layers=False)
|
489 |
+
|
490 |
+
def get_attn_processors(self, include_temporal_layers=True) -> Dict[str, AttentionProcessor]:
|
491 |
+
r"""
|
492 |
+
Returns:
|
493 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
494 |
+
indexed by its weight name.
|
495 |
+
"""
|
496 |
+
# set recursively
|
497 |
+
processors = {}
|
498 |
+
|
499 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
500 |
+
|
501 |
+
if not include_temporal_layers:
|
502 |
+
if 'temporal' in name:
|
503 |
+
return processors
|
504 |
+
|
505 |
+
if hasattr(module, "set_processor"):
|
506 |
+
processors[f"{name}.processor"] = module.processor
|
507 |
+
|
508 |
+
for sub_name, child in module.named_children():
|
509 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
510 |
+
|
511 |
+
return processors
|
512 |
+
|
513 |
+
for name, module in self.named_children():
|
514 |
+
fn_recursive_add_processors(name, module, processors)
|
515 |
+
|
516 |
+
return processors
|
517 |
+
|
518 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
519 |
+
include_temporal_layers=False):
|
520 |
+
r"""
|
521 |
+
Sets the attention processor to use to compute attention.
|
522 |
+
|
523 |
+
Parameters:
|
524 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
525 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
526 |
+
for **all** `Attention` layers.
|
527 |
+
|
528 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
529 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
530 |
+
|
531 |
+
"""
|
532 |
+
count = len(self.get_attn_processors(include_temporal_layers=include_temporal_layers).keys())
|
533 |
+
|
534 |
+
if isinstance(processor, dict) and len(processor) != count:
|
535 |
+
raise ValueError(
|
536 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
537 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
538 |
+
)
|
539 |
+
|
540 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
541 |
+
|
542 |
+
if not include_temporal_layers:
|
543 |
+
if "temporal" in name:
|
544 |
+
return
|
545 |
+
|
546 |
+
if hasattr(module, "set_processor"):
|
547 |
+
if not isinstance(processor, dict):
|
548 |
+
module.set_processor(processor)
|
549 |
+
else:
|
550 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
551 |
+
|
552 |
+
for sub_name, child in module.named_children():
|
553 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
554 |
+
|
555 |
+
for name, module in self.named_children():
|
556 |
+
fn_recursive_attn_processor(name, module, processor)
|
557 |
+
|
558 |
+
def set_default_attn_processor(self):
|
559 |
+
"""
|
560 |
+
Disables custom attention processors and sets the default attention implementation.
|
561 |
+
"""
|
562 |
+
self.set_attn_processor(AttnProcessor())
|
563 |
+
|
564 |
+
def set_attention_slice(self, slice_size):
|
565 |
+
r"""
|
566 |
+
Enable sliced attention computation.
|
567 |
+
|
568 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
569 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
570 |
+
|
571 |
+
Args:
|
572 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
573 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
574 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
575 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
576 |
+
must be a multiple of `slice_size`.
|
577 |
+
"""
|
578 |
+
sliceable_head_dims = []
|
579 |
+
|
580 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
581 |
+
if hasattr(module, "set_attention_slice"):
|
582 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
583 |
+
|
584 |
+
for child in module.children():
|
585 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
586 |
+
|
587 |
+
# retrieve number of attention layers
|
588 |
+
for module in self.children():
|
589 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
590 |
+
|
591 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
592 |
+
|
593 |
+
if slice_size == "auto":
|
594 |
+
# half the attention head size is usually a good trade-off between
|
595 |
+
# speed and memory
|
596 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
597 |
+
elif slice_size == "max":
|
598 |
+
# make smallest slice possible
|
599 |
+
slice_size = num_sliceable_layers * [1]
|
600 |
+
|
601 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
602 |
+
|
603 |
+
if len(slice_size) != len(sliceable_head_dims):
|
604 |
+
raise ValueError(
|
605 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
606 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
607 |
+
)
|
608 |
+
|
609 |
+
for i in range(len(slice_size)):
|
610 |
+
size = slice_size[i]
|
611 |
+
dim = sliceable_head_dims[i]
|
612 |
+
if size is not None and size > dim:
|
613 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
614 |
+
|
615 |
+
# Recursively walk through all the children.
|
616 |
+
# Any children which exposes the set_attention_slice method
|
617 |
+
# gets the message
|
618 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
619 |
+
if hasattr(module, "set_attention_slice"):
|
620 |
+
module.set_attention_slice(slice_size.pop())
|
621 |
+
|
622 |
+
for child in module.children():
|
623 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
624 |
+
|
625 |
+
reversed_slice_size = list(reversed(slice_size))
|
626 |
+
for module in self.children():
|
627 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
628 |
+
|
629 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
630 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
631 |
+
module.gradient_checkpointing = value
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
sample: torch.FloatTensor,
|
636 |
+
timestep: Union[torch.Tensor, float, int],
|
637 |
+
encoder_hidden_states: torch.Tensor,
|
638 |
+
class_labels: Optional[torch.Tensor] = None,
|
639 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
640 |
+
attention_mask: Optional[torch.Tensor] = None,
|
641 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
642 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
643 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
644 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
645 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
646 |
+
return_dict: bool = True,
|
647 |
+
enable_temporal_attentions: bool = True
|
648 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
649 |
+
r"""
|
650 |
+
The [`UNet2DConditionModel`] forward method.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
sample (`torch.FloatTensor`):
|
654 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
655 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
656 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
657 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
658 |
+
encoder_attention_mask (`torch.Tensor`):
|
659 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
660 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
661 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
662 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
663 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
664 |
+
tuple.
|
665 |
+
cross_attention_kwargs (`dict`, *optional*):
|
666 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
667 |
+
added_cond_kwargs: (`dict`, *optional*):
|
668 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
669 |
+
are passed along to the UNet blocks.
|
670 |
+
|
671 |
+
Returns:
|
672 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
673 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
674 |
+
a `tuple` is returned where the first element is the sample tensor.
|
675 |
+
"""
|
676 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
677 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
678 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
679 |
+
# on the fly if necessary.
|
680 |
+
default_overall_up_factor = 2 ** self.num_upsamplers
|
681 |
+
|
682 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
683 |
+
forward_upsample_size = False
|
684 |
+
upsample_size = None
|
685 |
+
|
686 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
687 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
688 |
+
forward_upsample_size = True
|
689 |
+
|
690 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
691 |
+
# expects mask of shape:
|
692 |
+
# [batch, key_tokens]
|
693 |
+
# adds singleton query_tokens dimension:
|
694 |
+
# [batch, 1, key_tokens]
|
695 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
696 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
697 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
698 |
+
if attention_mask is not None:
|
699 |
+
# assume that mask is expressed as:
|
700 |
+
# (1 = keep, 0 = discard)
|
701 |
+
# convert mask into a bias that can be added to attention scores:
|
702 |
+
# (keep = +0, discard = -10000.0)
|
703 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
704 |
+
attention_mask = attention_mask.unsqueeze(1)
|
705 |
+
|
706 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
707 |
+
if encoder_attention_mask is not None:
|
708 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
709 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
710 |
+
|
711 |
+
# 0. center input if necessary
|
712 |
+
if self.config.center_input_sample:
|
713 |
+
sample = 2 * sample - 1.0
|
714 |
+
|
715 |
+
# 1. time
|
716 |
+
timesteps = timestep
|
717 |
+
if not torch.is_tensor(timesteps):
|
718 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
719 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
720 |
+
is_mps = sample.device.type == "mps"
|
721 |
+
if isinstance(timestep, float):
|
722 |
+
dtype = torch.float32 if is_mps else torch.float64
|
723 |
+
else:
|
724 |
+
dtype = torch.int32 if is_mps else torch.int64
|
725 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
726 |
+
elif len(timesteps.shape) == 0:
|
727 |
+
timesteps = timesteps[None].to(sample.device)
|
728 |
+
|
729 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
730 |
+
timesteps = timesteps.expand(sample.shape[0])
|
731 |
+
|
732 |
+
t_emb = self.time_proj(timesteps)
|
733 |
+
|
734 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
735 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
736 |
+
# there might be better ways to encapsulate this.
|
737 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
738 |
+
|
739 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
740 |
+
aug_emb = None
|
741 |
+
|
742 |
+
if self.class_embedding is not None:
|
743 |
+
if class_labels is None:
|
744 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
745 |
+
|
746 |
+
if self.config.class_embed_type == "timestep":
|
747 |
+
class_labels = self.time_proj(class_labels)
|
748 |
+
|
749 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
750 |
+
# there might be better ways to encapsulate this.
|
751 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
752 |
+
|
753 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
754 |
+
|
755 |
+
if self.config.class_embeddings_concat:
|
756 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
757 |
+
else:
|
758 |
+
emb = emb + class_emb
|
759 |
+
|
760 |
+
if self.config.addition_embed_type == "text":
|
761 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
762 |
+
elif self.config.addition_embed_type == "text_image":
|
763 |
+
# Kandinsky 2.1 - style
|
764 |
+
if "image_embeds" not in added_cond_kwargs:
|
765 |
+
raise ValueError(
|
766 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
767 |
+
)
|
768 |
+
|
769 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
770 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
771 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
772 |
+
elif self.config.addition_embed_type == "text_time":
|
773 |
+
if "text_embeds" not in added_cond_kwargs:
|
774 |
+
raise ValueError(
|
775 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
776 |
+
)
|
777 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
778 |
+
if "time_ids" not in added_cond_kwargs:
|
779 |
+
raise ValueError(
|
780 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
781 |
+
)
|
782 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
783 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
784 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
785 |
+
|
786 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
787 |
+
add_embeds = add_embeds.to(emb.dtype)
|
788 |
+
aug_emb = self.add_embedding(add_embeds)
|
789 |
+
elif self.config.addition_embed_type == "image":
|
790 |
+
# Kandinsky 2.2 - style
|
791 |
+
if "image_embeds" not in added_cond_kwargs:
|
792 |
+
raise ValueError(
|
793 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
794 |
+
)
|
795 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
796 |
+
aug_emb = self.add_embedding(image_embs)
|
797 |
+
elif self.config.addition_embed_type == "image_hint":
|
798 |
+
# Kandinsky 2.2 - style
|
799 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
800 |
+
raise ValueError(
|
801 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
802 |
+
)
|
803 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
804 |
+
hint = added_cond_kwargs.get("hint")
|
805 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
806 |
+
sample = torch.cat([sample, hint], dim=1)
|
807 |
+
|
808 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
809 |
+
|
810 |
+
if self.time_embed_act is not None:
|
811 |
+
emb = self.time_embed_act(emb)
|
812 |
+
|
813 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
814 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
815 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
816 |
+
# Kadinsky 2.1 - style
|
817 |
+
if "image_embeds" not in added_cond_kwargs:
|
818 |
+
raise ValueError(
|
819 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
820 |
+
)
|
821 |
+
|
822 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
823 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
824 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
825 |
+
# Kandinsky 2.2 - style
|
826 |
+
if "image_embeds" not in added_cond_kwargs:
|
827 |
+
raise ValueError(
|
828 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
829 |
+
)
|
830 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
831 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
832 |
+
# 2. pre-process
|
833 |
+
|
834 |
+
sample = self.conv_in(sample)
|
835 |
+
|
836 |
+
# 3. down
|
837 |
+
down_block_res_samples = (sample,)
|
838 |
+
for downsample_block in self.down_blocks:
|
839 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
840 |
+
sample, res_samples = downsample_block(
|
841 |
+
hidden_states=sample,
|
842 |
+
temb=emb,
|
843 |
+
encoder_hidden_states=encoder_hidden_states,
|
844 |
+
attention_mask=attention_mask,
|
845 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
846 |
+
enable_temporal_attentions=enable_temporal_attentions
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
sample, res_samples = downsample_block(hidden_states=sample,
|
850 |
+
temb=emb,
|
851 |
+
encoder_hidden_states=encoder_hidden_states,
|
852 |
+
enable_temporal_attentions=enable_temporal_attentions)
|
853 |
+
|
854 |
+
down_block_res_samples += res_samples
|
855 |
+
|
856 |
+
if down_block_additional_residuals is not None:
|
857 |
+
new_down_block_res_samples = ()
|
858 |
+
|
859 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
860 |
+
down_block_res_samples, down_block_additional_residuals
|
861 |
+
):
|
862 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
863 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
864 |
+
|
865 |
+
down_block_res_samples = new_down_block_res_samples
|
866 |
+
|
867 |
+
# 4. mid
|
868 |
+
if self.mid_block is not None:
|
869 |
+
sample = self.mid_block(
|
870 |
+
sample,
|
871 |
+
emb,
|
872 |
+
encoder_hidden_states=encoder_hidden_states,
|
873 |
+
attention_mask=attention_mask,
|
874 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
875 |
+
enable_temporal_attentions=enable_temporal_attentions
|
876 |
+
)
|
877 |
+
|
878 |
+
if mid_block_additional_residual is not None:
|
879 |
+
sample = sample + mid_block_additional_residual
|
880 |
+
|
881 |
+
# 5. up
|
882 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
883 |
+
is_final_block = i == len(self.up_blocks) - 1
|
884 |
+
|
885 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
886 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
887 |
+
|
888 |
+
# if we have not reached the final block and need to forward the
|
889 |
+
# upsample size, we do it here
|
890 |
+
if not is_final_block and forward_upsample_size:
|
891 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
892 |
+
|
893 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
894 |
+
sample = upsample_block(
|
895 |
+
hidden_states=sample,
|
896 |
+
temb=emb,
|
897 |
+
res_hidden_states_tuple=res_samples,
|
898 |
+
encoder_hidden_states=encoder_hidden_states,
|
899 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
900 |
+
upsample_size=upsample_size,
|
901 |
+
attention_mask=attention_mask,
|
902 |
+
enable_temporal_attentions=enable_temporal_attentions
|
903 |
+
)
|
904 |
+
else:
|
905 |
+
sample = upsample_block(
|
906 |
+
hidden_states=sample,
|
907 |
+
temb=emb,
|
908 |
+
res_hidden_states_tuple=res_samples,
|
909 |
+
upsample_size=upsample_size,
|
910 |
+
encoder_hidden_states=encoder_hidden_states,
|
911 |
+
enable_temporal_attentions=enable_temporal_attentions
|
912 |
+
)
|
913 |
+
|
914 |
+
# 6. post-process
|
915 |
+
if self.conv_norm_out:
|
916 |
+
sample = self.conv_norm_out(sample)
|
917 |
+
sample = self.conv_act(sample)
|
918 |
+
|
919 |
+
sample = self.conv_out(sample)
|
920 |
+
|
921 |
+
if not return_dict:
|
922 |
+
return (sample,)
|
923 |
+
|
924 |
+
return UNet3DConditionOutput(sample=sample)
|
925 |
+
|
926 |
+
@classmethod
|
927 |
+
def from_pretrained_spatial(cls, pretrained_model_path, subfolder=None):
|
928 |
+
|
929 |
+
import os
|
930 |
+
import json
|
931 |
+
|
932 |
+
if subfolder is not None:
|
933 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
934 |
+
|
935 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
936 |
+
|
937 |
+
with open(config_file, "r") as f:
|
938 |
+
config = json.load(f)
|
939 |
+
|
940 |
+
config["_class_name"] = "UNet3DConditionModel"
|
941 |
+
|
942 |
+
config["down_block_types"] = [
|
943 |
+
"DownBlock3D",
|
944 |
+
"CrossAttnDownBlock3D",
|
945 |
+
"CrossAttnDownBlock3D",
|
946 |
+
]
|
947 |
+
config["up_block_types"] = [
|
948 |
+
"CrossAttnUpBlock3D",
|
949 |
+
"CrossAttnUpBlock3D",
|
950 |
+
"UpBlock3D"
|
951 |
+
]
|
952 |
+
|
953 |
+
config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
954 |
+
|
955 |
+
model = cls.from_config(config)
|
956 |
+
|
957 |
+
model_files = [
|
958 |
+
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
|
959 |
+
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
|
960 |
+
]
|
961 |
+
|
962 |
+
model_file = None
|
963 |
+
|
964 |
+
for fp in model_files:
|
965 |
+
if os.path.exists(fp):
|
966 |
+
model_file = fp
|
967 |
+
|
968 |
+
if not model_file:
|
969 |
+
raise RuntimeError(f"{model_file} does not exist")
|
970 |
+
|
971 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
972 |
+
|
973 |
+
model.load_state_dict(state_dict, strict=False)
|
974 |
+
|
975 |
+
return model
|
Hotshot-XL/build/lib/hotshot_xl/models/unet_blocks.py
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modifications:
|
16 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
17 |
+
# - Add temporal transformers to unet blocks
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from .transformer_3d import Transformer3DModel
|
23 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
24 |
+
from .transformer_temporal import TransformerTemporal
|
25 |
+
|
26 |
+
|
27 |
+
def get_down_block(
|
28 |
+
down_block_type,
|
29 |
+
num_layers,
|
30 |
+
in_channels,
|
31 |
+
out_channels,
|
32 |
+
temb_channels,
|
33 |
+
add_downsample,
|
34 |
+
resnet_eps,
|
35 |
+
resnet_act_fn,
|
36 |
+
transformer_layers_per_block=1,
|
37 |
+
num_attention_heads=None,
|
38 |
+
resnet_groups=None,
|
39 |
+
cross_attention_dim=None,
|
40 |
+
downsample_padding=None,
|
41 |
+
dual_cross_attention=False,
|
42 |
+
use_linear_projection=False,
|
43 |
+
only_cross_attention=False,
|
44 |
+
upcast_attention=False,
|
45 |
+
resnet_time_scale_shift="default",
|
46 |
+
resnet_skip_time_act=False,
|
47 |
+
resnet_out_scale_factor=1.0,
|
48 |
+
cross_attention_norm=None,
|
49 |
+
attention_head_dim=None,
|
50 |
+
downsample_type=None,
|
51 |
+
):
|
52 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
53 |
+
if down_block_type == "DownBlock3D":
|
54 |
+
return DownBlock3D(
|
55 |
+
num_layers=num_layers,
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
temb_channels=temb_channels,
|
59 |
+
add_downsample=add_downsample,
|
60 |
+
resnet_eps=resnet_eps,
|
61 |
+
resnet_act_fn=resnet_act_fn,
|
62 |
+
resnet_groups=resnet_groups,
|
63 |
+
downsample_padding=downsample_padding,
|
64 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
65 |
+
)
|
66 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
67 |
+
if cross_attention_dim is None:
|
68 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
69 |
+
return CrossAttnDownBlock3D(
|
70 |
+
num_layers=num_layers,
|
71 |
+
in_channels=in_channels,
|
72 |
+
out_channels=out_channels,
|
73 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
74 |
+
temb_channels=temb_channels,
|
75 |
+
add_downsample=add_downsample,
|
76 |
+
resnet_eps=resnet_eps,
|
77 |
+
resnet_act_fn=resnet_act_fn,
|
78 |
+
resnet_groups=resnet_groups,
|
79 |
+
downsample_padding=downsample_padding,
|
80 |
+
cross_attention_dim=cross_attention_dim,
|
81 |
+
num_attention_heads=num_attention_heads,
|
82 |
+
dual_cross_attention=dual_cross_attention,
|
83 |
+
use_linear_projection=use_linear_projection,
|
84 |
+
only_cross_attention=only_cross_attention,
|
85 |
+
upcast_attention=upcast_attention,
|
86 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
87 |
+
)
|
88 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
89 |
+
|
90 |
+
|
91 |
+
def get_up_block(
|
92 |
+
up_block_type,
|
93 |
+
num_layers,
|
94 |
+
in_channels,
|
95 |
+
out_channels,
|
96 |
+
prev_output_channel,
|
97 |
+
temb_channels,
|
98 |
+
add_upsample,
|
99 |
+
resnet_eps,
|
100 |
+
resnet_act_fn,
|
101 |
+
transformer_layers_per_block=1,
|
102 |
+
num_attention_heads=None,
|
103 |
+
resnet_groups=None,
|
104 |
+
cross_attention_dim=None,
|
105 |
+
dual_cross_attention=False,
|
106 |
+
use_linear_projection=False,
|
107 |
+
only_cross_attention=False,
|
108 |
+
upcast_attention=False,
|
109 |
+
resnet_time_scale_shift="default",
|
110 |
+
resnet_skip_time_act=False,
|
111 |
+
resnet_out_scale_factor=1.0,
|
112 |
+
cross_attention_norm=None,
|
113 |
+
attention_head_dim=None,
|
114 |
+
upsample_type=None,
|
115 |
+
):
|
116 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
117 |
+
if up_block_type == "UpBlock3D":
|
118 |
+
return UpBlock3D(
|
119 |
+
num_layers=num_layers,
|
120 |
+
in_channels=in_channels,
|
121 |
+
out_channels=out_channels,
|
122 |
+
prev_output_channel=prev_output_channel,
|
123 |
+
temb_channels=temb_channels,
|
124 |
+
add_upsample=add_upsample,
|
125 |
+
resnet_eps=resnet_eps,
|
126 |
+
resnet_act_fn=resnet_act_fn,
|
127 |
+
resnet_groups=resnet_groups,
|
128 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
129 |
+
)
|
130 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
131 |
+
if cross_attention_dim is None:
|
132 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
133 |
+
return CrossAttnUpBlock3D(
|
134 |
+
num_layers=num_layers,
|
135 |
+
in_channels=in_channels,
|
136 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
137 |
+
out_channels=out_channels,
|
138 |
+
prev_output_channel=prev_output_channel,
|
139 |
+
temb_channels=temb_channels,
|
140 |
+
add_upsample=add_upsample,
|
141 |
+
resnet_eps=resnet_eps,
|
142 |
+
resnet_act_fn=resnet_act_fn,
|
143 |
+
resnet_groups=resnet_groups,
|
144 |
+
cross_attention_dim=cross_attention_dim,
|
145 |
+
num_attention_heads=num_attention_heads,
|
146 |
+
dual_cross_attention=dual_cross_attention,
|
147 |
+
use_linear_projection=use_linear_projection,
|
148 |
+
only_cross_attention=only_cross_attention,
|
149 |
+
upcast_attention=upcast_attention,
|
150 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
151 |
+
)
|
152 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
153 |
+
|
154 |
+
|
155 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
in_channels: int,
|
159 |
+
temb_channels: int,
|
160 |
+
dropout: float = 0.0,
|
161 |
+
num_layers: int = 1,
|
162 |
+
transformer_layers_per_block: int = 1,
|
163 |
+
resnet_eps: float = 1e-6,
|
164 |
+
resnet_time_scale_shift: str = "default",
|
165 |
+
resnet_act_fn: str = "swish",
|
166 |
+
resnet_groups: int = 32,
|
167 |
+
resnet_pre_norm: bool = True,
|
168 |
+
num_attention_heads=1,
|
169 |
+
output_scale_factor=1.0,
|
170 |
+
cross_attention_dim=1280,
|
171 |
+
dual_cross_attention=False,
|
172 |
+
use_linear_projection=False,
|
173 |
+
upcast_attention=False,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
|
177 |
+
self.has_cross_attention = True
|
178 |
+
self.num_attention_heads = num_attention_heads
|
179 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
180 |
+
|
181 |
+
# there is always at least one resnet
|
182 |
+
resnets = [
|
183 |
+
ResnetBlock3D(
|
184 |
+
in_channels=in_channels,
|
185 |
+
out_channels=in_channels,
|
186 |
+
temb_channels=temb_channels,
|
187 |
+
eps=resnet_eps,
|
188 |
+
groups=resnet_groups,
|
189 |
+
dropout=dropout,
|
190 |
+
time_embedding_norm=resnet_time_scale_shift,
|
191 |
+
non_linearity=resnet_act_fn,
|
192 |
+
output_scale_factor=output_scale_factor,
|
193 |
+
pre_norm=resnet_pre_norm,
|
194 |
+
)
|
195 |
+
]
|
196 |
+
attentions = []
|
197 |
+
|
198 |
+
for _ in range(num_layers):
|
199 |
+
if dual_cross_attention:
|
200 |
+
raise NotImplementedError
|
201 |
+
attentions.append(
|
202 |
+
Transformer3DModel(
|
203 |
+
num_attention_heads,
|
204 |
+
in_channels // num_attention_heads,
|
205 |
+
in_channels=in_channels,
|
206 |
+
num_layers=transformer_layers_per_block,
|
207 |
+
cross_attention_dim=cross_attention_dim,
|
208 |
+
norm_num_groups=resnet_groups,
|
209 |
+
use_linear_projection=use_linear_projection,
|
210 |
+
upcast_attention=upcast_attention,
|
211 |
+
)
|
212 |
+
)
|
213 |
+
|
214 |
+
resnets.append(
|
215 |
+
ResnetBlock3D(
|
216 |
+
in_channels=in_channels,
|
217 |
+
out_channels=in_channels,
|
218 |
+
temb_channels=temb_channels,
|
219 |
+
eps=resnet_eps,
|
220 |
+
groups=resnet_groups,
|
221 |
+
dropout=dropout,
|
222 |
+
time_embedding_norm=resnet_time_scale_shift,
|
223 |
+
non_linearity=resnet_act_fn,
|
224 |
+
output_scale_factor=output_scale_factor,
|
225 |
+
pre_norm=resnet_pre_norm,
|
226 |
+
)
|
227 |
+
)
|
228 |
+
|
229 |
+
self.attentions = nn.ModuleList(attentions)
|
230 |
+
self.resnets = nn.ModuleList(resnets)
|
231 |
+
|
232 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None,
|
233 |
+
cross_attention_kwargs=None, enable_temporal_attentions: bool = True):
|
234 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
235 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
236 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
237 |
+
hidden_states = resnet(hidden_states, temb)
|
238 |
+
|
239 |
+
return hidden_states
|
240 |
+
|
241 |
+
def temporal_parameters(self) -> list:
|
242 |
+
return []
|
243 |
+
|
244 |
+
|
245 |
+
class CrossAttnDownBlock3D(nn.Module):
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
in_channels: int,
|
249 |
+
out_channels: int,
|
250 |
+
temb_channels: int,
|
251 |
+
dropout: float = 0.0,
|
252 |
+
num_layers: int = 1,
|
253 |
+
transformer_layers_per_block: int = 1,
|
254 |
+
resnet_eps: float = 1e-6,
|
255 |
+
resnet_time_scale_shift: str = "default",
|
256 |
+
resnet_act_fn: str = "swish",
|
257 |
+
resnet_groups: int = 32,
|
258 |
+
resnet_pre_norm: bool = True,
|
259 |
+
num_attention_heads=1,
|
260 |
+
cross_attention_dim=1280,
|
261 |
+
output_scale_factor=1.0,
|
262 |
+
downsample_padding=1,
|
263 |
+
add_downsample=True,
|
264 |
+
dual_cross_attention=False,
|
265 |
+
use_linear_projection=False,
|
266 |
+
only_cross_attention=False,
|
267 |
+
upcast_attention=False,
|
268 |
+
):
|
269 |
+
super().__init__()
|
270 |
+
resnets = []
|
271 |
+
attentions = []
|
272 |
+
temporal_attentions = []
|
273 |
+
|
274 |
+
self.has_cross_attention = True
|
275 |
+
self.num_attention_heads = num_attention_heads
|
276 |
+
|
277 |
+
for i in range(num_layers):
|
278 |
+
in_channels = in_channels if i == 0 else out_channels
|
279 |
+
resnets.append(
|
280 |
+
ResnetBlock3D(
|
281 |
+
in_channels=in_channels,
|
282 |
+
out_channels=out_channels,
|
283 |
+
temb_channels=temb_channels,
|
284 |
+
eps=resnet_eps,
|
285 |
+
groups=resnet_groups,
|
286 |
+
dropout=dropout,
|
287 |
+
time_embedding_norm=resnet_time_scale_shift,
|
288 |
+
non_linearity=resnet_act_fn,
|
289 |
+
output_scale_factor=output_scale_factor,
|
290 |
+
pre_norm=resnet_pre_norm,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
if dual_cross_attention:
|
294 |
+
raise NotImplementedError
|
295 |
+
attentions.append(
|
296 |
+
Transformer3DModel(
|
297 |
+
num_attention_heads,
|
298 |
+
out_channels // num_attention_heads,
|
299 |
+
in_channels=out_channels,
|
300 |
+
num_layers=transformer_layers_per_block,
|
301 |
+
cross_attention_dim=cross_attention_dim,
|
302 |
+
norm_num_groups=resnet_groups,
|
303 |
+
use_linear_projection=use_linear_projection,
|
304 |
+
only_cross_attention=only_cross_attention,
|
305 |
+
upcast_attention=upcast_attention,
|
306 |
+
)
|
307 |
+
)
|
308 |
+
temporal_attentions.append(
|
309 |
+
TransformerTemporal(
|
310 |
+
num_attention_heads=8,
|
311 |
+
attention_head_dim=out_channels // 8,
|
312 |
+
in_channels=out_channels,
|
313 |
+
cross_attention_dim=None,
|
314 |
+
)
|
315 |
+
)
|
316 |
+
|
317 |
+
self.attentions = nn.ModuleList(attentions)
|
318 |
+
self.resnets = nn.ModuleList(resnets)
|
319 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
320 |
+
|
321 |
+
if add_downsample:
|
322 |
+
self.downsamplers = nn.ModuleList(
|
323 |
+
[
|
324 |
+
Downsample3D(
|
325 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
326 |
+
)
|
327 |
+
]
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
self.downsamplers = None
|
331 |
+
|
332 |
+
self.gradient_checkpointing = False
|
333 |
+
|
334 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None,
|
335 |
+
cross_attention_kwargs=None, enable_temporal_attentions: bool = True):
|
336 |
+
output_states = ()
|
337 |
+
|
338 |
+
for resnet, attn, temporal_attention \
|
339 |
+
in zip(self.resnets, self.attentions, self.temporal_attentions):
|
340 |
+
if self.training and self.gradient_checkpointing:
|
341 |
+
|
342 |
+
def create_custom_forward(module, return_dict=None):
|
343 |
+
def custom_forward(*inputs):
|
344 |
+
if return_dict is not None:
|
345 |
+
return module(*inputs, return_dict=return_dict)
|
346 |
+
else:
|
347 |
+
return module(*inputs)
|
348 |
+
|
349 |
+
return custom_forward
|
350 |
+
|
351 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
352 |
+
use_reentrant=False)
|
353 |
+
|
354 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
355 |
+
create_custom_forward(attn, return_dict=False),
|
356 |
+
hidden_states,
|
357 |
+
encoder_hidden_states,
|
358 |
+
use_reentrant=False
|
359 |
+
)[0]
|
360 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
361 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
362 |
+
hidden_states, encoder_hidden_states,
|
363 |
+
use_reentrant=False)
|
364 |
+
|
365 |
+
else:
|
366 |
+
hidden_states = resnet(hidden_states, temb)
|
367 |
+
|
368 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
369 |
+
|
370 |
+
if temporal_attention and enable_temporal_attentions:
|
371 |
+
hidden_states = temporal_attention(hidden_states,
|
372 |
+
encoder_hidden_states=encoder_hidden_states)
|
373 |
+
|
374 |
+
output_states += (hidden_states,)
|
375 |
+
|
376 |
+
if self.downsamplers is not None:
|
377 |
+
for downsampler in self.downsamplers:
|
378 |
+
hidden_states = downsampler(hidden_states)
|
379 |
+
|
380 |
+
output_states += (hidden_states,)
|
381 |
+
|
382 |
+
return hidden_states, output_states
|
383 |
+
|
384 |
+
def temporal_parameters(self) -> list:
|
385 |
+
output = []
|
386 |
+
for block in self.temporal_attentions:
|
387 |
+
if block:
|
388 |
+
output.extend(block.parameters())
|
389 |
+
return output
|
390 |
+
|
391 |
+
|
392 |
+
class DownBlock3D(nn.Module):
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
in_channels: int,
|
396 |
+
out_channels: int,
|
397 |
+
temb_channels: int,
|
398 |
+
dropout: float = 0.0,
|
399 |
+
num_layers: int = 1,
|
400 |
+
resnet_eps: float = 1e-6,
|
401 |
+
resnet_time_scale_shift: str = "default",
|
402 |
+
resnet_act_fn: str = "swish",
|
403 |
+
resnet_groups: int = 32,
|
404 |
+
resnet_pre_norm: bool = True,
|
405 |
+
output_scale_factor=1.0,
|
406 |
+
add_downsample=True,
|
407 |
+
downsample_padding=1,
|
408 |
+
):
|
409 |
+
super().__init__()
|
410 |
+
resnets = []
|
411 |
+
temporal_attentions = []
|
412 |
+
|
413 |
+
for i in range(num_layers):
|
414 |
+
