super_glue / README.md
albertvillanova's picture
Update metadata in dataset card
32ffa0f verified
|
raw
history blame
18.2 kB
---
annotations_creators:
- expert-generated
language_creators:
- other
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other
task_categories:
- text-classification
- token-classification
- question-answering
task_ids:
- natural-language-inference
- word-sense-disambiguation
- coreference-resolution
- extractive-qa
paperswithcode_id: superglue
pretty_name: SuperGLUE
tags:
- superglue
- NLU
- natural language understanding
dataset_info:
- config_name: boolq
features:
- name: question
dtype: string
- name: passage
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: test
num_bytes: 2107997
num_examples: 3245
- name: train
num_bytes: 6179206
num_examples: 9427
- name: validation
num_bytes: 2118505
num_examples: 3270
download_size: 4118001
dataset_size: 10405708
- config_name: cb
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': entailment
'1': contradiction
'2': neutral
splits:
- name: test
num_bytes: 93660
num_examples: 250
- name: train
num_bytes: 87218
num_examples: 250
- name: validation
num_bytes: 21894
num_examples: 56
download_size: 75482
dataset_size: 202772
- config_name: copa
features:
- name: premise
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: question
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': choice1
'1': choice2
splits:
- name: test
num_bytes: 60303
num_examples: 500
- name: train
num_bytes: 49599
num_examples: 400
- name: validation
num_bytes: 12586
num_examples: 100
download_size: 43986
dataset_size: 122488
- config_name: multirc
features:
- name: paragraph
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: idx
struct:
- name: paragraph
dtype: int32
- name: question
dtype: int32
- name: answer
dtype: int32
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: test
num_bytes: 14996451
num_examples: 9693
- name: train
num_bytes: 46213579
num_examples: 27243
- name: validation
num_bytes: 7758918
num_examples: 4848
download_size: 1116225
dataset_size: 68968948
- config_name: record
features:
- name: passage
dtype: string
- name: query
dtype: string
- name: entities
sequence: string
- name: entity_spans
sequence:
- name: text
dtype: string
- name: start
dtype: int32
- name: end
dtype: int32
- name: answers
sequence: string
- name: idx
struct:
- name: passage
dtype: int32
- name: query
dtype: int32
splits:
- name: train
num_bytes: 179232052
num_examples: 100730
- name: validation
num_bytes: 17479084
num_examples: 10000
- name: test
num_bytes: 17200575
num_examples: 10000
download_size: 51757880
dataset_size: 213911711
- config_name: rte
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': entailment
'1': not_entailment
splits:
- name: test
num_bytes: 975799
num_examples: 3000
- name: train
num_bytes: 848745
num_examples: 2490
- name: validation
num_bytes: 90899
num_examples: 277
download_size: 750920
dataset_size: 1915443
- config_name: wic
features:
- name: word
dtype: string
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: start1
dtype: int32
- name: start2
dtype: int32
- name: end1
dtype: int32
- name: end2
dtype: int32
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: test
num_bytes: 180593
num_examples: 1400
- name: train
num_bytes: 665183
num_examples: 5428
- name: validation
num_bytes: 82623
num_examples: 638
download_size: 396213
dataset_size: 928399
- config_name: wsc
features:
- name: text
dtype: string
- name: span1_index
dtype: int32
- name: span2_index
dtype: int32
- name: span1_text
dtype: string
- name: span2_text
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: test
num_bytes: 31572
num_examples: 146
- name: train
num_bytes: 89883
num_examples: 554
- name: validation
num_bytes: 21637
num_examples: 104
download_size: 32751
dataset_size: 143092
- config_name: wsc.fixed
features:
- name: text
dtype: string
- name: span1_index
dtype: int32
- name: span2_index
dtype: int32
- name: span1_text
dtype: string
- name: span2_text
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: test
num_bytes: 31568
num_examples: 146
- name: train
num_bytes: 89883
num_examples: 554
- name: validation
num_bytes: 21637
num_examples: 104
download_size: 32751
dataset_size: 143088
- config_name: axb
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': entailment
'1': not_entailment
splits:
- name: test
num_bytes: 238392
num_examples: 1104
download_size: 33950
dataset_size: 238392
- config_name: axg
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: idx
dtype: int32
- name: label
dtype:
class_label:
names:
'0': entailment
'1': not_entailment
splits:
- name: test
num_bytes: 53581
num_examples: 356
download_size: 10413
dataset_size: 53581
---
# Dataset Card for "super_glue"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://super.gluebenchmark.com/
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** https://arxiv.org/abs/1905.00537
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 58.36 MB
- **Size of the generated dataset:** 249.57 MB
- **Total amount of disk used:** 307.94 MB
### Dataset Summary
SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after
GLUE with a new set of more difficult language understanding tasks, improved
resources, and a new public leaderboard.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### axb
- **Size of downloaded dataset files:** 0.03 MB
- **Size of the generated dataset:** 0.24 MB
- **Total amount of disk used:** 0.27 MB
An example of 'test' looks as follows.
