batch_size
int64 8
8
| best_epoch
int64 0
0
⌀ | best_valid_loss
int64 0
0
⌀ | beta1
float64 0.9
0.9
| cached_states_path
stringclasses 2
values | collect_data_delta_move_max
float64 0.4
1
| collect_data_delta_move_min
float64 0.15
1
| copy_teach
sequencelengths 2
2
| cuda_idx
int64 0
0
| dataf
stringclasses 2
values | down_sample_scale
int64 3
3
| dt
float64 0.01
0.01
| edge_model_path
null | env_name
stringclasses 2
values | eval
int64 0
0
| exp_name
stringclasses 1
value | fix_collision_edge
bool 1
class | fixed_lr
bool 1
class | full_dyn_path
null | full_lr
float64 0
0
| gen_data
int64 0
0
| gen_gif
int64 0
0
| global_size
int64 128
128
| imit_w
int64 5
5
| imit_w_lat
int64 1
1
| load_optim
bool 1
class | log_dir
stringclasses 2
values | lr
float64 0
0
| n_epoch
int64 1k
1k
| n_his
int64 5
5
| n_rollout
int64 2k
2k
| neighbor_radius
float64 0.05
0.05
| nstep_eval_rollout
int64 20
20
| num_variations
int64 100
100
| num_workers
int64 10
10
| partial_dyn_path
null | partial_observable
bool 1
class | particle_radius
float64 0.01
0.01
| pred_time_interval
int64 5
5
| proc_layer
int64 10
10
| relation_dim
int64 7
7
| reward_w
float64 100k
100k
| save_model_interval
int64 5
5
| seed
int64 100
100
| shape_state_dim
int64 14
14
| state_dim
int64 18
18
| time_step
int64 100
100
| train_mode
stringclasses 1
value | train_valid_ratio
float64 0.9
0.9
| tune_teach
bool 1
class | use_collision_as_mesh_edge
bool 1
class | use_mesh_edge
bool 1
class | use_rest_distance
bool 1
class | use_wandb
bool 1
class | voxel_size
float64 0.02
0.02
| vsbl_lr
float64 0
0
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 0 | 0 | 0.9 | ours_clothfold_n100.pkl | 0.4 | 0.15 | [
"encoder",
"decoder"
] | 0 | ./data/ours_clothfold_vcd_11 | 3 | 0.01 | null | ClothFold | 0 | test | false | false | null | 0.0001 | 0 | 0 | 128 | 5 | 1 | false | data/Clothfold_GNS_12.07.10.59_11 | 0.0001 | 1,000 | 5 | 2,000 | 0.045 | 20 | 100 | 10 | null | true | 0.00625 | 5 | 10 | 7 | 100,000 | 5 | 100 | 14 | 18 | 100 | vsbl | 0.9 | false | false | true | true | false | 0.0216 | 0.0001 |
8 | null | null | 0.9 | ours_clothfold_n100.pkl | 0.4 | 0.15 | [
"encoder",
"decoder"
] | 0 | ./data/ours_clothfold_vcd_11 | 3 | 0.01 | null | ClothFold | 0 | test | false | false | null | 0.0001 | 0 | 0 | 128 | 5 | 1 | false | data/Clothfold_GNS_12.07.10.59_11 | 0.0001 | 1,000 | 5 | 2,000 | 0.045 | 20 | 100 | 10 | null | true | 0.00625 | 5 | 10 | 7 | 100,000 | 5 | 100 | 14 | 18 | 100 | vsbl | 0.9 | false | false | true | true | false | 0.0216 | 0.0001 |
8 | 0 | 0 | 0.9 | ours_drycloth_n100.pkl | 1 | 1 | [
"encoder",
"decoder"
] | 0 | ./data/drycloth_vcd_12.06.19.09_11 | 3 | 0.01 | null | DryCloth | 0 | test | false | false | null | 0.0001 | 0 | 0 | 128 | 5 | 1 | false | data/DryCloth_GNS_12.11.09.57_11 | 0.0001 | 1,000 | 5 | 2,000 | 0.045 | 20 | 100 | 10 | null | true | 0.00625 | 5 | 10 | 7 | 100,000 | 5 | 100 | 14 | 18 | 100 | vsbl | 0.9 | false | false | true | true | false | 0.0216 | 0.0001 |
Learning Robot Manipulation from Cross-Morphology Demonstration (CoRL 2023)
Datasets for MAIL.
Authors: Gautam Salhotra*, I-Chun Arthur Liu*, Gaurav S. Sukhatme (* denotes equal contribution)
Some Learning from Demonstrations (LfD) methods handle small mismatches in the action spaces of the teacher and student. Here we address the case where the teacher’s morphology is substantially different from that of the student. Our framework, Morphological Adaptation in Imitation Learning (MAIL), bridges this gap allowing us to train an agent from demonstrations by other agents with significantly different morphologies. MAIL learns from suboptimal demonstrations, so long as they provide some guidance towards a desired solution. We demonstrate MAIL on manipulation tasks with rigid and deformable objects including 3D cloth manipulation interacting with rigid obstacles. We train a visual control policy for a robot with one end-effector using demonstrations from a simulated agent with two end-effectors. MAIL shows up to 24% improvement in a normalized performance metric over LfD and non-LfD baselines. It is deployed to a real Franka Panda robot, handles multiple variations in properties for objects (size, rotation, translation), and cloth-specific properties (color, thickness, size, material).
- Downloads last month
- 28