in_channels = in_channels if i == 0 else out_channels
|
415 |
+
resnets.append(
|
416 |
+
ResnetBlock3D(
|
417 |
+
in_channels=in_channels,
|
418 |
+
out_channels=out_channels,
|
419 |
+
temb_channels=temb_channels,
|
420 |
+
eps=resnet_eps,
|
421 |
+
groups=resnet_groups,
|
422 |
+
dropout=dropout,
|
423 |
+
time_embedding_norm=resnet_time_scale_shift,
|
424 |
+
non_linearity=resnet_act_fn,
|
425 |
+
output_scale_factor=output_scale_factor,
|
426 |
+
pre_norm=resnet_pre_norm,
|
427 |
+
)
|
428 |
+
)
|
429 |
+
temporal_attentions.append(
|
430 |
+
TransformerTemporal(
|
431 |
+
num_attention_heads=8,
|
432 |
+
attention_head_dim=out_channels // 8,
|
433 |
+
in_channels=out_channels,
|
434 |
+
cross_attention_dim=None
|
435 |
+
)
|
436 |
+
)
|
437 |
+
|
438 |
+
self.resnets = nn.ModuleList(resnets)
|
439 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
440 |
+
|
441 |
+
if add_downsample:
|
442 |
+
self.downsamplers = nn.ModuleList(
|
443 |
+
[
|
444 |
+
Downsample3D(
|
445 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
446 |
+
)
|
447 |
+
]
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
self.downsamplers = None
|
451 |
+
|
452 |
+
self.gradient_checkpointing = False
|
453 |
+
|
454 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, enable_temporal_attentions: bool = True):
|
455 |
+
output_states = ()
|
456 |
+
|
457 |
+
for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions):
|
458 |
+
if self.training and self.gradient_checkpointing:
|
459 |
+
def create_custom_forward(module):
|
460 |
+
def custom_forward(*inputs):
|
461 |
+
return module(*inputs)
|
462 |
+
|
463 |
+
return custom_forward
|
464 |
+
|
465 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
466 |
+
use_reentrant=False)
|
467 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
468 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
469 |
+
hidden_states, encoder_hidden_states,
|
470 |
+
use_reentrant=False)
|
471 |
+
else:
|
472 |
+
hidden_states = resnet(hidden_states, temb)
|
473 |
+
|
474 |
+
if enable_temporal_attentions and temporal_attention:
|
475 |
+
hidden_states = temporal_attention(hidden_states, encoder_hidden_states=encoder_hidden_states)
|
476 |
+
|
477 |
+
output_states += (hidden_states,)
|
478 |
+
|
479 |
+
if self.downsamplers is not None:
|
480 |
+
for downsampler in self.downsamplers:
|
481 |
+
hidden_states = downsampler(hidden_states)
|
482 |
+
|
483 |
+
output_states += (hidden_states,)
|
484 |
+
|
485 |
+
return hidden_states, output_states
|
486 |
+
|
487 |
+
def temporal_parameters(self) -> list:
|
488 |
+
output = []
|
489 |
+
for block in self.temporal_attentions:
|
490 |
+
if block:
|
491 |
+
output.extend(block.parameters())
|
492 |
+
return output
|
493 |
+
|
494 |
+
|
495 |
+
class CrossAttnUpBlock3D(nn.Module):
|
496 |
+
def __init__(
|
497 |
+
self,
|
498 |
+
in_channels: int,
|
499 |
+
out_channels: int,
|
500 |
+
prev_output_channel: int,
|
501 |
+
temb_channels: int,
|
502 |
+
dropout: float = 0.0,
|
503 |
+
num_layers: int = 1,
|
504 |
+
transformer_layers_per_block: int = 1,
|
505 |
+
resnet_eps: float = 1e-6,
|
506 |
+
resnet_time_scale_shift: str = "default",
|
507 |
+
resnet_act_fn: str = "swish",
|
508 |
+
resnet_groups: int = 32,
|
509 |
+
resnet_pre_norm: bool = True,
|
510 |
+
num_attention_heads=1,
|
511 |
+
cross_attention_dim=1280,
|
512 |
+
output_scale_factor=1.0,
|
513 |
+
add_upsample=True,
|
514 |
+
dual_cross_attention=False,
|
515 |
+
use_linear_projection=False,
|
516 |
+
only_cross_attention=False,
|
517 |
+
upcast_attention=False,
|
518 |
+
):
|
519 |
+
super().__init__()
|
520 |
+
resnets = []
|
521 |
+
attentions = []
|
522 |
+
temporal_attentions = []
|
523 |
+
|
524 |
+
self.has_cross_attention = True
|
525 |
+
self.num_attention_heads = num_attention_heads
|
526 |
+
|
527 |
+
for i in range(num_layers):
|
528 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
529 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
530 |
+
|
531 |
+
resnets.append(
|
532 |
+
ResnetBlock3D(
|
533 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
534 |
+
out_channels=out_channels,
|
535 |
+
temb_channels=temb_channels,
|
536 |
+
eps=resnet_eps,
|
537 |
+
groups=resnet_groups,
|
538 |
+
dropout=dropout,
|
539 |
+
time_embedding_norm=resnet_time_scale_shift,
|
540 |
+
non_linearity=resnet_act_fn,
|
541 |
+
output_scale_factor=output_scale_factor,
|
542 |
+
pre_norm=resnet_pre_norm,
|
543 |
+
)
|
544 |
+
)
|
545 |
+
if dual_cross_attention:
|
546 |
+
raise NotImplementedError
|
547 |
+
attentions.append(
|
548 |
+
Transformer3DModel(
|
549 |
+
num_attention_heads,
|
550 |
+
out_channels // num_attention_heads,
|
551 |
+
in_channels=out_channels,
|
552 |
+
num_layers=transformer_layers_per_block,
|
553 |
+
cross_attention_dim=cross_attention_dim,
|
554 |
+
norm_num_groups=resnet_groups,
|
555 |
+
use_linear_projection=use_linear_projection,
|
556 |
+
only_cross_attention=only_cross_attention,
|
557 |
+
upcast_attention=upcast_attention,
|
558 |
+
)
|
559 |
+
)
|
560 |
+
temporal_attentions.append(
|
561 |
+
TransformerTemporal(
|
562 |
+
num_attention_heads=8,
|
563 |
+
attention_head_dim=out_channels // 8,
|
564 |
+
in_channels=out_channels,
|
565 |
+
cross_attention_dim=None
|
566 |
+
)
|
567 |
+
)
|
568 |
+
|
569 |
+
self.attentions = nn.ModuleList(attentions)
|
570 |
+
self.resnets = nn.ModuleList(resnets)
|
571 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
572 |
+
|
573 |
+
if add_upsample:
|
574 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
575 |
+
else:
|
576 |
+
self.upsamplers = None
|
577 |
+
|
578 |
+
self.gradient_checkpointing = False
|
579 |
+
|
580 |
+
def forward(
|
581 |
+
self,
|
582 |
+
hidden_states,
|
583 |
+
res_hidden_states_tuple,
|
584 |
+
temb=None,
|
585 |
+
encoder_hidden_states=None,
|
586 |
+
upsample_size=None,
|
587 |
+
cross_attention_kwargs=None,
|
588 |
+
attention_mask=None,
|
589 |
+
enable_temporal_attentions: bool = True
|
590 |
+
):
|
591 |
+
for resnet, attn, temporal_attention \
|
592 |
+
in zip(self.resnets, self.attentions, self.temporal_attentions):
|
593 |
+
# pop res hidden states
|
594 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
595 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
596 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
597 |
+
|
598 |
+
if self.training and self.gradient_checkpointing:
|
599 |
+
|
600 |
+
def create_custom_forward(module, return_dict=None):
|
601 |
+
def custom_forward(*inputs):
|
602 |
+
if return_dict is not None:
|
603 |
+
return module(*inputs, return_dict=return_dict)
|
604 |
+
else:
|
605 |
+
return module(*inputs)
|
606 |
+
|
607 |
+
return custom_forward
|
608 |
+
|
609 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
610 |
+
use_reentrant=False)
|
611 |
+
|
612 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
613 |
+
create_custom_forward(attn, return_dict=False),
|
614 |
+
hidden_states,
|
615 |
+
encoder_hidden_states,
|
616 |
+
use_reentrant=False,
|
617 |
+
)[0]
|
618 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
619 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
620 |
+
hidden_states, encoder_hidden_states,
|
621 |
+
use_reentrant=False)
|
622 |
+
|
623 |
+
else:
|
624 |
+
hidden_states = resnet(hidden_states, temb)
|
625 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
626 |
+
|
627 |
+
if enable_temporal_attentions and temporal_attention:
|
628 |
+
hidden_states = temporal_attention(hidden_states,
|
629 |
+
encoder_hidden_states=encoder_hidden_states)
|
630 |
+
|
631 |
+
if self.upsamplers is not None:
|
632 |
+
for upsampler in self.upsamplers:
|
633 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
634 |
+
|
635 |
+
return hidden_states
|
636 |
+
|
637 |
+
def temporal_parameters(self) -> list:
|
638 |
+
output = []
|
639 |
+
for block in self.temporal_attentions:
|
640 |
+
if block:
|
641 |
+
output.extend(block.parameters())
|
642 |
+
return output
|
643 |
+
|
644 |
+
|
645 |
+
class UpBlock3D(nn.Module):
|
646 |
+
def __init__(
|
647 |
+
self,
|
648 |
+
in_channels: int,
|
649 |
+
prev_output_channel: int,
|
650 |
+
out_channels: int,
|
651 |
+
temb_channels: int,
|
652 |
+
dropout: float = 0.0,
|
653 |
+
num_layers: int = 1,
|
654 |
+
resnet_eps: float = 1e-6,
|
655 |
+
resnet_time_scale_shift: str = "default",
|
656 |
+
resnet_act_fn: str = "swish",
|
657 |
+
resnet_groups: int = 32,
|
658 |
+
resnet_pre_norm: bool = True,
|
659 |
+
output_scale_factor=1.0,
|
660 |
+
add_upsample=True,
|
661 |
+
):
|
662 |
+
super().__init__()
|
663 |
+
resnets = []
|
664 |
+
temporal_attentions = []
|
665 |
+
|
666 |
+
for i in range(num_layers):
|
667 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
668 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
669 |
+
|
670 |
+
resnets.append(
|
671 |
+
ResnetBlock3D(
|
672 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
673 |
+
out_channels=out_channels,
|
674 |
+
temb_channels=temb_channels,
|
675 |
+
eps=resnet_eps,
|
676 |
+
groups=resnet_groups,
|
677 |
+
dropout=dropout,
|
678 |
+
time_embedding_norm=resnet_time_scale_shift,
|
679 |
+
non_linearity=resnet_act_fn,
|
680 |
+
output_scale_factor=output_scale_factor,
|
681 |
+
pre_norm=resnet_pre_norm,
|
682 |
+
)
|
683 |
+
)
|
684 |
+
temporal_attentions.append(
|
685 |
+
TransformerTemporal(
|
686 |
+
num_attention_heads=8,
|
687 |
+
attention_head_dim=out_channels // 8,
|
688 |
+
in_channels=out_channels,
|
689 |
+
cross_attention_dim=None
|
690 |
+
)
|
691 |
+
)
|
692 |
+
|
693 |
+
self.resnets = nn.ModuleList(resnets)
|
694 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
695 |
+
|
696 |
+
if add_upsample:
|
697 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
698 |
+
else:
|
699 |
+
self.upsamplers = None
|
700 |
+
|
701 |
+
self.gradient_checkpointing = False
|
702 |
+
|
703 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,
|
704 |
+
enable_temporal_attentions: bool = True):
|
705 |
+
for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions):
|
706 |
+
# pop res hidden states
|
707 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
708 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
709 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
710 |
+
|
711 |
+
if self.training and self.gradient_checkpointing:
|
712 |
+
def create_custom_forward(module):
|
713 |
+
def custom_forward(*inputs):
|
714 |
+
return module(*inputs)
|
715 |
+
|
716 |
+
return custom_forward
|
717 |
+
|
718 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
719 |
+
use_reentrant=False)
|
720 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
721 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
722 |
+
hidden_states, encoder_hidden_states,
|
723 |
+
use_reentrant=False)
|
724 |
+
else:
|
725 |
+
hidden_states = resnet(hidden_states, temb)
|
726 |
+
hidden_states = temporal_attention(hidden_states,
|
727 |
+
encoder_hidden_states=encoder_hidden_states) if enable_temporal_attentions and temporal_attention is not None else hidden_states
|
728 |
+
|
729 |
+
if self.upsamplers is not None:
|
730 |
+
for upsampler in self.upsamplers:
|
731 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
732 |
+
|
733 |
+
return hidden_states
|
734 |
+
|
735 |
+
def temporal_parameters(self) -> list:
|
736 |
+
output = []
|
737 |
+
for block in self.temporal_attentions:
|
738 |
+
if block:
|
739 |
+
output.extend(block.parameters())
|
740 |
+
return output
|
Hotshot-XL/build/lib/hotshot_xl/pipelines/__init__.py
ADDED
File without changes
|
Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py
ADDED
@@ -0,0 +1,1389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modifications:
|
16 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
17 |
+
# - Adapted the SDXL Controlnet Pipeline to work temporally
|
18 |
+
|
19 |
+
import inspect
|
20 |
+
import os
|
21 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import PIL.Image
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
28 |
+
|
29 |
+
from hotshot_xl import HotshotPipelineXLOutput
|
30 |
+
|
31 |
+
from diffusers.image_processor import VaeImageProcessor
|
32 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
33 |
+
from diffusers.models import AutoencoderKL, ControlNetModel
|
34 |
+
from diffusers.models.attention_processor import (
|
35 |
+
AttnProcessor2_0,
|
36 |
+
LoRAAttnProcessor2_0,
|
37 |
+
LoRAXFormersAttnProcessor,
|
38 |
+
XFormersAttnProcessor,
|
39 |
+
)
|
40 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
41 |
+
from diffusers.utils import (
|
42 |
+
is_accelerate_available,
|
43 |
+
is_accelerate_version,
|
44 |
+
logging,
|
45 |
+
replace_example_docstring,
|
46 |
+
)
|
47 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
48 |
+
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
|
49 |
+
|
50 |
+
from ..models.unet import UNet3DConditionModel
|
51 |
+
|
52 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
53 |
+
from einops import rearrange
|
54 |
+
from tqdm import tqdm
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
+
|
58 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
59 |
+
"""
|
60 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
61 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
62 |
+
"""
|
63 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
64 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
65 |
+
# rescale the results from guidance (fixes overexposure)
|
66 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
67 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
68 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
69 |
+
return noise_cfg
|
70 |
+
|
71 |
+
EXAMPLE_DOC_STRING = """
|
72 |
+
Examples:
|
73 |
+
```py
|
74 |
+
>>> import torch
|
75 |
+
>>> from hotshot_xl import HotshotPipelineXL
|
76 |
+
>>> from diffusers import ControlNetModel
|
77 |
+
|
78 |
+
>>> pipe = HotshotXLPipeline.from_pretrained(
|
79 |
+
... "hotshotco/Hotshot-XL",
|
80 |
+
... controlnet=ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
|
81 |
+
... )
|
82 |
+
|
83 |
+
>>> def canny(image):
|
84 |
+
>>> image = cv2.Canny(image, 100, 200)
|
85 |
+
>>> image = image[:, :, None]
|
86 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
87 |
+
>>> return Image.fromarray(image)
|
88 |
+
|
89 |
+
>>> # assuming you have 8 keyframes in current directory...
|
90 |
+
|
91 |
+
>>> keyframes = [f"image_{i}.jpg" for i in range(8)]
|
92 |
+
>>> control_images = [canny(Image.open(fp)) for fp in keyframes]
|
93 |
+
|
94 |
+
>>> pipe = pipe.to("cuda")
|
95 |
+
|
96 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
97 |
+
>>> video = pipe(prompt,
|
98 |
+
... width=672, height=384,
|
99 |
+
... original_size=(1920, 1080),
|
100 |
+
... target_size=(512, 512),
|
101 |
+
... output_type="tensor",
|
102 |
+
... controlnet_conditioning_scale=0.7,
|
103 |
+
... control_images=control_images
|
104 |
+
).video
|
105 |
+
```
|
106 |
+
"""
|
107 |
+
class HotshotXLControlNetPipeline(
|
108 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin
|
109 |
+
):
|
110 |
+
r"""
|
111 |
+
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
112 |
+
|
113 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
114 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
115 |
+
|
116 |
+
The pipeline also inherits the following loading methods:
|
117 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
118 |
+
- [`loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
119 |
+
- [`loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
120 |
+
|
121 |
+
Args:
|
122 |
+
vae ([`AutoencoderKL`]):
|
123 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
124 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
125 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
126 |
+
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
|
127 |
+
Second frozen text-encoder
|
128 |
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
129 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
130 |
+
A `CLIPTokenizer` to tokenize text.
|
131 |
+
tokenizer_2 ([`~transformers.CLIPTokenizer`]):
|
132 |
+
A `CLIPTokenizer` to tokenize text.
|
133 |
+
unet ([`UNet3DConditionModel`]):
|
134 |
+
A `UNet3DConditionModel` to denoise the encoded image latents.
|
135 |
+
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
|
136 |
+
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
137 |
+
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
138 |
+
additional conditioning.
|
139 |
+
scheduler ([`SchedulerMixin`]):
|
140 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
141 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
142 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
143 |
+
Whether the negative prompt embeddings should always be set to 0. Also see the config of
|
144 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
145 |
+
add_watermarker (`bool`, *optional*):
|
146 |
+
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to
|
147 |
+
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no
|
148 |
+
watermarker is used.
|
149 |
+
"""
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
vae: AutoencoderKL,
|
154 |
+
text_encoder: CLIPTextModel,
|
155 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
156 |
+
tokenizer: CLIPTokenizer,
|
157 |
+
tokenizer_2: CLIPTokenizer,
|
158 |
+
unet: UNet3DConditionModel,
|
159 |
+
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
160 |
+
scheduler: KarrasDiffusionSchedulers,
|
161 |
+
force_zeros_for_empty_prompt: bool = True,
|
162 |
+
add_watermarker: Optional[bool] = None,
|
163 |
+
):
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
if isinstance(controlnet, (list, tuple)):
|
167 |
+
controlnet = MultiControlNetModel(controlnet)
|
168 |
+
|
169 |
+
self.register_modules(
|
170 |
+
vae=vae,
|
171 |
+
text_encoder=text_encoder,
|
172 |
+
text_encoder_2=text_encoder_2,
|
173 |
+
tokenizer=tokenizer,
|
174 |
+
tokenizer_2=tokenizer_2,
|
175 |
+
unet=unet,
|
176 |
+
controlnet=controlnet,
|
177 |
+
scheduler=scheduler,
|
178 |
+
)
|
179 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
180 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
181 |
+
self.control_image_processor = VaeImageProcessor(
|
182 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
183 |
+
)
|
184 |
+
|
185 |
+
self.watermark = None
|
186 |
+
|
187 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
188 |
+
|
189 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
190 |
+
def enable_vae_slicing(self):
|
191 |
+
r"""
|
192 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
193 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
194 |
+
"""
|
195 |
+
self.vae.enable_slicing()
|
196 |
+
|
197 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
198 |
+
def disable_vae_slicing(self):
|
199 |
+
r"""
|
200 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
201 |
+
computing decoding in one step.
|
202 |
+
"""
|
203 |
+
self.vae.disable_slicing()
|
204 |
+
|
205 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
206 |
+
def enable_vae_tiling(self):
|
207 |
+
r"""
|
208 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
209 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
210 |
+
processing larger images.
|
211 |
+
"""
|
212 |
+
self.vae.enable_tiling()
|
213 |
+
|
214 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
215 |
+
def disable_vae_tiling(self):
|
216 |
+
r"""
|
217 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
218 |
+
computing decoding in one step.
|
219 |
+
"""
|
220 |
+
self.vae.disable_tiling()
|
221 |
+
|
222 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
223 |
+
r"""
|
224 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
225 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
226 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
227 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
228 |
+
"""
|
229 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
230 |
+
from accelerate import cpu_offload_with_hook
|
231 |
+
else:
|
232 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
233 |
+
|
234 |
+
device = torch.device(f"cuda:{gpu_id}")
|
235 |
+
|
236 |
+
if self.device.type != "cpu":
|
237 |
+
self.to("cpu", silence_dtype_warnings=True)
|
238 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
239 |
+
|
240 |
+
model_sequence = (
|
241 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
242 |
+
)
|
243 |
+
model_sequence.extend([self.unet, self.vae])
|
244 |
+
|
245 |
+
hook = None
|
246 |
+
for cpu_offloaded_model in model_sequence:
|
247 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
248 |
+
|
249 |
+
cpu_offload_with_hook(self.controlnet, device)
|
250 |
+
|
251 |
+
# We'll offload the last model manually.
|
252 |
+
self.final_offload_hook = hook
|
253 |
+
|
254 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
255 |
+
def encode_prompt(
|
256 |
+
self,
|
257 |
+
prompt: str,
|
258 |
+
prompt_2: Optional[str] = None,
|
259 |
+
device: Optional[torch.device] = None,
|
260 |
+
num_images_per_prompt: int = 1,
|
261 |
+
do_classifier_free_guidance: bool = True,
|
262 |
+
negative_prompt: Optional[str] = None,
|
263 |
+
negative_prompt_2: Optional[str] = None,
|
264 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
265 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
266 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
267 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
268 |
+
lora_scale: Optional[float] = None,
|
269 |
+
):
|
270 |
+
r"""
|
271 |
+
Encodes the prompt into text encoder hidden states.
|
272 |
+
|
273 |
+
Args:
|
274 |
+
prompt (`str` or `List[str]`, *optional*):
|
275 |
+
prompt to be encoded
|
276 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
277 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
278 |
+
used in both text-encoders
|
279 |
+
device: (`torch.device`):
|
280 |
+
torch device
|
281 |
+
num_images_per_prompt (`int`):
|
282 |
+
number of images that should be generated per prompt
|
283 |
+
do_classifier_free_guidance (`bool`):
|
284 |
+
whether to use classifier free guidance or not
|
285 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
286 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
287 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
288 |
+
less than `1`).
|
289 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
290 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
291 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
292 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
293 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
294 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
295 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
296 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
297 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
298 |
+
argument.
|
299 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
300 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
301 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
302 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
303 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
304 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
305 |
+
input argument.
|
306 |
+
lora_scale (`float`, *optional*):
|
307 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
308 |
+
"""
|
309 |
+
device = device or self._execution_device
|
310 |
+
|
311 |
+
# set lora scale so that monkey patched LoRA
|
312 |
+
# function of text encoder can correctly access it
|
313 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
314 |
+
self._lora_scale = lora_scale
|
315 |
+
|
316 |
+
if prompt is not None and isinstance(prompt, str):
|
317 |
+
batch_size = 1
|
318 |
+
elif prompt is not None and isinstance(prompt, list):
|
319 |
+
batch_size = len(prompt)
|
320 |
+
else:
|
321 |
+
batch_size = prompt_embeds.shape[0]
|
322 |
+
|
323 |
+
# Define tokenizers and text encoders
|
324 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
325 |
+
text_encoders = (
|
326 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
327 |
+
)
|
328 |
+
|
329 |
+
if prompt_embeds is None:
|
330 |
+
prompt_2 = prompt_2 or prompt
|
331 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
332 |
+
prompt_embeds_list = []
|
333 |
+
prompts = [prompt, prompt_2]
|
334 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
335 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
336 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
337 |
+
|
338 |
+
text_inputs = tokenizer(
|
339 |
+
prompt,
|
340 |
+
padding="max_length",
|
341 |
+
max_length=tokenizer.model_max_length,
|
342 |
+
truncation=True,
|
343 |
+
return_tensors="pt",
|
344 |
+
)
|
345 |
+
|
346 |
+
text_input_ids = text_inputs.input_ids
|
347 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
348 |
+
|
349 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
350 |
+
text_input_ids, untruncated_ids
|
351 |
+
):
|
352 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
353 |
+
logger.warning(
|
354 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
355 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
356 |
+
)
|
357 |
+
|
358 |
+
prompt_embeds = text_encoder(
|
359 |
+
text_input_ids.to(device),
|
360 |
+
output_hidden_states=True,
|
361 |
+
)
|
362 |
+
|
363 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
364 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
365 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
366 |
+
|
367 |
+
prompt_embeds_list.append(prompt_embeds)
|
368 |
+
|
369 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
370 |
+
|
371 |
+
# get unconditional embeddings for classifier free guidance
|
372 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
373 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
374 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
375 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
376 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
377 |
+
negative_prompt = negative_prompt or ""
|
378 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
379 |
+
|
380 |
+
uncond_tokens: List[str]
|
381 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
382 |
+
raise TypeError(
|
383 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
384 |
+
f" {type(prompt)}."
|
385 |
+
)
|
386 |
+
elif isinstance(negative_prompt, str):
|
387 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
388 |
+
elif batch_size != len(negative_prompt):
|
389 |
+
raise ValueError(
|
390 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
391 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
392 |
+
" the batch size of `prompt`."
|
393 |
+
)
|
394 |
+
else:
|
395 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
396 |
+
|
397 |
+
negative_prompt_embeds_list = []
|
398 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
399 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
400 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
401 |
+
|
402 |
+
max_length = prompt_embeds.shape[1]
|
403 |
+
uncond_input = tokenizer(
|
404 |
+
negative_prompt,
|
405 |
+
padding="max_length",
|
406 |
+
max_length=max_length,
|
407 |
+
truncation=True,
|
408 |
+
return_tensors="pt",
|
409 |
+
)
|
410 |
+
|
411 |
+
negative_prompt_embeds = text_encoder(
|
412 |
+
uncond_input.input_ids.to(device),
|
413 |
+
output_hidden_states=True,
|
414 |
+
)
|
415 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
416 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
417 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
418 |
+
|
419 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
420 |
+
|
421 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
422 |
+
|
423 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
424 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
425 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
426 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
427 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
428 |
+
|
429 |
+
if do_classifier_free_guidance:
|
430 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
431 |
+
seq_len = negative_prompt_embeds.shape[1]
|
432 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
433 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
434 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
435 |
+
|
436 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
437 |
+
bs_embed * num_images_per_prompt, -1
|
438 |
+
)
|
439 |
+
if do_classifier_free_guidance:
|
440 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
441 |
+
bs_embed * num_images_per_prompt, -1
|
442 |
+
)
|
443 |
+
|
444 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
445 |
+
|
446 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
447 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
448 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
449 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
450 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
451 |
+
# and should be between [0, 1]
|
452 |
+
|
453 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
454 |
+
extra_step_kwargs = {}
|
455 |
+
if accepts_eta:
|
456 |
+
extra_step_kwargs["eta"] = eta
|
457 |
+
|
458 |
+
# check if the scheduler accepts generator
|
459 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
460 |
+
if accepts_generator:
|
461 |
+
extra_step_kwargs["generator"] = generator
|
462 |
+
return extra_step_kwargs
|
463 |
+
|
464 |
+
def check_inputs(
|
465 |
+
self,
|
466 |
+
prompt,
|
467 |
+
prompt_2,
|
468 |
+
control_images,
|
469 |
+
video_length,
|
470 |
+
callback_steps,
|
471 |
+
negative_prompt=None,
|
472 |
+
negative_prompt_2=None,
|
473 |
+
prompt_embeds=None,
|
474 |
+
negative_prompt_embeds=None,
|
475 |
+
pooled_prompt_embeds=None,
|
476 |
+
negative_pooled_prompt_embeds=None,
|
477 |
+
controlnet_conditioning_scale=1.0,
|
478 |
+
control_guidance_start=0.0,
|
479 |
+
control_guidance_end=1.0,
|
480 |
+
):
|
481 |
+
if (callback_steps is None) or (
|
482 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
483 |
+
):
|
484 |
+
raise ValueError(
|
485 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
486 |
+
f" {type(callback_steps)}."
|
487 |
+
)
|
488 |
+
|
489 |
+
if prompt is not None and prompt_embeds is not None:
|
490 |
+
raise ValueError(
|
491 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
492 |
+
" only forward one of the two."
|
493 |
+
)
|
494 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
495 |
+
raise ValueError(
|
496 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
497 |
+
" only forward one of the two."
|
498 |
+
)
|
499 |
+
elif prompt is None and prompt_embeds is None:
|
500 |
+
raise ValueError(
|
501 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
502 |
+
)
|
503 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
504 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
505 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
506 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
507 |
+
|
508 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
509 |
+
raise ValueError(
|
510 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
511 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
512 |
+
)
|
513 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
514 |
+
raise ValueError(
|
515 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
516 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
517 |
+
)
|
518 |
+
|
519 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
520 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
521 |
+
raise ValueError(
|
522 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
523 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
524 |
+
f" {negative_prompt_embeds.shape}."
|
525 |
+
)
|
526 |
+
|
527 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
528 |
+
raise ValueError(
|
529 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
530 |
+
)
|
531 |
+
|
532 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
533 |
+
raise ValueError(
|
534 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
535 |
+
)
|
536 |
+
|
537 |
+
# `prompt` needs more sophisticated handling when there are multiple
|
538 |
+
# conditionings.
|
539 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
540 |
+
if isinstance(prompt, list):
|
541 |
+
logger.warning(
|
542 |
+
f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
|
543 |
+
" prompts. The conditionings will be fixed across the prompts."
|
544 |
+
)
|
545 |
+
|
546 |
+
# Check `image`
|
547 |
+
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
548 |
+
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
549 |
+
)
|
550 |
+
if (
|
551 |
+
isinstance(self.controlnet, ControlNetModel)
|
552 |
+
or is_compiled
|
553 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
554 |
+
):
|
555 |
+
|
556 |
+
assert len(control_images) == video_length
|
557 |
+
# for image in control_images:
|
558 |
+
# self.check_image(image, prompt, prompt_embeds)
|
559 |
+
elif (
|
560 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
561 |
+
or is_compiled
|
562 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
563 |
+
):
|
564 |
+
...