```
```
#### axg
- **Size of downloaded dataset files:** 0.01 MB
- **Size of the generated dataset:** 0.05 MB
- **Total amount of disk used:** 0.06 MB
An example of 'test' looks as follows.
```
```
#### boolq
- **Size of downloaded dataset files:** 4.12 MB
- **Size of the generated dataset:** 10.40 MB
- **Total amount of disk used:** 14.52 MB
An example of 'train' looks as follows.
```
```
#### cb
- **Size of downloaded dataset files:** 0.07 MB
- **Size of the generated dataset:** 0.20 MB
- **Total amount of disk used:** 0.28 MB
An example of 'train' looks as follows.
```
```
#### copa
- **Size of downloaded dataset files:** 0.04 MB
- **Size of the generated dataset:** 0.13 MB
- **Total amount of disk used:** 0.17 MB
An example of 'train' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### axb
- `sentence1`: a `string` feature.
- `sentence2`: a `string` feature.
- `idx`: a `int32` feature.
- `label`: a classification label, with possible values including `entailment` (0), `not_entailment` (1).
#### axg
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `idx`: a `int32` feature.
- `label`: a classification label, with possible values including `entailment` (0), `not_entailment` (1).
#### boolq
- `question`: a `string` feature.
- `passage`: a `string` feature.
- `idx`: a `int32` feature.
- `label`: a classification label, with possible values including `False` (0), `True` (1).
#### cb
- `premise`: a `string` feature.
- `hypothesis`: a `string` feature.
- `idx`: a `int32` feature.
- `label`: a classification label, with possible values including `entailment` (0), `contradiction` (1), `neutral` (2).
#### copa
- `premise`: a `string` feature.
- `choice1`: a `string` feature.
- `choice2`: a `string` feature.
- `question`: a `string` feature.
- `idx`: a `int32` feature.
- `label`: a classification label, with possible values including `choice1` (0), `choice2` (1).
### Data Splits
#### axb
| |test|
|---|---:|
|axb|1104|
#### axg
| |test|
|---|---:|
|axg| 356|
#### boolq
| |train|validation|test|
|-----|----:|---------:|---:|
|boolq| 9427| 3270|3245|
#### cb
| |train|validation|test|
|---|----:|---------:|---:|
|cb | 250| 56| 250|
#### copa
| |train|validation|test|
|----|----:|---------:|---:|
|copa| 400| 100| 500|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The primary SuperGLUE tasks are built on and derived from existing datasets. We refer users to the original licenses accompanying each dataset, but it is our understanding that these licenses allow for their use and redistribution in a research context.
