Datasets:
Dataset Preview
Full Screen Viewer
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'environment'}) This happened while the csv dataset builder was generating data using hf://datasets/autorl-org/arlbench/minigrid_door_key_dqn.csv (at revision fe903e35c617b047ac5f4c335aae353720d591ea) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1869, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 580, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Unnamed: 0: int64 run_id: int64 budget: int64 performance: double hp_config.buffer_batch_size: int64 hp_config.buffer_prio_sampling: bool hp_config.buffer_size: int64 hp_config.initial_epsilon: double hp_config.learning_rate: double hp_config.learning_starts: int64 hp_config.target_epsilon: double hp_config.use_target_network: bool hp_config.buffer_alpha: double hp_config.buffer_beta: double hp_config.buffer_epsilon: double hp_config.target_update_interval: double seed: int64 environment: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2739 to {'Unnamed: 0': Value(dtype='int64', id=None), 'run_id': Value(dtype='int64', id=None), 'budget': Value(dtype='int64', id=None), 'performance': Value(dtype='float64', id=None), 'hp_config.buffer_batch_size': Value(dtype='int64', id=None), 'hp_config.buffer_prio_sampling': Value(dtype='bool', id=None), 'hp_config.buffer_size': Value(dtype='int64', id=None), 'hp_config.initial_epsilon': Value(dtype='float64', id=None), 'hp_config.learning_rate': Value(dtype='float64', id=None), 'hp_config.learning_starts': Value(dtype='int64', id=None), 'hp_config.target_epsilon': Value(dtype='float64', id=None), 'hp_config.use_target_network': Value(dtype='bool', id=None), 'hp_config.buffer_alpha': Value(dtype='float64', id=None), 'hp_config.buffer_beta': Value(dtype='float64', id=None), 'hp_config.buffer_epsilon': Value(dtype='float64', id=None), 'hp_config.target_update_interval': Value(dtype='float64', id=None), 'seed': Value(dtype='int64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1392, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1041, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 999, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1740, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'environment'}) This happened while the csv dataset builder was generating data using hf://datasets/autorl-org/arlbench/minigrid_door_key_dqn.csv (at revision fe903e35c617b047ac5f4c335aae353720d591ea) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | run_id
int64 | budget
int64 | performance
float64 | hp_config.buffer_batch_size
int64 | hp_config.buffer_prio_sampling
bool | hp_config.buffer_size
int64 | hp_config.initial_epsilon
float64 | hp_config.learning_rate
float64 | hp_config.learning_starts
int64 | hp_config.target_epsilon
float64 | hp_config.use_target_network
bool | hp_config.buffer_alpha
float64 | hp_config.buffer_beta
float64 | hp_config.buffer_epsilon
float64 | hp_config.target_update_interval