|
565 |
+
# todo
|
566 |
+
#
|
567 |
+
# if not isinstance(image, list):
|
568 |
+
# raise TypeError("For multiple controlnets: `image` must be type `list`")
|
569 |
+
#
|
570 |
+
# # When `image` is a nested list:
|
571 |
+
# # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
|
572 |
+
# elif any(isinstance(i, list) for i in image):
|
573 |
+
# raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
574 |
+
# elif len(image) != len(self.controlnet.nets):
|
575 |
+
# raise ValueError(
|
576 |
+
# f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
|
577 |
+
# )
|
578 |
+
#
|
579 |
+
# for image_ in image:
|
580 |
+
# self.check_image(image_, prompt, prompt_embeds)
|
581 |
+
else:
|
582 |
+
assert False
|
583 |
+
|
584 |
+
# Check `controlnet_conditioning_scale`
|
585 |
+
if (
|
586 |
+
isinstance(self.controlnet, ControlNetModel)
|
587 |
+
or is_compiled
|
588 |
+
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
589 |
+
):
|
590 |
+
if not isinstance(controlnet_conditioning_scale, float):
|
591 |
+
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
592 |
+
elif (
|
593 |
+
isinstance(self.controlnet, MultiControlNetModel)
|
594 |
+
or is_compiled
|
595 |
+
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
596 |
+
):
|
597 |
+
if isinstance(controlnet_conditioning_scale, list):
|
598 |
+
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
599 |
+
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
600 |
+
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
601 |
+
self.controlnet.nets
|
602 |
+
):
|
603 |
+
raise ValueError(
|
604 |
+
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
605 |
+
" the same length as the number of controlnets"
|
606 |
+
)
|
607 |
+
else:
|
608 |
+
assert False
|
609 |
+
|
610 |
+
if not isinstance(control_guidance_start, (tuple, list)):
|
611 |
+
control_guidance_start = [control_guidance_start]
|
612 |
+
|
613 |
+
if not isinstance(control_guidance_end, (tuple, list)):
|
614 |
+
control_guidance_end = [control_guidance_end]
|
615 |
+
|
616 |
+
if len(control_guidance_start) != len(control_guidance_end):
|
617 |
+
raise ValueError(
|
618 |
+
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
619 |
+
)
|
620 |
+
|
621 |
+
if isinstance(self.controlnet, MultiControlNetModel):
|
622 |
+
if len(control_guidance_start) != len(self.controlnet.nets):
|
623 |
+
raise ValueError(
|
624 |
+
f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
|
625 |
+
)
|
626 |
+
|
627 |
+
for start, end in zip(control_guidance_start, control_guidance_end):
|
628 |
+
if start >= end:
|
629 |
+
raise ValueError(
|
630 |
+
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
631 |
+
)
|
632 |
+
if start < 0.0:
|
633 |
+
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
634 |
+
if end > 1.0:
|
635 |
+
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
636 |
+
|
637 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
|
638 |
+
def check_image(self, image, prompt, prompt_embeds):
|
639 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
640 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
641 |
+
image_is_np = isinstance(image, np.ndarray)
|
642 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
643 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
644 |
+
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
645 |
+
|
646 |
+
if (
|
647 |
+
not image_is_pil
|
648 |
+
and not image_is_tensor
|
649 |
+
and not image_is_np
|
650 |
+
and not image_is_pil_list
|
651 |
+
and not image_is_tensor_list
|
652 |
+
and not image_is_np_list
|
653 |
+
):
|
654 |
+
raise TypeError(
|
655 |
+
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
656 |
+
)
|
657 |
+
|
658 |
+
if image_is_pil:
|
659 |
+
image_batch_size = 1
|
660 |
+
else:
|
661 |
+
image_batch_size = len(image)
|
662 |
+
|
663 |
+
if prompt is not None and isinstance(prompt, str):
|
664 |
+
prompt_batch_size = 1
|
665 |
+
elif prompt is not None and isinstance(prompt, list):
|
666 |
+
prompt_batch_size = len(prompt)
|
667 |
+
elif prompt_embeds is not None:
|
668 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
669 |
+
|
670 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
671 |
+
raise ValueError(
|
672 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
673 |
+
)
|
674 |
+
|
675 |
+
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
676 |
+
def prepare_images(
|
677 |
+
self,
|
678 |
+
images,
|
679 |
+
width,
|
680 |
+
height,
|
681 |
+
batch_size,
|
682 |
+
num_images_per_prompt,
|
683 |
+
device,
|
684 |
+
dtype,
|
685 |
+
do_classifier_free_guidance=False,
|
686 |
+
guess_mode=False,
|
687 |
+
):
|
688 |
+
images_pre_processed = [self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) for image in images]
|
689 |
+
|
690 |
+
images_pre_processed = torch.cat(images_pre_processed, dim=0)
|
691 |
+
|
692 |
+
repeat_factor = [1] * len(images_pre_processed.shape)
|
693 |
+
repeat_factor[0] = batch_size * num_images_per_prompt
|
694 |
+
images_pre_processed = images_pre_processed.repeat(*repeat_factor)
|
695 |
+
|
696 |
+
images = images_pre_processed.unsqueeze(0)
|
697 |
+
|
698 |
+
# image_batch_size = image.shape[0]
|
699 |
+
#
|
700 |
+
# if image_batch_size == 1:
|
701 |
+
# repeat_by = batch_size
|
702 |
+
# else:
|
703 |
+
# # image batch size is the same as prompt batch size
|
704 |
+
# repeat_by = num_images_per_prompt
|
705 |
+
|
706 |
+
#image = image.repeat_interleave(repeat_by, dim=0)
|
707 |
+
|
708 |
+
images = images.to(device=device, dtype=dtype)
|
709 |
+
|
710 |
+
if do_classifier_free_guidance and not guess_mode:
|
711 |
+
repeat_factor = [1] * len(images.shape)
|
712 |
+
repeat_factor[0] = 2
|
713 |
+
images = images.repeat(*repeat_factor)
|
714 |
+
|
715 |
+
return images
|
716 |
+
|
717 |
+
# def prepare_images(self,
|
718 |
+
# images: list,
|
719 |
+
# width,
|
720 |
+
# height,
|
721 |
+
# batch_size,
|
722 |
+
# num_images_per_prompt,
|
723 |
+
# device,
|
724 |
+
# dtype,
|
725 |
+
# do_classifier_free_guidance=False,
|
726 |
+
# guess_mode=False):
|
727 |
+
#
|
728 |
+
# images = [self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) for image in images]
|
729 |
+
#
|
730 |
+
# image_batch_size = image.shape[0]
|
731 |
+
#
|
732 |
+
# if image_batch_size == 1:
|
733 |
+
# repeat_by = batch_size
|
734 |
+
# else:
|
735 |
+
# # image batch size is the same as prompt batch size
|
736 |
+
# repeat_by = num_images_per_prompt
|
737 |
+
#
|
738 |
+
# image = image.repeat_interleave(repeat_by, dim=0)
|
739 |
+
#
|
740 |
+
# image = image.to(device=device, dtype=dtype)
|
741 |
+
#
|
742 |
+
# if do_classifier_free_guidance and not guess_mode:
|
743 |
+
# image = torch.cat([image] * 2)
|
744 |
+
#
|
745 |
+
# return image
|
746 |
+
|
747 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
748 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
749 |
+
#shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
750 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
751 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
752 |
+
raise ValueError(
|
753 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
754 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
755 |
+
)
|
756 |
+
|
757 |
+
if latents is None:
|
758 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
759 |
+
else:
|
760 |
+
latents = latents.to(device)
|
761 |
+
|
762 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
763 |
+
latents = latents * self.scheduler.init_noise_sigma
|
764 |
+
return latents
|
765 |
+
|
766 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids
|
767 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
768 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
769 |
+
|
770 |
+
passed_add_embed_dim = (
|
771 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
772 |
+
)
|
773 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
774 |
+
|
775 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
776 |
+
raise ValueError(
|
777 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
778 |
+
)
|
779 |
+
|
780 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
781 |
+
return add_time_ids
|
782 |
+
|
783 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
784 |
+
def upcast_vae(self):
|
785 |
+
dtype = self.vae.dtype
|
786 |
+
self.vae.to(dtype=torch.float32)
|
787 |
+
use_torch_2_0_or_xformers = isinstance(
|
788 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
789 |
+
(
|
790 |
+
AttnProcessor2_0,
|
791 |
+
XFormersAttnProcessor,
|
792 |
+
LoRAXFormersAttnProcessor,
|
793 |
+
LoRAAttnProcessor2_0,
|
794 |
+
),
|
795 |
+
)
|
796 |
+
# if xformers or torch_2_0 is used attention block does not need
|
797 |
+
# to be in float32 which can save lots of memory
|
798 |
+
if use_torch_2_0_or_xformers:
|
799 |
+
self.vae.post_quant_conv.to(dtype)
|
800 |
+
self.vae.decoder.conv_in.to(dtype)
|
801 |
+
self.vae.decoder.mid_block.to(dtype)
|
802 |
+
|
803 |
+
@torch.no_grad()
|
804 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
805 |
+
def __call__(
|
806 |
+
self,
|
807 |
+
prompt: Union[str, List[str]] = None,
|
808 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
809 |
+
video_length: Optional[int] = 8,
|
810 |
+
control_images: List[PIL.Image.Image] = None,
|
811 |
+
height: Optional[int] = None,
|
812 |
+
width: Optional[int] = None,
|
813 |
+
num_inference_steps: int = 50,
|
814 |
+
guidance_scale: float = 5.0,
|
815 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
816 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
817 |
+
num_images_per_prompt: Optional[int] = 1,
|
818 |
+
eta: float = 0.0,
|
819 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
820 |
+
latents: Optional[torch.FloatTensor] = None,
|
821 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
822 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
823 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
824 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
825 |
+
output_type: Optional[str] = "pil",
|
826 |
+
return_dict: bool = True,
|
827 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
828 |
+
callback_steps: int = 1,
|
829 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
830 |
+
guidance_rescale: float = 0.0,
|
831 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
832 |
+
guess_mode: bool = False,
|
833 |
+
control_guidance_start: Union[float, List[float]] = 0.0,
|
834 |
+
control_guidance_end: Union[float, List[float]] = 1.0,
|
835 |
+
original_size: Tuple[int, int] = None,
|
836 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
837 |
+
target_size: Tuple[int, int] = None,
|
838 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
839 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
840 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
841 |
+
):
|
842 |
+
r"""
|
843 |
+
The call function to the pipeline for generation.
|
844 |
+
|
845 |
+
Args:
|
846 |
+
prompt (`str` or `List[str]`, *optional*):
|
847 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
848 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
849 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
850 |
+
used in both text-encoders.
|
851 |
+
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
852 |
+
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
853 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
854 |
+
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
|
855 |
+
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
|
856 |
+
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
857 |
+
`init`, images must be passed as a list such that each element of the list can be correctly batched for
|
858 |
+
input to a single ControlNet.
|
859 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
860 |
+
The height in pixels of the generated image.
|
861 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
862 |
+
The width in pixels of the generated image.
|
863 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
864 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
865 |
+
expense of slower inference.
|
866 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
867 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
868 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
869 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
870 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
871 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
872 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
873 |
+
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2`
|
874 |
+
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders.
|
875 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
876 |
+
The number of images to generate per prompt.
|
877 |
+
eta (`float`, *optional*, defaults to 0.0):
|
878 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
879 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
880 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
881 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
882 |
+
generation deterministic.
|
883 |
+
latents (`torch.FloatTensor`, *optional*):
|
884 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
885 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
886 |
+
tensor is generated by sampling using the supplied random `generator`.
|
887 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
888 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
889 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
890 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
891 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
892 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
893 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
894 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
895 |
+
not provided, pooled text embeddings are generated from `prompt` input argument.
|
896 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
897 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt
|
898 |
+
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input
|
899 |
+
argument.
|
900 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
901 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
902 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
903 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
904 |
+
plain tuple.
|
905 |
+
callback (`Callable`, *optional*):
|
906 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
907 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
908 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
909 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
910 |
+
every step.
|
911 |
+
cross_attention_kwargs (`dict`, *optional*):
|
912 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
913 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
914 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
915 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
916 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
917 |
+
the corresponding scale as a list.
|
918 |
+
guess_mode (`bool`, *optional*, defaults to `False`):
|
919 |
+
The ControlNet encoder tries to recognize the content of the input image even if you remove all
|
920 |
+
prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
|
921 |
+
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
922 |
+
The percentage of total steps at which the ControlNet starts applying.
|
923 |
+
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
924 |
+
The percentage of total steps at which the ControlNet stops applying.
|
925 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
926 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
927 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
928 |
+
explained in section 2.2 of
|
929 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
930 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
931 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
932 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
933 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
934 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
935 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
936 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
937 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
938 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
939 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
940 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
941 |
+
micro-conditioning as explained in section 2.2 of
|
942 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
943 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
944 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
945 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
946 |
+
micro-conditioning as explained in section 2.2 of
|
947 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
948 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
949 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
950 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
951 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
952 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
953 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
954 |
+
|
955 |
+
Examples:
|
956 |
+
|
957 |
+
Returns:
|
958 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
959 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
960 |
+
otherwise a `tuple` is returned containing the output images.
|
961 |
+
"""
|
962 |
+
|
963 |
+
|
964 |
+
if video_length > 1 and num_images_per_prompt > 1:
|
965 |
+
print(f"Warning - setting num_images_per_prompt = 1 because video_length = {video_length}")
|
966 |
+
num_images_per_prompt = 1
|
967 |
+
|
968 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
969 |
+
|
970 |
+
# align format for control guidance
|
971 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
972 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
973 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
974 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
975 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
976 |
+
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
|
977 |
+
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
|
978 |
+
control_guidance_end
|
979 |
+
]
|
980 |
+
|
981 |
+
# 1. Check inputs. Raise error if not correct
|
982 |
+
self.check_inputs(
|
983 |
+
prompt,
|
984 |
+
prompt_2,
|
985 |
+
control_images,
|
986 |
+
video_length,
|
987 |
+
callback_steps,
|
988 |
+
negative_prompt,
|
989 |
+
negative_prompt_2,
|
990 |
+
prompt_embeds,
|
991 |
+
negative_prompt_embeds,
|
992 |
+
pooled_prompt_embeds,
|
993 |
+
negative_pooled_prompt_embeds,
|
994 |
+
controlnet_conditioning_scale,
|
995 |
+
control_guidance_start,
|
996 |
+
control_guidance_end,
|
997 |
+
)
|
998 |
+
|
999 |
+
# 2. Define call parameters
|
1000 |
+
if prompt is not None and isinstance(prompt, str):
|
1001 |
+
batch_size = 1
|
1002 |
+
elif prompt is not None and isinstance(prompt, list):
|
1003 |
+
batch_size = len(prompt)
|
1004 |
+
else:
|
1005 |
+
batch_size = prompt_embeds.shape[0]
|
1006 |
+
|
1007 |
+
device = self._execution_device
|
1008 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1009 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1010 |
+
# corresponds to doing no classifier free guidance.
|
1011 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1012 |
+
|
1013 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
1014 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
1015 |
+
|
1016 |
+
global_pool_conditions = (
|
1017 |
+
controlnet.config.global_pool_conditions
|
1018 |
+
if isinstance(controlnet, ControlNetModel)
|
1019 |
+
else controlnet.nets[0].config.global_pool_conditions
|
1020 |
+
)
|
1021 |
+
guess_mode = guess_mode or global_pool_conditions
|
1022 |
+
|
1023 |
+
# 3. Encode input prompt
|
1024 |
+
text_encoder_lora_scale = (
|
1025 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1026 |
+
)
|
1027 |
+
(
|
1028 |
+
prompt_embeds,
|
1029 |
+
negative_prompt_embeds,
|
1030 |
+
pooled_prompt_embeds,
|
1031 |
+
negative_pooled_prompt_embeds,
|
1032 |
+
) = self.encode_prompt(
|
1033 |
+
prompt,
|
1034 |
+
prompt_2,
|
1035 |
+
device,
|
1036 |
+
num_images_per_prompt,
|
1037 |
+
do_classifier_free_guidance,
|
1038 |
+
negative_prompt,
|
1039 |
+
negative_prompt_2,
|
1040 |
+
prompt_embeds=prompt_embeds,
|
1041 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1042 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1043 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1044 |
+
lora_scale=text_encoder_lora_scale,
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
|
1048 |
+
# 4. Prepare image
|
1049 |
+
if isinstance(controlnet, ControlNetModel):
|
1050 |
+
|
1051 |
+
assert len(control_images) == video_length * batch_size
|
1052 |
+
|
1053 |
+
images = self.prepare_images(
|
1054 |
+
images=control_images,
|
1055 |
+
width=width,
|
1056 |
+
height=height,
|
1057 |
+
batch_size=batch_size * num_images_per_prompt,
|
1058 |
+
num_images_per_prompt=num_images_per_prompt,
|
1059 |
+
device=device,
|
1060 |
+
dtype=controlnet.dtype,
|
1061 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
1062 |
+
guess_mode=guess_mode,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
height, width = images.shape[-2:]
|
1066 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
1067 |
+
|
1068 |
+
raise Exception("not supported yet")
|
1069 |
+
|
1070 |
+
# images = []
|
1071 |
+
#
|
1072 |
+
# for image_ in control_images:
|
1073 |
+
# image_ = self.prepare_image(
|
1074 |
+
# image=image_,
|
1075 |
+
# width=width,
|
1076 |
+
# height=height,
|
1077 |
+
# batch_size=batch_size * num_images_per_prompt,
|
1078 |
+
# num_images_per_prompt=num_images_per_prompt,
|
1079 |
+
# device=device,
|
1080 |
+
# dtype=controlnet.dtype,
|
1081 |
+
# do_classifier_free_guidance=do_classifier_free_guidance,
|
1082 |
+
# guess_mode=guess_mode,
|
1083 |
+
# )
|
1084 |
+
#
|
1085 |
+
# images.append(image_)
|
1086 |
+
#
|
1087 |
+
# image = images
|
1088 |
+
# height, width = image[0].shape[-2:]
|
1089 |
+
else:
|
1090 |
+
assert False
|
1091 |
+
|
1092 |
+
# 5. Prepare timesteps
|
1093 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1094 |
+
timesteps = self.scheduler.timesteps
|
1095 |
+
|
1096 |
+
# 6. Prepare latent variables
|
1097 |
+
num_channels_latents = self.unet.config.in_channels
|
1098 |
+
latents = self.prepare_latents(
|
1099 |
+
batch_size * num_images_per_prompt,
|
1100 |
+
num_channels_latents,
|
1101 |
+
video_length,
|
1102 |
+
height,
|
1103 |
+
width,
|
1104 |
+
prompt_embeds.dtype,
|
1105 |
+
device,
|
1106 |
+
generator,
|
1107 |
+
latents,
|
1108 |
+
)
|
1109 |
+
|
1110 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1111 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1112 |
+
|
1113 |
+
# 7.1 Create tensor stating which controlnets to keep
|
1114 |
+
controlnet_keep = []
|
1115 |
+
for i in range(len(timesteps)):
|
1116 |
+
keeps = [
|
1117 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
1118 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
1119 |
+
]
|
1120 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
1121 |
+
|
1122 |
+
# 7.2 Prepare added time ids & embeddings
|
1123 |
+
# if isinstance(image, list):
|
1124 |
+
# original_size = original_size or image[0].shape[-2:]
|
1125 |
+
# else:
|
1126 |
+
original_size = original_size or images.shape[-2:]
|
1127 |
+
target_size = target_size or (height, width)
|
1128 |
+
|
1129 |
+
add_text_embeds = pooled_prompt_embeds
|
1130 |
+
add_time_ids = self._get_add_time_ids(
|
1131 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1135 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1136 |
+
negative_original_size,
|
1137 |
+
negative_crops_coords_top_left,
|
1138 |
+
negative_target_size,
|
1139 |
+
dtype=prompt_embeds.dtype,
|
1140 |
+
)
|
1141 |
+
else:
|
1142 |
+
negative_add_time_ids = add_time_ids
|
1143 |
+
|
1144 |
+
if do_classifier_free_guidance:
|
1145 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1146 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1147 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1148 |
+
|
1149 |
+
prompt_embeds = prompt_embeds.to(device)
|
1150 |
+
add_text_embeds = add_text_embeds.to(device)
|
1151 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1152 |
+
|
1153 |
+
# 8. Denoising loop
|
1154 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1155 |
+
|
1156 |
+
images = rearrange(images, "b f c h w -> (b f) c h w")
|
1157 |
+
|
1158 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1159 |
+
for i, t in enumerate(timesteps):
|
1160 |
+
# expand the latents if we are doing classifier free guidance
|
1161 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1162 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1163 |
+
|
1164 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1165 |
+
|
1166 |
+
# controlnet(s) inference
|
1167 |
+
if guess_mode and do_classifier_free_guidance:
|
1168 |
+
# Infer ControlNet only for the conditional batch.
|
1169 |
+
control_model_input = latents
|
1170 |
+
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
1171 |
+
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
|
1172 |
+
controlnet_added_cond_kwargs = {
|
1173 |
+
"text_embeds": add_text_embeds.chunk(2)[1],
|
1174 |
+
"time_ids": add_time_ids.chunk(2)[1],
|
1175 |
+
}
|
1176 |
+
else:
|
1177 |
+
control_model_input = latent_model_input
|
1178 |
+
controlnet_prompt_embeds = prompt_embeds
|
1179 |
+
controlnet_added_cond_kwargs = added_cond_kwargs
|
1180 |
+
|
1181 |
+
if isinstance(controlnet_keep[i], list):
|
1182 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
1183 |
+
else:
|
1184 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
1185 |
+
if isinstance(controlnet_cond_scale, list):
|
1186 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
1187 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
1188 |
+
|
1189 |
+
|
1190 |
+
# this will be non interlaced when arranged!
|
1191 |
+
control_model_input = rearrange(control_model_input, "b c f h w -> (b f) c h w")
|
1192 |
+
# if we chunked this by 2 - the top 8 frames will be positive for cfg
|
1193 |
+
# the bottom half will be negative for cfg...
|
1194 |
+
|
1195 |
+
if video_length > 1:
|
1196 |
+
# use repeat_interleave as we need to match the rearrangement above.
|
1197 |
+
|
1198 |
+
controlnet_prompt_embeds = controlnet_prompt_embeds.repeat_interleave(video_length, dim=0)
|
1199 |
+
controlnet_added_cond_kwargs = {
|
1200 |
+
"text_embeds": controlnet_added_cond_kwargs['text_embeds'].repeat_interleave(video_length, dim=0),
|
1201 |
+
"time_ids": controlnet_added_cond_kwargs['time_ids'].repeat_interleave(video_length, dim=0)
|
1202 |
+
}
|
1203 |
+
|
1204 |
+
# if type(image) is list:
|
1205 |
+
# image = torch.cat(image, dim=0)
|
1206 |
+
|
1207 |
+
# todo - check if video_length > 1 this needs to produce num_frames * batch_size samples...
|
1208 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1209 |
+
control_model_input,
|
1210 |
+
t,
|
1211 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
1212 |
+
controlnet_cond=images,
|
1213 |
+
conditioning_scale=cond_scale,
|
1214 |
+
guess_mode=guess_mode,
|
1215 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
1216 |
+
return_dict=False,
|
1217 |
+
)
|
1218 |
+
|
1219 |
+
for j, sample in enumerate(down_block_res_samples):
|
1220 |
+
down_block_res_samples[j] = rearrange(sample, "(b f) c h w -> b c f h w", f=video_length)
|
1221 |
+
|
1222 |
+
mid_block_res_sample = rearrange(mid_block_res_sample, "(b f) c h w -> b c f h w", f=video_length)
|
1223 |
+
|
1224 |
+
if guess_mode and do_classifier_free_guidance:
|
1225 |
+
# Infered ControlNet only for the conditional batch.
|
1226 |
+
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
1227 |
+
# add 0 to the unconditional batch to keep it unchanged.
|
1228 |
+
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1229 |
+
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1230 |
+
|
1231 |
+
# predict the noise residual
|
1232 |
+
noise_pred = self.unet(
|
1233 |
+
latent_model_input,
|
1234 |
+
t,
|
1235 |
+
encoder_hidden_states=prompt_embeds,
|
1236 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1237 |
+
down_block_additional_residuals=down_block_res_samples,
|
1238 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1239 |
+
added_cond_kwargs=added_cond_kwargs,
|
1240 |
+
return_dict=False,
|
1241 |
+
enable_temporal_attentions=video_length > 1
|
1242 |
+
)[0]
|
1243 |
+
|
1244 |
+
# perform guidance
|
1245 |
+
if do_classifier_free_guidance:
|
1246 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1247 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1248 |
+
|
1249 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
1250 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1251 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
1252 |
+
|
1253 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1254 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1255 |
+
|
1256 |
+
# call the callback, if provided
|
1257 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1258 |
+
progress_bar.update()
|
1259 |
+
if callback is not None and i % callback_steps == 0:
|
1260 |
+
callback(i, t, latents)
|
1261 |
+
|
1262 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1263 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
1264 |
+
self.upcast_vae()
|
1265 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1266 |
+
|
1267 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1268 |
+
# manually for max memory savings
|
1269 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1270 |
+
self.unet.to("cpu")
|
1271 |
+
self.controlnet.to("cpu")
|
1272 |
+
torch.cuda.empty_cache()
|
1273 |
+
|
1274 |
+
# if not output_type == "latent":
|
1275 |
+
# # make sure the VAE is in float32 mode, as it overflows in float16
|
1276 |
+
# needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1277 |
+
#
|
1278 |
+
# if needs_upcasting:
|
1279 |
+
# self.upcast_vae()
|
1280 |
+
# latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1281 |
+
#
|
1282 |
+
# image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
1283 |
+
#
|
1284 |
+
# # cast back to fp16 if needed
|
1285 |
+
# if needs_upcasting:
|
1286 |
+
# self.vae.to(dtype=torch.float16)
|
1287 |
+
# else:
|
1288 |
+
# image = latents
|
1289 |
+
# return StableDiffusionXLPipelineOutput(images=image)
|
1290 |
+
|
1291 |
+
video = self.decode_latents(latents)
|
1292 |
+
|
1293 |
+
# Convert to tensor
|
1294 |
+
if output_type == "tensor":
|
1295 |
+
video = torch.from_numpy(video)
|
1296 |
+
|
1297 |
+
if not return_dict:
|
1298 |
+
return video
|
1299 |
+
|
1300 |
+
return HotshotPipelineXLOutput(videos=video)
|
1301 |
+
|
1302 |
+
def decode_latents(self, latents):
|
1303 |
+
video_length = latents.shape[2]
|
1304 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
1305 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
1306 |
+
# video = self.vae.decode(latents).sample
|
1307 |
+
video = []
|
1308 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
1309 |
+
video.append(self.vae.decode(
|
1310 |
+
latents[frame_idx:frame_idx+1]).sample)
|
1311 |
+
video = torch.cat(video)
|
1312 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
1313 |
+
video = (video / 2.0 + 0.5).clamp(0, 1)
|
1314 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
1315 |
+
video = video.cpu().float().numpy()
|
1316 |
+
return video
|
1317 |
+
|
1318 |
+
# Overrride to properly handle the loading and unloading of the additional text encoder.
|
1319 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.load_lora_weights
|
1320 |
+
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
1321 |
+
# We could have accessed the unet config from `lora_state_dict()` too. We pass
|
1322 |
+
# it here explicitly to be able to tell that it's coming from an SDXL
|
1323 |
+
# pipeline.
|
1324 |
+
state_dict, network_alphas = self.lora_state_dict(
|
1325 |
+
pretrained_model_name_or_path_or_dict,
|
1326 |
+
unet_config=self.unet.config,
|
1327 |
+
**kwargs,
|
1328 |
+
)
|
1329 |
+
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
|
1330 |
+
|
1331 |
+
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
1332 |
+
if len(text_encoder_state_dict) > 0:
|
1333 |
+
self.load_lora_into_text_encoder(
|
1334 |
+
text_encoder_state_dict,
|
1335 |
+
network_alphas=network_alphas,
|
1336 |
+
text_encoder=self.text_encoder,
|
1337 |
+
prefix="text_encoder",
|
1338 |
+
lora_scale=self.lora_scale,
|
1339 |
+
)
|
1340 |
+
|
1341 |
+
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
1342 |
+
if len(text_encoder_2_state_dict) > 0:
|
1343 |
+
self.load_lora_into_text_encoder(
|
1344 |
+
text_encoder_2_state_dict,
|
1345 |
+
network_alphas=network_alphas,
|
1346 |
+
text_encoder=self.text_encoder_2,
|
1347 |
+
prefix="text_encoder_2",
|
1348 |
+
lora_scale=self.lora_scale,
|
1349 |
+
)
|
1350 |
+
|
1351 |
+
@classmethod
|
1352 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.save_lora_weights
|
1353 |
+
def save_lora_weights(
|
1354 |
+
self,
|
1355 |
+
save_directory: Union[str, os.PathLike],
|
1356 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1357 |
+
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1358 |
+
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
1359 |
+
is_main_process: bool = True,
|
1360 |
+
weight_name: str = None,
|
1361 |
+
save_function: Callable = None,
|
1362 |
+
safe_serialization: bool = True,
|
1363 |
+
):
|
1364 |
+
state_dict = {}
|
1365 |
+
|
1366 |
+
def pack_weights(layers, prefix):
|
1367 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
1368 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
1369 |
+
return layers_state_dict
|
1370 |
+
|
1371 |
+
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
1372 |
+
|
1373 |
+
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
1374 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
1375 |
+
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
1376 |
+
|
1377 |
+
self.write_lora_layers(
|
1378 |
+
state_dict=state_dict,
|
1379 |
+
save_directory=save_directory,
|
1380 |
+
is_main_process=is_main_process,
|
1381 |
+
weight_name=weight_name,
|
1382 |
+
save_function=save_function,
|
1383 |
+
safe_serialization=safe_serialization,
|
1384 |
+
)
|
1385 |
+
|
1386 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._remove_text_encoder_monkey_patch
|
1387 |
+
def _remove_text_encoder_monkey_patch(self):
|
1388 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
|
1389 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
|
Hotshot-XL/build/lib/hotshot_xl/pipelines/hotshot_xl_pipeline.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modifications:
|
16 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
17 |
+
# - Adapted the SDXL Pipeline to work temporally
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
import inspect
|
22 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
26 |
+
from hotshot_xl import HotshotPipelineXLOutput
|
27 |
+
|
28 |
+
from diffusers.image_processor import VaeImageProcessor
|
29 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
30 |
+
from diffusers.models import AutoencoderKL
|
31 |
+
from hotshot_xl.models.unet import UNet3DConditionModel
|
32 |
+
from diffusers.models.attention_processor import (
|
33 |
+
AttnProcessor2_0,
|
34 |
+
LoRAAttnProcessor2_0,
|
35 |
+
LoRAXFormersAttnProcessor,
|
36 |
+
XFormersAttnProcessor,
|
37 |
+
)
|
38 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
39 |
+
from diffusers.utils import (
|
40 |
+
is_accelerate_available,
|
41 |
+
is_accelerate_version,
|
42 |
+
logging,
|
43 |
+
replace_example_docstring,
|
44 |
+
)
|
45 |
+
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
47 |
+
from tqdm import tqdm
|
48 |
+
from einops import repeat, rearrange
|
49 |
+
from diffusers.utils import deprecate, logging
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
+
|
53 |
+
EXAMPLE_DOC_STRING = """
|
54 |
+
Examples:
|
55 |
+
```py
|
56 |
+
>>> import torch
|
57 |
+
>>> from hotshot_xl import HotshotPipelineXL
|
58 |
+
|
59 |
+
>>> pipe = HotshotXLPipeline.from_pretrained(
|
60 |
+
... "hotshotco/Hotshot-XL"
|
61 |
+
... )
|
62 |
+
>>> pipe = pipe.to("cuda")
|
63 |
+
|
64 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
65 |
+
>>> video = pipe(prompt,
|
66 |
+
... width=672, height=384,
|
67 |
+
... original_size=(1920, 1080),
|
68 |
+
... target_size=(512, 512),
|
69 |
+
... output_type="tensor"
|
70 |
+
).video
|
71 |
+
```
|
72 |
+
"""
|
73 |
+
|
74 |
+
|
75 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
76 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
77 |
+
"""
|
78 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
79 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
80 |
+
"""
|
81 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
82 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
83 |
+
# rescale the results from guidance (fixes overexposure)
|
84 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
85 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
86 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
87 |
+
return noise_cfg
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
class HotshotXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
93 |
+
r"""
|
94 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
95 |
+
|
96 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
97 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
98 |
+
|
99 |
+
In addition the pipeline inherits the following loading methods:
|
100 |
+
- *LoRA*: [`HotshotPipelineXL.load_lora_weights`]
|
101 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
102 |
+
|
103 |
+
as well as the following saving methods:
|
104 |
+
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]
|
105 |
+
|
106 |
+
Args:
|
107 |
+
vae ([`AutoencoderKL`]):
|
108 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
109 |
+
text_encoder ([`CLIPTextModel`]):
|
110 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
111 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
112 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
113 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
114 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
115 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
116 |
+
specifically the
|
117 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
118 |
+
variant.
