Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'environment'})

This happened while the csv dataset builder was generating data using

hf://datasets/autorl-org/arlbench/minigrid_door_key_dqn.csv (at revision fe903e35c617b047ac5f4c335aae353720d591ea)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 580, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              run_id: int64
              budget: int64
              performance: double
              hp_config.buffer_batch_size: int64
              hp_config.buffer_prio_sampling: bool
              hp_config.buffer_size: int64
              hp_config.initial_epsilon: double
              hp_config.learning_rate: double
              hp_config.learning_starts: int64
              hp_config.target_epsilon: double
              hp_config.use_target_network: bool
              hp_config.buffer_alpha: double
              hp_config.buffer_beta: double
              hp_config.buffer_epsilon: double
              hp_config.target_update_interval: double
              seed: int64
              environment: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2739
              to
              {'Unnamed: 0': Value(dtype='int64', id=None), 'run_id': Value(dtype='int64', id=None), 'budget': Value(dtype='int64', id=None), 'performance': Value(dtype='float64', id=None), 'hp_config.buffer_batch_size': Value(dtype='int64', id=None), 'hp_config.buffer_prio_sampling': Value(dtype='bool', id=None), 'hp_config.buffer_size': Value(dtype='int64', id=None), 'hp_config.initial_epsilon': Value(dtype='float64', id=None), 'hp_config.learning_rate': Value(dtype='float64', id=None), 'hp_config.learning_starts': Value(dtype='int64', id=None), 'hp_config.target_epsilon': Value(dtype='float64', id=None), 'hp_config.use_target_network': Value(dtype='bool', id=None), 'hp_config.buffer_alpha': Value(dtype='float64', id=None), 'hp_config.buffer_beta': Value(dtype='float64', id=None), 'hp_config.buffer_epsilon': Value(dtype='float64', id=None), 'hp_config.target_update_interval': Value(dtype='float64', id=None), 'seed': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1392, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1041, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 999, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1740, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'environment'})
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/autorl-org/arlbench/minigrid_door_key_dqn.csv (at revision fe903e35c617b047ac5f4c335aae353720d591ea)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
run_id
int64
budget
int64
performance
float64
hp_config.buffer_batch_size
int64
hp_config.buffer_prio_sampling
bool
hp_config.buffer_size
int64
hp_config.initial_epsilon
float64
hp_config.learning_rate
float64
hp_config.learning_starts
int64
hp_config.target_epsilon
float64
hp_config.use_target_network
bool
hp_config.buffer_alpha
float64
hp_config.buffer_beta
float64
hp_config.buffer_epsilon
float64
hp_config.target_update_interval
float64
seed
int64
0
0
10,000,000
2,000
32
false
603,170
0.772442
0.000131
21,527
0.08808
false
null
null
null
null
6
1
1
10,000,000
6,929.6875
32
false
71,987
0.543565
0.000001
27,455
0.155853
false
null
null
null
null
6
2
2
10,000,000
953.125
16
false
144,230
0.972334
0.000407
14,187
0.053647
false
null
null
null
null
6
3
3
10,000,000
15,578.125
32
false
943,806
0.84091
0.000063
14,897
0.139829
true
null
null
null
258
6
4
4
10,000,000
2,000
16
true
570,637
0.719301
0.087472
4,263
0.042566
true
0.656577
0.260759
0.000007
489
6
5
5
10,000,000
6,460.9375
16
true
656,682
