Datasets:
File size: 4,434 Bytes
d528187 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "7301572a-4803-4a16-b262-74e41e25803e",
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"\n",
"import pandas as pd\n",
"from datasets import Dataset, DatasetDict, load_dataset\n",
"from huggingface_hub import Repository, create_repo\n",
"from selectolax.parser import HTMLParser"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a898baed-3640-4ca8-9d3d-b88f6c85a428",
"metadata": {},
"outputs": [],
"source": [
"def _parse_start_end(node):\n",
" return int(node.attrs[\"start\"][1:]), int(node.attrs[\"end\"][1:])\n",
"\n",
"\n",
"def get_original_text(sent_toks) -> str:\n",
" empty_tokens = [i for i, t in enumerate(sent_toks) if not t.text().strip()]\n",
" org_sent_toks = [t.text() for i, t in enumerate(sent_toks) if not i in empty_tokens]\n",
" return \" \".join(org_sent_toks)\n",
"\n",
"\n",
"def get_corrected_text(toks_cor, last_end, sent_end) -> str:\n",
" cor_toks = []\n",
" for tok in toks_cor:\n",
" tok_start, tok_end = _parse_start_end(tok)\n",
" if tok_start >= last_end and tok_end <= sent_end:\n",
" cor_toks.append(tok.text())\n",
" last_end = tok_end\n",
" return last_end, \" \".join(cor_toks)\n",
"\n",
"\n",
"def process_doc(doc, path):\n",
" toks = doc.select('tier[category=\"tok\"] event').matches\n",
" toks_cor = doc.select('tier[category=\"TH1\"] event').matches\n",
" sents = doc.select('tier[category=\"sentence\"] event').matches\n",
"\n",
" last_end = 0\n",
" for sent_no, org_sent in enumerate(sents):\n",
" sent_start, sent_end = _parse_start_end(org_sent)\n",
" sent_toks = toks[sent_start:sent_end]\n",
" original_text = get_original_text(sent_toks)\n",
" last_end, corrected_text = get_corrected_text(toks_cor, last_end, sent_end)\n",
"\n",
" yield (\n",
" {\n",
" \"original\": original_text,\n",
" \"corrected\": corrected_text,\n",
" \"id\": f\"{path.stem}-{sent_no}\",\n",
" }\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "191fe2e3-8a4e-47e2-9316-5b6028662c02",
"metadata": {},
"outputs": [],
"source": [
"DATASET_NAME = \"merlin\"\n",
"dataset_path = Path.home() / DATASET_NAME\n",
"if not Path(dataset_path).exists():\n",
" repo_url = create_repo(name=DATASET_NAME, repo_type=\"dataset\")\n",
" repo = Repository(local_dir=str(dataset_path), clone_from=repo_url)\n",
" repo.lfs_track(\"*.jsonl\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "005d059f-5de4-4f14-bde3-0cc9ff2435c0",
"metadata": {},
"outputs": [],
"source": [
"MERLN_EXMARALDA_BASE = Path.home() / Path(\n",
" \"Downloads/MERLIN Written Learner Corpus for Czech, German, Italian 1.1/merlin-exmaralda-v1.1/\"\n",
")\n",
"\n",
"for lang in (\"german\", \"czech\", \"italian\"):\n",
" lang_docs = []\n",
" for path in (MERLN_EXMARALDA_BASE / lang).glob(\"*.exb\"):\n",
" with open(path) as fp:\n",
" xml = HTMLParser(fp.read())\n",
" docs = list(process_doc(xml, path))\n",
" lang_docs.extend(docs)\n",
" Dataset.from_dict(pd.DataFrame(lang_docs)).to_json(dataset_path / f\"{lang}.jsonl\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9d396b2-98dc-4c04-950f-0332a3a6d751",
"metadata": {},
"outputs": [],
"source": [
"repo.push_to_hub()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91377eaf-ffac-4df0-9c85-4f6ee979f99f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|