|
119 |
+
tokenizer (`CLIPTokenizer`):
|
120 |
+
Tokenizer of class
|
121 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
122 |
+
tokenizer_2 (`CLIPTokenizer`):
|
123 |
+
Second Tokenizer of class
|
124 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
125 |
+
unet ([`UNet3DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
126 |
+
scheduler ([`SchedulerMixin`]):
|
127 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
128 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
129 |
+
"""
|
130 |
+
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
vae: AutoencoderKL,
|
134 |
+
text_encoder: CLIPTextModel,
|
135 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
136 |
+
tokenizer: CLIPTokenizer,
|
137 |
+
tokenizer_2: CLIPTokenizer,
|
138 |
+
unet: UNet3DConditionModel,
|
139 |
+
scheduler: KarrasDiffusionSchedulers,
|
140 |
+
force_zeros_for_empty_prompt: bool = True,
|
141 |
+
add_watermarker: Optional[bool] = None,
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.register_modules(
|
146 |
+
vae=vae,
|
147 |
+
text_encoder=text_encoder,
|
148 |
+
text_encoder_2=text_encoder_2,
|
149 |
+
tokenizer=tokenizer,
|
150 |
+
tokenizer_2=tokenizer_2,
|
151 |
+
unet=unet,
|
152 |
+
scheduler=scheduler,
|
153 |
+
)
|
154 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
155 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
156 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
157 |
+
self.default_sample_size = self.unet.config.sample_size
|
158 |
+
self.watermark = None
|
159 |
+
|
160 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
161 |
+
def enable_vae_slicing(self):
|
162 |
+
r"""
|
163 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
164 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
165 |
+
"""
|
166 |
+
self.vae.enable_slicing()
|
167 |
+
|
168 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
169 |
+
def disable_vae_slicing(self):
|
170 |
+
r"""
|
171 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
172 |
+
computing decoding in one step.
|
173 |
+
"""
|
174 |
+
self.vae.disable_slicing()
|
175 |
+
|
176 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
177 |
+
def enable_vae_tiling(self):
|
178 |
+
r"""
|
179 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
180 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
181 |
+
processing larger images.
|
182 |
+
"""
|
183 |
+
self.vae.enable_tiling()
|
184 |
+
|
185 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
186 |
+
def disable_vae_tiling(self):
|
187 |
+
r"""
|
188 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
189 |
+
computing decoding in one step.
|
190 |
+
"""
|
191 |
+
self.vae.disable_tiling()
|
192 |
+
|
193 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
194 |
+
r"""
|
195 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
196 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
197 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
198 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
199 |
+
"""
|
200 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
201 |
+
from accelerate import cpu_offload_with_hook
|
202 |
+
else:
|
203 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
204 |
+
|
205 |
+
device = torch.device(f"cuda:{gpu_id}")
|
206 |
+
|
207 |
+
if self.device.type != "cpu":
|
208 |
+
self.to("cpu", silence_dtype_warnings=True)
|
209 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
210 |
+
|
211 |
+
model_sequence = (
|
212 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
213 |
+
)
|
214 |
+
model_sequence.extend([self.unet, self.vae])
|
215 |
+
|
216 |
+
hook = None
|
217 |
+
for cpu_offloaded_model in model_sequence:
|
218 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
219 |
+
|
220 |
+
# We'll offload the last model manually.
|
221 |
+
self.final_offload_hook = hook
|
222 |
+
|
223 |
+
def encode_prompt(
|
224 |
+
self,
|
225 |
+
prompt: str,
|
226 |
+
prompt_2: Optional[str] = None,
|
227 |
+
device: Optional[torch.device] = None,
|
228 |
+
num_images_per_prompt: int = 1,
|
229 |
+
do_classifier_free_guidance: bool = True,
|
230 |
+
negative_prompt: Optional[str] = None,
|
231 |
+
negative_prompt_2: Optional[str] = None,
|
232 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
233 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
234 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
235 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
236 |
+
lora_scale: Optional[float] = None,
|
237 |
+
):
|
238 |
+
r"""
|
239 |
+
Encodes the prompt into text encoder hidden states.
|
240 |
+
|
241 |
+
Args:
|
242 |
+
prompt (`str` or `List[str]`, *optional*):
|
243 |
+
prompt to be encoded
|
244 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
245 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
246 |
+
used in both text-encoders
|
247 |
+
device: (`torch.device`):
|
248 |
+
torch device
|
249 |
+
num_images_per_prompt (`int`):
|
250 |
+
number of images that should be generated per prompt
|
251 |
+
do_classifier_free_guidance (`bool`):
|
252 |
+
whether to use classifier free guidance or not
|
253 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
254 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
255 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
256 |
+
less than `1`).
|
257 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
258 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
259 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
260 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
261 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
262 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
263 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
264 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
265 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
266 |
+
argument.
|
267 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
268 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
269 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
270 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
271 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
272 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
273 |
+
input argument.
|
274 |
+
lora_scale (`float`, *optional*):
|
275 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
276 |
+
"""
|
277 |
+
device = device or self._execution_device
|
278 |
+
|
279 |
+
# set lora scale so that monkey patched LoRA
|
280 |
+
# function of text encoder can correctly access it
|
281 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
282 |
+
self._lora_scale = lora_scale
|
283 |
+
|
284 |
+
if prompt is not None and isinstance(prompt, str):
|
285 |
+
batch_size = 1
|
286 |
+
elif prompt is not None and isinstance(prompt, list):
|
287 |
+
batch_size = len(prompt)
|
288 |
+
else:
|
289 |
+
batch_size = prompt_embeds.shape[0]
|
290 |
+
|
291 |
+
# Define tokenizers and text encoders
|
292 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
293 |
+
text_encoders = (
|
294 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
295 |
+
)
|
296 |
+
|
297 |
+
if prompt_embeds is None:
|
298 |
+
prompt_2 = prompt_2 or prompt
|
299 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
300 |
+
prompt_embeds_list = []
|
301 |
+
prompts = [prompt, prompt_2]
|
302 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
303 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
304 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
305 |
+
|
306 |
+
text_inputs = tokenizer(
|
307 |
+
prompt,
|
308 |
+
padding="max_length",
|
309 |
+
max_length=tokenizer.model_max_length,
|
310 |
+
truncation=True,
|
311 |
+
return_tensors="pt",
|
312 |
+
)
|
313 |
+
|
314 |
+
text_input_ids = text_inputs.input_ids
|
315 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
316 |
+
|
317 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
318 |
+
text_input_ids, untruncated_ids
|
319 |
+
):
|
320 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
321 |
+
logger.warning(
|
322 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
323 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
324 |
+
)
|
325 |
+
|
326 |
+
prompt_embeds = text_encoder(
|
327 |
+
text_input_ids.to(device),
|
328 |
+
output_hidden_states=True,
|
329 |
+
)
|
330 |
+
|
331 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
332 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
333 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
334 |
+
|
335 |
+
prompt_embeds_list.append(prompt_embeds)
|
336 |
+
|
337 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
338 |
+
|
339 |
+
# get unconditional embeddings for classifier free guidance
|
340 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
341 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
342 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
343 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
344 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
345 |
+
negative_prompt = negative_prompt or ""
|
346 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
347 |
+
|
348 |
+
uncond_tokens: List[str]
|
349 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
350 |
+
raise TypeError(
|
351 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
352 |
+
f" {type(prompt)}."
|
353 |
+
)
|
354 |
+
elif isinstance(negative_prompt, str):
|
355 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
356 |
+
elif batch_size != len(negative_prompt):
|
357 |
+
raise ValueError(
|
358 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
359 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
360 |
+
" the batch size of `prompt`."
|
361 |
+
)
|
362 |
+
else:
|
363 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
364 |
+
|
365 |
+
negative_prompt_embeds_list = []
|
366 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
367 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
368 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
369 |
+
|
370 |
+
max_length = prompt_embeds.shape[1]
|
371 |
+
uncond_input = tokenizer(
|
372 |
+
negative_prompt,
|
373 |
+
padding="max_length",
|
374 |
+
max_length=max_length,
|
375 |
+
truncation=True,
|
376 |
+
return_tensors="pt",
|
377 |
+
)
|
378 |
+
|
379 |
+
negative_prompt_embeds = text_encoder(
|
380 |
+
uncond_input.input_ids.to(device),
|
381 |
+
output_hidden_states=True,
|
382 |
+
)
|
383 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
384 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
385 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
386 |
+
|
387 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
388 |
+
|
389 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
390 |
+
|
391 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
392 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
393 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
394 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
395 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
396 |
+
|
397 |
+
if do_classifier_free_guidance:
|
398 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
399 |
+
seq_len = negative_prompt_embeds.shape[1]
|
400 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
401 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
402 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
403 |
+
|
404 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
405 |
+
bs_embed * num_images_per_prompt, -1
|
406 |
+
)
|
407 |
+
if do_classifier_free_guidance:
|
408 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
409 |
+
bs_embed * num_images_per_prompt, -1
|
410 |
+
)
|
411 |
+
|
412 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
413 |
+
|
414 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
415 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
416 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
417 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
418 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
419 |
+
# and should be between [0, 1]
|
420 |
+
|
421 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
422 |
+
extra_step_kwargs = {}
|
423 |
+
if accepts_eta:
|
424 |
+
extra_step_kwargs["eta"] = eta
|
425 |
+
|
426 |
+
# check if the scheduler accepts generator
|
427 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
428 |
+
if accepts_generator:
|
429 |
+
extra_step_kwargs["generator"] = generator
|
430 |
+
return extra_step_kwargs
|
431 |
+
|
432 |
+
def check_inputs(
|
433 |
+
self,
|
434 |
+
prompt,
|
435 |
+
prompt_2,
|
436 |
+
height,
|
437 |
+
width,
|
438 |
+
callback_steps,
|
439 |
+
negative_prompt=None,
|
440 |
+
negative_prompt_2=None,
|
441 |
+
prompt_embeds=None,
|
442 |
+
negative_prompt_embeds=None,
|
443 |
+
pooled_prompt_embeds=None,
|
444 |
+
negative_pooled_prompt_embeds=None,
|
445 |
+
):
|
446 |
+
if height % 8 != 0 or width % 8 != 0:
|
447 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
448 |
+
|
449 |
+
if (callback_steps is None) or (
|
450 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
451 |
+
):
|
452 |
+
raise ValueError(
|
453 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
454 |
+
f" {type(callback_steps)}."
|
455 |
+
)
|
456 |
+
|
457 |
+
if prompt is not None and prompt_embeds is not None:
|
458 |
+
raise ValueError(
|
459 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
460 |
+
" only forward one of the two."
|
461 |
+
)
|
462 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
463 |
+
raise ValueError(
|
464 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
465 |
+
" only forward one of the two."
|
466 |
+
)
|
467 |
+
elif prompt is None and prompt_embeds is None:
|
468 |
+
raise ValueError(
|
469 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
470 |
+
)
|
471 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
472 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
473 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
474 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
475 |
+
|
476 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
477 |
+
raise ValueError(
|
478 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
479 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
480 |
+
)
|
481 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
482 |
+
raise ValueError(
|
483 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
484 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
485 |
+
)
|
486 |
+
|
487 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
488 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
489 |
+
raise ValueError(
|
490 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
491 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
492 |
+
f" {negative_prompt_embeds.shape}."
|
493 |
+
)
|
494 |
+
|
495 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
496 |
+
raise ValueError(
|
497 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
498 |
+
)
|
499 |
+
|
500 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
501 |
+
raise ValueError(
|
502 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
503 |
+
)
|
504 |
+
|
505 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
506 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
507 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
508 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
509 |
+
raise ValueError(
|
510 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
511 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
512 |
+
)
|
513 |
+
|
514 |
+
if latents is None:
|
515 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
516 |
+
else:
|
517 |
+
latents = latents.to(device)
|
518 |
+
|
519 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
520 |
+
latents = latents * self.scheduler.init_noise_sigma
|
521 |
+
return latents
|
522 |
+
|
523 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
524 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
525 |
+
|
526 |
+
passed_add_embed_dim = (
|
527 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
528 |
+
)
|
529 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
530 |
+
|
531 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
532 |
+
raise ValueError(
|
533 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
534 |
+
)
|
535 |
+
|
536 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
537 |
+
return add_time_ids
|
538 |
+
|
539 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
540 |
+
def upcast_vae(self):
|
541 |
+
dtype = self.vae.dtype
|
542 |
+
self.vae.to(dtype=torch.float32)
|
543 |
+
use_torch_2_0_or_xformers = isinstance(
|
544 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
545 |
+
(
|
546 |
+
AttnProcessor2_0,
|
547 |
+
XFormersAttnProcessor,
|
548 |
+
LoRAXFormersAttnProcessor,
|
549 |
+
LoRAAttnProcessor2_0,
|
550 |
+
),
|
551 |
+
)
|
552 |
+
# if xformers or torch_2_0 is used attention block does not need
|
553 |
+
# to be in float32 which can save lots of memory
|
554 |
+
if use_torch_2_0_or_xformers:
|
555 |
+
self.vae.post_quant_conv.to(dtype)
|
556 |
+
self.vae.decoder.conv_in.to(dtype)
|
557 |
+
self.vae.decoder.mid_block.to(dtype)
|
558 |
+
|
559 |
+
@torch.no_grad()
|
560 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
561 |
+
def __call__(
|
562 |
+
self,
|
563 |
+
prompt: Union[str, List[str]] = None,
|
564 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
565 |
+
video_length: Optional[int] = 8,
|
566 |
+
num_images_per_prompt: Optional[int] = 1,
|
567 |
+
height: Optional[int] = None,
|
568 |
+
width: Optional[int] = None,
|
569 |
+
num_inference_steps: int = 50,
|
570 |
+
denoising_end: Optional[float] = None,
|
571 |
+
guidance_scale: float = 5.0,
|
572 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
573 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
574 |
+
eta: float = 0.0,
|
575 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
576 |
+
latents: Optional[torch.FloatTensor] = None,
|
577 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
578 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
579 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
580 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
581 |
+
output_type: Optional[str] = "pil",
|
582 |
+
return_dict: bool = True,
|
583 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
584 |
+
callback_steps: int = 1,
|
585 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
586 |
+
guidance_rescale: float = 0.0,
|
587 |
+
original_size: Optional[Tuple[int, int]] = None,
|
588 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
589 |
+
target_size: Optional[Tuple[int, int]] = None,
|
590 |
+
):
|
591 |
+
r"""
|
592 |
+
Function invoked when calling the pipeline for generation.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
prompt (`str` or `List[str]`, *optional*):
|
596 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
597 |
+
instead.
|
598 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
599 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
600 |
+
used in both text-encoders
|
601 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
602 |
+
The height in pixels of the generated image.
|
603 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
604 |
+
The width in pixels of the generated image.
|
605 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
606 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
607 |
+
expense of slower inference.
|
608 |
+
denoising_end (`float`, *optional*):
|
609 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
610 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
611 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
612 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
613 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
614 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
615 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
616 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
617 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
618 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
619 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
620 |
+
usually at the expense of lower image quality.
|
621 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
622 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
623 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
624 |
+
less than `1`).
|
625 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
626 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
627 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
628 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
629 |
+
The number of images to generate per prompt.
|
630 |
+
eta (`float`, *optional*, defaults to 0.0):
|
631 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
632 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
633 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
634 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
635 |
+
to make generation deterministic.
|
636 |
+
latents (`torch.FloatTensor`, *optional*):
|
637 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
638 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
639 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
640 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
641 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
642 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
643 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
644 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
645 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
646 |
+
argument.
|
647 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
648 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
649 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
650 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
651 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
652 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
653 |
+
input argument.
|
654 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
655 |
+
The output format of the generate image. Choose between
|
656 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
657 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
658 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
659 |
+
of a plain tuple.
|
660 |
+
callback (`Callable`, *optional*):
|
661 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
662 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
663 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
664 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
665 |
+
called at every step.
|
666 |
+
cross_attention_kwargs (`dict`, *optional*):
|
667 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
668 |
+
`self.processor` in
|
669 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
670 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
671 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
672 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
673 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
674 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
675 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
676 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
677 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
678 |
+
explained in section 2.2 of
|
679 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
680 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
681 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
682 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
683 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
684 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
685 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
686 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
687 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
688 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
689 |
+
|
690 |
+
Examples:
|
691 |
+
|
692 |
+
Returns:
|
693 |
+
[`~hotshot_xl.HotshotPipelineXLOutput`] or `tuple`:
|
694 |
+
[`~hotshot_xl.HotshotPipelineXLOutput`] if `return_dict` is True, otherwise a
|
695 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
696 |
+
"""
|
697 |
+
|
698 |
+
if video_length > 1:
|
699 |
+
print(f"Warning - setting num_images_per_prompt = 1 because video_length = {video_length}")
|
700 |
+
num_images_per_prompt = 1
|
701 |
+
|
702 |
+
# 0. Default height and width to unet
|
703 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
704 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
705 |
+
|
706 |
+
original_size = original_size or (height, width)
|
707 |
+
target_size = target_size or (height, width)
|
708 |
+
|
709 |
+
# 1. Check inputs. Raise error if not correct
|
710 |
+
self.check_inputs(
|
711 |
+
prompt,
|
712 |
+
prompt_2,
|
713 |
+
height,
|
714 |
+
width,
|
715 |
+
callback_steps,
|
716 |
+
negative_prompt,
|
717 |
+
negative_prompt_2,
|
718 |
+
prompt_embeds,
|
719 |
+
negative_prompt_embeds,
|
720 |
+
pooled_prompt_embeds,
|
721 |
+
negative_pooled_prompt_embeds,
|
722 |
+
)
|
723 |
+
|
724 |
+
# 2. Define call parameters
|
725 |
+
if prompt is not None and isinstance(prompt, str):
|
726 |
+
batch_size = 1
|
727 |
+
elif prompt is not None and isinstance(prompt, list):
|
728 |
+
batch_size = len(prompt)
|
729 |
+
else:
|
730 |
+
batch_size = prompt_embeds.shape[0]
|
731 |
+
|
732 |
+
device = self._execution_device
|
733 |
+
|
734 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
735 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
736 |
+
# corresponds to doing no classifier free guidance.
|
737 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
738 |
+
|
739 |
+
# 3. Encode input prompt
|
740 |
+
text_encoder_lora_scale = (
|
741 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
742 |
+
)
|
743 |
+
(
|
744 |
+
prompt_embeds,
|
745 |
+
negative_prompt_embeds,
|
746 |
+
pooled_prompt_embeds,
|
747 |
+
negative_pooled_prompt_embeds,
|
748 |
+
) = self.encode_prompt(
|
749 |
+
prompt=prompt,
|
750 |
+
prompt_2=prompt_2,
|
751 |
+
device=device,
|
752 |
+
num_images_per_prompt=num_images_per_prompt,
|
753 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
754 |
+
negative_prompt=negative_prompt,
|
755 |
+
negative_prompt_2=negative_prompt_2,
|
756 |
+
prompt_embeds=prompt_embeds,
|
757 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
758 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
759 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
760 |
+
lora_scale=text_encoder_lora_scale,
|
761 |
+
)
|
762 |
+
|
763 |
+
# 4. Prepare timesteps
|
764 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
765 |
+
|
766 |
+
timesteps = self.scheduler.timesteps
|
767 |
+
|
768 |
+
# 5. Prepare latent variables
|
769 |
+
num_channels_latents = self.unet.config.in_channels
|
770 |
+
latents = self.prepare_latents(
|
771 |
+
batch_size * num_images_per_prompt,
|
772 |
+
num_channels_latents,
|
773 |
+
video_length,
|
774 |
+
height,
|
775 |
+
width,
|
776 |
+
prompt_embeds.dtype,
|
777 |
+
device,
|
778 |
+
generator,
|
779 |
+
latents,
|
780 |
+
)
|
781 |
+
|
782 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
783 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
784 |
+
|
785 |
+
# 7. Prepare added time ids & embeddings
|
786 |
+
add_text_embeds = pooled_prompt_embeds
|
787 |
+
add_time_ids = self._get_add_time_ids(
|
788 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
789 |
+
)
|
790 |
+
|
791 |
+
# todo - negative_original_size from latest diffusers for cfg
|
792 |
+
|
793 |
+
if do_classifier_free_guidance:
|
794 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
795 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
796 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
797 |
+
|
798 |
+
prompt_embeds = prompt_embeds.to(device)
|
799 |
+
add_text_embeds = add_text_embeds.to(device)
|
800 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
801 |
+
|
802 |
+
# 8. Denoising loop
|
803 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
804 |
+
|
805 |
+
# 7.1 Apply denoising_end
|
806 |
+
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
807 |
+
discrete_timestep_cutoff = int(
|
808 |
+
round(
|
809 |
+
self.scheduler.config.num_train_timesteps
|
810 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
811 |
+
)
|
812 |
+
)
|
813 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
814 |
+
timesteps = timesteps[:num_inference_steps]
|
815 |
+
|
816 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
817 |
+
for i, t in enumerate(timesteps):
|
818 |
+
# expand the latents if we are doing classifier free guidance
|
819 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
820 |
+
|
821 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
822 |
+
|
823 |
+
# predict the noise residual
|
824 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
825 |
+
noise_pred = self.unet(
|
826 |
+
latent_model_input,
|
827 |
+
t,
|
828 |
+
encoder_hidden_states=prompt_embeds,
|
829 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
830 |
+
added_cond_kwargs=added_cond_kwargs,
|
831 |
+
return_dict=False,
|
832 |
+
enable_temporal_attentions= video_length > 1
|
833 |
+
)[0]
|
834 |
+
|
835 |
+
# perform guidance
|
836 |
+
if do_classifier_free_guidance:
|
837 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
838 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
839 |
+
|
840 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
841 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
842 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
843 |
+
|
844 |
+
# compute the previous noisy sample x_t -> x_t-1
|
845 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
846 |
+
|
847 |
+
# call the callback, if provided
|
848 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
849 |
+
progress_bar.update()
|
850 |
+
if callback is not None and i % callback_steps == 0:
|
851 |
+
callback(i, t, latents)
|
852 |
+
|
853 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
854 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
855 |
+
self.upcast_vae()
|
856 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
857 |
+
|
858 |
+
# if not output_type == "latent":
|
859 |
+
# image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
860 |
+
# else:
|
861 |
+
# image = latents
|
862 |
+
# return StableDiffusionXLPipelineOutput(images=image)
|
863 |
+
|
864 |
+
# apply watermark if available
|
865 |
+
# if self.watermark is not None:
|
866 |
+
# image = self.watermark.apply_watermark(image)
|
867 |
+
|
868 |
+
#image = self.image_processor.postprocess(image, output_type=output_type)
|
869 |
+
|
870 |
+
video = self.decode_latents(latents)
|
871 |
+
|
872 |
+
# Convert to tensor
|
873 |
+
if output_type == "tensor":
|
874 |
+
video = torch.from_numpy(video)
|
875 |
+
|
876 |
+
if not return_dict:
|
877 |
+
return video
|
878 |
+
|
879 |
+
return HotshotPipelineXLOutput(videos=video)
|
880 |
+
|
881 |
+
#
|
882 |
+
# # Offload last model to CPU
|
883 |
+
# if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
884 |
+
# self.final_offload_hook.offload()
|
885 |
+
#
|
886 |
+
# if not return_dict:
|
887 |
+
# return (image,)
|
888 |
+
#
|
889 |
+
# return StableDiffusionXLPipelineOutput(images=image)
|
890 |
+
|
891 |
+
# Overrride to properly handle the loading and unloading of the additional text encoder.
|
892 |
+
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
893 |
+
# We could have accessed the unet config from `lora_state_dict()` too. We pass
|
894 |
+
# it here explicitly to be able to tell that it's coming from an SDXL
|
895 |
+
# pipeline.
|
896 |
+
state_dict, network_alphas = self.lora_state_dict(
|
897 |
+
pretrained_model_name_or_path_or_dict,
|
898 |
+
unet_config=self.unet.config,
|
899 |
+
**kwargs,
|
900 |
+
)
|
901 |
+
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet)
|
902 |
+
|
903 |
+
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
|
904 |
+
if len(text_encoder_state_dict) > 0:
|
905 |
+
self.load_lora_into_text_encoder(
|
906 |
+
text_encoder_state_dict,
|
907 |
+
network_alphas=network_alphas,
|
908 |
+
text_encoder=self.text_encoder,
|
909 |
+
prefix="text_encoder",
|
910 |
+
lora_scale=self.lora_scale,
|
911 |
+
)
|
912 |
+
|
913 |
+
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
|
914 |
+
if len(text_encoder_2_state_dict) > 0:
|
915 |
+
self.load_lora_into_text_encoder(
|
916 |
+
text_encoder_2_state_dict,
|
917 |
+
network_alphas=network_alphas,
|
918 |
+
text_encoder=self.text_encoder_2,
|
919 |
+
prefix="text_encoder_2",
|
920 |
+
lora_scale=self.lora_scale,
|
921 |
+
)
|
922 |
+
|
923 |
+
@classmethod
|
924 |
+
def save_lora_weights(
|
925 |
+
self,
|
926 |
+
save_directory: Union[str, os.PathLike],
|
927 |
+
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
928 |
+
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
929 |
+
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
|
930 |
+
is_main_process: bool = True,
|
931 |
+
weight_name: str = None,
|
932 |
+
save_function: Callable = None,
|
933 |
+
safe_serialization: bool = False,
|
934 |
+
):
|
935 |
+
state_dict = {}
|
936 |
+
|
937 |
+
def pack_weights(layers, prefix):
|
938 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
939 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
940 |
+
return layers_state_dict
|
941 |
+
|
942 |
+
state_dict.update(pack_weights(unet_lora_layers, "unet"))
|
943 |
+
|
944 |
+
if text_encoder_lora_layers and text_encoder_2_lora_layers:
|
945 |
+
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
|
946 |
+
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
|
947 |
+
|
948 |
+
self.write_lora_layers(
|
949 |
+
state_dict=state_dict,
|
950 |
+
save_directory=save_directory,
|
951 |
+
is_main_process=is_main_process,
|
952 |
+
weight_name=weight_name,
|
953 |
+
save_function=save_function,
|
954 |
+
safe_serialization=safe_serialization,
|
955 |
+
)
|
956 |
+
|
957 |
+
def decode_latents(self, latents):
|
958 |
+
video_length = latents.shape[2]
|
959 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
960 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
961 |
+
# video = self.vae.decode(latents).sample
|
962 |
+
video = []
|
963 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
964 |
+
video.append(self.vae.decode(
|
965 |
+
latents[frame_idx:frame_idx+1]).sample)
|
966 |
+
video = torch.cat(video)
|
967 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
968 |
+
video = (video / 2.0 + 0.5).clamp(0, 1)
|
969 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
970 |
+
video = video.cpu().float().numpy()
|
971 |
+
return video
|
972 |
+
|
973 |
+
def _remove_text_encoder_monkey_patch(self):
|
974 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
|
975 |
+
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
|
Hotshot-XL/build/lib/hotshot_xl/utils.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import List, Union
|
16 |
+
from io import BytesIO
|
17 |
+
import PIL
|
18 |
+
from PIL import ImageSequence, Image
|
19 |
+
import requests
|
20 |
+
import os
|
21 |
+
|
22 |
+
def get_image(img_path) -> PIL.Image.Image:
|
23 |
+
if img_path.startswith("http"):
|
24 |
+
return PIL.Image.open(requests.get(img_path, stream=True).raw)
|
25 |
+
if os.path.exists(img_path):
|
26 |
+
return Image.open(img_path)
|
27 |
+
raise Exception("File not found")
|
28 |
+
|
29 |
+
def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes:
|
30 |
+
with BytesIO() as output_buffer:
|
31 |
+
# Save the first image
|
32 |
+
images[0].save(output_buffer,
|
33 |
+
format='GIF',
|
34 |
+
save_all=True,
|
35 |
+
append_images=images[1:],
|
36 |
+
duration=duration,
|
37 |
+
loop=0) # 0 means the GIF will loop indefinitely
|
38 |
+
|
39 |
+
# Get the byte array from the buffer
|
40 |
+
gif_bytes = output_buffer.getvalue()
|
41 |
+
|
42 |
+
return gif_bytes
|
43 |
+
|
44 |
+
|
45 |
+
def save_as_gif(images: List, file_path: str, duration: int = 1000):
|
46 |
+
with open(file_path, "wb") as f:
|
47 |
+
f.write(images_to_gif_bytes(images, duration))
|
48 |
+
|
49 |
+
def scale_aspect_fill(img, new_width, new_height):
|
50 |
+
new_width = int(new_width)
|
51 |
+
new_height = int(new_height)
|
52 |
+
|
53 |
+
original_width, original_height = img.size
|
54 |
+
ratio_w = float(new_width) / original_width
|
55 |
+
ratio_h = float(new_height) / original_height
|
56 |
+
|
57 |
+
if ratio_w > ratio_h:
|
58 |
+
# It must be fixed by width
|
59 |
+
resize_width = new_width
|
60 |
+
resize_height = round(original_height * ratio_w)
|
61 |
+
else:
|
62 |
+
# Fixed by height
|
63 |
+
resize_width = round(original_width * ratio_h)
|
64 |
+
resize_height = new_height
|
65 |
+
|
66 |
+
img_resized = img.resize((resize_width, resize_height), Image.LANCZOS)
|
67 |
+
|
68 |
+
# Calculate cropping boundaries and do crop
|
69 |
+
left = (resize_width - new_width) / 2
|
70 |
+
top = (resize_height - new_height) / 2
|
71 |
+
right = (resize_width + new_width) / 2
|
72 |
+
bottom = (resize_height + new_height) / 2
|
73 |
+
|
74 |
+
img_cropped = img_resized.crop((left, top, right, bottom))
|
75 |
+
|
76 |
+
return img_cropped
|
77 |
+
|
78 |
+
def extract_gif_frames_from_midpoint(image: Union[str, PIL.Image.Image], fps: int=8, target_duration: int=1000) -> list:
|
79 |
+
# Load the GIF
|
80 |
+
image = get_image(image) if type(image) is str else image
|
81 |
+
|
82 |
+
frames = []
|
83 |
+
|
84 |
+
estimated_frame_time = None
|
85 |
+
|
86 |
+
# some gifs contain the duration - others don't
|
87 |
+
# so if there is a duration we will grab it otherwise we will fall back
|
88 |
+
|
89 |
+
for frame in ImageSequence.Iterator(image):
|
90 |
+
|
91 |
+
frames.append(frame.copy())
|
92 |
+
if 'duration' in frame.info:
|
93 |
+
frame_info_duration = frame.info['duration']
|
94 |
+
if frame_info_duration > 0:
|
95 |
+
estimated_frame_time = frame_info_duration
|
96 |
+
|
97 |
+
if estimated_frame_time is None:
|
98 |
+
if len(frames) <= 16:
|
99 |
+
# assume it's 8fps
|
100 |
+
estimated_frame_time = 1000 // 8
|
101 |
+
else:
|
102 |
+
# assume it's 15 fps
|
103 |
+
estimated_frame_time = 70
|
104 |
+
|
105 |
+
if len(frames) < fps:
|
106 |
+
raise ValueError(f"fps of {fps} is too small for this gif as it only has {len(frames)} frames.")