0.569091
0.00001
12,729
0.164378
true
0.839565
0.105137
0.000805
938
6
6
6
10,000,000
13,390.625
64
false
739,531
0.519594
0.000026
4,839
0.059932
true
null
null
null
1,385
6
7
7
10,000,000
984.375
32
true
523,736
0.54697
0.000758
30,524
0.064395
false
0.14048
0.719164
0.000001
null
6
8
8
10,000,000
1,218.75
32
true
829,116
0.502348
0.00245
9,595
0.147304
false
0.256266
0.580396
0.000023
null
6
9
9
10,000,000
0
16
false
447,691
0.923204
0.003143
10,466
0.162946
true
null
null
null
1,386
6
10
10
10,000,000
16,445.312
64
false
956,129
0.821995
0.000132
20,273
0.004819
true
null
null
null
858
6
11
11
10,000,000
9,640.625
16
true
570,405
0.795436
0.000744
21,759
0.130769
true
0.897581
0.373886
0.000006
1,784
6
12
12
10,000,000
0
64
false
101,148
0.959741
0.003726
32,732
0.03074
false
null
null
null
null
6
13
13
10,000,000
1,000
64
false
407,790
0.534583
0.00307
15,421
0.144689
false
null
null
null
null
6
14
14
10,000,000
8,289.0625
64
true
521,527
0.527169
0.00001
1,611
0.158946
true
0.351898
0.9288
0.000066
64
6
15
15
10,000,000
0
16
false
577,662
0.618946
0.046889
20,514
0.107591
false
null
null
null
null
6
16
16
10,000,000
18,234.375
16
false
739,818
0.745229
0.000014
9,098
0.012548
true
null
null
null
360
6
17
17
10,000,000
2,281.25
16
true
679,721
0.726848
0.000482
29,488
0.198077
true
0.666447
0.270689
0
1,517
6
18
18
10,000,000
2,953.125
16
true
588,739
0.915524
0.001396
28,726
0.055435
false
0.19378
0.953264
0.000056
null
6
19
19
10,000,000
2,039.0625
64
false
254,705
0.606656
0.00039
1,838
0.042287
true
null
null
null
1,174
6
20
20
10,000,000
4,000
64
true
517,873
0.566034
0.00384
13,596
0.113519
true
0.153399
0.493176
0.000003
1,881
6
21
21
10,000,000
976.5625
64
false
903,819
0.541711
0.000577
19,578
0.192425
true
null
null
null
1,860
6
22
22
10,000,000
6,273.4375
64
false
282,465
0.793205
0.000002
16,440
0.195522
false
null
null
null
null
6
23
23
10,000,000
11,289.0625
64
false
630,826
0.937144
0.000029
27,973
0.123957
true
null
null
null
957
6
24
24
10,000,000
2,000
32
false
369,231
0.56845
0.0129
7,050
0.102752
true
null
null
null
1,922
6
25
25
10,000,000
6,304.6875
64
false
333,828
0.540551
0.000109
8,396
0.027365
true
null
null
null
294
6
26
26
10,000,000
0
16
true
672,384
0.622684
0.000127
18,717
0.17225
false
0.277625
0.140168
0
null
6
27
27
10,000,000
2,664.0625
16
true
683,606
0.847813
0.000026
13,084
0.037049
false
0.06628
0.700027
0.00013
null
6
28
28
10,000,000
2,531.25
16
true
588,022
0.636411
0.000071
7,279
0.092511
true
0.801798
0.086187
0.000012
614
6
29
29
10,000,000
3,000
32
false
645,933
0.517681
0.000142
17,214
0.107699
false
null
null
null
null
6
30
30
10,000,000
0
16
false
544,273
0.728456
0.025716
15,582
0.145109
true
null
null
null
656
6
31
31
10,000,000
0
64
false
240,798
0.580269
0.009593
31,472
0.09217
false
null
null
null
null
6
32
32
10,000,000
593.75
64
false
815,713
0.579707
0.001395
13,672
0.01348
true
null
null
null
1,918
6
33
33
10,000,000
0
32
true
17,335
0.592616
0.000101
30,524
0.020823
false
0.870794
0.459621
0.000002
null
6
34
34
10,000,000
14,578.125
32
true
16,614
0.714398
0.000002
9,021
0.045011
true
0.139745
0.021916
0
1,237
6
35
35
10,000,000
3,296.875
64
false
409,659
0.581477
0.001562
16,588
0.197893
true
null
null
null
1,326
6
36
36
10,000,000
0
16
false
517,803
0.712044
0.000594
10,136
0.141608
true
null
null
null
93
6
37
37
10,000,000
1,000
16
true
815,156
0.992746
0.069961
29,751
0.060015
false
0.256926
0.114847
0.000637
null
6
38
38
10,000,000
3,000
64
true
730,985
0.94086
0.000023
13,057
0.075485
false
0.245429
0.180135
0.000006
null
6
39
39
10,000,000
1,000
64
true
502,899
