methods2test / README.md
andstor's picture
Add dataset_info
1a9957c
---
language:
- en
license: mit
task_categories:
- text-generation
configs:
- config_name: fm
data_files:
- split: train
path: data/fm/train-*
- split: test
path: data/fm/test-*
- split: validation
path: data/fm/validation-*
- config_name: fm_indented
data_files:
- split: train
path: data/fm_indented/train-*
- split: test
path: data/fm_indented/test-*
- split: validation
path: data/fm_indented/validation-*
- config_name: fm+t
data_files:
- split: train
path: data/fm+t/train-*
- split: test
path: data/fm+t/test-*
- split: validation
path: data/fm+t/validation-*
- config_name: fm+fc
data_files:
- split: train
path: data/fm+fc/train-*
- split: test
path: data/fm+fc/test-*
- split: validation
path: data/fm+fc/validation-*
- config_name: fm+fc+t+tc
data_files:
- split: train
path: data/fm+fc+t+tc/train-*
- split: test
path: data/fm+fc+t+tc/test-*
- split: validation
path: data/fm+fc+t+tc/validation-*
- config_name: fm+fc+c
data_files:
- split: train
path: data/fm+fc+c/train-*
- split: test
path: data/fm+fc+c/test-*
- split: validation
path: data/fm+fc+c/validation-*
- config_name: fm+fc+c+t+tc
data_files:
- split: train
path: data/fm+fc+c+t+tc/train-*
- split: test
path: data/fm+fc+c+t+tc/test-*
- split: validation
path: data/fm+fc+c+t+tc/validation-*
- config_name: fm+fc+c+m
data_files:
- split: train
path: data/fm+fc+c+m/train-*
- split: test
path: data/fm+fc+c+m/test-*
- split: validation
path: data/fm+fc+c+m/validation-*
- config_name: fm+fc+c+m+t+tc
data_files:
- split: train
path: data/fm+fc+c+m+t+tc/train-*
- split: test
path: data/fm+fc+c+m+t+tc/test-*
- split: validation
path: data/fm+fc+c+m+t+tc/validation-*
- config_name: fm+fc+c+m+f
data_files:
- split: train
path: data/fm+fc+c+m+f/train-*
- split: test
path: data/fm+fc+c+m+f/test-*
- split: validation
path: data/fm+fc+c+m+f/validation-*
- config_name: fm+fc+c+m+f+t+tc
data_files:
- split: train
path: data/fm+fc+c+m+f+t+tc/train-*
- split: test
path: data/fm+fc+c+m+f+t+tc/test-*
- split: validation
path: data/fm+fc+c+m+f+t+tc/validation-*
- config_name: t
data_files:
- split: train
path: data/t/train-*
- split: test
path: data/t/test-*
- split: validation
path: data/t/validation-*
- config_name: t_indented
data_files:
- split: train
path: data/t_indented/train-*
- split: test
path: data/t_indented/test-*
- split: validation
path: data/t_indented/validation-*
- config_name: t+tc
data_files:
- split: train
path: data/t+tc/train-*
- split: test
path: data/t+tc/test-*
- split: validation
path: data/t+tc/validation-*
dataset_info:
- config_name: fm
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 440444124
num_examples: 624022
- name: test
num_bytes: 59407291
num_examples: 78388
- name: validation
num_bytes: 57170315
num_examples: 78534
download_size: 99172217
dataset_size: 557021730
- config_name: fm+fc
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 506130678
num_examples: 624022
- name: test
num_bytes: 68407490
num_examples: 78388
- name: validation
num_bytes: 65318956
num_examples: 78534
download_size: 109141139
dataset_size: 639857124
- config_name: fm+fc+c
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 569209100
num_examples: 624022
- name: test
num_bytes: 75552573
num_examples: 78388
- name: validation
num_bytes: 73101169
num_examples: 78534
download_size: 117996353
dataset_size: 717862842
- config_name: fm+fc+c+m
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 1354004338
num_examples: 624022
- name: test
num_bytes: 187724929
num_examples: 78388
- name: validation
num_bytes: 184349299
num_examples: 78534
download_size: 222922572
dataset_size: 1726078566
- config_name: fm+fc+c+m+f
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 1476073209
num_examples: 624022
- name: test
num_bytes: 201686811
num_examples: 78388
- name: validation
num_bytes: 201259950
num_examples: 78534
download_size: 240405885
dataset_size: 1879019970
- config_name: fm+fc+c+m+f+t+tc
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 2019918359
num_examples: 624022
- name: test
num_bytes: 269021331
num_examples: 78388
- name: validation
num_bytes: 272958781
num_examples: 78534
download_size: 371500476
dataset_size: 2561898471
- config_name: fm+fc+c+m+t+tc
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 1897682665
num_examples: 624022
- name: test
num_bytes: 255053799
num_examples: 78388
- name: validation
num_bytes: 256030595
num_examples: 78534
download_size: 360175965
dataset_size: 2408767059
- config_name: fm+fc+c+t+tc
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 1109827485
num_examples: 624022
- name: test
num_bytes: 142558255
num_examples: 78388
- name: validation
num_bytes: 144523616
num_examples: 78534
download_size: 251861137
dataset_size: 1396909356
- config_name: fm+fc+t+tc
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 1046592848
num_examples: 624022
- name: test