|
107 |
+
|
108 |
+
skip = len(frames) // fps
|
109 |
+
upper_bound_index = len(frames) - 1
|
110 |
+
|
111 |
+
best_indices = [x for x in range(0, len(frames), skip)][:fps]
|
112 |
+
offset = int(upper_bound_index - best_indices[-1]) // 2
|
113 |
+
best_indices = [x + offset for x in best_indices]
|
114 |
+
best_duration = (best_indices[-1] - best_indices[0]) * estimated_frame_time
|
115 |
+
|
116 |
+
while True:
|
117 |
+
|
118 |
+
skip -= 1
|
119 |
+
|
120 |
+
if skip == 0:
|
121 |
+
break
|
122 |
+
|
123 |
+
indices = [x for x in range(0, len(frames), skip)][:fps]
|
124 |
+
|
125 |
+
# center the indices, so we sample the middle of the gif...
|
126 |
+
offset = int(upper_bound_index - indices[-1]) // 2
|
127 |
+
if offset == 0:
|
128 |
+
# can't shift
|
129 |
+
break
|
130 |
+
indices = [x + offset for x in indices]
|
131 |
+
|
132 |
+
# is the new duration closer to the target than last guess?
|
133 |
+
duration = (indices[-1] - indices[0]) * estimated_frame_time
|
134 |
+
if abs(duration - target_duration) > abs(best_duration - target_duration):
|
135 |
+
break
|
136 |
+
|
137 |
+
best_indices = indices
|
138 |
+
best_duration = duration
|
139 |
+
|
140 |
+
return [frames[index] for index in best_indices]
|
141 |
+
|
142 |
+
def get_crop_coordinates(old_size: tuple, new_size: tuple) -> tuple:
|
143 |
+
"""
|
144 |
+
Calculate the crop coordinates after scaling an image to fit a new size.
|
145 |
+
|
146 |
+
:param old_size: tuple of the form (width, height) representing the original size of the image.
|
147 |
+
:param new_size: tuple of the form (width, height) representing the desired size after scaling.
|
148 |
+
:return: tuple of the form (left, upper, right, lower) representing the normalized crop coordinates.
|
149 |
+
"""
|
150 |
+
# Check if the input tuples have the right form (width, height)
|
151 |
+
if not (isinstance(old_size, tuple) and isinstance(new_size, tuple) and
|
152 |
+
len(old_size) == 2 and len(new_size) == 2):
|
153 |
+
raise ValueError("old_size and new_size should be tuples of the form (width, height)")
|
154 |
+
|
155 |
+
# Extract the width and height from the old and new sizes
|
156 |
+
old_width, old_height = old_size
|
157 |
+
new_width, new_height = new_size
|
158 |
+
|
159 |
+
# Calculate the ratios for width and height
|
160 |
+
ratio_w = float(new_width) / old_width
|
161 |
+
ratio_h = float(new_height) / old_height
|
162 |
+
|
163 |
+
# Determine which dimension is fixed (width or height)
|
164 |
+
if ratio_w > ratio_h:
|
165 |
+
# It must be fixed by width
|
166 |
+
resize_width = new_width
|
167 |
+
resize_height = round(old_height * ratio_w)
|
168 |
+
else:
|
169 |
+
# Fixed by height
|
170 |
+
resize_width = round(old_width * ratio_h)
|
171 |
+
resize_height = new_height
|
172 |
+
|
173 |
+
# Calculate cropping boundaries in the resized image space
|
174 |
+
left = (resize_width - new_width) / 2
|
175 |
+
upper = (resize_height - new_height) / 2
|
176 |
+
right = (resize_width + new_width) / 2
|
177 |
+
lower = (resize_height + new_height) / 2
|
178 |
+
|
179 |
+
# Normalize the cropping coordinates
|
180 |
+
|
181 |
+
# Return the normalized coordinates as a tuple
|
182 |
+
return (left, upper, right, lower)
|
183 |
+
|
184 |
+
aspect_ratio_to_1024_map = {
|
185 |
+
"0.42": [640, 1536],
|
186 |
+
"0.57": [768, 1344],
|
187 |
+
"0.68": [832, 1216],
|
188 |
+
"1.00": [1024, 1024],
|
189 |
+
"1.46": [1216, 832],
|
190 |
+
"1.75": [1344, 768],
|
191 |
+
"2.40": [1536, 640]
|
192 |
+
}
|
193 |
+
|
194 |
+
res_to_aspect_map = {
|
195 |
+
1024: aspect_ratio_to_1024_map,
|
196 |
+
512: {key: [value[0] // 2, value[1] // 2] for key, value in aspect_ratio_to_1024_map.items()},
|
197 |
+
}
|
198 |
+
|
199 |
+
def best_aspect_ratio(aspect_ratio: float, resolution: int):
|
200 |
+
|
201 |
+
map = res_to_aspect_map[resolution]
|
202 |
+
|
203 |
+
d = 99999999
|
204 |
+
res = None
|
205 |
+
for key, value in map.items():
|
206 |
+
ar = value[0] / value[1]
|
207 |
+
diff = abs(aspect_ratio - ar)
|
208 |
+
if diff < d:
|
209 |
+
d = diff
|
210 |
+
res = value
|
211 |
+
|
212 |
+
ar = res[0] / res[1]
|
213 |
+
return f"{ar:.2f}", res
|
Hotshot-XL/dist/hotshot_xl-1.0-py3.8.egg
ADDED
Binary file (105 kB). View file
|
|
Hotshot-XL/docker/Dockerfile
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.0.1-cuda11.7-cudnn8-runtime
|
2 |
+
|
3 |
+
COPY requirements.txt .
|
4 |
+
|
5 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
Hotshot-XL/docker/Readme.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Setup
|
2 |
+
|
3 |
+
This docker file is for the **environment only**. This is to keep the docker image as small as possible!
|
4 |
+
|
5 |
+
## Quickstart
|
6 |
+
|
7 |
+
Hotshot have their own docker image you can use directly:
|
8 |
+
```
|
9 |
+
docker pull hotshotapp/hotshot-xl-env:latest
|
10 |
+
```
|
11 |
+
|
12 |
+
Or you can build it yourself
|
13 |
+
|
14 |
+
```
|
15 |
+
cd docker
|
16 |
+
docker build -t hotshotapp/hotshot-xl-env:latest .
|
17 |
+
```
|
18 |
+
|
19 |
+
## Running the docker image
|
20 |
+
|
21 |
+
We recommend storing the weights locally on your machine. That way the weights persist if you kill the container!
|
22 |
+
|
23 |
+
- Install the models to a folder locally (Optional)
|
24 |
+
```
|
25 |
+
cd /path/to/models
|
26 |
+
git lfs install
|
27 |
+
git clone https://huggingface.co/hotshotco/Hotshot-XL
|
28 |
+
```
|
29 |
+
- Run the docker from the project root
|
30 |
+
- **Linux**
|
31 |
+
```
|
32 |
+
docker run -it --gpus=all --rm -v $(pwd):/local -v /path/to/models:/models hotshotapp/hotshot-xl-env:latest
|
33 |
+
```
|
34 |
+
- **Windows (Powershell)**
|
35 |
+
```
|
36 |
+
docker run -it --gpus=all --rm -v ${PWD}:/local -v C:\path\to\models:/models hotshotapp/hotshot-xl-env:latest
|
37 |
+
```
|
38 |
+
|
39 |
+
If you want to download the models from within the container itself then you do not need to map the volumes and ` -v /path/to/models:/models` can be removed.
|
40 |
+
|
41 |
+
**Note**: Ensure you have NVIDIA Docker runtime installed if you want to utilize GPU support with `--gpus=all`.
|
Hotshot-XL/docker/requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
+
einops==0.7.0
|
3 |
+
diffusers==0.21.4
|
4 |
+
transformers==4.34.0
|
5 |
+
wandb==0.15.11
|
6 |
+
moviepy==1.0.3
|
7 |
+
imageio==2.31.5
|
8 |
+
xformers==0.0.22
|
Hotshot-XL/fine_tune.py
ADDED
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import math
|
17 |
+
import os
|
18 |
+
import traceback
|
19 |
+
from pathlib import Path
|
20 |
+
import time
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
import torch.multiprocessing as mp
|
24 |
+
from accelerate import Accelerator
|
25 |
+
from accelerate.logging import get_logger
|
26 |
+
from accelerate.utils import set_seed
|
27 |
+
from diffusers import AutoencoderKL
|
28 |
+
from diffusers.optimization import get_scheduler
|
29 |
+
from diffusers import DDPMScheduler
|
30 |
+
from torchvision import transforms
|
31 |
+
from tqdm.auto import tqdm
|
32 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
|
33 |
+
import torch.nn.functional as F
|
34 |
+
import gc
|
35 |
+
from typing import Callable
|
36 |
+
from PIL import Image
|
37 |
+
import numpy as np
|
38 |
+
from concurrent.futures import ThreadPoolExecutor
|
39 |
+
from hotshot_xl.models.unet import UNet3DConditionModel
|
40 |
+
from hotshot_xl.pipelines.hotshot_xl_pipeline import HotshotXLPipeline
|
41 |
+
from hotshot_xl.utils import get_crop_coordinates, res_to_aspect_map, scale_aspect_fill
|
42 |
+
from einops import rearrange
|
43 |
+
from torch.utils.data import Dataset, DataLoader
|
44 |
+
from datetime import timedelta
|
45 |
+
from accelerate.utils.dataclasses import InitProcessGroupKwargs
|
46 |
+
from diffusers.utils import is_wandb_available
|
47 |
+
|
48 |
+
if is_wandb_available():
|
49 |
+
import wandb
|
50 |
+
|
51 |
+
logger = get_logger(__file__)
|
52 |
+
|
53 |
+
|
54 |
+
class HotshotXLDataset(Dataset):
|
55 |
+
|
56 |
+
def __init__(self, directory: str, make_sample_fn: Callable):
|
57 |
+
"""
|
58 |
+
|
59 |
+
Training data folder needs to look like:
|
60 |
+
+ training_samples
|
61 |
+
--- + sample_001
|
62 |
+
------- + frame_0.jpg
|
63 |
+
------- + frame_1.jpg
|
64 |
+
------- + ...
|
65 |
+
------- + frame_n.jpg
|
66 |
+
------- + prompt.txt
|
67 |
+
--- + sample_002
|
68 |
+
------- + frame_0.jpg
|
69 |
+
------- + frame_1.jpg
|
70 |
+
------- + ...
|
71 |
+
------- + frame_n.jpg
|
72 |
+
------- + prompt.txt
|
73 |
+
|
74 |
+
Args:
|
75 |
+
directory: base directory of the training samples
|
76 |
+
make_sample_fn: a delegate call to load the images and prep the sample for batching
|
77 |
+
"""
|
78 |
+
samples_dir = [os.path.join(directory, p) for p in os.listdir(directory)]
|
79 |
+
samples_dir = [p for p in samples_dir if os.path.isdir(p)]
|
80 |
+
samples = []
|
81 |
+
|
82 |
+
for d in samples_dir:
|
83 |
+
file_paths = [os.path.join(d, p) for p in os.listdir(d)]
|
84 |
+
image_fps = [f for f in file_paths if os.path.splitext(f)[1] in {".png", ".jpg"}]
|
85 |
+
with open(os.path.join(d, "prompt.txt")) as f:
|
86 |
+
prompt = f.read().strip()
|
87 |
+
|
88 |
+
samples.append({
|
89 |
+
"image_fps": image_fps,
|
90 |
+
"prompt": prompt
|
91 |
+
})
|
92 |
+
|
93 |
+
self.samples = samples
|
94 |
+
self.length = len(samples)
|
95 |
+
self.make_sample_fn = make_sample_fn
|
96 |
+
|
97 |
+
def __len__(self):
|
98 |
+
return self.length
|
99 |
+
|
100 |
+
def __getitem__(self, index):
|
101 |
+
return self.make_sample_fn(
|
102 |
+
self.samples[index]
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
def parse_args():
|
107 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
108 |
+
parser.add_argument(
|
109 |
+
"--pretrained_model_name_or_path",
|
110 |
+
type=str,
|
111 |
+
default="hotshotco/Hotshot-XL",
|
112 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--unet_resume_path",
|
116 |
+
type=str,
|
117 |
+
default=None,
|
118 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
119 |
+
)
|
120 |
+
|
121 |
+
parser.add_argument(
|
122 |
+
"--data_dir",
|
123 |
+
type=str,
|
124 |
+
required=True,
|
125 |
+
help="Path to data to train.",
|
126 |
+
)
|
127 |
+
|
128 |
+
parser.add_argument(
|
129 |
+
"--report_to",
|
130 |
+
type=str,
|
131 |
+
default="wandb",
|
132 |
+
help=(
|
133 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
134 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
135 |
+
),
|
136 |
+
)
|
137 |
+
|
138 |
+
parser.add_argument("--run_validation_at_start", action="store_true")
|
139 |
+
parser.add_argument("--max_vae_encode", type=int, default=None)
|
140 |
+
parser.add_argument("--vae_b16", action="store_true")
|
141 |
+
parser.add_argument("--disable_optimizer_restore", action="store_true")
|
142 |
+
|
143 |
+
parser.add_argument(
|
144 |
+
"--latent_nan_checking",
|
145 |
+
action="store_true",
|
146 |
+
help="Check if latents contain nans - important if vae is f16",
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--test_prompts",
|
150 |
+
type=str,
|
151 |
+
default=None,
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--project_name",
|
155 |
+
type=str,
|
156 |
+
default="fine-tune-hotshot-xl",
|
157 |
+
help="the name of the run",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--run_name",
|
161 |
+
type=str,
|
162 |
+
default="run-01",
|
163 |
+
help="the name of the run",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--output_dir",
|
167 |
+
type=str,
|
168 |
+
default="output",
|
169 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
170 |
+
)
|
171 |
+
parser.add_argument("--noise_offset", type=float, default=0.05, help="The scale of noise offset.")
|
172 |
+
parser.add_argument("--seed", type=int, default=111, help="A seed for reproducible training.")
|
173 |
+
parser.add_argument(
|
174 |
+
"--resolution",
|
175 |
+
type=int,
|
176 |
+
default=512,
|
177 |
+
help=(
|
178 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
179 |
+
" resolution"
|
180 |
+
),
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--aspect_ratio",
|
184 |
+
type=str,
|
185 |
+
default="1.75",
|
186 |
+
choices=list(res_to_aspect_map[512].keys()),
|
187 |
+
help="Aspect ratio to train at",
|
188 |
+
)
|
189 |
+
|
190 |
+
parser.add_argument("--xformers", action="store_true")
|
191 |
+
|
192 |
+
parser.add_argument(
|
193 |
+
"--train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader."
|
194 |
+
)
|
195 |
+
|
196 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
197 |
+
|
198 |
+
parser.add_argument(
|
199 |
+
"--max_train_steps",
|
200 |
+
type=int,
|
201 |
+
default=9999999,
|
202 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
203 |
+
)
|
204 |
+
parser.add_argument(
|
205 |
+
"--gradient_accumulation_steps",
|
206 |
+
type=int,
|
207 |
+
default=1,
|
208 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--gradient_checkpointing",
|
212 |
+
action="store_true",
|
213 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
214 |
+
)
|
215 |
+
|
216 |
+
parser.add_argument(
|
217 |
+
"--learning_rate",
|
218 |
+
type=float,
|
219 |
+
default=5e-6,
|
220 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
221 |
+
)
|
222 |
+
|
223 |
+
parser.add_argument(
|
224 |
+
"--scale_lr",
|
225 |
+
action="store_true",
|
226 |
+
default=False,
|
227 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
228 |
+
)
|
229 |
+
parser.add_argument(
|
230 |
+
"--lr_scheduler",
|
231 |
+
type=str,
|
232 |
+
default="constant",
|
233 |
+
help=(
|
234 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
235 |
+
' "constant", "constant_with_warmup"]'
|
236 |
+
),
|
237 |
+
)
|
238 |
+
parser.add_argument(
|
239 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
240 |
+
)
|
241 |
+
parser.add_argument(
|
242 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
243 |
+
)
|
244 |
+
|
245 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
246 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
247 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
248 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
249 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
250 |
+
|
251 |
+
parser.add_argument(
|
252 |
+
"--logging_dir",
|
253 |
+
type=str,
|
254 |
+
default="logs",
|
255 |
+
help=(
|
256 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
257 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
258 |
+
),
|
259 |
+
)
|
260 |
+
|
261 |
+
parser.add_argument(
|
262 |
+
"--mixed_precision",
|
263 |
+
type=str,
|
264 |
+
default="no",
|
265 |
+
choices=["no", "fp16", "bf16"],
|
266 |
+
help=(
|
267 |
+
"Whether to use mixed precision. Choose"
|
268 |
+
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
269 |
+
"and an Nvidia Ampere GPU."
|
270 |
+
),
|
271 |
+
)
|
272 |
+
|
273 |
+
parser.add_argument(
|
274 |
+
"--validate_every_steps",
|
275 |
+
type=int,
|
276 |
+
default=100,
|
277 |
+
help="Run inference every",
|
278 |
+
)
|
279 |
+
|
280 |
+
parser.add_argument(
|
281 |
+
"--save_n_steps",
|
282 |
+
type=int,
|
283 |
+
default=100,
|
284 |
+
help="Save the model every n global_steps",
|
285 |
+
)
|
286 |
+
|
287 |
+
parser.add_argument(
|
288 |
+
"--save_starting_step",
|
289 |
+
type=int,
|
290 |
+
default=100,
|
291 |
+
help="The step from which it starts saving intermediary checkpoints",
|
292 |
+
)
|
293 |
+
|
294 |
+
parser.add_argument(
|
295 |
+
"--nccl_timeout",
|
296 |
+
type=int,
|
297 |
+
help="nccl_timeout",
|
298 |
+
default=3600
|
299 |
+
)
|
300 |
+
|
301 |
+
parser.add_argument("--snr_gamma", action="store_true")
|
302 |
+
|
303 |
+
args = parser.parse_args()
|
304 |
+
|
305 |
+
return args
|
306 |
+
|
307 |
+
|
308 |
+
def add_time_ids(
|
309 |
+
unet_config,
|
310 |
+
unet_add_embedding,
|
311 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
312 |
+
original_size: tuple,
|
313 |
+
crops_coords_top_left: tuple,
|
314 |
+
target_size: tuple,
|
315 |
+
dtype: torch.dtype):
|
316 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
317 |
+
|
318 |
+
passed_add_embed_dim = (
|
319 |
+
unet_config.addition_time_embed_dim * len(add_time_ids) + text_encoder_2.config.projection_dim
|
320 |
+
)
|
321 |
+
expected_add_embed_dim = unet_add_embedding.linear_1.in_features
|
322 |
+
|
323 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
324 |
+
raise ValueError(
|
325 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
326 |
+
)
|
327 |
+
|
328 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
329 |
+
return add_time_ids
|
330 |
+
|
331 |
+
|
332 |
+
def main():
|
333 |
+
global_step = 0
|
334 |
+
min_steps_before_validation = 0
|
335 |
+
|
336 |
+
args = parse_args()
|
337 |
+
|
338 |
+
next_save_iter = args.save_starting_step
|
339 |
+
|
340 |
+
if args.save_starting_step < 1:
|
341 |
+
next_save_iter = None
|
342 |
+
|
343 |
+
if args.report_to == "wandb":
|
344 |
+
if not is_wandb_available():
|
345 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
346 |
+
|
347 |
+
accelerator = Accelerator(
|
348 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
349 |
+
mixed_precision=args.mixed_precision,
|
350 |
+
log_with=args.report_to,
|
351 |
+
kwargs_handlers=[InitProcessGroupKwargs(timeout=timedelta(args.nccl_timeout))]
|
352 |
+
)
|
353 |
+
|
354 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
355 |
+
def save_model_hook(models, weights, output_dir):
|
356 |
+
nonlocal global_step
|
357 |
+
|
358 |
+
for model in models:
|
359 |
+
if isinstance(model, type(accelerator.unwrap_model(unet))):
|
360 |
+
model.save_pretrained(os.path.join(output_dir, 'unet'))
|
361 |
+
# make sure to pop weight so that corresponding model is not saved again
|
362 |
+
weights.pop()
|
363 |
+
|
364 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
365 |
+
|
366 |
+
set_seed(args.seed)
|
367 |
+
|
368 |
+
# Handle the repository creation
|
369 |
+
if accelerator.is_local_main_process:
|
370 |
+
if args.output_dir is not None:
|
371 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
372 |
+
|
373 |
+
# Load the tokenizer
|
374 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
|
375 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer_2")
|
376 |
+
|
377 |
+
# Load models and create wrapper for stable diffusion
|
378 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
|
379 |
+
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_name_or_path,
|
380 |
+
subfolder="text_encoder_2")
|
381 |
+
|
382 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
|
383 |
+
|
384 |
+
optimizer_resume_path = None
|
385 |
+
|
386 |
+
if args.unet_resume_path:
|
387 |
+
optimizer_fp = os.path.join(args.unet_resume_path, "optimizer.bin")
|
388 |
+
|
389 |
+
if os.path.exists(optimizer_fp):
|
390 |
+
optimizer_resume_path = optimizer_fp
|
391 |
+
|
392 |
+
unet = UNet3DConditionModel.from_pretrained(args.unet_resume_path,
|
393 |
+
subfolder="unet",
|
394 |
+
low_cpu_mem_usage=False,
|
395 |
+
device_map=None)
|
396 |
+
|
397 |
+
else:
|
398 |
+
unet = UNet3DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
|
399 |
+
|
400 |
+
if args.xformers:
|
401 |
+
vae.set_use_memory_efficient_attention_xformers(True, None)
|
402 |
+
unet.set_use_memory_efficient_attention_xformers(True, None)
|
403 |
+
|
404 |
+
unet_config = unet.config
|
405 |
+
unet_add_embedding = unet.add_embedding
|
406 |
+
|
407 |
+
unet.requires_grad_(False)
|
408 |
+
|
409 |
+
temporal_params = unet.temporal_parameters()
|
410 |
+
|
411 |
+
for p in temporal_params:
|
412 |
+
p.requires_grad_(True)
|
413 |
+
|
414 |
+
vae.requires_grad_(False)
|
415 |
+
text_encoder.requires_grad_(False)
|
416 |
+
text_encoder_2.requires_grad_(False)
|
417 |
+
|
418 |
+
if args.gradient_checkpointing:
|
419 |
+
unet.enable_gradient_checkpointing()
|
420 |
+
|
421 |
+
if args.scale_lr:
|
422 |
+
args.learning_rate = (
|
423 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
424 |
+
)
|
425 |
+
|
426 |
+
# Use 8-bit Adam for lower memory usage
|
427 |
+
if args.use_8bit_adam:
|
428 |
+
try:
|
429 |
+
import bitsandbytes as bnb
|
430 |
+
except ImportError:
|
431 |
+
raise ImportError(
|
432 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
433 |
+
)
|
434 |
+
|
435 |
+
optimizer_class = bnb.optim.AdamW8bit
|
436 |
+
else:
|
437 |
+
optimizer_class = torch.optim.AdamW
|
438 |
+
|
439 |
+
learning_rate = args.learning_rate
|
440 |
+
|
441 |
+
params_to_optimize = [
|
442 |
+
{'params': temporal_params, "lr": learning_rate},
|
443 |
+
]
|
444 |
+
|
445 |
+
optimizer = optimizer_class(
|
446 |
+
params_to_optimize,
|
447 |
+
lr=args.learning_rate,
|
448 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
449 |
+
weight_decay=args.adam_weight_decay,
|
450 |
+
eps=args.adam_epsilon,
|
451 |
+
)
|
452 |
+
|
453 |
+
if optimizer_resume_path and not args.disable_optimizer_restore:
|
454 |
+
logger.info("Restoring the optimizer.")
|
455 |
+
try:
|
456 |
+
|
457 |
+
old_optimizer_state_dict = torch.load(optimizer_resume_path)
|
458 |
+
|
459 |
+
# Extract only the state
|
460 |
+
old_state = old_optimizer_state_dict['state']
|
461 |
+
|
462 |
+
# Set the state of the new optimizer
|
463 |
+
optimizer.load_state_dict({'state': old_state, 'param_groups': optimizer.param_groups})
|
464 |
+
|
465 |
+
del old_optimizer_state_dict
|
466 |
+
del old_state
|
467 |
+
|
468 |
+
torch.cuda.empty_cache()
|
469 |
+
torch.cuda.synchronize()
|
470 |
+
gc.collect()
|
471 |
+
|
472 |
+
logger.info(f"Restored the optimizer ok")
|
473 |
+
|
474 |
+
except:
|
475 |
+
logger.error("Failed to restore the optimizer...", exc_info=True)
|
476 |
+
traceback.print_exc()
|
477 |
+
raise
|
478 |
+
|
479 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
480 |
+
|
481 |
+
def compute_snr(timesteps):
|
482 |
+
"""
|
483 |
+
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
|
484 |
+
"""
|
485 |
+
alphas_cumprod = noise_scheduler.alphas_cumprod
|
486 |
+
sqrt_alphas_cumprod = alphas_cumprod ** 0.5
|
487 |
+
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
|
488 |
+
|
489 |
+
# Expand the tensors.
|
490 |
+
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
|
491 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
492 |
+
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
|
493 |
+
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
|
494 |
+
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
|
495 |
+
|
496 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
|
497 |
+
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
|
498 |
+
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
|
499 |
+
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
|
500 |
+
|
501 |
+
# Compute SNR.
|
502 |
+
snr = (alpha / sigma) ** 2
|
503 |
+
return snr
|
504 |
+
|
505 |
+
device = torch.device('cuda')
|
506 |
+
|
507 |
+
image_transforms = transforms.Compose(
|
508 |
+
[
|
509 |
+
transforms.ToTensor(),
|
510 |
+
transforms.Normalize([0.5], [0.5]),
|
511 |
+
]
|
512 |
+
)
|
513 |
+
|
514 |
+
def image_to_tensor(img):
|
515 |
+
with torch.no_grad():
|
516 |
+
|
517 |
+
if img.mode != "RGB":
|
518 |
+
img = img.convert("RGB")
|
519 |
+
|
520 |
+
image = image_transforms(img).to(accelerator.device)
|
521 |
+
|
522 |
+
if image.shape[0] == 1:
|
523 |
+
image = image.repeat(3, 1, 1)
|
524 |
+
|
525 |
+
if image.shape[0] > 3:
|
526 |
+
image = image[:3, :, :]
|
527 |
+
|
528 |
+
return image
|
529 |
+
|
530 |
+
def make_sample(sample):
|
531 |
+
|
532 |
+
nonlocal unet_config
|
533 |
+
nonlocal unet_add_embedding
|
534 |
+
|
535 |
+
images = [Image.open(img) for img in sample['image_fps']]
|
536 |
+
|
537 |
+
og_size = images[0].size
|
538 |
+
|
539 |
+
for i, im in enumerate(images):
|
540 |
+
if im.mode != "RGB":
|
541 |
+
images[i] = im.convert("RGB")
|
542 |
+
|
543 |
+
aspect_ratio_map = res_to_aspect_map[args.resolution]
|
544 |
+
|
545 |
+
required_size = tuple(aspect_ratio_map[args.aspect_ratio])
|
546 |
+
|
547 |
+
if required_size != og_size:
|
548 |
+
|
549 |
+
def resize_image(x):
|
550 |
+
img_size = x.size
|
551 |
+
if img_size == required_size:
|
552 |
+
return x.resize(required_size, Image.LANCZOS)
|
553 |
+
|
554 |
+
return scale_aspect_fill(x, required_size[0], required_size[1])
|
555 |
+
|
556 |
+
with ThreadPoolExecutor(max_workers=len(images)) as executor:
|
557 |
+
images = list(executor.map(resize_image, images))
|
558 |
+
|
559 |
+
frames = torch.stack([image_to_tensor(x) for x in images])
|
560 |
+
|
561 |
+
l, u, *_ = get_crop_coordinates(og_size, images[0].size)
|
562 |
+
crop_coords = (l, u)
|
563 |
+
|
564 |
+
additional_time_ids = add_time_ids(
|
565 |
+
unet_config,
|
566 |
+
unet_add_embedding,
|
567 |
+
text_encoder_2,
|
568 |
+
og_size,
|
569 |
+
crop_coords,
|
570 |
+
(required_size[0], required_size[1]),
|
571 |
+
dtype=torch.float32
|
572 |
+
).to(device)
|
573 |
+
|
574 |
+
input_ids_0 = tokenizer(
|
575 |
+
sample['prompt'],
|
576 |
+
padding="do_not_pad",
|
577 |
+
truncation=True,
|
578 |
+
max_length=tokenizer.model_max_length,
|
579 |
+
).input_ids
|
580 |
+
|
581 |
+
input_ids_1 = tokenizer_2(
|
582 |
+
sample['prompt'],
|
583 |
+
padding="do_not_pad",
|
584 |
+
truncation=True,
|
585 |
+
max_length=tokenizer.model_max_length,
|
586 |
+
).input_ids
|
587 |
+
|
588 |
+
return {
|
589 |
+
"frames": frames,
|
590 |
+
"input_ids_0": input_ids_0,
|
591 |
+
"input_ids_1": input_ids_1,
|
592 |
+
"additional_time_ids": additional_time_ids,
|
593 |
+
}
|
594 |
+
|
595 |
+
def collate_fn(examples: list) -> dict:
|
596 |
+
|
597 |
+
# Two Text encoders
|
598 |
+
# First Text Encoder -> Penultimate Layer
|
599 |
+
# Second Text Encoder -> Pooled Layer
|
600 |
+
|
601 |
+
input_ids_0 = [example['input_ids_0'] for example in examples]
|
602 |
+
input_ids_0 = tokenizer.pad({"input_ids": input_ids_0}, padding="max_length",
|
603 |
+
max_length=tokenizer.model_max_length, return_tensors="pt").input_ids
|
604 |
+
|
605 |
+
prompt_embeds_0 = text_encoder(
|
606 |
+
input_ids_0.to(device),
|
607 |
+
output_hidden_states=True,
|
608 |
+
)
|
609 |
+
|
610 |
+
# we take penultimate embeddings from the first text encoder
|
611 |
+
prompt_embeds_0 = prompt_embeds_0.hidden_states[-2]
|
612 |
+
|
613 |
+
input_ids_1 = [example['input_ids_1'] for example in examples]
|
614 |
+
input_ids_1 = tokenizer_2.pad({"input_ids": input_ids_1}, padding="max_length",
|
615 |
+
max_length=tokenizer.model_max_length, return_tensors="pt").input_ids
|
616 |
+
|
617 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
618 |
+
prompt_embeds = text_encoder_2(
|
619 |
+
input_ids_1.to(device),
|
620 |
+
output_hidden_states=True
|
621 |
+
)
|
622 |
+
|
623 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
624 |
+
prompt_embeds_1 = prompt_embeds.hidden_states[-2]
|
625 |
+
|
626 |
+
prompt_embeds = torch.concat([prompt_embeds_0, prompt_embeds_1], dim=-1)
|
627 |
+
|
628 |
+
*_, h, w = examples[0]['frames'].shape
|
629 |
+
|
630 |
+
return {
|
631 |
+
"frames": torch.stack([x['frames'] for x in examples]).to(memory_format=torch.contiguous_format).float(),
|
632 |
+
"prompt_embeds": prompt_embeds.to(memory_format=torch.contiguous_format).float(),
|
633 |
+
"pooled_prompt_embeds": pooled_prompt_embeds,
|
634 |
+
"additional_time_ids": torch.stack([x['additional_time_ids'] for x in examples]),
|
635 |
+
}
|
636 |
+
|
637 |
+
# Region - Dataloaders
|
638 |
+
dataset = HotshotXLDataset(args.data_dir, make_sample)
|
639 |
+
dataloader = DataLoader(dataset, args.train_batch_size, shuffle=True, collate_fn=collate_fn)
|
640 |
+
|
641 |
+
# Scheduler and math around the number of training steps.
|
642 |
+
overrode_max_train_steps = False
|
643 |
+
num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps)
|
644 |
+
|
645 |
+
if args.max_train_steps is None:
|
646 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
647 |
+
overrode_max_train_steps = True
|
648 |
+
|
649 |
+
lr_scheduler = get_scheduler(
|
650 |
+
args.lr_scheduler,
|
651 |
+
optimizer=optimizer,
|
652 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
653 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
654 |
+
)
|
655 |
+
|
656 |
+
unet, optimizer, lr_scheduler, dataloader = accelerator.prepare(
|
657 |
+
unet, optimizer, lr_scheduler, dataloader
|
658 |
+
)
|
659 |
+
|
660 |
+
def to_images(video_frames: torch.Tensor):
|
661 |
+
import torchvision.transforms as transforms
|
662 |
+
to_pil = transforms.ToPILImage()
|
663 |
+
video_frames = rearrange(video_frames, "b c f w h -> b f c w h")
|
664 |
+
bsz = video_frames.shape[0]
|
665 |
+
images = []
|
666 |
+
for i in range(bsz):
|
667 |
+
video = video_frames[i]
|
668 |
+
for j in range(video.shape[0]):
|
669 |
+
image = to_pil(video[j])
|
670 |
+
images.append(image)
|
671 |
+
return images
|
672 |
+
|
673 |
+
def to_video_frames(images: list) -> np.ndarray:
|
674 |
+
x = np.stack([np.asarray(img) for img in images])
|
675 |
+
return np.transpose(x, (0, 3, 1, 2))
|
676 |
+
|
677 |
+
def run_validation(step=0, node_index=0):
|
678 |
+
|
679 |
+
nonlocal global_step
|
680 |
+
nonlocal accelerator
|
681 |
+
|
682 |
+
if args.test_prompts:
|
683 |
+
prompts = args.test_prompts.split("|")
|
684 |
+
else:
|
685 |
+
prompts = [
|
686 |
+
"a woman is lifting weights in a gym",
|
687 |
+
"a group of people are dancing at a party",
|
688 |
+
"a teddy bear doing the front crawl"
|
689 |
+
]
|
690 |
+
|
691 |
+
torch.cuda.empty_cache()
|
692 |
+
gc.collect()
|
693 |
+
|
694 |
+
logger.info(f"Running inference to test model at {step} steps")
|
695 |
+
with torch.no_grad():
|
696 |
+
|
697 |
+
pipe = HotshotXLPipeline.from_pretrained(
|
698 |
+
args.pretrained_model_name_or_path,
|
699 |
+
unet=accelerator.unwrap_model(unet),
|
700 |
+
text_encoder=text_encoder,
|
701 |
+
text_encoder_2=text_encoder_2,
|
702 |
+
vae=vae,
|
703 |
+
)
|
704 |
+
|
705 |
+
videos = []
|
706 |
+
|
707 |
+
aspect_ratio_map = res_to_aspect_map[args.resolution]
|
708 |
+
w, h = aspect_ratio_map[args.aspect_ratio]
|
709 |
+
|
710 |
+
for prompt in prompts:
|
711 |
+
video = pipe(prompt,
|
712 |
+
width=w,
|
713 |
+
height=h,
|
714 |
+
original_size=(1920, 1080), # todo - pass in as args?