0.971292
0.001479
28,556
0.188102
false
0.702579
0.968286
0.00095
null
6
40
40
10,000,000
15,132.8125
16
true
153,222
0.708743
0.000005
20,201
0.077179
false
0.968117
0.551416
0.000001
null
6
41
41
10,000,000
0
64
true
552,537
0.635826
0.000189
13,776
0.050434
false
0.317277
0.379305
0.000013
null
6
42
42
10,000,000
17,835.938
32
false
862,460
0.524345
0.000019
15,186
0.021821
true
null
null
null
1,422
6
43
43
10,000,000
0
16
true
676,574
0.939617
0.000523
9,998
0.007017
false
0.017805
0.378952
0.000013
null
6
44
44
10,000,000
1,765.625
16
true
25,312
0.671305
0.001292
9,883
0.04274
true
0.581369
0.698317
0.000049
1,898
6
45
45
10,000,000
0
16
false
600,802
0.79437
0.065141
1,559
0.1396
false
null
null
null
null
6
46
46
10,000,000
4,593.75
32
false
694,270
0.545443
0.000014
14,049
0.125036
false
null
null
null
null
6
47
47
10,000,000
0
32
false
541,850
0.961653
0.014109
31,762
0.184037
true
null
null
null
601
6
48
48
10,000,000
10,906.25
16
false
446,961
0.953938
0.000006
22,011
0.088612
true
null
null
null
120
6
49
49
10,000,000
2,000
16
false
740,151
0.949031
0.002306
17,815
0.061585
false
null
null
null
null
6
50
50
10,000,000
0
16
true
680,676
0.531604
0.001087
16,186
0.057516
true
0.519368
0.374248
0.000007
675
6
51
51
10,000,000
1,492.1875
64
true
97,728
0.671696
0.000902
21,949
0.080054
false
0.358374
0.724193
0.000036
null
6
52
52
10,000,000
22,421.875
64
false
764,803
0.849124
0.000048
5,712
0.013465
true
null
null
null
1,918
6
53
53
10,000,000
0
16
true
590,115
0.872699
0.017408
30,731
0.196702
true
0.386532
0.156331
0.000055
1,314
6
54
54
10,000,000
1,218.75
64
true
498,291
0.790541
0.000016
6,389
0.172057
true
0.475915
0.124676
0.000007
1,960
6
55
55
10,000,000
13,289.0625
32
false
118,219
0.635626
0.000104
13,716
0.134605
true
null
null
null
864
6
56
56
10,000,000
0
32
true
822,589
0.826711
0.004283
18,068
0.022985
true
0.41132
0.327833
0
1,475
6
57
57
10,000,000
507.8125
16
false
703,522
0.817393
0.062476
4,303
0.173566
true
null
null
null
731
6
58
58
10,000,000
16,335.9375
16
true
518,643
0.921388
0.000073
8,098
0.017026
true
0.229182
0.109014
0.000001
133
6
59
59
10,000,000
2,000
16
false
162,978
0.779841
0.007367
15,512
0.03152
true
null
null
null
1,563
6
60
60
10,000,000
0
64
false
29,946
0.947846
0.000092
28,907
0.138466
false
null
null
null
null
6
61
61
10,000,000
22,570.312
32
true
496,486
0.84087
0.000024
17,670
0.024359
true
0.056338
0.971024
0
358
6
62
62
10,000,000
2,000
32
true
882,018
0.85981
0.067913
17,138
0.06078
false
0.931511
0.525554
0.000001
null
6
63
63
10,000,000
0
32
true
248,455
0.659117
0.019674
15,579
0.089473
true
0.881871
0.945577
0.000928
754
6
64
64
10,000,000
9,195.3125
64
false
676,021
0.622445
0.000012
6,295
0.184629
true
null
null
null
1,689
6
65
65
10,000,000
12,406.25
16
true
843,016
0.909017
0.000003
5,988
0.061536
true
0.430416
0.116542
0.000019
494
6
66
66
10,000,000
25,039.062
32
true
975,909
0.966281
0.000091
8,711
0.050829
true
0.049593
0.643308
0.000004
755
6
67
67
10,000,000
0
64
false
954,381
0.675968
0.030741
25,466
0.072128
false
null
null
null
null
6
68
68
10,000,000
3,359.375
16
true
745,494
0.763454
0.000274
1,041
0.085655
true
0.216171
0.93307
0.000001
1,717
6
69
69
10,000,000
3,429.6875
64
true
606,116
0.557831
0.00436
21,260
0.162576
true
0.915714
0.058855
0.000001
1,431
6
70
70
10,000,000
5,281.25
32
true
108,125
0.90867
0.000232
29,032
0.146925
true
0.379776
0.520482
0.00036
1,475
6
71
71
10,000,000
23,492.188
16
false
919,590
0.855228
0.000008
16,373
0.028923
true
null
null
null
680
6
72
72
10,000,000
0
32
false
148,674
0.628458
0.023323
16,639
0.179893
true
null
null
null
