File size: 4,634 Bytes
f4b03a9
0021056
6ed1c54
 
 
7210459
0021056
 
6ed1c54
29dac43
6ed1c54
 
28ad598
f4b03a9
 
 
 
 
 
 
cc01e7a
 
 
 
f4b03a9
fdf60eb
f0dde66
 
f4b03a9
ab289ef
6ed1c54
 
cc01e7a
 
f0dde66
7210459
6ed1c54
 
 
 
 
 
84f9b19
6ed1c54
 
 
 
 
 
 
 
 
cc01e7a
6ed1c54
 
0021056
 
f4b03a9
 
d9a6351
cc01e7a
6697bc7
cc01e7a
cccf8d7
 
 
 
 
f4b03a9
 
fb589be
0021056
 
6171564
 
 
 
 
 
 
 
f4b03a9
6171564
f4b03a9
 
6171564
 
f4b03a9
cc01e7a
f4b03a9
ab289ef
f4b03a9
04ec25f
0021056
 
f4b03a9
 
23942b2
1125f7c
 
 
 
f4b03a9
cccf8d7
 
 
fdf60eb
f4b03a9
1125f7c
 
f4b03a9
fdf60eb
 
cc01e7a
0021056
 
 
f4b03a9
28ad598
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import json
import os
import tarfile
import zipfile
import gzip
import subprocess
from os.path import join as p_join
from tqdm import tqdm
from multiprocessing import Pool
from typing import Optional

import pandas as pd

# dataset config
url_metadata_dict = {
    "enA-jaA": "https://dl.fbaipublicfiles.com/seamless/data/seamless_align_nov2023_extension/seamless.dataset.metadata.public.enA-jaA.tsv.gz",
    "enA-jpn": "https://dl.fbaipublicfiles.com/seamless/data/seamless.dataset.metadata.public.enA-jpn.withduration.tsv.gz"
}
direction = os.getenv("DIRECTION", "enA-jaA")
sides = set(direction.split("-"))
cache_dir_audio = p_join("download", "audio", direction)
cache_dir_feature = p_join("download", "feature", direction)
os.makedirs(cache_dir_audio, exist_ok=True)
os.makedirs(cache_dir_feature, exist_ok=True)
# processor config
n_pool = int(os.getenv("N_POOL", 8))
wget_max_retry = os.getenv("MAX_RETRY", "1")
wget_timeout = os.getenv("TIMEOUT", "20")
line_no_start = int(os.getenv("LINE_NO_START", 0))
line_no_end = int(os.getenv("LINE_NO_END", 10000))


def wget(url: str, output_file: Optional[str] = None):
    os.makedirs(os.path.dirname(output_file), exist_ok=True)
    subprocess.run(["wget", url, "-O", output_file, "--tries", wget_max_retry, "--timeout", wget_timeout])
    if not os.path.exists(output_file):
        return False
    if output_file.endswith('.tar.gz') or output_file.endswith('.tgz') or output_file.endswith('.tar'):
        if output_file.endswith('.tar'):
            tar = tarfile.open(output_file)
        else:
            tar = tarfile.open(output_file, "r:gz")
        tar.extractall(os.path.dirname(output_file))
        tar.close()
        os.remove(output_file)
    elif output_file.endswith('.gz'):
        with gzip.open(output_file, 'rb') as f:
            with open(output_file.replace('.gz', ''), 'wb') as f_write:
                f_write.write(f.read())
        os.remove(output_file)
    elif output_file.endswith('.zip'):
        with zipfile.ZipFile(output_file, 'r') as zip_ref:
            zip_ref.extractall()
        os.remove(output_file)
    return True


def get_metadata():
    url_metadata = url_metadata_dict[direction]
    meta_data_filename = os.path.basename(url_metadata)
    meta_data_path = p_join("download", "meta", meta_data_filename)
    if not os.path.exists(meta_data_path.replace(".gz", "")):
        assert wget(url_metadata, output_file=meta_data_path)
    df = pd.read_csv(meta_data_path.replace(".gz", ""), sep=r'[\t\s]', header=None)
    df = df[[0, 2, 3, 4, 9, 10, 11, 12]]
    df.columns = ["id", "url", "duration_start", "duration_end", "laser_score", "direction", "side", "line_no"]
    if direction == "enA-jpn":
        df = df[df["side"] == "enA"]
    assert len(df["direction"].unique()) == 1
    df.pop("direction")
    return df.sort_values(by=["line_no", "side"])


def to_json_serializable(val):
    if "float" in str(type(val)):
        return float(val)
    if "int" in str(type(val)):
        return int(val)
    return str(val)


def get_audio(dataframe: pd.DataFrame):
    features = {"line_no": int(dataframe.pop('line_no').values[0])}
    for side, df in dataframe.groupby("side"):
        df.pop("side")
        features.update({f"{side}.{k}": to_json_serializable(v) for k, v in df.iloc[0].to_dict().items()})
        features[f"{side}.path"] = str(p_join(cache_dir_audio, os.path.basename(features[f"{side}.url"])))
        if not os.path.exists(features[f"{side}.path"]):
            if not wget(features[f"{side}.url"], output_file=features[f"{side}.path"]):
                return False
    with open(p_join(cache_dir_feature, f'{features["line_no"]}.json'), "w") as f:
        json.dump(features, f)
    return True


def process_dataset():
    df_metadata = get_metadata()
    print(f"metadata: {len(df_metadata)}, {line_no_start} --> {line_no_end}")
    inputs = [
        g for line_no, g in df_metadata.groupby("line_no")
        if line_no_start <= line_no < line_no_end and not os.path.exists(p_join(cache_dir_feature, f'{line_no}.json'))
    ]
    print(f"filtered unique lines: {len(inputs)}")
    if direction == "enA-jaA":
        inputs = [g for g in inputs if len(g["side"].unique()) == 2 and set(g["side"].unique()) == sides]
        print(f"removed side != 2: {len(inputs)}")
    if n_pool == 1:
        for g in tqdm(inputs, total=len(inputs)):
            flag = get_audio(g)
            if not flag:
                print(f"failed:\n{g['url']}")
    else:
        with Pool(n_pool) as pool:
            pool.map(get_audio, tqdm(inputs, total=len(inputs)))


if __name__ == '__main__':
    process_dataset()