Datasets:
lang
stringclasses 2
values | audio
audioduration (s) 0.1
51.3
| image
imagewidth (px) 30
4.9k
| text
stringlengths 7
60
| cls
stringclasses 1k
values | cls_id
int64 0
999
| target_text
stringlengths 2
35
|
---|---|---|---|---|---|---|
el | swab_πλατύγυρος πίλος | sombrero | 808 | πλατύγυρος πίλος |
||
en | Ιαπωνικό σπάνιελ_jaguar | jaguar | 290 | jaguar |
||
en | σκληρός δίσκος_sock | sock | 806 | sock |
||
el | dumbbell_φυσητήρας χειρός | hand blower | 589 | φυσητήρας χειρός |
||
el | τεριέ παιχνιδιών_agama | toy terrier | 158 | τεριέ παιχνιδιών |
||
el | δενδρόβιο ζώο της αυστραλίας_convertible | koala | 105 | δενδρόβιο ζώο της αυστραλίας |
||
en | μικρόφωνο_stove | stove | 827 | stove |
||
el | crossword puzzle_βλήμα | missile | 657 | βλήμα |
||
el | little blue heron_μέλισσα | bee | 309 | μέλισσα |
||
el | house finch_θαλάσσιο λιοντάρι | sea lion | 150 | θαλάσσιο λιοντάρι |
||
en | κανάτα νερού_red-backed sandpiper | red-backed sandpiper | 140 | red-backed sandpiper |
||
el | πιατοθήκη_flute | plate rack | 729 | πιατοθήκη |
||
en | diaper_αγκαθωτός αστακός | diaper | 529 | diaper |
||
en | turnstile_σαχλαμάρα | turnstile | 877 | turnstile |
||
en | κράνος συντριβής_volleyball | volleyball | 890 | volleyball |
||
el | organ_όμορφη | hay | 958 | όμορφη |
||
el | komondor_μαράκα | maraca | 641 | μαράκα |
||
en | great grey owl_πουλί γερανού | great grey owl | 24 | great grey owl |
||
en | abaya_σαύρα φουρνωτή | abaya | 399 | abaya |
||
el | china cabinet_βιβλίο κόμικ | comic book | 917 | βιβλίο κόμικ |
||
el | Ντόμπερμαν_rifle | Doberman | 236 | Ντόμπερμαν |
||
el | pug_λαγωνικό | bloodhound | 163 | λαγωνικό |
||
en | trifle_αχυροσκεπή | trifle | 927 | trifle |
||
en | flatworm_μαλαμούτε της αλάσκας | flatworm | 110 | flatworm |
||
el | δοχείο_jersey | pot | 738 | δοχείο |
||
el | vending machine_λουκάνικο | hotdog | 934 | λουκάνικο |
||
el | μπέιζμπολ_Shetland sheepdog | baseball | 429 | μπέιζμπολ |
||
el | Mexican hairless_νερόφιδο | water snake | 58 | νερόφιδο |
||
en | σκύλος Samoyed_Brittany spaniel | Brittany spaniel | 215 | Brittany spaniel |
||
en | μικρό λεωφορείο_vending machine | vending machine | 886 | vending machine |
||
el | malamute_Νορβηγικό ελκχούν | Norwegian elkhound | 174 | Νορβηγικό ελκχούν |
||
el | cabbage butterfly_συσκευή CD | CD player | 485 | συσκευή CD |
||
el | timber wolf_Αφρικανικός ελέφαντας | African elephant | 386 | Αφρικανικός ελέφαντας |
||
el | washer_βόλεϊ | volleyball | 890 | βόλεϊ |
||
en | snorkel_ρόδι | snorkel | 801 | snorkel |
||
el | marimba_Θιβετιανό Μαστίφ | Tibetan mastiff | 244 | Θιβετιανό Μαστίφ |
||
en | κασέτα_guillotine | guillotine | 583 | guillotine |
||
en | ντουλάπι Κίνας_bath towel | bath towel | 434 | bath towel |
||
el | ballplayer_ρακέτα | racket | 752 | ρακέτα |
||
el | hammerhead_γκρίζα αλεπού | grey fox | 280 | γκρίζα αλεπού |
||
el | butternut squash_Γραβάτα Windsor | Windsor tie | 906 | Γραβάτα Windsor |
||
el | giant panda_σκορπιός | scorpion | 71 | σκορπιός |
||
el | ραδιόφωνο_Labrador retriever | radio | 754 | ραδιόφωνο |
||
el | ηλεκτρική ατμομηχανή_snowmobile | electric locomotive | 547 | ηλεκτρική ατμομηχανή |
||
el | ηλιακό πιάτο_snail | solar dish | 807 | ηλιακό πιάτο |
||
el | whiskey jug_Σαλούκι | Saluki | 176 | Σαλούκι |
||
el | plastic bag_κίτρινη γυναικεία παντόφλα | yellow lady's slipper | 986 | κίτρινη γυναικεία παντόφλα |
||
en | μπαλοπαίκτης_trench coat | trench coat | 869 | trench coat |
||
el | ποτηρι ζεσεως_nematode | beaker | 438 | ποτηρι ζεσεως |
||
en | πράσινο φίδι_house finch | house finch | 12 | house finch |