894
6
73
73
10,000,000
2,476.5625
32
true
915,058
0.865872
0.004342
10,227
0.115964
false
0.797634
0.351085
0.000121
null
6
74
74
10,000,000
2,687.5
16
false
441,893
0.743205
0.000175
19,050
0.124613
true
null
null
null
834
6
75
75
10,000,000
1,492.1875
64
true
212,262
0.529692
0.023996
30,183
0.024904
true
0.183618
0.124739
0.000398
114
6
76
76
10,000,000
7,429.6875
64
true
863,611
0.783253
0.000069
11,891
0.151715
true
0.660746
0.522153
0.000009
1,803
6
77
77
10,000,000
1,000
32
false
725,855
0.519279
0.007338
7,908
0.180727
true
null
null
null
1,641
6
78
78
10,000,000
20,484.375
16
true
330,953
0.90694
0.000005
8,241
0.014702
false
0.401281
0.317732
0.000075
null
6
79
79
10,000,000
18,015.625
64
false
218,464
0.986909
0.000006
10,256
0.036779
true
null
null
null
1,779
6
80
80
10,000,000
2,000
16
false
112,405
0.729485
0.000041
11,071
0.097034
false
null
null
null
null
6
81
81
10,000,000
2,000
64
false
999,809
0.59863
0.000473
10,237
0.061531
false
null
null
null
null
6
82
82
10,000,000
12,835.9375
64
true
873,962
0.916991
0.000012
25,506
0.003422
true
0.237272
0.511794
0.000089
196
6
83
83
10,000,000
1,000
32
false
229,436
0.838571
0.000921
1,343
0.095689
false
null
null
null
null
6
84
84
10,000,000
20,859.375
16
false
582,748
0.553736
0.000027
15,522
0.005169
true
null
null
null
1,507
6
85
85
10,000,000
507.8125
16
false
639,991
0.97427
0.007787
27,954
0.098594
true
null
null
null
137
6
86
86
10,000,000
4,046.875
64
false
719,677
0.674996
0.000019
9,446
0.026332
false
null
null
null
null
6
87
87
10,000,000
593.75
16
true
652,481
0.926623
0.000238
31,791
0.053861
true
0.488915
0.263553
0.000197
466
6
88
88
10,000,000
3,000
16
false
715,435
0.779026
0.003348
14,313
0.002057
true
null
null
null
1,932
6
89
89
10,000,000
8,875
64
true
1,687
0.970834
0.000025
6,925
0.13861
true
0.272003
0.975344
0.000036
1,042
6
90
90
10,000,000
3,953.125
32
false
141,837
0.983669
0.020212
20,631
0.009538
false
null
null
null
null
6
91
91
10,000,000
11,132.8125
64
false
101,173
0.879492
0.000001
31,723
0.123397
false
null
null
null
null
6
92
92
10,000,000
7,992.1875
64
false
519,482
0.533037
0.00023
14,936
0.041356
true
null
null
null
526
6
93
93
10,000,000
765.625
32
true
906,328
0.908182
0.000579
28,064
0.192517
true
0.634523
0.998014
0.000894
1,207
6
94
94
10,000,000
0
16
false
3,086
0.599456
0.060341
11,513
0.12804
true
null
null
null
1,584
6
95
95
10,000,000
4,796.875
16
true
222,015
0.841863
0.000003
13,627
0.056053
false
0.356399
0.709346
0
null
6
96
96
10,000,000
7,007.8125
16
true
800,460
0.977784
0.000038
27,270
0.021694
false
0.753522
0.164418
0.000005
null
6
97
97
10,000,000
507.8125
16
true
591,005
0.717766
0.00985
30,339
0.060532
true
0.491409
0.59227
0.000862
1,395
6
98
98
10,000,000
0
32
true
944,683
0.567774
0.003993
30,400
0.133268
true
0.207001
0.373801
0.000067
1,300
6
99
99
10,000,000
257.8125
64
false
816,339
0.955725
0.000024
12,754
0.076599
false
null
null
null
null
6
End of preview.

The ARLBench Performance Dataset

ARLBench is a benchmark for hyperparameter optimization in Reinforcement Learning. Since we performed several thousand runs on the benchmark to find meaningful HPO test settings in RL, we collect them in this dataset for future use. These runs could be used to meta-learn information about the hyperparameter landscape or warmstart HPO tools.

In detail, it contains each 10 runs for PPO, DQN and SAC respectively on the Atari-5 environments, four XLand gridworlds, four Brax walkers, five classic control and two Box2D environments. For more information, refer to the ARLBench paper.

Downloads last month
81
Edit dataset card