### Citation Information
If you use SuperGLUE, please cite all the datasets you use in any papers that come out of your work. In addition, we encourage you to use the following BibTeX citation for SuperGLUE itself:
```
@article{wang2019superglue,
title={Super{GLUE}: A Stickier Benchmark for General-Purpose Language Understanding Systems},
author={Alex Wang and Yada Pruksachatkun and Nikita Nangia and Amanpreet Singh and Julian Michael and Felix Hill and Omer Levy and Samuel R. Bowman},
journal={arXiv preprint 1905.00537},
year={2019}
}
@inproceedings{clark2019boolq,
title={{B}ool{Q}: Exploring the Surprising Difficulty of Natural Yes/No Questions},
author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei and Kwiatkowski, Tom and Collins, Michael and Toutanova, Kristina},
booktitle={Proceedings of NAACL-HLT 2019},
year={2019}
}
@inproceedings{demarneffe:cb,
title={{The CommitmentBank}: Investigating projection in naturally occurring discourse},
author={De Marneffe, Marie-Catherine and Simons, Mandy and Tonhauser, Judith},
note={To appear in proceedings of Sinn und Bedeutung 23. Data can be found at https://github.com/mcdm/CommitmentBank/},
year={2019}
}
@inproceedings{roemmele2011choice,
title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning},
author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S.},
booktitle={2011 AAAI Spring Symposium Series},
year={2011}
}
@inproceedings{khashabi2018looking,
title={Looking beyond the surface: A challenge set for reading comprehension over multiple sentences},
author={Khashabi, Daniel and Chaturvedi, Snigdha and Roth, Michael and Upadhyay, Shyam and Roth, Dan},
booktitle={Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)},
pages={252--262},
year={2018}
}
@article{zhang2018record,
title={{ReCoRD}: Bridging the Gap between Human and Machine Commonsense Reading Comprehension},
author={Sheng Zhang and Xiaodong Liu and Jingjing Liu and Jianfeng Gao and Kevin Duh and Benjamin Van Durme},
journal={arXiv preprint 1810.12885},
year={2018}
}
@incollection{dagan2006pascal,
title={The {PASCAL} recognising textual entailment challenge},
author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
booktitle={Machine learning challenges. evaluating predictive uncertainty, visual object classification, and recognising tectual entailment},
pages={177--190},
year={2006},
publisher={Springer}
}
@article{bar2006second,
title={The second {PASCAL} recognising textual entailment challenge},
author={Bar Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
year={2006}
}
@inproceedings{giampiccolo2007third,
title={The third {PASCAL} recognizing textual entailment challenge},
author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
pages={1--9},
year={2007},
organization={Association for Computational Linguistics},
}
@article{bentivogli2009fifth,
title={The Fifth {PASCAL} Recognizing Textual Entailment Challenge},
author={Bentivogli, Luisa and Dagan, Ido and Dang, Hoa Trang and Giampiccolo, Danilo and Magnini, Bernardo},
booktitle={TAC},
year={2009}
}
@inproceedings{pilehvar2018wic,
title={{WiC}: The Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Representations},
author={Pilehvar, Mohammad Taher and Camacho-Collados, Jose},
booktitle={Proceedings of NAACL-HLT},
year={2019}
}
@inproceedings{rudinger2018winogender,
title={Gender Bias in Coreference Resolution},
author={Rudinger, Rachel and Naradowsky, Jason and Leonard, Brian and {Van Durme}, Benjamin},
booktitle={Proceedings of NAACL-HLT},
year={2018}
}
@inproceedings{poliak2018dnc,
title={Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation},
author={Poliak, Adam and Haldar, Aparajita and Rudinger, Rachel and Hu, J. Edward and Pavlick, Ellie and White, Aaron Steven and {Van Durme}, Benjamin},
booktitle={Proceedings of EMNLP},
year={2018}
}
@inproceedings{levesque2011winograd,
title={The {W}inograd schema challenge},
author={Levesque, Hector J and Davis, Ernest and Morgenstern, Leora},
booktitle={{AAAI} Spring Symposium: Logical Formalizations of Commonsense Reasoning},
volume={46},
pages={47},
year={2011}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.