|
715 |
+
target_size=(args.resolution, args.resolution),
|
716 |
+
num_inference_steps=30,
|
717 |
+
video_length=8,
|
718 |
+
output_type="tensor",
|
719 |
+
generator=torch.Generator().manual_seed(111)).videos
|
720 |
+
|
721 |
+
videos.append(to_images(video))
|
722 |
+
|
723 |
+
for tracker in accelerator.trackers:
|
724 |
+
|
725 |
+
if tracker.name == "wandb":
|
726 |
+
tracker.log(
|
727 |
+
{
|
728 |
+
"validation": [wandb.Video(to_video_frames(video), fps=8, format='mp4') for video in
|
729 |
+
videos],
|
730 |
+
}, step=global_step
|
731 |
+
)
|
732 |
+
|
733 |
+
del pipe
|
734 |
+
|
735 |
+
return
|
736 |
+
|
737 |
+
# Move text_encode and vae to gpu.
|
738 |
+
vae.to(accelerator.device, dtype=torch.bfloat16 if args.vae_b16 else torch.float32)
|
739 |
+
text_encoder.to(accelerator.device)
|
740 |
+
text_encoder_2.to(accelerator.device)
|
741 |
+
|
742 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
743 |
+
|
744 |
+
num_update_steps_per_epoch = math.ceil(len(dataloader) / args.gradient_accumulation_steps)
|
745 |
+
if overrode_max_train_steps:
|
746 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
747 |
+
# Afterward we recalculate our number of training epochs
|
748 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
749 |
+
|
750 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
751 |
+
# The trackers initialize automatically on the main process.
|
752 |
+
|
753 |
+
if accelerator.is_main_process:
|
754 |
+
accelerator.init_trackers(args.project_name)
|
755 |
+
|
756 |
+
def bar(prg):
|
757 |
+
br = '|' + '█' * prg + ' ' * (25 - prg) + '|'
|
758 |
+
return br
|
759 |
+
|
760 |
+
# Train!
|
761 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
762 |
+
|
763 |
+
if accelerator.is_main_process:
|
764 |
+
logger.info("***** Running training *****")
|
765 |
+
logger.info(f" Num examples = {len(dataset)}")
|
766 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
767 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
768 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
769 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
770 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
771 |
+
|
772 |
+
# Only show the progress bar once on each machine.
|
773 |
+
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
774 |
+
|
775 |
+
latents_scaler = vae.config.scaling_factor
|
776 |
+
|
777 |
+
def save_checkpoint():
|
778 |
+
save_dir = Path(args.output_dir)
|
779 |
+
save_dir = str(save_dir)
|
780 |
+
save_dir = save_dir.replace(" ", "_")
|
781 |
+
if not os.path.exists(save_dir):
|
782 |
+
os.makedirs(save_dir, exist_ok=True)
|
783 |
+
accelerator.save_state(save_dir)
|
784 |
+
|
785 |
+
def save_checkpoint_and_wait():
|
786 |
+
if accelerator.is_main_process:
|
787 |
+
save_checkpoint()
|
788 |
+
accelerator.wait_for_everyone()
|
789 |
+
|
790 |
+
def save_model_and_wait():
|
791 |
+
if accelerator.is_main_process:
|
792 |
+
HotshotXLPipeline.from_pretrained(
|
793 |
+
args.pretrained_model_name_or_path,
|
794 |
+
unet=accelerator.unwrap_model(unet),
|
795 |
+
text_encoder=text_encoder,
|
796 |
+
text_encoder_2=text_encoder_2,
|
797 |
+
vae=vae,
|
798 |
+
).save_pretrained(args.output_dir, safe_serialization=True)
|
799 |
+
accelerator.wait_for_everyone()
|
800 |
+
|
801 |
+
def compute_loss_from_batch(batch: dict):
|
802 |
+
frames = batch["frames"]
|
803 |
+
bsz, number_of_frames, c, w, h = frames.shape
|
804 |
+
|
805 |
+
# Convert images to latent space
|
806 |
+
with torch.no_grad():
|
807 |
+
|
808 |
+
if args.max_vae_encode:
|
809 |
+
latents = []
|
810 |
+
|
811 |
+
x = rearrange(frames, "bs nf c h w -> (bs nf) c h w")
|
812 |
+
|
813 |
+
for latent_index in range(0, x.shape[0], args.max_vae_encode):
|
814 |
+
sample = x[latent_index: latent_index + args.max_vae_encode]
|
815 |
+
|
816 |
+
latent = vae.encode(sample.to(dtype=vae.dtype)).latent_dist.sample().float()
|
817 |
+
if len(latent.shape) == 3:
|
818 |
+
latent = latent.unsqueeze(0)
|
819 |
+
|
820 |
+
latents.append(latent)
|
821 |
+
torch.cuda.empty_cache()
|
822 |
+
|
823 |
+
latents = torch.cat(latents, dim=0)
|
824 |
+
else:
|
825 |
+
|
826 |
+
# convert the latents from 5d -> 4d, so we can run it though the vae encoder
|
827 |
+
x = rearrange(frames, "bs nf c h w -> (bs nf) c h w")
|
828 |
+
|
829 |
+
del frames
|
830 |
+
|
831 |
+
torch.cuda.empty_cache()
|
832 |
+
|
833 |
+
latents = vae.encode(x.to(dtype=vae.dtype)).latent_dist.sample().float()
|
834 |
+
|
835 |
+
if args.latent_nan_checking and torch.any(torch.isnan(latents)):
|
836 |
+
accelerator.print("NaN found in latents, replacing with zeros")
|
837 |
+
latents = torch.where(torch.isnan(latents), torch.zeros_like(latents), latents)
|
838 |
+
|
839 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=bsz)
|
840 |
+
|
841 |
+
torch.cuda.empty_cache()
|
842 |
+
|
843 |
+
noise = torch.randn_like(latents, device=latents.device)
|
844 |
+
|
845 |
+
if args.noise_offset:
|
846 |
+
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
847 |
+
noise += args.noise_offset * torch.randn(
|
848 |
+
(latents.shape[0], latents.shape[1], 1, 1, 1), device=latents.device
|
849 |
+
)
|
850 |
+
|
851 |
+
# Sample a random timestep for each image
|
852 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
853 |
+
timesteps = timesteps.long() # .repeat_interleave(number_of_frames)
|
854 |
+
latents = latents * latents_scaler
|
855 |
+
|
856 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
857 |
+
# (this is the forward diffusion process)
|
858 |
+
|
859 |
+
prompt_embeds = batch['prompt_embeds']
|
860 |
+
add_text_embeds = batch['pooled_prompt_embeds']
|
861 |
+
|
862 |
+
additional_time_ids = batch['additional_time_ids'] # .repeat_interleave(number_of_frames, dim=0)
|
863 |
+
|
864 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": additional_time_ids}
|
865 |
+
|
866 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
867 |
+
|
868 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
869 |
+
target = noise
|
870 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
871 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
872 |
+
else:
|
873 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
874 |
+
|
875 |
+
noisy_latents.requires_grad = True
|
876 |
+
|
877 |
+
model_pred = unet(noisy_latents,
|
878 |
+
timesteps,
|
879 |
+
cross_attention_kwargs=None,
|
880 |
+
encoder_hidden_states=prompt_embeds,
|
881 |
+
added_cond_kwargs=added_cond_kwargs,
|
882 |
+
return_dict=False,
|
883 |
+
)[0]
|
884 |
+
|
885 |
+
if args.snr_gamma:
|
886 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
887 |
+
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
|
888 |
+
# This is discussed in Section 4.2 of the same paper.
|
889 |
+
snr = compute_snr(timesteps)
|
890 |
+
mse_loss_weights = (
|
891 |
+
torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
|
892 |
+
)
|
893 |
+
# We first calculate the original loss. Then we mean over the non-batch dimensions and
|
894 |
+
# rebalance the sample-wise losses with their respective loss weights.
|
895 |
+
# Finally, we take the mean of the rebalanced loss.
|
896 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
897 |
+
|
898 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
899 |
+
return loss.mean()
|
900 |
+
else:
|
901 |
+
return F.mse_loss(model_pred.float(), target.float(), reduction='mean')
|
902 |
+
|
903 |
+
def process_batch(batch: dict):
|
904 |
+
nonlocal global_step
|
905 |
+
nonlocal next_save_iter
|
906 |
+
|
907 |
+
now = time.time()
|
908 |
+
|
909 |
+
with accelerator.accumulate(unet):
|
910 |
+
|
911 |
+
logging_data = {}
|
912 |
+
if global_step == 0:
|
913 |
+
# print(f"Running initial validation at step")
|
914 |
+
if accelerator.is_main_process and args.run_validation_at_start:
|
915 |
+
run_validation(step=global_step, node_index=accelerator.process_index // 8)
|
916 |
+
accelerator.wait_for_everyone()
|
917 |
+
|
918 |
+
loss = compute_loss_from_batch(batch)
|
919 |
+
|
920 |
+
accelerator.backward(loss)
|
921 |
+
|
922 |
+
if accelerator.sync_gradients:
|
923 |
+
accelerator.clip_grad_norm_(temporal_params, args.max_grad_norm)
|
924 |
+
|
925 |
+
optimizer.step()
|
926 |
+
|
927 |
+
lr_scheduler.step()
|
928 |
+
optimizer.zero_grad()
|
929 |
+
|
930 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
931 |
+
if accelerator.sync_gradients:
|
932 |
+
progress_bar.update(1)
|
933 |
+
global_step += 1
|
934 |
+
|
935 |
+
fll = round((global_step * 100) / args.max_train_steps)
|
936 |
+
fll = round(fll / 4)
|
937 |
+
pr = bar(fll)
|
938 |
+
|
939 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "loss_time": (time.time() - now)}
|
940 |
+
|
941 |
+
if args.validate_every_steps is not None and global_step > min_steps_before_validation and global_step % args.validate_every_steps == 0:
|
942 |
+
if accelerator.is_main_process:
|
943 |
+
run_validation(step=global_step, node_index=accelerator.process_index // 8)
|
944 |
+
|
945 |
+
accelerator.wait_for_everyone()
|
946 |
+
|
947 |
+
for key, val in logging_data.items():
|
948 |
+
logs[key] = val
|
949 |
+
|
950 |
+
progress_bar.set_postfix(**logs)
|
951 |
+
progress_bar.set_description_str("Progress:" + pr)
|
952 |
+
accelerator.log(logs, step=global_step)
|
953 |
+
|
954 |
+
if accelerator.is_main_process \
|
955 |
+
and next_save_iter is not None \
|
956 |
+
and global_step < args.max_train_steps \
|
957 |
+
and global_step + 1 == next_save_iter:
|
958 |
+
save_checkpoint()
|
959 |
+
|
960 |
+
torch.cuda.empty_cache()
|
961 |
+
gc.collect()
|
962 |
+
|
963 |
+
next_save_iter += args.save_n_steps
|
964 |
+
|
965 |
+
for epoch in range(args.num_train_epochs):
|
966 |
+
unet.train()
|
967 |
+
|
968 |
+
for step, batch in enumerate(dataloader):
|
969 |
+
process_batch(batch)
|
970 |
+
|
971 |
+
if global_step >= args.max_train_steps:
|
972 |
+
break
|
973 |
+
|
974 |
+
if global_step >= args.max_train_steps:
|
975 |
+
logger.info("Max train steps reached. Breaking while loop")
|
976 |
+
break
|
977 |
+
|
978 |
+
accelerator.wait_for_everyone()
|
979 |
+
|
980 |
+
save_model_and_wait()
|
981 |
+
|
982 |
+
accelerator.end_training()
|
983 |
+
|
984 |
+
|
985 |
+
if __name__ == "__main__":
|
986 |
+
mp.set_start_method('spawn')
|
987 |
+
main()
|
Hotshot-XL/hotshot_xl.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: hotshot-xl
|
3 |
+
Version: 1.0
|
4 |
+
Author: Natural Synthetics Inc
|
5 |
+
License-File: LICENSE
|
Hotshot-XL/hotshot_xl.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LICENSE
|
2 |
+
README.md
|
3 |
+
setup.py
|
4 |
+
hotshot_xl/__init__.py
|
5 |
+
hotshot_xl/utils.py
|
6 |
+
hotshot_xl.egg-info/PKG-INFO
|
7 |
+
hotshot_xl.egg-info/SOURCES.txt
|
8 |
+
hotshot_xl.egg-info/dependency_links.txt
|
9 |
+
hotshot_xl.egg-info/requires.txt
|
10 |
+
hotshot_xl.egg-info/top_level.txt
|
11 |
+
hotshot_xl/models/__init__.py
|
12 |
+
hotshot_xl/models/resnet.py
|
13 |
+
hotshot_xl/models/transformer_3d.py
|
14 |
+
hotshot_xl/models/transformer_temporal.py
|
15 |
+
hotshot_xl/models/unet.py
|
16 |
+
hotshot_xl/models/unet_blocks.py
|
17 |
+
hotshot_xl/pipelines/__init__.py
|
18 |
+
hotshot_xl/pipelines/hotshot_xl_controlnet_pipeline.py
|
19 |
+
hotshot_xl/pipelines/hotshot_xl_pipeline.py
|
Hotshot-XL/hotshot_xl.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
Hotshot-XL/hotshot_xl.egg-info/requires.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.1
|
2 |
+
torchvision>=0.15.2
|
3 |
+
diffusers>=0.21.4
|
4 |
+
transformers>=4.33.3
|
5 |
+
einops
|
Hotshot-XL/hotshot_xl.egg-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
hotshot_xl
|
Hotshot-XL/hotshot_xl/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
|
15 |
+
# don't remove these imports - they are needed to load from pretrain.
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from .models.unet import UNet3DConditionModel
|
18 |
+
|
19 |
+
from diffusers.utils import (
|
20 |
+
BaseOutput,
|
21 |
+
)
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class HotshotPipelineXLOutput(BaseOutput):
|
25 |
+
videos: Union[torch.Tensor, np.ndarray]
|
Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (699 Bytes). View file
|
|
Hotshot-XL/hotshot_xl/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (699 Bytes). View file
|
|
Hotshot-XL/hotshot_xl/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (5.12 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__init__.py
ADDED
File without changes
|
Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (153 Bytes). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (153 Bytes). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-38.pyc
ADDED
Binary file (3.6 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/resnet.cpython-39.pyc
ADDED
Binary file (3.58 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-38.pyc
ADDED
Binary file (2.32 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/transformer_3d.cpython-39.pyc
ADDED
Binary file (2.32 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-38.pyc
ADDED
Binary file (5.57 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/transformer_temporal.cpython-39.pyc
ADDED
Binary file (5.58 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-38.pyc
ADDED
Binary file (23.8 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/unet.cpython-39.pyc
ADDED
Binary file (23.8 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-38.pyc
ADDED
Binary file (12.9 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/__pycache__/unet_blocks.cpython-39.pyc
ADDED
Binary file (12.9 kB). View file
|
|
Hotshot-XL/hotshot_xl/models/resnet.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from diffusers.models.resnet import Upsample2D, Downsample2D, LoRACompatibleConv
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
|
15 |
+
class Upsample3D(Upsample2D):
|
16 |
+
def forward(self, hidden_states, output_size=None, scale: float = 1.0):
|
17 |
+
f = hidden_states.shape[2]
|
18 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
19 |
+
hidden_states = super(Upsample3D, self).forward(hidden_states, output_size, scale)
|
20 |
+
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
21 |
+
|
22 |
+
|
23 |
+
class Downsample3D(Downsample2D):
|
24 |
+
|
25 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
26 |
+
f = hidden_states.shape[2]
|
27 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
28 |
+
hidden_states = super(Downsample3D, self).forward(hidden_states, scale)
|
29 |
+
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
30 |
+
|
31 |
+
|
32 |
+
class Conv3d(LoRACompatibleConv):
|
33 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
34 |
+
f = hidden_states.shape[2]
|
35 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
36 |
+
hidden_states = super().forward(hidden_states, scale)
|
37 |
+
return rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
38 |
+
|
39 |
+
|
40 |
+
class ResnetBlock3D(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
*,
|
44 |
+
in_channels,
|
45 |
+
out_channels=None,
|
46 |
+
conv_shortcut=False,
|
47 |
+
dropout=0.0,
|
48 |
+
temb_channels=512,
|
49 |
+
groups=32,
|
50 |
+
groups_out=None,
|
51 |
+
pre_norm=True,
|
52 |
+
eps=1e-6,
|
53 |
+
non_linearity="silu",
|
54 |
+
time_embedding_norm="default",
|
55 |
+
output_scale_factor=1.0,
|
56 |
+
use_in_shortcut=None,
|
57 |
+
conv_shortcut_bias: bool = True,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
self.pre_norm = pre_norm
|
61 |
+
self.pre_norm = True
|
62 |
+
self.in_channels = in_channels
|
63 |
+
out_channels = in_channels if out_channels is None else out_channels
|
64 |
+
self.out_channels = out_channels
|
65 |
+
self.use_conv_shortcut = conv_shortcut
|
66 |
+
self.time_embedding_norm = time_embedding_norm
|
67 |
+
self.output_scale_factor = output_scale_factor
|
68 |
+
|
69 |
+
if groups_out is None:
|
70 |
+
groups_out = groups
|
71 |
+
|
72 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
73 |
+
self.conv1 = Conv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
74 |
+
|
75 |
+
if temb_channels is not None:
|
76 |
+
if self.time_embedding_norm == "default":
|
77 |
+
time_emb_proj_out_channels = out_channels
|
78 |
+
elif self.time_embedding_norm == "scale_shift":
|
79 |
+
time_emb_proj_out_channels = out_channels * 2
|
80 |
+
else:
|
81 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
82 |
+
|
83 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
84 |
+
else:
|
85 |
+
self.time_emb_proj = None
|
86 |
+
|
87 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
88 |
+
self.dropout = torch.nn.Dropout(dropout)
|
89 |
+
self.conv2 = Conv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
90 |
+
|
91 |
+
assert non_linearity == "silu"
|
92 |
+
|
93 |
+
self.nonlinearity = nn.SiLU()
|
94 |
+
|
95 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
96 |
+
|
97 |
+
self.conv_shortcut = None
|
98 |
+
if self.use_in_shortcut:
|
99 |
+
self.conv_shortcut = Conv3d(
|
100 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
|
101 |
+
)
|
102 |
+
|
103 |
+
def forward(self, input_tensor, temb):
|
104 |
+
hidden_states = input_tensor
|
105 |
+
|
106 |
+
hidden_states = self.norm1(hidden_states)
|
107 |
+
hidden_states = self.nonlinearity(hidden_states)
|
108 |
+
|
109 |
+
hidden_states = self.conv1(hidden_states)
|
110 |
+
|
111 |
+
if temb is not None:
|
112 |
+
temb = self.nonlinearity(temb)
|
113 |
+
temb = self.time_emb_proj(temb)[:, :, None, None, None]
|
114 |
+
|
115 |
+
if temb is not None and self.time_embedding_norm == "default":
|
116 |
+
hidden_states = hidden_states + temb
|
117 |
+
|
118 |
+
hidden_states = self.norm2(hidden_states)
|
119 |
+
|
120 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
121 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
122 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
123 |
+
|
124 |
+
hidden_states = self.nonlinearity(hidden_states)
|
125 |
+
|
126 |
+
hidden_states = self.dropout(hidden_states)
|
127 |
+
hidden_states = self.conv2(hidden_states)
|
128 |
+
|
129 |
+
if self.conv_shortcut is not None:
|
130 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
131 |
+
|
132 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
133 |
+
|
134 |
+
return output_tensor
|
Hotshot-XL/hotshot_xl/models/transformer_3d.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Optional
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
from typing import Dict, Any
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class Transformer3DModelOutput(BaseOutput):
|
21 |
+
"""
|
22 |
+
The output of [`Transformer3DModel`].
|
23 |
+
|
24 |
+
Args:
|
25 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`:
|
26 |
+
The hidden states output conditioned on the `encoder_hidden_states` input.
|
27 |
+
"""
|
28 |
+
|
29 |
+
sample: torch.FloatTensor
|
30 |
+
|
31 |
+
|
32 |
+
class Transformer3DModel(Transformer2DModel):
|
33 |
+
|
34 |
+
def __init__(self, *args, **kwargs):
|
35 |
+
super(Transformer3DModel, self).__init__(*args, **kwargs)
|
36 |
+
nn.init.zeros_(self.proj_out.weight.data)
|
37 |
+
nn.init.zeros_(self.proj_out.bias.data)
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self,
|
41 |
+
hidden_states: torch.Tensor,
|
42 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
43 |
+
timestep: Optional[torch.LongTensor] = None,
|
44 |
+
class_labels: Optional[torch.LongTensor] = None,
|
45 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
47 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
48 |
+
enable_temporal_layers: bool = True,
|
49 |
+
positional_embedding: Optional[torch.Tensor] = None,
|
50 |
+
return_dict: bool = True,
|
51 |
+
):
|
52 |
+
|
53 |
+
is_video = len(hidden_states.shape) == 5
|
54 |
+
|
55 |
+
if is_video:
|
56 |
+
f = hidden_states.shape[2]
|
57 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
58 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=f)
|
59 |
+
|
60 |
+
hidden_states = super(Transformer3DModel, self).forward(hidden_states,
|
61 |
+
encoder_hidden_states,
|
62 |
+
timestep,
|
63 |
+
class_labels,
|
64 |
+
cross_attention_kwargs,
|
65 |
+
attention_mask,
|
66 |
+
encoder_attention_mask,
|
67 |
+
return_dict=False)[0]
|
68 |
+
|
69 |
+
if is_video:
|
70 |
+
hidden_states = rearrange(hidden_states, "(b f) c h w -> b c f h w", f=f)
|
71 |
+
|
72 |
+
if not return_dict:
|
73 |
+
return (hidden_states,)
|
74 |
+
|
75 |
+
return Transformer3DModelOutput(sample=hidden_states)
|
Hotshot-XL/hotshot_xl/models/transformer_temporal.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import math
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from torch import nn
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
from diffusers.models.attention import Attention, FeedForward
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
from typing import Optional
|
17 |
+
|
18 |
+
|
19 |
+
class PositionalEncoding(nn.Module):
|
20 |
+
"""
|
21 |
+
Implements positional encoding as described in "Attention Is All You Need".
|
22 |
+
Adds sinusoidal based positional encodings to the input tensor.
|
23 |
+
"""
|
24 |
+
|
25 |
+
_SCALE_FACTOR = 10000.0 # Scale factor used in the positional encoding computation.
|
26 |
+
|
27 |
+
def __init__(self, dim: int, dropout: float = 0.0, max_length: int = 24):
|
28 |
+
super(PositionalEncoding, self).__init__()
|
29 |
+
|
30 |
+
self.dropout = nn.Dropout(p=dropout)
|
31 |
+
|
32 |
+
# The size is (1, max_length, dim) to allow easy addition to input tensors.
|
33 |
+
positional_encoding = torch.zeros(1, max_length, dim)
|
34 |
+
|
35 |
+
# Position and dim are used in the sinusoidal computation.
|
36 |
+
position = torch.arange(max_length).unsqueeze(1)
|
37 |
+
div_term = torch.exp(torch.arange(0, dim, 2) * (-math.log(self._SCALE_FACTOR) / dim))
|
38 |
+
|
39 |
+
positional_encoding[0, :, 0::2] = torch.sin(position * div_term)
|
40 |
+
positional_encoding[0, :, 1::2] = torch.cos(position * div_term)
|
41 |
+
|
42 |
+
# Register the positional encoding matrix as a buffer,
|
43 |
+
# so it's part of the model's state but not the parameters.
|
44 |
+
self.register_buffer('positional_encoding', positional_encoding)
|
45 |
+
|
46 |
+
def forward(self, hidden_states: torch.Tensor, length: int) -> torch.Tensor:
|
47 |
+
hidden_states = hidden_states + self.positional_encoding[:, :length]
|
48 |
+
return self.dropout(hidden_states)
|
49 |
+
|
50 |
+
|
51 |
+
class TemporalAttention(Attention):
|
52 |
+
def __init__(self, *args, **kwargs):
|
53 |
+
super().__init__(*args, **kwargs)
|
54 |
+
self.pos_encoder = PositionalEncoding(kwargs["query_dim"], dropout=0)
|
55 |
+
|
56 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=8):
|
57 |
+
sequence_length = hidden_states.shape[1]
|
58 |
+
hidden_states = rearrange(hidden_states, "(b f) s c -> (b s) f c", f=number_of_frames)
|
59 |
+
hidden_states = self.pos_encoder(hidden_states, length=number_of_frames)
|
60 |
+
|
61 |
+
if encoder_hidden_states:
|
62 |
+
encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b s) n c", s=sequence_length)
|
63 |
+
|
64 |
+
hidden_states = super().forward(hidden_states, encoder_hidden_states, attention_mask=attention_mask)
|
65 |
+
|
66 |
+
return rearrange(hidden_states, "(b s) f c -> (b f) s c", s=sequence_length)
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class TransformerTemporalOutput(BaseOutput):
|
71 |
+
sample: torch.FloatTensor
|
72 |
+
|
73 |
+
|
74 |
+
class TransformerTemporal(nn.Module):
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_attention_heads: int,
|
78 |
+
attention_head_dim: int,
|
79 |
+
in_channels: int,
|
80 |
+
num_layers: int = 1,
|
81 |
+
dropout: float = 0.0,
|
82 |
+
norm_num_groups: int = 32,
|
83 |
+
cross_attention_dim: Optional[int] = None,
|
84 |
+
attention_bias: bool = False,
|
85 |
+
activation_fn: str = "geglu",
|
86 |
+
upcast_attention: bool = False,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
|
90 |
+
inner_dim = num_attention_heads * attention_head_dim
|
91 |
+
|
92 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
93 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
94 |
+
|
95 |
+
self.transformer_blocks = nn.ModuleList(
|
96 |
+
[
|
97 |
+
TransformerBlock(
|
98 |
+
dim=inner_dim,
|
99 |
+
num_attention_heads=num_attention_heads,
|
100 |
+
attention_head_dim=attention_head_dim,
|
101 |
+
dropout=dropout,
|
102 |
+
activation_fn=activation_fn,
|
103 |
+
attention_bias=attention_bias,
|
104 |
+
upcast_attention=upcast_attention,
|
105 |
+
cross_attention_dim=cross_attention_dim
|
106 |
+
)
|
107 |
+
for _ in range(num_layers)
|
108 |
+
]
|
109 |
+
)
|
110 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
111 |
+
|
112 |
+
def forward(self, hidden_states, encoder_hidden_states=None):
|
113 |
+
_, num_channels, f, height, width = hidden_states.shape
|
114 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
115 |
+
|
116 |
+
skip = hidden_states
|
117 |
+
|
118 |
+
hidden_states = self.norm(hidden_states)
|
119 |
+
hidden_states = rearrange(hidden_states, "bf c h w -> bf (h w) c")
|
120 |
+
hidden_states = self.proj_in(hidden_states)
|
121 |
+
|
122 |
+
for block in self.transformer_blocks:
|
123 |
+
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, number_of_frames=f)
|
124 |
+
|
125 |
+
hidden_states = self.proj_out(hidden_states)
|
126 |
+
hidden_states = rearrange(hidden_states, "bf (h w) c -> bf c h w", h=height, w=width).contiguous()
|
127 |
+
|
128 |
+
output = hidden_states + skip
|
129 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=f)
|
130 |
+
|
131 |
+
return output
|
132 |
+
|
133 |
+
|
134 |
+
class TransformerBlock(nn.Module):
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
dim,
|
138 |
+
num_attention_heads,
|
139 |
+
attention_head_dim,
|
140 |
+
dropout=0.0,
|
141 |
+
activation_fn="geglu",
|
142 |
+
attention_bias=False,
|
143 |
+
upcast_attention=False,
|
144 |
+
depth=2,
|
145 |
+
cross_attention_dim: Optional[int] = None
|
146 |
+
):
|
147 |
+
super().__init__()
|
148 |
+
|
149 |
+
self.is_cross = cross_attention_dim is not None
|
150 |
+
|
151 |
+
attention_blocks = []
|
152 |
+
norms = []
|
153 |
+
|
154 |
+
for _ in range(depth):
|
155 |
+
attention_blocks.append(
|
156 |
+
TemporalAttention(
|
157 |
+
query_dim=dim,
|
158 |
+
cross_attention_dim=cross_attention_dim,
|
159 |
+
heads=num_attention_heads,
|
160 |
+
dim_head=attention_head_dim,
|
161 |
+
dropout=dropout,
|
162 |
+
bias=attention_bias,
|
163 |
+
upcast_attention=upcast_attention,
|
164 |
+
)
|
165 |
+
)
|
166 |
+
norms.append(nn.LayerNorm(dim))
|
167 |
+
|
168 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
169 |
+
self.norms = nn.ModuleList(norms)
|
170 |
+
|
171 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
172 |
+
self.ff_norm = nn.LayerNorm(dim)
|
173 |
+
|
174 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, number_of_frames=None):
|
175 |
+
|
176 |
+
if not self.is_cross:
|
177 |
+
encoder_hidden_states = None
|
178 |
+
|
179 |
+
for block, norm in zip(self.attention_blocks, self.norms):
|
180 |
+
norm_hidden_states = norm(hidden_states)
|
181 |
+
hidden_states = block(
|
182 |
+
norm_hidden_states,
|
183 |
+
encoder_hidden_states=encoder_hidden_states,
|
184 |
+
attention_mask=attention_mask,
|
185 |
+
number_of_frames=number_of_frames
|
186 |
+
) + hidden_states
|
187 |
+
|
188 |
+
norm_hidden_states = self.ff_norm(hidden_states)
|
189 |
+
hidden_states = self.ff(norm_hidden_states) + hidden_states
|
190 |
+
|
191 |
+
output = hidden_states
|
192 |
+
return output
|
Hotshot-XL/hotshot_xl/models/unet.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modifications:
|
16 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
17 |
+
# - Unet now supports SDXL
|
18 |
+
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
import torch.utils.checkpoint
|
25 |
+
|
26 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
27 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
28 |
+
from diffusers.utils import BaseOutput, logging
|
29 |
+
from diffusers.models.activations import get_activation
|
30 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
31 |
+
from diffusers.models.embeddings import (
|
32 |
+
GaussianFourierProjection,
|
33 |
+
ImageHintTimeEmbedding,
|
34 |
+
ImageProjection,
|
35 |
+
ImageTimeEmbedding,
|
36 |
+
TextImageProjection,
|
37 |
+
TextImageTimeEmbedding,
|
38 |
+
TextTimeEmbedding,
|
39 |
+
TimestepEmbedding,
|
40 |
+
Timesteps,
|
41 |
+
)
|
42 |
+
|
43 |
+
from diffusers.models.modeling_utils import ModelMixin
|
44 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
45 |
+
from .unet_blocks import (
|
46 |
+
CrossAttnDownBlock3D,
|
47 |
+
CrossAttnUpBlock3D,
|
48 |
+
DownBlock3D,
|
49 |
+
UNetMidBlock3DCrossAttn,
|
50 |
+
UpBlock3D,
|
51 |
+
get_down_block,
|
52 |
+
get_up_block,
|
53 |
+
)
|
54 |
+
|
55 |
+
from .resnet import Conv3d
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class UNet3DConditionOutput(BaseOutput):
|
62 |
+
"""
|
63 |
+
The output of [`UNet2DConditionModel`].
