The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.


Sentence transformer (all_MiniLM_L6_v2) embeddings for all long llava summaries in coyo-hd-11m-llavanext dataset (07-03-2024 version)

Sentence Transformers

coyo-hd-11m-llavanext


Instructions

PLEASE NOTE: You will need at least 40GB GPU to use the embeddings


Depencencies

!pip install huggingface_hub -U
!pip install datasets -U
!pip install sentence-transformers -U

Imports

from huggingface_hub import hf_hub_download

from datasets import load_dataset

from sentence_transformers import SentenceTransformer
from sentence_transformers import util

import torch
import numpy as np

import tqdm

coyo dataset and coyo dataset embeddings

coyo_dataset = load_dataset("CaptionEmporium/coyo-hd-11m-llavanext")

hf_hub_download(repo_id="asigalov61/coyo-hd-11m-llavanext-all-MiniLM-L6-v2", 
                repo_type='dataset', 
                filename="coyo_hd_11m_llavanext_all_MiniLM_L6_v2_llava_captions_embeddings_07_03_24.npz",
                local_dir='.'
                )

Loading code

coyo_embeddings_cpu = np.load('coyo_hd_11m_llavanext_all_MiniLM_L6_v2_llava_captions_embeddings_07_03_24.npz')['data']

coyo_embeddings_cpu = torch.from_numpy(coyo_embeddings_cpu).cuda()
coyo_embeddings_cpu = util.normalize_embeddings(coyo_embeddings_cpu)

model = SentenceTransformer('all-MiniLM-L6-v2', device='cuda')

Inference code

torch.cuda.empty_cache()

queries_corpus = ['Capital of France',
                  'Love, peace and happiness',
                  'Cute cats in tacky suits :)'
                  ]

queries_embeddings = model.encode(queries_corpus, device='cuda', show_progress_bar=True, convert_to_tensor=True)
queries_embeddings = util.normalize_embeddings(queries_embeddings)

results = util.semantic_search(queries_embeddings, coyo_embeddings_cpu, score_function=util.dot_score)

closest_index = results[0][0]['corpus_id']

print('=' * 70)
print('Best match index:', closest_index)
print('=' * 70)
print('Best match corpus entry:', coyo_dataset['train'][closest_index])
print('=' * 70)

Project Los Angeles

Tegridy Code 2024

Downloads last month
39