float64 | seed
int64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 10,000,000 | 2,000 | 32 | false | 603,170 | 0.772442 | 0.000131 | 21,527 | 0.08808 | false | null | null | null | null | 6 |
1 | 1 | 10,000,000 | 6,929.6875 | 32 | false | 71,987 | 0.543565 | 0.000001 | 27,455 | 0.155853 | false | null | null | null | null | 6 |
2 | 2 | 10,000,000 | 953.125 | 16 | false | 144,230 | 0.972334 | 0.000407 | 14,187 | 0.053647 | false | null | null | null | null | 6 |
3 | 3 | 10,000,000 | 15,578.125 | 32 | false | 943,806 | 0.84091 | 0.000063 | 14,897 | 0.139829 | true | null | null | null | 258 | 6 |
4 | 4 | 10,000,000 | 2,000 | 16 | true | 570,637 | 0.719301 | 0.087472 | 4,263 | 0.042566 | true | 0.656577 | 0.260759 | 0.000007 | 489 | 6 |
5 | 5 | 10,000,000 | 6,460.9375 | 16 | true | 656,682 | 0.569091 | 0.00001 | 12,729 | 0.164378 | true | 0.839565 | 0.105137 | 0.000805 | 938 | 6 |
6 | 6 | 10,000,000 | 13,390.625 | 64 | false | 739,531 | 0.519594 | 0.000026 | 4,839 | 0.059932 | true | null | null | null | 1,385 | 6 |
7 | 7 | 10,000,000 | 984.375 | 32 | true | 523,736 | 0.54697 | 0.000758 | 30,524 | 0.064395 | false | 0.14048 | 0.719164 | 0.000001 | null | 6 |
8 | 8 | 10,000,000 | 1,218.75 | 32 | true | 829,116 | 0.502348 | 0.00245 | 9,595 | 0.147304 | false | 0.256266 | 0.580396 | 0.000023 | null | 6 |
9 | 9 | 10,000,000 | 0 | 16 | false | 447,691 | 0.923204 | 0.003143 | 10,466 | 0.162946 | true | null | null | null | 1,386 | 6 |
10 | 10 | 10,000,000 | 16,445.312 | 64 | false | 956,129 | 0.821995 | 0.000132 | 20,273 | 0.004819 | true | null | null | null | 858 | 6 |
11 | 11 | 10,000,000 | 9,640.625 | 16 | true | 570,405 | 0.795436 | 0.000744 | 21,759 | 0.130769 | true | 0.897581 | 0.373886 | 0.000006 | 1,784 | 6 |
12 | 12 | 10,000,000 | 0 | 64 | false | 101,148 | 0.959741 | 0.003726 | 32,732 | 0.03074 | false | null | null | null | null | 6 |
13 | 13 | 10,000,000 | 1,000 | 64 | false | 407,790 | 0.534583 | 0.00307 | 15,421 | 0.144689 | false | null | null | null | null | 6 |
14 | 14 | 10,000,000 | 8,289.0625 | 64 | true | 521,527 | 0.527169 | 0.00001 | 1,611 | 0.158946 | true | 0.351898 | 0.9288 | 0.000066 | 64 | 6 |
15 | 15 | 10,000,000 | 0 | 16 | false | 577,662 | 0.618946 | 0.046889 | 20,514 | 0.107591 | false | null | null | null | null | 6 |
16 | 16 | 10,000,000 | 18,234.375 | 16 | false | 739,818 | 0.745229 | 0.000014 | 9,098 | 0.012548 | true | null | null | null | 360 | 6 |
17 | 17 | 10,000,000 | 2,281.25 | 16 | true | 679,721 | 0.726848 | 0.000482 | 29,488 | 0.198077 | true | 0.666447 | 0.270689 | 0 | 1,517 | 6 |
18 | 18 | 10,000,000 | 2,953.125 | 16 | true | 588,739 | 0.915524 | 0.001396 | 28,726 | 0.055435 | false | 0.19378 | 0.953264 | 0.000056 | null | 6 |
19 | 19 | 10,000,000 | 2,039.0625 | 64 | false | 254,705 | 0.606656 | 0.00039 | 1,838 | 0.042287 | true | null | null | null | 1,174 | 6 |
20 | 20 | 10,000,000 | 4,000 | 64 | true | 517,873 | 0.566034 | 0.00384 | 13,596 | 0.113519 | true | 0.153399 | 0.493176 | 0.000003 | 1,881 | 6 |