|
64 |
+
|
65 |
+
Args:
|
66 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
67 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
68 |
+
"""
|
69 |
+
|
70 |
+
sample: torch.FloatTensor = None
|
71 |
+
|
72 |
+
|
73 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
74 |
+
_supports_gradient_checkpointing = True
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
sample_size: Optional[int] = None,
|
80 |
+
in_channels: int = 4,
|
81 |
+
out_channels: int = 4,
|
82 |
+
center_input_sample: bool = False,
|
83 |
+
flip_sin_to_cos: bool = True,
|
84 |
+
freq_shift: int = 0,
|
85 |
+
down_block_types: Tuple[str] = (
|
86 |
+
"CrossAttnDownBlock3D",
|
87 |
+
"CrossAttnDownBlock3D",
|
88 |
+
"DownBlock3D",
|
89 |
+
),
|
90 |
+
mid_block_type: Optional[str] = "UNetMidBlock3DCrossAttn",
|
91 |
+
up_block_types: Tuple[str] = (
|
92 |
+
"UpBlock3D",
|
93 |
+
"CrossAttnUpBlock3D",
|
94 |
+
"CrossAttnUpBlock3D",
|
95 |
+
),
|
96 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
97 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
98 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
99 |
+
downsample_padding: int = 1,
|
100 |
+
mid_block_scale_factor: float = 1,
|
101 |
+
act_fn: str = "silu",
|
102 |
+
norm_num_groups: Optional[int] = 32,
|
103 |
+
norm_eps: float = 1e-5,
|
104 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
105 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
106 |
+
encoder_hid_dim: Optional[int] = None,
|
107 |
+
encoder_hid_dim_type: Optional[str] = None,
|
108 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
109 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
110 |
+
dual_cross_attention: bool = False,
|
111 |
+
use_linear_projection: bool = False,
|
112 |
+
class_embed_type: Optional[str] = None,
|
113 |
+
addition_embed_type: Optional[str] = None,
|
114 |
+
addition_time_embed_dim: Optional[int] = None,
|
115 |
+
num_class_embeds: Optional[int] = None,
|
116 |
+
upcast_attention: bool = False,
|
117 |
+
resnet_time_scale_shift: str = "default",
|
118 |
+
resnet_skip_time_act: bool = False,
|
119 |
+
resnet_out_scale_factor: int = 1.0,
|
120 |
+
time_embedding_type: str = "positional",
|
121 |
+
time_embedding_dim: Optional[int] = None,
|
122 |
+
time_embedding_act_fn: Optional[str] = None,
|
123 |
+
timestep_post_act: Optional[str] = None,
|
124 |
+
time_cond_proj_dim: Optional[int] = None,
|
125 |
+
conv_in_kernel: int = 3,
|
126 |
+
conv_out_kernel: int = 3,
|
127 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
128 |
+
class_embeddings_concat: bool = False,
|
129 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
130 |
+
cross_attention_norm: Optional[str] = None,
|
131 |
+
addition_embed_type_num_heads=64,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
|
135 |
+
self.sample_size = sample_size
|
136 |
+
|
137 |
+
if num_attention_heads is not None:
|
138 |
+
raise ValueError(
|
139 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
140 |
+
)
|
141 |
+
|
142 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
143 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
144 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
145 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
146 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
147 |
+
# which is why we correct for the naming here.
|
148 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
149 |
+
|
150 |
+
# Check inputs
|
151 |
+
if len(down_block_types) != len(up_block_types):
|
152 |
+
raise ValueError(
|
153 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
154 |
+
)
|
155 |
+
|
156 |
+
if len(block_out_channels) != len(down_block_types):
|
157 |
+
raise ValueError(
|
158 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
159 |
+
)
|
160 |
+
|
161 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
162 |
+
raise ValueError(
|
163 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
164 |
+
)
|
165 |
+
|
166 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
167 |
+
raise ValueError(
|
168 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
169 |
+
)
|
170 |
+
|
171 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
172 |
+
raise ValueError(
|
173 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
174 |
+
)
|
175 |
+
|
176 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
177 |
+
raise ValueError(
|
178 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
179 |
+
)
|
180 |
+
|
181 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
182 |
+
raise ValueError(
|
183 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
184 |
+
)
|
185 |
+
|
186 |
+
# input
|
187 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
188 |
+
|
189 |
+
self.conv_in = Conv3d(in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding)
|
190 |
+
|
191 |
+
# time
|
192 |
+
if time_embedding_type == "fourier":
|
193 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
194 |
+
if time_embed_dim % 2 != 0:
|
195 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
196 |
+
self.time_proj = GaussianFourierProjection(
|
197 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
198 |
+
)
|
199 |
+
timestep_input_dim = time_embed_dim
|
200 |
+
elif time_embedding_type == "positional":
|
201 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
202 |
+
|
203 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
204 |
+
timestep_input_dim = block_out_channels[0]
|
205 |
+
else:
|
206 |
+
raise ValueError(
|
207 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
208 |
+
)
|
209 |
+
|
210 |
+
self.time_embedding = TimestepEmbedding(
|
211 |
+
timestep_input_dim,
|
212 |
+
time_embed_dim,
|
213 |
+
act_fn=act_fn,
|
214 |
+
post_act_fn=timestep_post_act,
|
215 |
+
cond_proj_dim=time_cond_proj_dim,
|
216 |
+
)
|
217 |
+
|
218 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
219 |
+
encoder_hid_dim_type = "text_proj"
|
220 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
221 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
222 |
+
|
223 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
224 |
+
raise ValueError(
|
225 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
226 |
+
)
|
227 |
+
|
228 |
+
if encoder_hid_dim_type == "text_proj":
|
229 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
230 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
231 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
232 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
233 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
234 |
+
self.encoder_hid_proj = TextImageProjection(
|
235 |
+
text_embed_dim=encoder_hid_dim,
|
236 |
+
image_embed_dim=cross_attention_dim,
|
237 |
+
cross_attention_dim=cross_attention_dim,
|
238 |
+
)
|
239 |
+
elif encoder_hid_dim_type == "image_proj":
|
240 |
+
# Kandinsky 2.2
|
241 |
+
self.encoder_hid_proj = ImageProjection(
|
242 |
+
image_embed_dim=encoder_hid_dim,
|
243 |
+
cross_attention_dim=cross_attention_dim,
|
244 |
+
)
|
245 |
+
elif encoder_hid_dim_type is not None:
|
246 |
+
raise ValueError(
|
247 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
self.encoder_hid_proj = None
|
251 |
+
|
252 |
+
# class embedding
|
253 |
+
if class_embed_type is None and num_class_embeds is not None:
|
254 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
255 |
+
elif class_embed_type == "timestep":
|
256 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
257 |
+
elif class_embed_type == "identity":
|
258 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
259 |
+
elif class_embed_type == "projection":
|
260 |
+
if projection_class_embeddings_input_dim is None:
|
261 |
+
raise ValueError(
|
262 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
263 |
+
)
|
264 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
265 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
266 |
+
# 2. it projects from an arbitrary input dimension.
|
267 |
+
#
|
268 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
269 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
270 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
271 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
272 |
+
elif class_embed_type == "simple_projection":
|
273 |
+
if projection_class_embeddings_input_dim is None:
|
274 |
+
raise ValueError(
|
275 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
276 |
+
)
|
277 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
278 |
+
else:
|
279 |
+
self.class_embedding = None
|
280 |
+
|
281 |
+
if addition_embed_type == "text":
|
282 |
+
if encoder_hid_dim is not None:
|
283 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
284 |
+
else:
|
285 |
+
text_time_embedding_from_dim = cross_attention_dim
|
286 |
+
|
287 |
+
self.add_embedding = TextTimeEmbedding(
|
288 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
289 |
+
)
|
290 |
+
elif addition_embed_type == "text_image":
|
291 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
292 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
293 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
294 |
+
self.add_embedding = TextImageTimeEmbedding(
|
295 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
296 |
+
)
|
297 |
+
elif addition_embed_type == "text_time":
|
298 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
299 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
300 |
+
elif addition_embed_type == "image":
|
301 |
+
# Kandinsky 2.2
|
302 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
303 |
+
elif addition_embed_type == "image_hint":
|
304 |
+
# Kandinsky 2.2 ControlNet
|
305 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
306 |
+
elif addition_embed_type is not None:
|
307 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
308 |
+
|
309 |
+
if time_embedding_act_fn is None:
|
310 |
+
self.time_embed_act = None
|
311 |
+
else:
|
312 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
313 |
+
|
314 |
+
self.down_blocks = nn.ModuleList([])
|
315 |
+
self.up_blocks = nn.ModuleList([])
|
316 |
+
|
317 |
+
if isinstance(only_cross_attention, bool):
|
318 |
+
if mid_block_only_cross_attention is None:
|
319 |
+
mid_block_only_cross_attention = only_cross_attention
|
320 |
+
|
321 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
322 |
+
|
323 |
+
if mid_block_only_cross_attention is None:
|
324 |
+
mid_block_only_cross_attention = False
|
325 |
+
|
326 |
+
if isinstance(num_attention_heads, int):
|
327 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
328 |
+
|
329 |
+
if isinstance(attention_head_dim, int):
|
330 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
331 |
+
|
332 |
+
if isinstance(cross_attention_dim, int):
|
333 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
334 |
+
|
335 |
+
if isinstance(layers_per_block, int):
|
336 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
337 |
+
|
338 |
+
if isinstance(transformer_layers_per_block, int):
|
339 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
340 |
+
|
341 |
+
if class_embeddings_concat:
|
342 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
343 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
344 |
+
# regular time embeddings
|
345 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
346 |
+
else:
|
347 |
+
blocks_time_embed_dim = time_embed_dim
|
348 |
+
|
349 |
+
# down
|
350 |
+
output_channel = block_out_channels[0]
|
351 |
+
for i, down_block_type in enumerate(down_block_types):
|
352 |
+
res = 2 ** i
|
353 |
+
input_channel = output_channel
|
354 |
+
output_channel = block_out_channels[i]
|
355 |
+
is_final_block = i == len(block_out_channels) - 1
|
356 |
+
|
357 |
+
down_block = get_down_block(
|
358 |
+
down_block_type,
|
359 |
+
num_layers=layers_per_block[i],
|
360 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
361 |
+
in_channels=input_channel,
|
362 |
+
out_channels=output_channel,
|
363 |
+
temb_channels=blocks_time_embed_dim,
|
364 |
+
add_downsample=not is_final_block,
|
365 |
+
resnet_eps=norm_eps,
|
366 |
+
resnet_act_fn=act_fn,
|
367 |
+
resnet_groups=norm_num_groups,
|
368 |
+
cross_attention_dim=cross_attention_dim[i],
|
369 |
+
num_attention_heads=num_attention_heads[i],
|
370 |
+
downsample_padding=downsample_padding,
|
371 |
+
dual_cross_attention=dual_cross_attention,
|
372 |
+
use_linear_projection=use_linear_projection,
|
373 |
+
only_cross_attention=only_cross_attention[i],
|
374 |
+
upcast_attention=upcast_attention,
|
375 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
376 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
377 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
378 |
+
cross_attention_norm=cross_attention_norm,
|
379 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
380 |
+
)
|
381 |
+
self.down_blocks.append(down_block)
|
382 |
+
|
383 |
+
# mid
|
384 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
385 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
386 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
387 |
+
in_channels=block_out_channels[-1],
|
388 |
+
temb_channels=blocks_time_embed_dim,
|
389 |
+
resnet_eps=norm_eps,
|
390 |
+
resnet_act_fn=act_fn,
|
391 |
+
output_scale_factor=mid_block_scale_factor,
|
392 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
393 |
+
cross_attention_dim=cross_attention_dim[-1],
|
394 |
+
num_attention_heads=num_attention_heads[-1],
|
395 |
+
resnet_groups=norm_num_groups,
|
396 |
+
dual_cross_attention=dual_cross_attention,
|
397 |
+
use_linear_projection=use_linear_projection,
|
398 |
+
upcast_attention=upcast_attention,
|
399 |
+
)
|
400 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
401 |
+
raise ValueError("UNetMidBlock2DSimpleCrossAttn not supported")
|
402 |
+
|
403 |
+
elif mid_block_type is None:
|
404 |
+
self.mid_block = None
|
405 |
+
else:
|
406 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
407 |
+
|
408 |
+
# count how many layers upsample the images
|
409 |
+
self.num_upsamplers = 0
|
410 |
+
|
411 |
+
# up
|
412 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
413 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
414 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
415 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
416 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
417 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
418 |
+
|
419 |
+
output_channel = reversed_block_out_channels[0]
|
420 |
+
for i, up_block_type in enumerate(up_block_types):
|
421 |
+
res = 2 ** (len(up_block_types) - 1 - i)
|
422 |
+
is_final_block = i == len(block_out_channels) - 1
|
423 |
+
|
424 |
+
prev_output_channel = output_channel
|
425 |
+
output_channel = reversed_block_out_channels[i]
|
426 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
427 |
+
|
428 |
+
# add upsample block for all BUT final layer
|
429 |
+
if not is_final_block:
|
430 |
+
add_upsample = True
|
431 |
+
self.num_upsamplers += 1
|
432 |
+
else:
|
433 |
+
add_upsample = False
|
434 |
+
|
435 |
+
up_block = get_up_block(
|
436 |
+
up_block_type,
|
437 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
438 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
439 |
+
in_channels=input_channel,
|
440 |
+
out_channels=output_channel,
|
441 |
+
prev_output_channel=prev_output_channel,
|
442 |
+
temb_channels=blocks_time_embed_dim,
|
443 |
+
add_upsample=add_upsample,
|
444 |
+
resnet_eps=norm_eps,
|
445 |
+
resnet_act_fn=act_fn,
|
446 |
+
resnet_groups=norm_num_groups,
|
447 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
448 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
449 |
+
dual_cross_attention=dual_cross_attention,
|
450 |
+
use_linear_projection=use_linear_projection,
|
451 |
+
only_cross_attention=only_cross_attention[i],
|
452 |
+
upcast_attention=upcast_attention,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
455 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
456 |
+
cross_attention_norm=cross_attention_norm,
|
457 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
458 |
+
)
|
459 |
+
self.up_blocks.append(up_block)
|
460 |
+
prev_output_channel = output_channel
|
461 |
+
|
462 |
+
# out
|
463 |
+
if norm_num_groups is not None:
|
464 |
+
self.conv_norm_out = nn.GroupNorm(
|
465 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
466 |
+
)
|
467 |
+
|
468 |
+
self.conv_act = get_activation(act_fn)
|
469 |
+
|
470 |
+
else:
|
471 |
+
self.conv_norm_out = None
|
472 |
+
self.conv_act = None
|
473 |
+
|
474 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
475 |
+
|
476 |
+
self.conv_out = Conv3d(block_out_channels[0], out_channels, kernel_size=conv_out_kernel,
|
477 |
+
padding=conv_out_padding)
|
478 |
+
|
479 |
+
def temporal_parameters(self) -> list:
|
480 |
+
output = []
|
481 |
+
all_blocks = self.down_blocks + self.up_blocks + [self.mid_block]
|
482 |
+
for block in all_blocks:
|
483 |
+
output.extend(block.temporal_parameters())
|
484 |
+
return output
|
485 |
+
|
486 |
+
@property
|
487 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
488 |
+
return self.get_attn_processors(include_temporal_layers=False)
|
489 |
+
|
490 |
+
def get_attn_processors(self, include_temporal_layers=True) -> Dict[str, AttentionProcessor]:
|
491 |
+
r"""
|
492 |
+
Returns:
|
493 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
494 |
+
indexed by its weight name.
|
495 |
+
"""
|
496 |
+
# set recursively
|
497 |
+
processors = {}
|
498 |
+
|
499 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
500 |
+
|
501 |
+
if not include_temporal_layers:
|
502 |
+
if 'temporal' in name:
|
503 |
+
return processors
|
504 |
+
|
505 |
+
if hasattr(module, "set_processor"):
|
506 |
+
processors[f"{name}.processor"] = module.processor
|
507 |
+
|
508 |
+
for sub_name, child in module.named_children():
|
509 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
510 |
+
|
511 |
+
return processors
|
512 |
+
|
513 |
+
for name, module in self.named_children():
|
514 |
+
fn_recursive_add_processors(name, module, processors)
|
515 |
+
|
516 |
+
return processors
|
517 |
+
|
518 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
519 |
+
include_temporal_layers=False):
|
520 |
+
r"""
|
521 |
+
Sets the attention processor to use to compute attention.
|
522 |
+
|
523 |
+
Parameters:
|
524 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
525 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
526 |
+
for **all** `Attention` layers.
|
527 |
+
|
528 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
529 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
530 |
+
|
531 |
+
"""
|
532 |
+
count = len(self.get_attn_processors(include_temporal_layers=include_temporal_layers).keys())
|
533 |
+
|
534 |
+
if isinstance(processor, dict) and len(processor) != count:
|
535 |
+
raise ValueError(
|
536 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
537 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
538 |
+
)
|
539 |
+
|
540 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
541 |
+
|
542 |
+
if not include_temporal_layers:
|
543 |
+
if "temporal" in name:
|
544 |
+
return
|
545 |
+
|
546 |
+
if hasattr(module, "set_processor"):
|
547 |
+
if not isinstance(processor, dict):
|
548 |
+
module.set_processor(processor)
|
549 |
+
else:
|
550 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
551 |
+
|
552 |
+
for sub_name, child in module.named_children():
|
553 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
554 |
+
|
555 |
+
for name, module in self.named_children():
|
556 |
+
fn_recursive_attn_processor(name, module, processor)
|
557 |
+
|
558 |
+
def set_default_attn_processor(self):
|
559 |
+
"""
|
560 |
+
Disables custom attention processors and sets the default attention implementation.
|
561 |
+
"""
|
562 |
+
self.set_attn_processor(AttnProcessor())
|
563 |
+
|
564 |
+
def set_attention_slice(self, slice_size):
|
565 |
+
r"""
|
566 |
+
Enable sliced attention computation.
|
567 |
+
|
568 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
569 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
570 |
+
|
571 |
+
Args:
|
572 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
573 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
574 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
575 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
576 |
+
must be a multiple of `slice_size`.
|
577 |
+
"""
|
578 |
+
sliceable_head_dims = []
|
579 |
+
|
580 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
581 |
+
if hasattr(module, "set_attention_slice"):
|
582 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
583 |
+
|
584 |
+
for child in module.children():
|
585 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
586 |
+
|
587 |
+
# retrieve number of attention layers
|
588 |
+
for module in self.children():
|
589 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
590 |
+
|
591 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
592 |
+
|
593 |
+
if slice_size == "auto":
|
594 |
+
# half the attention head size is usually a good trade-off between
|
595 |
+
# speed and memory
|
596 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
597 |
+
elif slice_size == "max":
|
598 |
+
# make smallest slice possible
|
599 |
+
slice_size = num_sliceable_layers * [1]
|
600 |
+
|
601 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
602 |
+
|
603 |
+
if len(slice_size) != len(sliceable_head_dims):
|
604 |
+
raise ValueError(
|
605 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
606 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
607 |
+
)
|
608 |
+
|
609 |
+
for i in range(len(slice_size)):
|
610 |
+
size = slice_size[i]
|
611 |
+
dim = sliceable_head_dims[i]
|
612 |
+
if size is not None and size > dim:
|
613 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
614 |
+
|
615 |
+
# Recursively walk through all the children.
|
616 |
+
# Any children which exposes the set_attention_slice method
|
617 |
+
# gets the message
|
618 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
619 |
+
if hasattr(module, "set_attention_slice"):
|
620 |
+
module.set_attention_slice(slice_size.pop())
|
621 |
+
|
622 |
+
for child in module.children():
|
623 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
624 |
+
|
625 |
+
reversed_slice_size = list(reversed(slice_size))
|
626 |
+
for module in self.children():
|
627 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
628 |
+
|
629 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
630 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
631 |
+
module.gradient_checkpointing = value
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
sample: torch.FloatTensor,
|
636 |
+
timestep: Union[torch.Tensor, float, int],
|
637 |
+
encoder_hidden_states: torch.Tensor,
|
638 |
+
class_labels: Optional[torch.Tensor] = None,
|
639 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
640 |
+
attention_mask: Optional[torch.Tensor] = None,
|
641 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
642 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
643 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
644 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
645 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
646 |
+
return_dict: bool = True,
|
647 |
+
enable_temporal_attentions: bool = True
|
648 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
649 |
+
r"""
|
650 |
+
The [`UNet2DConditionModel`] forward method.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
sample (`torch.FloatTensor`):
|
654 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
655 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
656 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
657 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
658 |
+
encoder_attention_mask (`torch.Tensor`):
|
659 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
660 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
661 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
662 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
663 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
664 |
+
tuple.
|
665 |
+
cross_attention_kwargs (`dict`, *optional*):
|
666 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
667 |
+
added_cond_kwargs: (`dict`, *optional*):
|
668 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
669 |
+
are passed along to the UNet blocks.
|
670 |
+
|
671 |
+
Returns:
|
672 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
673 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
674 |
+
a `tuple` is returned where the first element is the sample tensor.
|
675 |
+
"""
|
676 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
677 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
678 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
679 |
+
# on the fly if necessary.
|
680 |
+
default_overall_up_factor = 2 ** self.num_upsamplers
|
681 |
+
|
682 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
683 |
+
forward_upsample_size = False
|
684 |
+
upsample_size = None
|
685 |
+
|
686 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
687 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
688 |
+
forward_upsample_size = True
|
689 |
+
|
690 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
691 |
+
# expects mask of shape:
|
692 |
+
# [batch, key_tokens]
|
693 |
+
# adds singleton query_tokens dimension:
|
694 |
+
# [batch, 1, key_tokens]
|
695 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
696 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
697 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
698 |
+
if attention_mask is not None:
|
699 |
+
# assume that mask is expressed as:
|
700 |
+
# (1 = keep, 0 = discard)
|
701 |
+
# convert mask into a bias that can be added to attention scores:
|
702 |
+
# (keep = +0, discard = -10000.0)
|
703 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
704 |
+
attention_mask = attention_mask.unsqueeze(1)
|
705 |
+
|
706 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
707 |
+
if encoder_attention_mask is not None:
|
708 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
709 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
710 |
+
|
711 |
+
# 0. center input if necessary
|
712 |
+
if self.config.center_input_sample:
|
713 |
+
sample = 2 * sample - 1.0
|
714 |
+
|
715 |
+
# 1. time
|
716 |
+
timesteps = timestep
|
717 |
+
if not torch.is_tensor(timesteps):
|
718 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
719 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
720 |
+
is_mps = sample.device.type == "mps"
|
721 |
+
if isinstance(timestep, float):
|
722 |
+
dtype = torch.float32 if is_mps else torch.float64
|
723 |
+
else:
|
724 |
+
dtype = torch.int32 if is_mps else torch.int64
|
725 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
726 |
+
elif len(timesteps.shape) == 0:
|
727 |
+
timesteps = timesteps[None].to(sample.device)
|
728 |
+
|
729 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
730 |
+
timesteps = timesteps.expand(sample.shape[0])
|
731 |
+
|
732 |
+
t_emb = self.time_proj(timesteps)
|
733 |
+
|
734 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
735 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
736 |
+
# there might be better ways to encapsulate this.
|
737 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
738 |
+
|
739 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
740 |
+
aug_emb = None
|
741 |
+
|
742 |
+
if self.class_embedding is not None:
|
743 |
+
if class_labels is None:
|
744 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
745 |
+
|
746 |
+
if self.config.class_embed_type == "timestep":
|
747 |
+
class_labels = self.time_proj(class_labels)
