File size: 926 Bytes
65f033e
fe9e72f
65f033e
 
 
855b061
65f033e
 
 
 
855b061
 
 
 
 
 
 
fe9e72f
 
65f033e
 
855b061
 
 
 
 
 
 
 
 
 
 
 
65f033e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import librosa
from model_clap import ClapSE
from model_meta_voice import MetaVoiceSE
from model_pyannote_embedding import PyannoteSE
from model_w2v_bert import W2VBertSE
from model_xls import XLSRSE


def test():
    wav, sr = librosa.load("sample.wav")
    print("XLS-R")
    model = XLSRSE()
    v = model.get_speaker_embedding(wav, sr)
    print(v.shape)
    model = ClapSE()
    v = model.get_speaker_embedding(wav, sr)
    print(v.shape)
    print("CLAP")
    model = ClapSE()
    v = model.get_speaker_embedding(wav, sr)
    print(v.shape)
    print("MetaVoiceSE")
    model = MetaVoiceSE()
    v = model.get_speaker_embedding(wav, sr)
    print(v.shape)
    print("PyannoteSE")
    model = PyannoteSE()
    v = model.get_speaker_embedding(wav, sr)
    print(v.shape)
    print("W2VBertSE")
    model = W2VBertSE()
    v = model.get_speaker_embedding(wav, sr)
    print(v.shape)


if __name__ == '__main__':
    test()