21 | 21 | 10,000,000 | 976.5625 | 64 | false | 903,819 | 0.541711 | 0.000577 | 19,578 | 0.192425 | true | null | null | null | 1,860 | 6 |
22 | 22 | 10,000,000 | 6,273.4375 | 64 | false | 282,465 | 0.793205 | 0.000002 | 16,440 | 0.195522 | false | null | null | null | null | 6 |
23 | 23 | 10,000,000 | 11,289.0625 | 64 | false | 630,826 | 0.937144 | 0.000029 | 27,973 | 0.123957 | true | null | null | null | 957 | 6 |
24 | 24 | 10,000,000 | 2,000 | 32 | false | 369,231 | 0.56845 | 0.0129 | 7,050 | 0.102752 | true | null | null | null | 1,922 | 6 |
25 | 25 | 10,000,000 | 6,304.6875 | 64 | false | 333,828 | 0.540551 | 0.000109 | 8,396 | 0.027365 | true | null | null | null | 294 | 6 |
26 | 26 | 10,000,000 | 0 | 16 | true | 672,384 | 0.622684 | 0.000127 | 18,717 | 0.17225 | false | 0.277625 | 0.140168 | 0 | null | 6 |
27 | 27 | 10,000,000 | 2,664.0625 | 16 | true | 683,606 | 0.847813 | 0.000026 | 13,084 | 0.037049 | false | 0.06628 | 0.700027 | 0.00013 | null | 6 |
28 | 28 | 10,000,000 | 2,531.25 | 16 | true | 588,022 | 0.636411 | 0.000071 | 7,279 | 0.092511 | true | 0.801798 | 0.086187 | 0.000012 | 614 | 6 |
29 | 29 | 10,000,000 | 3,000 | 32 | false | 645,933 | 0.517681 | 0.000142 | 17,214 | 0.107699 | false | null | null | null | null | 6 |
30 | 30 | 10,000,000 | 0 | 16 | false | 544,273 | 0.728456 | 0.025716 | 15,582 | 0.145109 | true | null | null | null | 656 | 6 |
31 | 31 | 10,000,000 | 0 | 64 | false | 240,798 | 0.580269 | 0.009593 | 31,472 | 0.09217 | false | null | null | null | null | 6 |
32 | 32 | 10,000,000 | 593.75 | 64 | false | 815,713 | 0.579707 | 0.001395 | 13,672 | 0.01348 | true | null | null | null | 1,918 | 6 |
33 | 33 | 10,000,000 | 0 | 32 | true | 17,335 | 0.592616 | 0.000101 | 30,524 | 0.020823 | false | 0.870794 | 0.459621 | 0.000002 | null | 6 |
34 | 34 | 10,000,000 | 14,578.125 | 32 | true | 16,614 | 0.714398 | 0.000002 | 9,021 | 0.045011 | true | 0.139745 | 0.021916 | 0 | 1,237 | 6 |
35 | 35 | 10,000,000 | 3,296.875 | 64 | false | 409,659 | 0.581477 | 0.001562 | 16,588 | 0.197893 | true | null | null | null | 1,326 | 6 |
36 | 36 | 10,000,000 | 0 | 16 | false | 517,803 | 0.712044 | 0.000594 | 10,136 | 0.141608 | true | null | null | null | 93 | 6 |
37 | 37 | 10,000,000 | 1,000 | 16 | true | 815,156 | 0.992746 | 0.069961 | 29,751 | 0.060015 | false | 0.256926 | 0.114847 | 0.000637 | null | 6 |
38 | 38 | 10,000,000 | 3,000 | 64 | true | 730,985 | 0.94086 | 0.000023 | 13,057 | 0.075485 | false | 0.245429 | 0.180135 | 0.000006 | null | 6 |
39 | 39 | 10,000,000 | 1,000 | 64 | true | 502,899 | 0.971292 | 0.001479 | 28,556 | 0.188102 | false | 0.702579 | 0.968286 | 0.00095 | null | 6 |
40 | 40 | 10,000,000 | 15,132.8125 | 16 | true | 153,222 | 0.708743 | 0.000005 | 20,201 | 0.077179 | false | 0.968117 | 0.551416 | 0.000001 | null | 6 |
41 | 41 | 10,000,000 | 0 | 64 | true | 552,537 | 0.635826 | 0.000189 | 13,776 | 0.050434 | false | 0.317277 | 0.379305 | 0.000013 | null | 6 |