||
en | turnstile_αυλαία του θεάτρου | turnstile | 877 | turnstile |
||
en | βάθρο_hare | hare | 331 | hare |
||
el | καϊκι_racer | boathouse | 449 | καϊκι |
||
el | στήθος φαρμάκου_folding chair | medicine chest | 648 | στήθος φαρμάκου |
||
en | κρήνη_ruffed grouse | ruffed grouse | 82 | ruffed grouse |
||
el | upright_κράνος pickelhaube | pickelhaube | 715 | κράνος pickelhaube |
||
el | komondor_Λευκό τεριέ West Highland | West Highland white terrier | 203 | Λευκό τεριέ West Highland |
||
el | king snake_άμαξα | horse cart | 603 | άμαξα |
||
el | hay_μαστιγγιοουρά | whiptail | 41 | μαστιγγιοουρά |
||
el | trailer truck_πύργος νερού | water tower | 900 | πύργος νερού |
||
en | knee pad_δακτυλήθρα | knee pad | 615 | knee pad |
||
el | κερί_shoe shop | candle | 470 | κερί |
||
el | gas pump_Αγγλικό ελατήριο | English springer | 217 | Αγγλικό ελατήριο |
||
el | ορεινός λέων_guillotine | cougar | 286 | ορεινός λέων |
||
en | ελαιοκράμβη_maraca | maraca | 641 | maraca |
||
el | doormat_στήριγμα λαιμού | neck brace | 678 | στήριγμα λαιμού |
||
el | miniature pinscher_Μαλινουά | malinois | 225 | Μαλινουά |
||
en | θαλάσσιο θηλαστικό dugong_echidna | echidna | 102 | echidna |
||
en | chiton_Σκύλος Greater Swiss Mountain | chiton | 116 | chiton |
||
en | τηλεόραση_red wolf | red wolf | 271 | red wolf |
||
en | είδος αιγίθαλου_jaguar | jaguar | 290 | jaguar |
||
en | Indian cobra_κεφάλι λάχανο | Indian cobra | 63 | Indian cobra |
||
en | Sealyham terrier_διαμάντι | Sealyham terrier | 190 | Sealyham terrier |
||
el | σκαθάρι τίγρης_miniskirt | tiger beetle | 300 | σκαθάρι τίγρης |
||
el | παζλ_snail | jigsaw puzzle | 611 | παζλ |
||
en | είδος άγριας όρνιθος_pineapple | pineapple | 953 | pineapple |
||
el | πράσινο mamba_hand blower | green mamba | 64 | πράσινο mamba |
||
el | lotion_στάμνα | pitcher | 725 | στάμνα |
||
en | box turtle_κινούμενος από | box turtle | 37 | box turtle |
||
en | μπουκάλι κρασιού_military uniform | military uniform | 652 | military uniform |
||
el | καρμανιόλα_capuchin | guillotine | 583 | καρμανιόλα |
||
en | carbonara_μπαλτάς | carbonara | 959 | carbonara |
||
en | κόκκινο κόκκαλο_American Staffordshire terrier | American Staffordshire terrier | 180 | American Staffordshire terrier |
||
en | hammer_κέντρο προσοχής | hammer | 587 | hammer |
||
en | σκύλος Samoyed_eel | eel | 390 | eel |
||
el | toy poodle_Ιαπωνικό σπάνιελ | Japanese spaniel | 152 | Ιαπωνικό σπάνιελ |
||
en | είδος πιθήκου_radiator | radiator | 753 | radiator |
||
el | analog clock_χέλι | eel | 390 | χέλι |
||
el | κοινός πόλεκας_pomegranate | polecat | 358 | κοινός πόλεκας |
||
el | snowplow_γορίλλας | gorilla | 366 | γορίλλας |
||
el | damselfly_πετσέτα μπάνιου | bath towel | 434 | πετσέτα μπάνιου |
||
en | ricksha_racer | racer | 751 | racer |
||
el | little blue heron_σκύλος τεριέ συνόρων | Border terrier | 182 | σκύλος τεριέ συνόρων |
||
en | φορείο_junco | junco | 13 | junco |
||
el | κότα-του-δάσους_moving van | hen-of-the-woods | 996 | κότα-του-δάσους |
||
en | κουνέλι ανγκόρα_armadillo | armadillo | 363 | armadillo |
||
el | Μέσης_EntleBucher | mitten | 658 | Μέσης |
||
el | διαστημικό λεωφορείο_white wolf | space shuttle | 812 | διαστημικό λεωφορείο |
||
en | τσιμπούρι_goose | goose | 99 | goose |
||
el | breakwater_μονόκυκλο | unicycle | 880 | μονόκυκλο |
Dataset Card for Symile-M3
Symile-M3 is a multilingual dataset of (audio, image, text) samples. The dataset is specifically designed to test a model's ability to capture higher-order information between three distinct high-dimensional data types: by incorporating multiple languages, we construct a task where text and audio are both needed to predict the image, and where, importantly, neither text nor audio alone would suffice.