num_bytes: 135403379
num_examples: 78388
- name: validation
num_bytes: 136729952
num_examples: 78534
download_size: 243052074
dataset_size: 1318726179
- config_name: fm+t
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 868034154
num_examples: 624022
- name: test
num_bytes: 114371187
num_examples: 78388
- name: validation
num_bytes: 112688219
num_examples: 78534
download_size: 217267853
dataset_size: 1095093560
- config_name: fm_indented
features:
- name: id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 473170158
num_examples: 624022
- name: test
num_bytes: 64280367
num_examples: 78388
- name: validation
num_bytes: 61093848
num_examples: 78534
download_size: 103174190
dataset_size: 598544373
- config_name: t
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 380207303
num_examples: 624022
- name: test
num_bytes: 47993188
num_examples: 78388
- name: validation
num_bytes: 49808813
num_examples: 78534
download_size: 113820250
dataset_size: 478009304
- config_name: t+tc
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 550955294
num_examples: 624022
- name: test
num_bytes: 68323462
num_examples: 78388
- name: validation
num_bytes: 72740770
num_examples: 78534
download_size: 136767271
dataset_size: 692019526
- config_name: t_indented
features:
- name: id
dtype: string
- name: source
dtype: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 405853738
num_examples: 624022
- name: test
num_bytes: 51457514
num_examples: 78388
- name: validation
num_bytes: 52970428
num_examples: 78534
download_size: 117732776
dataset_size: 510281680
tags:
- unit test
- java
- code
---
## Dataset Description
Microsoft created the methods2test dataset, consisting of Java Junit test cases with its corresponding focal methods.
It contains 780k pairs of JUnit test cases and focal methods which were extracted from a total of 91K
Java open source project hosted on GitHub.
This is an assembled version of the methods2test dataset. It provides convenient access to the different context levels based on the raw source code (e.g. newlines are preserved). The test cases and associated classes are also made available.
The mapping between test case and focal methods are based heuristics rules and Java developer's best practice.
More information could be found here:
- [methods2test Github repo](https://github.com/microsoft/methods2test)
- [Methods2Test: A dataset of focal methods mapped to test cases](https://arxiv.org/pdf/2203.12776.pdf)
## Dataset Schema
```
t: <TEST_CASE>
t_tc: <TEST_CASE> <TEST_CLASS_NAME>
fm: <FOCAL_METHOD>
fm_fc: <FOCAL_CLASS_NAME> <FOCAL_METHOD>
fm_fc_c: <FOCAL_CLASS_NAME> <FOCAL_METHOD> <CONTRSUCTORS>
fm_fc_c_m: <FOCAL_CLASS_NAME> <FOCAL_METHOD> <CONTRSUCTORS> <METHOD_SIGNATURES>
fm_fc_c_m_f: <FOCAL_CLASS_NAME> <FOCAL_METHOD> <CONTRSUCTORS> <METHOD_SIGNATURES> <FIELDS>
```
## Focal Context
- fm: this representation incorporates exclusively the source
code of the focal method. Intuitively, this contains the most
important information for generating accurate test cases for
the given method.
- fm+fc: this representations adds the focal class name, which
can provide meaningful semantic information to the model.
- fm+fc+c: this representation adds the signatures of the constructor methods of the focal class. The idea behind this
augmentation is that the test case may require instantiating
an object of the focal class in order to properly test the focal
method.
- fm+fc+c+m: this representation adds the signatures of the
other public methods in the focal class. The rationale which
motivated this inclusion is that the test case may need to
invoke other auxiliary methods within the class (e.g., getters,
setters) to set up or tear down the testing environment.
- fm+fc+c+m+f : this representation adds the public fields of
the focal class. The motivation is that test cases may need to
inspect the status of the public fields to properly test a focal
method.
![image/png](https://huggingface.co/datasets/andstor/methods2test/resolve/main/figure-1-focal-context.png)
The different levels of focal contexts are the following:
```
T: test case
T_TC: test case + test class name
FM: focal method
FM_FC: focal method + focal class name
FM_FC_C: focal method + focal class name + constructor signatures
FM_FC_C_M: focal method + focal class name + constructor signatures + public method signatures
FM_FC_C_M_F: focal method + focal class name + constructor signatures + public method signatures + public fields
```
## Limitations
The original authors validate the heuristics by inspecting a
statistically significant sample (confidence level of 95% within 10%
margin of error) of 97 samples from the training set. Two authors
independently evaluated the sample, then met to discuss the disagreements. We found that 90.72% of the samples have a correct
link between the test case and the corresponding focal method
## Contribution
All thanks to the original authors.