42 | 42 | 10,000,000 | 17,835.938 | 32 | false | 862,460 | 0.524345 | 0.000019 | 15,186 | 0.021821 | true | null | null | null | 1,422 | 6 |
43 | 43 | 10,000,000 | 0 | 16 | true | 676,574 | 0.939617 | 0.000523 | 9,998 | 0.007017 | false | 0.017805 | 0.378952 | 0.000013 | null | 6 |
44 | 44 | 10,000,000 | 1,765.625 | 16 | true | 25,312 | 0.671305 | 0.001292 | 9,883 | 0.04274 | true | 0.581369 | 0.698317 | 0.000049 | 1,898 | 6 |
45 | 45 | 10,000,000 | 0 | 16 | false | 600,802 | 0.79437 | 0.065141 | 1,559 | 0.1396 | false | null | null | null | null | 6 |
46 | 46 | 10,000,000 | 4,593.75 | 32 | false | 694,270 | 0.545443 | 0.000014 | 14,049 | 0.125036 | false | null | null | null | null | 6 |
47 | 47 | 10,000,000 | 0 | 32 | false | 541,850 | 0.961653 | 0.014109 | 31,762 | 0.184037 | true | null | null | null | 601 | 6 |
48 | 48 | 10,000,000 | 10,906.25 | 16 | false | 446,961 | 0.953938 | 0.000006 | 22,011 | 0.088612 | true | null | null | null | 120 | 6 |
49 | 49 | 10,000,000 | 2,000 | 16 | false | 740,151 | 0.949031 | 0.002306 | 17,815 | 0.061585 | false | null | null | null | null | 6 |
50 | 50 | 10,000,000 | 0 | 16 | true | 680,676 | 0.531604 | 0.001087 | 16,186 | 0.057516 | true | 0.519368 | 0.374248 | 0.000007 | 675 | 6 |
51 | 51 | 10,000,000 | 1,492.1875 | 64 | true | 97,728 | 0.671696 | 0.000902 | 21,949 | 0.080054 | false | 0.358374 | 0.724193 | 0.000036 | null | 6 |
52 | 52 | 10,000,000 | 22,421.875 | 64 | false | 764,803 | 0.849124 | 0.000048 | 5,712 | 0.013465 | true | null | null | null | 1,918 | 6 |
53 | 53 | 10,000,000 | 0 | 16 | true | 590,115 | 0.872699 | 0.017408 | 30,731 | 0.196702 | true | 0.386532 | 0.156331 | 0.000055 | 1,314 | 6 |
54 | 54 | 10,000,000 | 1,218.75 | 64 | true | 498,291 | 0.790541 | 0.000016 | 6,389 | 0.172057 | true | 0.475915 | 0.124676 | 0.000007 | 1,960 | 6 |
55 | 55 | 10,000,000 | 13,289.0625 | 32 | false | 118,219 | 0.635626 | 0.000104 | 13,716 | 0.134605 | true | null | null | null | 864 | 6 |
56 | 56 | 10,000,000 | 0 | 32 | true | 822,589 | 0.826711 | 0.004283 | 18,068 | 0.022985 | true | 0.41132 | 0.327833 | 0 | 1,475 | 6 |
57 | 57 | 10,000,000 | 507.8125 | 16 | false | 703,522 | 0.817393 | 0.062476 | 4,303 | 0.173566 | true | null | null | null | 731 | 6 |
58 | 58 | 10,000,000 | 16,335.9375 | 16 | true | 518,643 | 0.921388 | 0.000073 | 8,098 | 0.017026 | true | 0.229182 | 0.109014 | 0.000001 | 133 | 6 |
59 | 59 | 10,000,000 | 2,000 | 16 | false | 162,978 | 0.779841 | 0.007367 | 15,512 | 0.03152 | true | null | null | null | 1,563 | 6 |
60 | 60 | 10,000,000 | 0 | 64 | false | 29,946 | 0.947846 | 0.000092 | 28,907 | 0.138466 | false | null | null | null | null | 6 |
61 | 61 | 10,000,000 | 22,570.312 | 32 | true | 496,486 | 0.84087 | 0.000024 | 17,670 | 0.024359 | true | 0.056338 | 0.971024 | 0 | 358 | 6 |
62 | 62 | 10,000,000 | 2,000 | 32 | true | 882,018 | 0.85981 | 0.067913 | 17,138 | 0.06078 | false | 0.931511 | 0.525554 | 0.000001 | null | 6 |