- Paper: https://arxiv.org/abs/2411.01053
- GitHub: https://github.com/rajesh-lab/symile
- Questions & Discussion: https://www.alphaxiv.org/abs/2411.01053v1
Overview
Let w
represent the number of languages in the dataset (w=2
, w=5
, and w=10
correspond to Symile-M3-2, Symile-M3-5, and Symile-M3-10, respectively). An (audio, image, text) sample is generated by first drawing a short one-sentence audio clip from Common Voice spoken in one of w
languages with equal probability. An image is drawn from ImageNet that corresponds to one of 1,000 classes with equal probability. Finally, text containing exactly w
words is generated based on the drawn audio and image: one of the w
words in the text is the drawn image class name in the drawn audio language. The remaining w-1
words are randomly chosen from the ImageNet class names and written in one of the w
languages such that there is no overlap in language or class name across the w
words in the text. The words are separated by underscores, and their order is randomized.
Tasks
The dataset was designed to evaluate a model on the zero-shot retrieval task of finding an image of the appropriate class given the audio and text. The most probable image for a given query audio and text pair, selected from all possible candidate images in the test set, is that with the highest similarity score.
The dataset was designed to ensure that neither text nor audio alone would suffice to predict the image. Therefore, success on this zero-shot retrieval task hinges on a model's ability to capture joint information between the three modalities.
Dataset Structure
Each sample in the dataset is a dictionary containing the following fields:
{
# language code of the audio clip
'lang': 'ja',
# audio data
'audio': {
'path': 'common_voice_ja_39019065.mp3', # Common Voice filename
'array': array([0.00000000e+00, ..., 7.78421963e-06]), # raw audio waveform
'sampling_rate': 32000 # sampling rate in Hz
},
# image as a PIL Image object (RGB, size varies)
'image': <PIL.JpegImageFile image mode=RGB size=500x375>,
# text containing w words (one per language) separated by underscores
'text': 'σπιτάκι πουλιών_ドーム_प्रयोगशाला कोट_мавпа-павук_gown',
# target word class name in English (key in translations.json)
'cls': 'dome',
# class ID from translations.json (0 to 999)
'cls_id': 538,
# target word (class name in the language of the audio)
'target_text': 'ドーム'
}
The dataset includes a translations.json
file that maps ImageNet class names across all supported languages. Each entry contains:
- The English class name as the key
- Translations for all supported languages (
ar
,el
,en
,hi
,ja
,ko
,te
,th
,uk
,zh-CN
) - The ImageNet synset ID
- A unique class ID (0-999)
Example structure:
{
"tench": {
"synset_id": "n01440764",
"cls_id": 0,
"ar": "سمك البنش",
"el": "είδος κυπρίνου",
"en": "tench",
"hi": "टेंच",
"ja": "テンチ",
"ko": "텐치",
"te": "టెంచ్",
"th": "ปลาเทนช์",
"uk": "линь",
"zh-CN": "丁鱥"
}
}
Dataset Variants
We release three variants of the dataset:
- Symile-M3-2 with 2 languages: English (
en
) and Greek (el
). - Symile-M3-5 with 5 languages: English (
en
), Greek (el
), Hindi (hi
), Japanese (ja
), and Ukrainian (uk
). - Symile-M3-10 with 10 languages: Arabic (
ar
), Greek (el
), English (en
), Hindi (hi
), Japanese (ja
), Korean (ko
), Telugu (te
), Thai (th
), Ukrainian (uk
), and Chinese (zh-CN
).