|
748 |
+
|
749 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
750 |
+
# there might be better ways to encapsulate this.
|
751 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
752 |
+
|
753 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
754 |
+
|
755 |
+
if self.config.class_embeddings_concat:
|
756 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
757 |
+
else:
|
758 |
+
emb = emb + class_emb
|
759 |
+
|
760 |
+
if self.config.addition_embed_type == "text":
|
761 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
762 |
+
elif self.config.addition_embed_type == "text_image":
|
763 |
+
# Kandinsky 2.1 - style
|
764 |
+
if "image_embeds" not in added_cond_kwargs:
|
765 |
+
raise ValueError(
|
766 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
767 |
+
)
|
768 |
+
|
769 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
770 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
771 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
772 |
+
elif self.config.addition_embed_type == "text_time":
|
773 |
+
if "text_embeds" not in added_cond_kwargs:
|
774 |
+
raise ValueError(
|
775 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
776 |
+
)
|
777 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
778 |
+
if "time_ids" not in added_cond_kwargs:
|
779 |
+
raise ValueError(
|
780 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
781 |
+
)
|
782 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
783 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
784 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
785 |
+
|
786 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
787 |
+
add_embeds = add_embeds.to(emb.dtype)
|
788 |
+
aug_emb = self.add_embedding(add_embeds)
|
789 |
+
elif self.config.addition_embed_type == "image":
|
790 |
+
# Kandinsky 2.2 - style
|
791 |
+
if "image_embeds" not in added_cond_kwargs:
|
792 |
+
raise ValueError(
|
793 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
794 |
+
)
|
795 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
796 |
+
aug_emb = self.add_embedding(image_embs)
|
797 |
+
elif self.config.addition_embed_type == "image_hint":
|
798 |
+
# Kandinsky 2.2 - style
|
799 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
800 |
+
raise ValueError(
|
801 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
802 |
+
)
|
803 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
804 |
+
hint = added_cond_kwargs.get("hint")
|
805 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
806 |
+
sample = torch.cat([sample, hint], dim=1)
|
807 |
+
|
808 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
809 |
+
|
810 |
+
if self.time_embed_act is not None:
|
811 |
+
emb = self.time_embed_act(emb)
|
812 |
+
|
813 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
814 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
815 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
816 |
+
# Kadinsky 2.1 - style
|
817 |
+
if "image_embeds" not in added_cond_kwargs:
|
818 |
+
raise ValueError(
|
819 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
820 |
+
)
|
821 |
+
|
822 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
823 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
824 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
825 |
+
# Kandinsky 2.2 - style
|
826 |
+
if "image_embeds" not in added_cond_kwargs:
|
827 |
+
raise ValueError(
|
828 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
829 |
+
)
|
830 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
831 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
832 |
+
# 2. pre-process
|
833 |
+
|
834 |
+
sample = self.conv_in(sample)
|
835 |
+
|
836 |
+
# 3. down
|
837 |
+
down_block_res_samples = (sample,)
|
838 |
+
for downsample_block in self.down_blocks:
|
839 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
840 |
+
sample, res_samples = downsample_block(
|
841 |
+
hidden_states=sample,
|
842 |
+
temb=emb,
|
843 |
+
encoder_hidden_states=encoder_hidden_states,
|
844 |
+
attention_mask=attention_mask,
|
845 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
846 |
+
enable_temporal_attentions=enable_temporal_attentions
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
sample, res_samples = downsample_block(hidden_states=sample,
|
850 |
+
temb=emb,
|
851 |
+
encoder_hidden_states=encoder_hidden_states,
|
852 |
+
enable_temporal_attentions=enable_temporal_attentions)
|
853 |
+
|
854 |
+
down_block_res_samples += res_samples
|
855 |
+
|
856 |
+
if down_block_additional_residuals is not None:
|
857 |
+
new_down_block_res_samples = ()
|
858 |
+
|
859 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
860 |
+
down_block_res_samples, down_block_additional_residuals
|
861 |
+
):
|
862 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
863 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
864 |
+
|
865 |
+
down_block_res_samples = new_down_block_res_samples
|
866 |
+
|
867 |
+
# 4. mid
|
868 |
+
if self.mid_block is not None:
|
869 |
+
sample = self.mid_block(
|
870 |
+
sample,
|
871 |
+
emb,
|
872 |
+
encoder_hidden_states=encoder_hidden_states,
|
873 |
+
attention_mask=attention_mask,
|
874 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
875 |
+
enable_temporal_attentions=enable_temporal_attentions
|
876 |
+
)
|
877 |
+
|
878 |
+
if mid_block_additional_residual is not None:
|
879 |
+
sample = sample + mid_block_additional_residual
|
880 |
+
|
881 |
+
# 5. up
|
882 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
883 |
+
is_final_block = i == len(self.up_blocks) - 1
|
884 |
+
|
885 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
886 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
887 |
+
|
888 |
+
# if we have not reached the final block and need to forward the
|
889 |
+
# upsample size, we do it here
|
890 |
+
if not is_final_block and forward_upsample_size:
|
891 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
892 |
+
|
893 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
894 |
+
sample = upsample_block(
|
895 |
+
hidden_states=sample,
|
896 |
+
temb=emb,
|
897 |
+
res_hidden_states_tuple=res_samples,
|
898 |
+
encoder_hidden_states=encoder_hidden_states,
|
899 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
900 |
+
upsample_size=upsample_size,
|
901 |
+
attention_mask=attention_mask,
|
902 |
+
enable_temporal_attentions=enable_temporal_attentions
|
903 |
+
)
|
904 |
+
else:
|
905 |
+
sample = upsample_block(
|
906 |
+
hidden_states=sample,
|
907 |
+
temb=emb,
|
908 |
+
res_hidden_states_tuple=res_samples,
|
909 |
+
upsample_size=upsample_size,
|
910 |
+
encoder_hidden_states=encoder_hidden_states,
|
911 |
+
enable_temporal_attentions=enable_temporal_attentions
|
912 |
+
)
|
913 |
+
|
914 |
+
# 6. post-process
|
915 |
+
if self.conv_norm_out:
|
916 |
+
sample = self.conv_norm_out(sample)
|
917 |
+
sample = self.conv_act(sample)
|
918 |
+
|
919 |
+
sample = self.conv_out(sample)
|
920 |
+
|
921 |
+
if not return_dict:
|
922 |
+
return (sample,)
|
923 |
+
|
924 |
+
return UNet3DConditionOutput(sample=sample)
|
925 |
+
|
926 |
+
@classmethod
|
927 |
+
def from_pretrained_spatial(cls, pretrained_model_path, subfolder=None):
|
928 |
+
|
929 |
+
import os
|
930 |
+
import json
|
931 |
+
|
932 |
+
if subfolder is not None:
|
933 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
934 |
+
|
935 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
936 |
+
|
937 |
+
with open(config_file, "r") as f:
|
938 |
+
config = json.load(f)
|
939 |
+
|
940 |
+
config["_class_name"] = "UNet3DConditionModel"
|
941 |
+
|
942 |
+
config["down_block_types"] = [
|
943 |
+
"DownBlock3D",
|
944 |
+
"CrossAttnDownBlock3D",
|
945 |
+
"CrossAttnDownBlock3D",
|
946 |
+
]
|
947 |
+
config["up_block_types"] = [
|
948 |
+
"CrossAttnUpBlock3D",
|
949 |
+
"CrossAttnUpBlock3D",
|
950 |
+
"UpBlock3D"
|
951 |
+
]
|
952 |
+
|
953 |
+
config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
954 |
+
|
955 |
+
model = cls.from_config(config)
|
956 |
+
|
957 |
+
model_files = [
|
958 |
+
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.bin'),
|
959 |
+
os.path.join(pretrained_model_path, 'diffusion_pytorch_model.safetensors')
|
960 |
+
]
|
961 |
+
|
962 |
+
model_file = None
|
963 |
+
|
964 |
+
for fp in model_files:
|
965 |
+
if os.path.exists(fp):
|
966 |
+
model_file = fp
|
967 |
+
|
968 |
+
if not model_file:
|
969 |
+
raise RuntimeError(f"{model_file} does not exist")
|
970 |
+
|
971 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
972 |
+
|
973 |
+
model.load_state_dict(state_dict, strict=False)
|
974 |
+
|
975 |
+
return model
|
Hotshot-XL/hotshot_xl/models/unet_blocks.py
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Modifications:
|
16 |
+
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
|
17 |
+
# - Add temporal transformers to unet blocks
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from .transformer_3d import Transformer3DModel
|
23 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
24 |
+
from .transformer_temporal import TransformerTemporal
|
25 |
+
|
26 |
+
|
27 |
+
def get_down_block(
|
28 |
+
down_block_type,
|
29 |
+
num_layers,
|
30 |
+
in_channels,
|
31 |
+
out_channels,
|
32 |
+
temb_channels,
|
33 |
+
add_downsample,
|
34 |
+
resnet_eps,
|
35 |
+
resnet_act_fn,
|
36 |
+
transformer_layers_per_block=1,
|
37 |
+
num_attention_heads=None,
|
38 |
+
resnet_groups=None,
|
39 |
+
cross_attention_dim=None,
|
40 |
+
downsample_padding=None,
|
41 |
+
dual_cross_attention=False,
|
42 |
+
use_linear_projection=False,
|
43 |
+
only_cross_attention=False,
|
44 |
+
upcast_attention=False,
|
45 |
+
resnet_time_scale_shift="default",
|
46 |
+
resnet_skip_time_act=False,
|
47 |
+
resnet_out_scale_factor=1.0,
|
48 |
+
cross_attention_norm=None,
|
49 |
+
attention_head_dim=None,
|
50 |
+
downsample_type=None,
|
51 |
+
):
|
52 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
53 |
+
if down_block_type == "DownBlock3D":
|
54 |
+
return DownBlock3D(
|
55 |
+
num_layers=num_layers,
|
56 |
+
in_channels=in_channels,
|
57 |
+
out_channels=out_channels,
|
58 |
+
temb_channels=temb_channels,
|
59 |
+
add_downsample=add_downsample,
|
60 |
+
resnet_eps=resnet_eps,
|
61 |
+
resnet_act_fn=resnet_act_fn,
|
62 |
+
resnet_groups=resnet_groups,
|
63 |
+
downsample_padding=downsample_padding,
|
64 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
65 |
+
)
|
66 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
67 |
+
if cross_attention_dim is None:
|
68 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
69 |
+
return CrossAttnDownBlock3D(
|
70 |
+
num_layers=num_layers,
|
71 |
+
in_channels=in_channels,
|
72 |
+
out_channels=out_channels,
|
73 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
74 |
+
temb_channels=temb_channels,
|
75 |
+
add_downsample=add_downsample,
|
76 |
+
resnet_eps=resnet_eps,
|
77 |
+
resnet_act_fn=resnet_act_fn,
|
78 |
+
resnet_groups=resnet_groups,
|
79 |
+
downsample_padding=downsample_padding,
|
80 |
+
cross_attention_dim=cross_attention_dim,
|
81 |
+
num_attention_heads=num_attention_heads,
|
82 |
+
dual_cross_attention=dual_cross_attention,
|
83 |
+
use_linear_projection=use_linear_projection,
|
84 |
+
only_cross_attention=only_cross_attention,
|
85 |
+
upcast_attention=upcast_attention,
|
86 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
87 |
+
)
|
88 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
89 |
+
|
90 |
+
|
91 |
+
def get_up_block(
|
92 |
+
up_block_type,
|
93 |
+
num_layers,
|
94 |
+
in_channels,
|
95 |
+
out_channels,
|
96 |
+
prev_output_channel,
|
97 |
+
temb_channels,
|
98 |
+
add_upsample,
|
99 |
+
resnet_eps,
|
100 |
+
resnet_act_fn,
|
101 |
+
transformer_layers_per_block=1,
|
102 |
+
num_attention_heads=None,
|
103 |
+
resnet_groups=None,
|
104 |
+
cross_attention_dim=None,
|
105 |
+
dual_cross_attention=False,
|
106 |
+
use_linear_projection=False,
|
107 |
+
only_cross_attention=False,
|
108 |
+
upcast_attention=False,
|
109 |
+
resnet_time_scale_shift="default",
|
110 |
+
resnet_skip_time_act=False,
|
111 |
+
resnet_out_scale_factor=1.0,
|
112 |
+
cross_attention_norm=None,
|
113 |
+
attention_head_dim=None,
|
114 |
+
upsample_type=None,
|
115 |
+
):
|
116 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
117 |
+
if up_block_type == "UpBlock3D":
|
118 |
+
return UpBlock3D(
|
119 |
+
num_layers=num_layers,
|
120 |
+
in_channels=in_channels,
|
121 |
+
out_channels=out_channels,
|
122 |
+
prev_output_channel=prev_output_channel,
|
123 |
+
temb_channels=temb_channels,
|
124 |
+
add_upsample=add_upsample,
|
125 |
+
resnet_eps=resnet_eps,
|
126 |
+
resnet_act_fn=resnet_act_fn,
|
127 |
+
resnet_groups=resnet_groups,
|
128 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
129 |
+
)
|
130 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
131 |
+
if cross_attention_dim is None:
|
132 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
133 |
+
return CrossAttnUpBlock3D(
|
134 |
+
num_layers=num_layers,
|
135 |
+
in_channels=in_channels,
|
136 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
137 |
+
out_channels=out_channels,
|
138 |
+
prev_output_channel=prev_output_channel,
|
139 |
+
temb_channels=temb_channels,
|
140 |
+
add_upsample=add_upsample,
|
141 |
+
resnet_eps=resnet_eps,
|
142 |
+
resnet_act_fn=resnet_act_fn,
|
143 |
+
resnet_groups=resnet_groups,
|
144 |
+
cross_attention_dim=cross_attention_dim,
|
145 |
+
num_attention_heads=num_attention_heads,
|
146 |
+
dual_cross_attention=dual_cross_attention,
|
147 |
+
use_linear_projection=use_linear_projection,
|
148 |
+
only_cross_attention=only_cross_attention,
|
149 |
+
upcast_attention=upcast_attention,
|
150 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
151 |
+
)
|
152 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
153 |
+
|
154 |
+
|
155 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
in_channels: int,
|
159 |
+
temb_channels: int,
|
160 |
+
dropout: float = 0.0,
|
161 |
+
num_layers: int = 1,
|
162 |
+
transformer_layers_per_block: int = 1,
|
163 |
+
resnet_eps: float = 1e-6,
|
164 |
+
resnet_time_scale_shift: str = "default",
|
165 |
+
resnet_act_fn: str = "swish",
|
166 |
+
resnet_groups: int = 32,
|
167 |
+
resnet_pre_norm: bool = True,
|
168 |
+
num_attention_heads=1,
|
169 |
+
output_scale_factor=1.0,
|
170 |
+
cross_attention_dim=1280,
|
171 |
+
dual_cross_attention=False,
|
172 |
+
use_linear_projection=False,
|
173 |
+
upcast_attention=False,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
|
177 |
+
self.has_cross_attention = True
|
178 |
+
self.num_attention_heads = num_attention_heads
|
179 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
180 |
+
|
181 |
+
# there is always at least one resnet
|
182 |
+
resnets = [
|
183 |
+
ResnetBlock3D(
|
184 |
+
in_channels=in_channels,
|
185 |
+
out_channels=in_channels,
|
186 |
+
temb_channels=temb_channels,
|
187 |
+
eps=resnet_eps,
|
188 |
+
groups=resnet_groups,
|
189 |
+
dropout=dropout,
|
190 |
+
time_embedding_norm=resnet_time_scale_shift,
|
191 |
+
non_linearity=resnet_act_fn,
|
192 |
+
output_scale_factor=output_scale_factor,
|
193 |
+
pre_norm=resnet_pre_norm,
|
194 |
+
)
|
195 |
+
]
|
196 |
+
attentions = []
|
197 |
+
|
198 |
+
for _ in range(num_layers):
|
199 |
+
if dual_cross_attention:
|
200 |
+
raise NotImplementedError
|
201 |
+
attentions.append(
|
202 |
+
Transformer3DModel(
|
203 |
+
num_attention_heads,
|
204 |
+
in_channels // num_attention_heads,
|
205 |
+
in_channels=in_channels,
|
206 |
+
num_layers=transformer_layers_per_block,
|
207 |
+
cross_attention_dim=cross_attention_dim,
|
208 |
+
norm_num_groups=resnet_groups,
|
209 |
+
use_linear_projection=use_linear_projection,
|
210 |
+
upcast_attention=upcast_attention,
|
211 |
+
)
|
212 |
+
)
|
213 |
+
|
214 |
+
resnets.append(
|
215 |
+
ResnetBlock3D(
|
216 |
+
in_channels=in_channels,
|
217 |
+
out_channels=in_channels,
|
218 |
+
temb_channels=temb_channels,
|
219 |
+
eps=resnet_eps,
|
220 |
+
groups=resnet_groups,
|
221 |
+
dropout=dropout,
|
222 |
+
time_embedding_norm=resnet_time_scale_shift,
|
223 |
+
non_linearity=resnet_act_fn,
|
224 |
+
output_scale_factor=output_scale_factor,
|
225 |
+
pre_norm=resnet_pre_norm,
|
226 |
+
)
|
227 |
+
)
|
228 |
+
|
229 |
+
self.attentions = nn.ModuleList(attentions)
|
230 |
+
self.resnets = nn.ModuleList(resnets)
|
231 |
+
|
232 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None,
|
233 |
+
cross_attention_kwargs=None, enable_temporal_attentions: bool = True):
|
234 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
235 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
236 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
237 |
+
hidden_states = resnet(hidden_states, temb)
|
238 |
+
|
239 |
+
return hidden_states
|
240 |
+
|
241 |
+
def temporal_parameters(self) -> list:
|
242 |
+
return []
|
243 |
+
|
244 |
+
|
245 |
+
class CrossAttnDownBlock3D(nn.Module):
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
in_channels: int,
|
249 |
+
out_channels: int,
|
250 |
+
temb_channels: int,
|
251 |
+
dropout: float = 0.0,
|
252 |
+
num_layers: int = 1,
|
253 |
+
transformer_layers_per_block: int = 1,
|
254 |
+
resnet_eps: float = 1e-6,
|
255 |
+
resnet_time_scale_shift: str = "default",
|
256 |
+
resnet_act_fn: str = "swish",
|
257 |
+
resnet_groups: int = 32,
|
258 |
+
resnet_pre_norm: bool = True,
|
259 |
+
num_attention_heads=1,
|
260 |
+
cross_attention_dim=1280,
|
261 |
+
output_scale_factor=1.0,
|
262 |
+
downsample_padding=1,
|
263 |
+
add_downsample=True,
|
264 |
+
dual_cross_attention=False,
|
265 |
+
use_linear_projection=False,
|
266 |
+
only_cross_attention=False,
|
267 |
+
upcast_attention=False,
|
268 |
+
):
|
269 |
+
super().__init__()
|
270 |
+
resnets = []
|
271 |
+
attentions = []
|
272 |
+
temporal_attentions = []
|
273 |
+
|
274 |
+
self.has_cross_attention = True
|
275 |
+
self.num_attention_heads = num_attention_heads
|
276 |
+
|
277 |
+
for i in range(num_layers):
|
278 |
+
in_channels = in_channels if i == 0 else out_channels
|
279 |
+
resnets.append(
|
280 |
+
ResnetBlock3D(
|
281 |
+
in_channels=in_channels,
|
282 |
+
out_channels=out_channels,
|
283 |
+
temb_channels=temb_channels,
|
284 |
+
eps=resnet_eps,
|
285 |
+
groups=resnet_groups,
|
286 |
+
dropout=dropout,
|
287 |
+
time_embedding_norm=resnet_time_scale_shift,
|
288 |
+
non_linearity=resnet_act_fn,
|
289 |
+
output_scale_factor=output_scale_factor,
|
290 |
+
pre_norm=resnet_pre_norm,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
if dual_cross_attention:
|
294 |
+
raise NotImplementedError
|
295 |
+
attentions.append(
|
296 |
+
Transformer3DModel(
|
297 |
+
num_attention_heads,
|
298 |
+
out_channels // num_attention_heads,
|
299 |
+
in_channels=out_channels,
|
300 |
+
num_layers=transformer_layers_per_block,
|
301 |
+
cross_attention_dim=cross_attention_dim,
|
302 |
+
norm_num_groups=resnet_groups,
|
303 |
+
use_linear_projection=use_linear_projection,
|
304 |
+
only_cross_attention=only_cross_attention,
|
305 |
+
upcast_attention=upcast_attention,
|
306 |
+
)
|
307 |
+
)
|
308 |
+
temporal_attentions.append(
|
309 |
+
TransformerTemporal(
|
310 |
+
num_attention_heads=8,
|
311 |
+
attention_head_dim=out_channels // 8,
|
312 |
+
in_channels=out_channels,
|
313 |
+
cross_attention_dim=None,
|
314 |
+
)
|
315 |
+
)
|
316 |
+
|
317 |
+
self.attentions = nn.ModuleList(attentions)
|
318 |
+
self.resnets = nn.ModuleList(resnets)
|
319 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
320 |
+
|
321 |
+
if add_downsample:
|
322 |
+
self.downsamplers = nn.ModuleList(
|
323 |
+
[
|
324 |
+
Downsample3D(
|
325 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
326 |
+
)
|
327 |
+
]
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
self.downsamplers = None
|
331 |
+
|
332 |
+
self.gradient_checkpointing = False
|
333 |
+
|
334 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None,
|
335 |
+
cross_attention_kwargs=None, enable_temporal_attentions: bool = True):
|
336 |
+
output_states = ()
|
337 |
+
|
338 |
+
for resnet, attn, temporal_attention \
|
339 |
+
in zip(self.resnets, self.attentions, self.temporal_attentions):
|
340 |
+
if self.training and self.gradient_checkpointing:
|
341 |
+
|
342 |
+
def create_custom_forward(module, return_dict=None):
|
343 |
+
def custom_forward(*inputs):
|
344 |
+
if return_dict is not None:
|
345 |
+
return module(*inputs, return_dict=return_dict)
|
346 |
+
else:
|
347 |
+
return module(*inputs)
|
348 |
+
|
349 |
+
return custom_forward
|
350 |
+
|
351 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
352 |
+
use_reentrant=False)
|
353 |
+
|
354 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
355 |
+
create_custom_forward(attn, return_dict=False),
|
356 |
+
hidden_states,
|
357 |
+
encoder_hidden_states,
|
358 |
+
use_reentrant=False
|
359 |
+
)[0]
|
360 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
361 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
362 |
+
hidden_states, encoder_hidden_states,
|
363 |
+
use_reentrant=False)
|
364 |
+
|
365 |
+
else:
|
366 |
+
hidden_states = resnet(hidden_states, temb)
|
367 |
+
|
368 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
369 |
+
|
370 |
+
if temporal_attention and enable_temporal_attentions:
|
371 |
+
hidden_states = temporal_attention(hidden_states,
|
372 |
+
encoder_hidden_states=encoder_hidden_states)
|
373 |
+
|
374 |
+
output_states += (hidden_states,)
|
375 |
+
|
376 |
+
if self.downsamplers is not None:
|
377 |
+
for downsampler in self.downsamplers:
|
378 |
+
hidden_states = downsampler(hidden_states)
|
379 |
+
|
380 |
+
output_states += (hidden_states,)
|
381 |
+
|
382 |
+
return hidden_states, output_states
|
383 |
+
|
384 |
+
def temporal_parameters(self) -> list:
|
385 |
+
output = []
|
386 |
+
for block in self.temporal_attentions:
|
387 |
+
if block:
|
388 |
+
output.extend(block.parameters())
|
389 |
+
return output
|
390 |
+
|
391 |
+
|
392 |
+
class DownBlock3D(nn.Module):
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
in_channels: int,
|
396 |
+
out_channels: int,
|
397 |
+
temb_channels: int,
|
398 |
+
dropout: float = 0.0,
|
399 |
+
num_layers: int = 1,
|
400 |
+
resnet_eps: float = 1e-6,
|
401 |
+
resnet_time_scale_shift: str = "default",
|
402 |
+
resnet_act_fn: str = "swish",
|
403 |
+
resnet_groups: int = 32,
|
404 |
+
resnet_pre_norm: bool = True,
|
405 |
+
output_scale_factor=1.0,
|
406 |
+
add_downsample=True,
|
407 |
+
downsample_padding=1,
|
408 |
+
):
|
409 |
+
super().__init__()
|
410 |
+
resnets = []
|
411 |
+
temporal_attentions = []
|
412 |
+
|
413 |
+
for i in range(num_layers):
|
414 |
+
in_channels = in_channels if i == 0 else out_channels
|
415 |
+
resnets.append(
|
416 |
+
ResnetBlock3D(
|
417 |
+
in_channels=in_channels,
|
418 |
+
out_channels=out_channels,
|
419 |
+
temb_channels=temb_channels,
|
420 |
+
eps=resnet_eps,
|
421 |
+
groups=resnet_groups,
|
422 |
+
dropout=dropout,
|
423 |
+
time_embedding_norm=resnet_time_scale_shift,
|
424 |
+
non_linearity=resnet_act_fn,
|
425 |
+
output_scale_factor=output_scale_factor,
|
426 |
+
pre_norm=resnet_pre_norm,
|
427 |
+
)
|
428 |
+
)
|
429 |
+
temporal_attentions.append(
|
430 |
+
TransformerTemporal(
|
431 |
+
num_attention_heads=8,
|
432 |
+
attention_head_dim=out_channels // 8,
|
433 |
+
in_channels=out_channels,
|
434 |
+
cross_attention_dim=None
|
435 |
+
)
|
436 |
+
)
|
437 |
+
|
438 |
+
self.resnets = nn.ModuleList(resnets)
|
439 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
440 |
+
|
441 |
+
if add_downsample:
|
442 |
+
self.downsamplers = nn.ModuleList(
|
443 |
+
[
|
444 |
+
Downsample3D(
|
445 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
446 |
+
)
|
447 |
+
]
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
self.downsamplers = None
|
451 |
+
|
452 |
+
self.gradient_checkpointing = False
|
453 |
+
|
454 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, enable_temporal_attentions: bool = True):
|
455 |
+
output_states = ()
|
456 |
+
|
457 |
+
for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions):
|
458 |
+
if self.training and self.gradient_checkpointing:
|
459 |
+
def create_custom_forward(module):
|
460 |
+
def custom_forward(*inputs):
|
461 |
+
return module(*inputs)
|
462 |
+
|
463 |
+
return custom_forward
|
464 |
+
|
465 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
466 |
+
use_reentrant=False)
|
467 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
468 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
469 |
+
hidden_states, encoder_hidden_states,
|
470 |
+
use_reentrant=False)
|
471 |
+
else:
|
472 |
+
hidden_states = resnet(hidden_states, temb)
|
473 |
+
|
474 |
+
if enable_temporal_attentions and temporal_attention:
|
475 |
+
hidden_states = temporal_attention(hidden_states, encoder_hidden_states=encoder_hidden_states)
|
476 |
+
|
477 |
+
output_states += (hidden_states,)
|
478 |
+
|
479 |
+
if self.downsamplers is not None:
|
480 |
+
for downsampler in self.downsamplers:
|
481 |
+
hidden_states = downsampler(hidden_states)
|
482 |
+
|
483 |
+
output_states += (hidden_states,)
|
484 |
+
|
485 |
+
return hidden_states, output_states
|
486 |
+
|
487 |
+
def temporal_parameters(self) -> list:
|
488 |
+
output = []
|
489 |
+
for block in self.temporal_attentions:
|
490 |
+
if block:
|
491 |
+
output.extend(block.parameters())
|
492 |
+
return output
|
493 |
+
|
494 |
+
|
495 |
+
class CrossAttnUpBlock3D(nn.Module):
|
496 |
+
def __init__(
|
497 |
+
self,
|
498 |
+
in_channels: int,
|
499 |
+
out_channels: int,
|
500 |
+
prev_output_channel: int,
|
501 |
+
temb_channels: int,
|
502 |
+
dropout: float = 0.0,
|
503 |
+
num_layers: int = 1,
|
504 |
+
transformer_layers_per_block: int = 1,
|
505 |
+
resnet_eps: float = 1e-6,
|
506 |
+
resnet_time_scale_shift: str = "default",
|
507 |
+
resnet_act_fn: str = "swish",
|
508 |
+
resnet_groups: int = 32,
|
509 |
+
resnet_pre_norm: bool = True,
|
510 |
+
num_attention_heads=1,
|
511 |
+
cross_attention_dim=1280,
|
512 |
+
output_scale_factor=1.0,
|
513 |
+
add_upsample=True,
|
514 |
+
dual_cross_attention=False,
|
515 |
+
use_linear_projection=False,
|
516 |
+
only_cross_attention=False,
|
517 |
+
upcast_attention=False,
|
518 |
+
):
|
519 |
+
super().__init__()
|
520 |
+
resnets = []
|
521 |
+
attentions = []
|
522 |
+
temporal_attentions = []
|
523 |
+
|
524 |
+
self.has_cross_attention = True
|
525 |
+
self.num_attention_heads = num_attention_heads
|
526 |
+
|
527 |
+
for i in range(num_layers):
|
528 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
529 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
530 |
+
|
531 |
+
resnets.append(
|
532 |
+
ResnetBlock3D(
|
533 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
534 |
+
out_channels=out_channels,
|
535 |
+
temb_channels=temb_channels,
|
536 |
+
eps=resnet_eps,
|
537 |
+
groups=resnet_groups,
|
538 |
+
dropout=dropout,
|
539 |
+
time_embedding_norm=resnet_time_scale_shift,
|
540 |
+
non_linearity=resnet_act_fn,
|
541 |
+
output_scale_factor=output_scale_factor,
|
542 |
+
pre_norm=resnet_pre_norm,
|
543 |
+
)
|
544 |
+
)
|
545 |
+
if dual_cross_attention:
|
546 |
+
raise NotImplementedError
|
547 |
+
attentions.append(
|
548 |
+
Transformer3DModel(
|
549 |
+
num_attention_heads,
|
550 |
+
out_channels // num_attention_heads,
|
551 |
+
in_channels=out_channels,
|
552 |
+
num_layers=transformer_layers_per_block,
|
553 |
+
cross_attention_dim=cross_attention_dim,
|
554 |
+
norm_num_groups=resnet_groups,
|
555 |
+
use_linear_projection=use_linear_projection,
|
556 |
+
only_cross_attention=only_cross_attention,
|
557 |
+
upcast_attention=upcast_attention,
|
558 |
+
)
|
559 |
+
)
|
560 |
+
temporal_attentions.append(
|
561 |
+
TransformerTemporal(
|
562 |
+
num_attention_heads=8,
|
563 |
+
attention_head_dim=out_channels // 8,
|
564 |
+
in_channels=out_channels,
|
565 |
+
cross_attention_dim=None
|
566 |
+
)
|
567 |
+
)
|
568 |
+
|
569 |
+
self.attentions = nn.ModuleList(attentions)
|
570 |
+
self.resnets = nn.ModuleList(resnets)
|
571 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
572 |
+
|
573 |
+
if add_upsample:
|
574 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
575 |
+
else:
|
576 |
+
self.upsamplers = None
|
577 |
+
|
578 |
+
self.gradient_checkpointing = False
|
579 |
+
|
580 |
+
def forward(
|
581 |
+
self,
|
582 |
+
hidden_states,
|
583 |
+
res_hidden_states_tuple,
|
584 |
+
temb=None,
|
585 |
+
encoder_hidden_states=None,
|
586 |
+
upsample_size=None,
|
587 |
+
cross_attention_kwargs=None,
|
588 |
+
attention_mask=None,
|
589 |
+
enable_temporal_attentions: bool = True
|
590 |
+
):
|
591 |
+
for resnet, attn, temporal_attention \
|
592 |
+
in zip(self.resnets, self.attentions, self.temporal_attentions):
|
593 |
+
# pop res hidden states
|
594 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
595 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
596 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
597 |
+
|
598 |
+
if self.training and self.gradient_checkpointing:
|
599 |
+
|
600 |
+
def create_custom_forward(module, return_dict=None):
|
601 |
+
def custom_forward(*inputs):
|
602 |
+
if return_dict is not None:
|
603 |
+
return module(*inputs, return_dict=return_dict)
|
604 |
+
else:
|
605 |
+
return module(*inputs)
|
606 |
+
|
607 |
+
return custom_forward
|
608 |
+
|
609 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
610 |
+
use_reentrant=False)
|
611 |
+
|
612 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
613 |
+
create_custom_forward(attn, return_dict=False),
|
614 |
+
hidden_states,
|
615 |
+
encoder_hidden_states,
|
616 |
+
use_reentrant=False,
|
617 |
+
)[0]
|
618 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
619 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
620 |
+
hidden_states, encoder_hidden_states,
|
621 |
+
use_reentrant=False)
|
622 |
+
|
623 |
+
else:
|
624 |
+
hidden_states = resnet(hidden_states, temb)
|
625 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
626 |
+
|
627 |
+
if enable_temporal_attentions and temporal_attention:
|
628 |
+
hidden_states = temporal_attention(hidden_states,
|
629 |
+
encoder_hidden_states=encoder_hidden_states)
|
630 |
+
|
631 |
+
if self.upsamplers is not None:
|
632 |
+
for upsampler in self.upsamplers:
|
633 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
634 |
+
|
635 |
+
return hidden_states
|
636 |
+
|
637 |
+
def temporal_parameters(self) -> list:
|
638 |
+
output = []
|
639 |
+
for block in self.temporal_attentions:
|
640 |
+
if block:
|
641 |
+
output.extend(block.parameters())
|
642 |
+
return output
|
643 |
+
|
644 |
+
|
645 |
+
class UpBlock3D(nn.Module):
|
646 |
+
def __init__(
|
647 |
+
self,
|
648 |
+
in_channels: int,
|
649 |
+
prev_output_channel: int,
|
650 |
+
out_channels: int,
|
651 |
+
temb_channels: int,
|
652 |
+
dropout: float = 0.0,
|
653 |
+
num_layers: int = 1,
|
654 |
+
resnet_eps: float = 1e-6,
|
655 |
+
resnet_time_scale_shift: str = "default",
|
656 |
+
resnet_act_fn: str = "swish",
|
657 |
+
resnet_groups: int = 32,
|
658 |
+
resnet_pre_norm: bool = True,
|
659 |
+
output_scale_factor=1.0,
|
660 |
+
add_upsample=True,
|
661 |
+
):
|
662 |
+
super().__init__()
|
663 |
+
resnets = []
|
664 |
+
temporal_attentions = []
|
665 |
+
|
666 |
+
for i in range(num_layers):
|
667 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
668 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
669 |
+
|
670 |
+
resnets.append(
|
671 |
+
ResnetBlock3D(
|
672 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
673 |
+
out_channels=out_channels,
|
674 |
+
temb_channels=temb_channels,
|
675 |
+
eps=resnet_eps,
|
676 |
+
groups=resnet_groups,
|
677 |
+
dropout=dropout,
|
678 |
+
time_embedding_norm=resnet_time_scale_shift,
|
679 |
+
non_linearity=resnet_act_fn,
|
680 |
+
output_scale_factor=output_scale_factor,
|
681 |
+
pre_norm=resnet_pre_norm,
|
682 |
+
)
|
683 |
+
)
|
684 |
+
temporal_attentions.append(
|
685 |
+
TransformerTemporal(
|
686 |
+
num_attention_heads=8,
|
687 |
+
attention_head_dim=out_channels // 8,
|
688 |
+
in_channels=out_channels,
|
689 |
+
cross_attention_dim=None
|
690 |
+
)
|
691 |
+
)
|
692 |
+
|
693 |
+
self.resnets = nn.ModuleList(resnets)
|
694 |
+
self.temporal_attentions = nn.ModuleList(temporal_attentions)
|
695 |
+
|
696 |
+
if add_upsample:
|
697 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
698 |
+
else:
|
699 |
+
self.upsamplers = None
|
700 |
+
|
701 |
+
self.gradient_checkpointing = False
|
702 |
+
|
703 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,
|
704 |
+
enable_temporal_attentions: bool = True):
|
705 |
+
for resnet, temporal_attention in zip(self.resnets, self.temporal_attentions):
|
706 |
+
# pop res hidden states
|
707 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
708 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
709 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
710 |
+
|
711 |
+
if self.training and self.gradient_checkpointing:
|
712 |
+
def create_custom_forward(module):
|
713 |
+
def custom_forward(*inputs):
|
714 |
+
return module(*inputs)
|
715 |
+
|
716 |
+
return custom_forward
|
717 |
+
|
718 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb,
|
719 |
+
use_reentrant=False)
|
720 |
+
if enable_temporal_attentions and temporal_attention is not None:
|
721 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(temporal_attention),
|
722 |
+
hidden_states, encoder_hidden_states,
|
723 |
+
use_reentrant=False)
|
724 |
+
else:
|
725 |
+
hidden_states = resnet(hidden_states, temb)
|
726 |
+
hidden_states = temporal_attention(hidden_states,
|
727 |
+
encoder_hidden_states=encoder_hidden_states) if enable_temporal_attentions and temporal_attention is not None else hidden_states
|
728 |
+
|
729 |
+
if self.upsamplers is not None:
|
730 |
+
for upsampler in self.upsamplers:
|
731 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
732 |
+
|
733 |
+
return hidden_states
|
734 |
+
|
735 |
+
def temporal_parameters(self) -> list:
|
736 |
+
output = []
|
737 |
+
for block in self.temporal_attentions:
|
738 |
+
if block:
|
739 |
+
output.extend(block.parameters())
|
740 |
+
return output
|
Hotshot-XL/hotshot_xl/pipelines/__init__.py
ADDED
File without changes
|
Hotshot-XL/hotshot_xl/pipelines/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (156 Bytes). View file
|
|