File size: 2,063 Bytes
4a04b75
cd99ff8
4a04b75
cd99ff8
4a04b75
f7fa594
a0302d0
7309f64
4a04b75
 
 
 
 
 
 
60b11b1
a5f4f1e
4a04b75
 
a0302d0
 
4a04b75
f7fa594
 
 
a0302d0
f7fa594
 
 
 
 
 
a0302d0
 
 
 
 
f7fa594
 
 
cad4a7b
4a04b75
d318a22
cad4a7b
238451f
d318a22
cad4a7b
4a04b75
 
 
 
 
 
 
 
d318a22
cd99ff8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
from os.path import expanduser

import shutil
import torch
from soundfile import LibsndfileError
from datasets import load_dataset, DatasetDict, Audio
from tokenizer_encodec import EncodecTokenizer


direction = os.getenv("DIRECTION", "enA-jaA")
sides = set(direction.split("-"))
dataset_id = os.getenv("DATASET_ID", 0)
num_proc = int(os.getenv("NUM_PROC", 1))
hf_org = os.getenv("HF_ORG", "asahi417")
hf_dataset = os.getenv("HF_DATASET", f"seamless-align-{direction}")
dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="train")
tokenizer = EncodecTokenizer.from_pretrained()

audio_loader = Audio()


def error_file(example):
    for side in sides:
        try:
            audio_loader.decode_example(example[f"{side}.audio"])
        except LibsndfileError:
            return False
    return True


print(f"Num examples: {len(dataset)}")
for s in sides:
    dataset = dataset.cast_column(f"{s}.audio", Audio(decode=False))
dataset = dataset.filter(error_file, num_proc=num_proc, desc="drop broken audio")
for s in sides:
    dataset = dataset.cast_column(f"{s}.audio", Audio())
print(f"Num examples (after filtering): {len(dataset)}")


def tokenize(example):
    for side in sides:
        wav = torch.as_tensor(example[f"{side}.audio"]["array"].reshape(1, 1, -1), dtype=torch.float32)
        example[f"{side}.audio.tokens"] = tokenizer.wav_to_tokens(
            wav=wav, sample_rate=example[f"{side}.audio"]["sampling_rate"]
        ).numpy().tolist()[0]
    return example


dataset = dataset.map(
    function=tokenize,
    remove_columns=[f"{s}.audio" for s in sides] + [f"{s}.url" for s in sides] + [f"{s}.duration_start" for s in sides] + [f"{s}.duration_end" for s in sides],
    num_proc=num_proc,
    desc="tokenize dataset"
)
DatasetDict({"train": dataset}).push_to_hub(f"{hf_org}/{hf_dataset}.tokenized", config_name=f"subset_{dataset_id}")
cache_dir = f"{expanduser('~')}/.cache/huggingface/datasets/{hf_org}___{hf_dataset}/subset_{dataset_id}"
if os.path.exists(cache_dir):
    shutil.rmtree(cache_dir)