|
import csv |
|
import os |
|
import urllib |
|
|
|
|
|
import datasets |
|
from datasets.utils.py_utils import size_str |
|
|
|
|
|
import datasets |
|
import requests |
|
from datasets.utils.py_utils import size_str |
|
from huggingface_hub import HfApi, HfFolder |
|
|
|
|
|
|
|
from .release_stats import STATS |
|
|
|
|
|
|
|
|
|
|
|
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets" |
|
|
|
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/" |
|
|
|
_API_URL = "https://commonvoice.mozilla.org/api/v1" |
|
|
|
|
|
|
|
|
|
|
|
class CommonVoiceConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for CommonVoice.""" |
|
|
|
def __init__(self, name, version, **kwargs): |
|
self.language = "bn" |
|
self.release_date = "2022-04-27" |
|
self.num_clips = 231120 |
|
self.num_speakers = 19863 |
|
self.validated_hr = 56.61 |
|
self.total_hr = 399.47 |
|
self.size_bytes = 8262390506 |
|
self.size_human = size_str(self.size_bytes) |
|
description = ( |
|
f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. " |
|
f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data " |
|
f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. " |
|
f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}." |
|
) |
|
super(CommonVoiceConfig, self).__init__( |
|
name=name, |
|
version=datasets.Version(version), |
|
description=description, |
|
**kwargs, |
|
) |
|
|
|
|
|
class CommonVoice(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG_NAME = "bn" |
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
|
|
BUILDER_CONFIGS = [ |
|
CommonVoiceConfig( |
|
name="bn" |
|
version= '9.0.0' |
|
language= "Bengali" |
|
release_date= "2022-04-27" |
|
num_clips= 231120 |
|
num_speakers= 19863 |
|
validated_hr= float(56.61) |
|
total_hr= float(399.47) |
|
size_bytes= int(8262390506) |
|
) |
|
|
|
] |
|
|
|
def _info(self): |
|
|
|
|
|
total_languages = 1 |
|
total_valid_hours = float(399.47) |
|
description = ( |
|
"Common Voice Bangla is bengali AI's initiative to help teach machines how real people speak in Bangla. " |
|
f"The dataset is for initial training of a general speech recognition model for Bangla." |
|
) |
|
features = datasets.Features( |
|
{ |
|
"client_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=48_000), |
|
"sentence": datasets.Value("string"), |
|
"up_votes": datasets.Value("int64"), |
|
"down_votes": datasets.Value("int64"), |
|
"age": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"locale": 'bn', |
|
"segment": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=description, |
|
features=features, |
|
supervised_keys=None, |
|
|
|
license=_LICENSE, |
|
|
|
version=self.config.version, |
|
|
|
|
|
|
|
) |
|
|
|
|
|
def _get_bundle_url(self, locale, url_template): |
|
|
|
|
|
path = url_template |
|
path = urllib.parse.quote(path.encode("utf-8"), safe="~()*!.'") |
|
|
|
|
|
response = requests.get( |
|
f"{_API_URL}/bucket/dataset/{path}", timeout=10.0 |
|
).json() |
|
return response["url"] |
|
|
|
def _log_download(self, locale, bundle_version, auth_token): |
|
if isinstance(auth_token, bool): |
|
auth_token = HfFolder().get_token() |
|
whoami = HfApi().whoami(auth_token) |
|
email = whoami["email"] if "email" in whoami else "" |
|
payload = {"email": email, "locale": locale, "dataset": bundle_version} |
|
requests.post(f"{_API_URL}/{locale}/downloaders", json=payload).json() |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
hf_auth_token = dl_manager.download_config.use_auth_token |
|
if hf_auth_token is None: |
|
raise ConnectionError( |
|
"Please set use_auth_token=True or use_auth_token='<TOKEN>' to download this dataset" |
|
) |
|
|
|
bundle_url_template = STATS["bundleURLTemplate"] |
|
bundle_version = bundle_url_template.split("/")[0] |
|
dl_manager.download_config.ignore_url_params = True |
|
|
|
self._log_download(self.config.name, bundle_version, hf_auth_token) |
|
archive_path = dl_manager.download( |
|
self._get_bundle_url(self.config.name, bundle_url_template) |
|
) |
|
local_extracted_archive = ( |
|
dl_manager.extract(archive_path) if not dl_manager.is_streaming else None |
|
) |
|
|
|
if self.config.version < datasets.Version("5.0.0"): |
|
path_to_data = "" |
|
else: |
|
path_to_data = "/".join([bundle_version, self.config.name]) |
|
path_to_clips = "/".join([path_to_data, "clips"]) if path_to_data else "clips" |
|
|
|
|
|
path_to_tsvs = "/" + "bengali_ai_tsv" + "/" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive, |
|
"archive_iterator": dl_manager.iter_archive(archive_path), |
|
|
|
|
|
|
|
|
|
"metadata_filepath": "/".join([path_to_tsvs, "train.tsv"]) if path_to_tsvs else "train.tsv", |
|
"path_to_clips": path_to_clips, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive, |
|
"archive_iterator": dl_manager.iter_archive(archive_path), |
|
"metadata_filepath": "/".join([path_to_data, "test.tsv"]) if path_to_data else "test.tsv", |
|
"path_to_clips": path_to_clips, |
|
"mode":"test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive, |
|
"archive_iterator": dl_manager.iter_archive(archive_path), |
|
"metadata_filepath": "/".join([path_to_data, "dev.tsv"]) if path_to_data else "dev.tsv", |
|
"path_to_clips": path_to_clips, |
|
"mode":"dev", |
|
}, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
local_extracted_archive, |
|
archive_iterator, |
|
metadata_filepath, |
|
path_to_clips, |
|
): |
|
"""Yields examples.""" |
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
metadata_found = True |
|
with open(metadata_filepath, "rb") as file_obj: |
|
lines = (line.decode("utf-8") for line in file_obj) |
|
|
|
reader = csv.DictReader(lines, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
|
|
if not row["path"].endswith(".mp3"): |
|
row["path"] += ".mp3" |
|
row["path"] = os.path.join(path_to_clips, row["path"]) |
|
|
|
if "accents" in row: |
|
row["accent"] = row["accents"] |
|
del row["accents"] |
|
|
|
for field in data_fields: |
|
if field not in row: |
|
row[field] = "" |
|
metadata[row["path"]] = row |
|
for path, f in archive_iterator: |
|
if path.startswith(path_to_clips): |
|
assert metadata_found, "Found audio clips before the metadata TSV file." |
|
if not metadata: |
|
break |
|
if path in metadata: |
|
result = metadata[path] |
|
|
|
path = ( |
|
os.path.join(local_extracted_archive, path) |
|
if local_extracted_archive |
|
else path |
|
) |
|
result["audio"] = {"path": path, "bytes": f.read()} |
|
|
|
result["path"] = path if local_extracted_archive else None |
|
|
|
yield path, result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|