63 | 63 | 10,000,000 | 0 | 32 | true | 248,455 | 0.659117 | 0.019674 | 15,579 | 0.089473 | true | 0.881871 | 0.945577 | 0.000928 | 754 | 6 |
64 | 64 | 10,000,000 | 9,195.3125 | 64 | false | 676,021 | 0.622445 | 0.000012 | 6,295 | 0.184629 | true | null | null | null | 1,689 | 6 |
65 | 65 | 10,000,000 | 12,406.25 | 16 | true | 843,016 | 0.909017 | 0.000003 | 5,988 | 0.061536 | true | 0.430416 | 0.116542 | 0.000019 | 494 | 6 |
66 | 66 | 10,000,000 | 25,039.062 | 32 | true | 975,909 | 0.966281 | 0.000091 | 8,711 | 0.050829 | true | 0.049593 | 0.643308 | 0.000004 | 755 | 6 |
67 | 67 | 10,000,000 | 0 | 64 | false | 954,381 | 0.675968 | 0.030741 | 25,466 | 0.072128 | false | null | null | null | null | 6 |
68 | 68 | 10,000,000 | 3,359.375 | 16 | true | 745,494 | 0.763454 | 0.000274 | 1,041 | 0.085655 | true | 0.216171 | 0.93307 | 0.000001 | 1,717 | 6 |
69 | 69 | 10,000,000 | 3,429.6875 | 64 | true | 606,116 | 0.557831 | 0.00436 | 21,260 | 0.162576 | true | 0.915714 | 0.058855 | 0.000001 | 1,431 | 6 |
70 | 70 | 10,000,000 | 5,281.25 | 32 | true | 108,125 | 0.90867 | 0.000232 | 29,032 | 0.146925 | true | 0.379776 | 0.520482 | 0.00036 | 1,475 | 6 |
71 | 71 | 10,000,000 | 23,492.188 | 16 | false | 919,590 | 0.855228 | 0.000008 | 16,373 | 0.028923 | true | null | null | null | 680 | 6 |
72 | 72 | 10,000,000 | 0 | 32 | false | 148,674 | 0.628458 | 0.023323 | 16,639 | 0.179893 | true | null | null | null | 894 | 6 |
73 | 73 | 10,000,000 | 2,476.5625 | 32 | true | 915,058 | 0.865872 | 0.004342 | 10,227 | 0.115964 | false | 0.797634 | 0.351085 | 0.000121 | null | 6 |
74 | 74 | 10,000,000 | 2,687.5 | 16 | false | 441,893 | 0.743205 | 0.000175 | 19,050 | 0.124613 | true | null | null | null | 834 | 6 |
75 | 75 | 10,000,000 | 1,492.1875 | 64 | true | 212,262 | 0.529692 | 0.023996 | 30,183 | 0.024904 | true | 0.183618 | 0.124739 | 0.000398 | 114 | 6 |
76 | 76 | 10,000,000 | 7,429.6875 | 64 | true | 863,611 | 0.783253 | 0.000069 | 11,891 | 0.151715 | true | 0.660746 | 0.522153 | 0.000009 | 1,803 | 6 |
77 | 77 | 10,000,000 | 1,000 | 32 | false | 725,855 | 0.519279 | 0.007338 | 7,908 | 0.180727 | true | null | null | null | 1,641 | 6 |
78 | 78 | 10,000,000 | 20,484.375 | 16 | true | 330,953 | 0.90694 | 0.000005 | 8,241 | 0.014702 | false | 0.401281 | 0.317732 | 0.000075 | null | 6 |
79 | 79 | 10,000,000 | 18,015.625 | 64 | false | 218,464 | 0.986909 | 0.000006 | 10,256 | 0.036779 | true | null | null | null | 1,779 | 6 |
80 | 80 | 10,000,000 | 2,000 | 16 | false | 112,405 | 0.729485 | 0.000041 | 11,071 | 0.097034 | false | null | null | null | null | 6 |
81 | 81 | 10,000,000 | 2,000 | 64 | false | 999,809 | 0.59863 | 0.000473 | 10,237 | 0.061531 | false | null | null | null | null | 6 |
82 | 82 | 10,000,000 | 12,835.9375 | 64 | true | 873,962 | 0.916991 | 0.000012 | 25,506 | 0.003422 | true | 0.237272 | 0.511794 | 0.000089 | 196 | 6 |
83 | 83 | 10,000,000 | 1,000 | 32 | false | 229,436 | 0.838571 | 0.000921 | 1,343 | 0.095689 | false | null | null | null | null | 6 |