Each variant is available in four sizes:
- Large (
l
): 10M training samples, 500K validation samples, 500K test samples - Medium (
m
): 5M training samples, 250K validation samples, 250K test samples - Small (
s
): 1M training samples, 50K validation samples, 50K test samples - Extra Small (
xs
): 500K training samples, 25K validation samples, 25K test samples
Usage
Before using the dataset, ensure you have the required audio and image processing libraries installed:
pip install librosa soundfile pillow
To load a specific version of Symile-M3, use a configuration name following the pattern symile-m3-{num_langs}-{size}
where:
num_langs
is2
,5
, or10
size
isxs
,s
,m
, orl
For example, to load the xs
version of Symile-M3-5:
from datasets import load_dataset
dataset = load_dataset("arsaporta/symile-m3", "symile-m3-5-xs")
print(dataset['train'][0]) # access first train sample
print(len(dataset['train'])) # get number of train samples
To process the dataset without loading it entirely into memory, use streaming mode to load samples one at a time:
from datasets import load_dataset
dataset = load_dataset("arsaporta/symile-m3", "symile-m3-5-xs", streaming=True)
print(next(iter(dataset['train'])))
To download the dataset for offline use:
import os
from datasets import load_dataset
from huggingface_hub import snapshot_download
local_dir = "./symile-m3-5-xs" # where to save
# download parquet files
snapshot_download(
repo_id="arsaporta/symile-m3",
repo_type="dataset",
local_dir=local_dir,
allow_patterns=["symile-m3-5-xs/*"] # which configuration to download
)
# load the downloaded parquet files
dataset = load_dataset(
"parquet",
data_files={
"train": os.path.join(data_dir, "train-*.parquet"),
"validation": os.path.join(data_dir, "val-*.parquet"),
"test": os.path.join(data_dir, "test-*.parquet")
}
)
Working with Raw Data
To work directly with the source images (jpeg) and audio (mp3):
Download the source data:
- ImageNet: Get the training data from Kaggle's ImageNet Challenge
- Common Voice: Download your needed languages from Common Voice:
- All languages use Common Voice v16.0, except English which uses v14.0
- Required languages vary by configuration:
- Symile-M3-2: English (
en
), Greek (el
) - Symile-M3-5: English, Greek, Hindi (
hi
), Japanese (ja
), Ukrainian (uk
) - Symile-M3-10: All of the above plus Arabic (
ar
), Korean (ko
), Telugu (te
), Thai (th
), Chinese (zh-CN
)
- Symile-M3-2: English (
Access the dataset CSV files:
- Find them in the
.csv_files
directory, organized by configuration (e.g.,symile-m3-2-xs
,symile-m3-10-l
) - Each configuration contains
train.csv
,val.csv
, andtest.csv
- CSV paths match the default extraction paths of ImageNet (
ILSVRC/Data/CLS-LOC/train/...
) and Common Voice (cv/{lang}/clips/...
)
- Find them in the
Citation
@inproceedings{saporta2024symile,
title = {Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities}
author = {Saporta, Adriel and Puli, Aahlad and Goldstein, Mark and Ranganath, Rajesh}
booktitle = {Advances in Neural Information Processing Systems},
year = {2024}
}
- Downloads last month
- 131