image
imagewidth (px)
19
7.02k
wnid
stringclasses
200 values
class_name
stringclasses
200 values
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02088094
afghan_hound
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine
n02346627
porcupine

ImageNet-R

This repo is made to facilitate the evaluation of various pretraining models. It's constructed from the source file provided by official implementation.

Usage

from datasets import load_dataset

dataset = load_dataset('axiong/imagenet-r')

Dataset Summary

ImageNet-R(endition) contains art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys, and video game renditions of ImageNet classes.

ImageNet-R has renditions of 200 ImageNet classes resulting in 30,000 images.

ImageNet-R is a dataset proposed on ICCV 2021 by Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt and Justin Gilme. The detailed introduction could be found in their paper 'The Many` Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization'.

image/jpg

Example Data

  • wnid is the ID from wordnet, used to indicate the class label.
  • class_name is the the corresponding class name of wnid
[
  {
    "image": <PIL Image>,
    "wnid": "n02088094",
    "class_name": "afghan_hound"
  },
  {
    "image": <PIL Image>,
    "wnid": "n07697537",
    "class_name": "hotdog"
  }
]

Citation

@article{hendrycks2021many,
  title={The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization},
  author={Dan Hendrycks and Steven Basart and Norman Mu and Saurav Kadavath and Frank Wang and Evan Dorundo and Rahul Desai and Tyler Zhu and Samyak Parajuli and Mike Guo and Dawn Song and Jacob Steinhardt and Justin Gilmer},
  journal={ICCV},
  year={2021}
}

About Me

I am Weixiong Lin from SJTU, my research interests include multimodal representation learning, foundation model, data acceleration, etc. Feel free to contact me if you are seeking cooperations.

Downloads last month
67