84 | 84 | 10,000,000 | 20,859.375 | 16 | false | 582,748 | 0.553736 | 0.000027 | 15,522 | 0.005169 | true | null | null | null | 1,507 | 6 |
85 | 85 | 10,000,000 | 507.8125 | 16 | false | 639,991 | 0.97427 | 0.007787 | 27,954 | 0.098594 | true | null | null | null | 137 | 6 |
86 | 86 | 10,000,000 | 4,046.875 | 64 | false | 719,677 | 0.674996 | 0.000019 | 9,446 | 0.026332 | false | null | null | null | null | 6 |
87 | 87 | 10,000,000 | 593.75 | 16 | true | 652,481 | 0.926623 | 0.000238 | 31,791 | 0.053861 | true | 0.488915 | 0.263553 | 0.000197 | 466 | 6 |
88 | 88 | 10,000,000 | 3,000 | 16 | false | 715,435 | 0.779026 | 0.003348 | 14,313 | 0.002057 | true | null | null | null | 1,932 | 6 |
89 | 89 | 10,000,000 | 8,875 | 64 | true | 1,687 | 0.970834 | 0.000025 | 6,925 | 0.13861 | true | 0.272003 | 0.975344 | 0.000036 | 1,042 | 6 |
90 | 90 | 10,000,000 | 3,953.125 | 32 | false | 141,837 | 0.983669 | 0.020212 | 20,631 | 0.009538 | false | null | null | null | null | 6 |
91 | 91 | 10,000,000 | 11,132.8125 | 64 | false | 101,173 | 0.879492 | 0.000001 | 31,723 | 0.123397 | false | null | null | null | null | 6 |
92 | 92 | 10,000,000 | 7,992.1875 | 64 | false | 519,482 | 0.533037 | 0.00023 | 14,936 | 0.041356 | true | null | null | null | 526 | 6 |
93 | 93 | 10,000,000 | 765.625 | 32 | true | 906,328 | 0.908182 | 0.000579 | 28,064 | 0.192517 | true | 0.634523 | 0.998014 | 0.000894 | 1,207 | 6 |
94 | 94 | 10,000,000 | 0 | 16 | false | 3,086 | 0.599456 | 0.060341 | 11,513 | 0.12804 | true | null | null | null | 1,584 | 6 |
95 | 95 | 10,000,000 | 4,796.875 | 16 | true | 222,015 | 0.841863 | 0.000003 | 13,627 | 0.056053 | false | 0.356399 | 0.709346 | 0 | null | 6 |
96 | 96 | 10,000,000 | 7,007.8125 | 16 | true | 800,460 | 0.977784 | 0.000038 | 27,270 | 0.021694 | false | 0.753522 | 0.164418 | 0.000005 | null | 6 |
97 | 97 | 10,000,000 | 507.8125 | 16 | true | 591,005 | 0.717766 | 0.00985 | 30,339 | 0.060532 | true | 0.491409 | 0.59227 | 0.000862 | 1,395 | 6 |
98 | 98 | 10,000,000 | 0 | 32 | true | 944,683 | 0.567774 | 0.003993 | 30,400 | 0.133268 | true | 0.207001 | 0.373801 | 0.000067 | 1,300 | 6 |
99 | 99 | 10,000,000 | 257.8125 | 64 | false | 816,339 | 0.955725 | 0.000024 | 12,754 | 0.076599 | false | null | null | null | null | 6 |
End of preview.
The ARLBench Performance Dataset
ARLBench is a benchmark for hyperparameter optimization in Reinforcement Learning. Since we performed several thousand runs on the benchmark to find meaningful HPO test settings in RL, we collect them in this dataset for future use. These runs could be used to meta-learn information about the hyperparameter landscape or warmstart HPO tools.
In detail, it contains each 10 runs for PPO, DQN and SAC respectively on the Atari-5 environments, four XLand gridworlds, four Brax walkers, five classic control and two Box2D environments. For more information, refer to the ARLBench paper.
- Downloads last month
- 81