|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The General Language Understanding Evaluation (GLUE) benchmark.""" |
|
|
|
|
|
import csv |
|
import os |
|
import textwrap |
|
import json |
|
|
|
import numpy as np |
|
|
|
import datasets |
|
|
|
|
|
_GLUE_CITATION = """\ |
|
@inproceedings{wang2019glue, |
|
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, |
|
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, |
|
note={In the Proceedings of ICLR.}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_GLUE_DESCRIPTION = """\ |
|
GLUE, the General Language Understanding Evaluation benchmark |
|
(https://gluebenchmark.com/) is a collection of resources for training, |
|
evaluating, and analyzing natural language understanding systems. |
|
""" |
|
|
|
_MNLI_BASE_KWARGS = dict( |
|
text_features={ |
|
"premise": "sentence1", |
|
"hypothesis": "sentence2", |
|
}, |
|
label_classes=["entailment", "neutral", "contradiction"], |
|
label_column="label", |
|
data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip", |
|
data_dir="MNLI", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@InProceedings{N18-1101, |
|
author = "Williams, Adina |
|
and Nangia, Nikita |
|
and Bowman, Samuel", |
|
title = "A Broad-Coverage Challenge Corpus for |
|
Sentence Understanding through Inference", |
|
booktitle = "Proceedings of the 2018 Conference of |
|
the North American Chapter of the |
|
Association for Computational Linguistics: |
|
Human Language Technologies, Volume 1 (Long |
|
Papers)", |
|
year = "2018", |
|
publisher = "Association for Computational Linguistics", |
|
pages = "1112--1122", |
|
location = "New Orleans, Louisiana", |
|
url = "http://aclweb.org/anthology/N18-1101" |
|
} |
|
@article{bowman2015large, |
|
title={A large annotated corpus for learning natural language inference}, |
|
author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D}, |
|
journal={arXiv preprint arXiv:1508.05326}, |
|
year={2015} |
|
}""" |
|
), |
|
url="http://www.nyu.edu/projects/bowman/multinli/", |
|
) |
|
|
|
|
|
class GlueConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for GLUE.""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
data_url, |
|
data_dir, |
|
citation, |
|
url, |
|
label_classes=None, |
|
process_label=lambda x: x, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for GLUE. |
|
Args: |
|
text_features: `dict[string, string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the tsv file |
|
label_column: `string`, name of the column in the tsv file corresponding |
|
to the label |
|
data_url: `string`, url to download the zip file from |
|
data_dir: `string`, the path to the folder containing the tsv files in the |
|
downloaded zip |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
label_classes: `list[string]`, the list of classes if the label is |
|
categorical. If not provided, then the label will be of type |
|
`datasets.Value('float32')`. |
|
process_label: `Function[string, any]`, function taking in the raw value |
|
of the label and processing it to the form required by the label feature |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.data_dir = data_dir |
|
self.citation = citation |
|
self.url = url |
|
self.process_label = process_label |
|
|
|
|
|
class Glue(datasets.GeneratorBasedBuilder): |
|
"""The General Language Understanding Evaluation (GLUE) benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
GlueConfig( |
|
name=bias_amplified_splits_type, |
|
description=textwrap.dedent( |
|
"""\ |
|
The Multi-Genre Natural Language Inference Corpus is a crowdsourced |
|
collection of sentence pairs with textual entailment annotations. Given a premise sentence |
|
and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis |
|
(entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are |
|
gathered from ten different sources, including transcribed speech, fiction, and government reports. |
|
We use the standard test set, for which we obtained private labels from the authors, and evaluate |
|
on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend |
|
the SNLI corpus as 550k examples of auxiliary training data.""" |
|
), |
|
**_MNLI_BASE_KWARGS, |
|
) for bias_amplified_splits_type in ["minority_examples", "partial_input"] |
|
] |
|
|
|
def _info(self): |
|
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()} |
|
if self.config.label_classes: |
|
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) |
|
else: |
|
features["label"] = datasets.Value("float32") |
|
features["idx"] = datasets.Value("int32") |
|
return datasets.DatasetInfo( |
|
description=_GLUE_DESCRIPTION, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + _GLUE_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
return [ |
|
datasets.SplitGenerator( |
|
name="train.biased", |
|
gen_kwargs={ |
|
"filepath": dl_manager.download(os.path.join(self.config.name, "train.biased.jsonl")), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="train.anti_biased", |
|
gen_kwargs={ |
|
"filepath": dl_manager.download(os.path.join(self.config.name, "train.anti_biased.jsonl")), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="validation_matched.biased", |
|
gen_kwargs={ |
|
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.biased.jsonl")), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="validation_matched.anti_biased", |
|
gen_kwargs={ |
|
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_matched.anti_biased.jsonl")), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="validation_mismatched.biased", |
|
gen_kwargs={ |
|
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.biased.jsonl")), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="validation_mismatched.anti_biased", |
|
gen_kwargs={ |
|
"filepath": dl_manager.download(os.path.join(self.config.name, "validation_mismatched.anti_biased.jsonl")), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples. |
|
|
|
Args: |
|
filepath: a string |
|
|
|
Yields: |
|
dictionaries containing "premise", "hypothesis" and "label" strings |
|
""" |
|
process_label = self.config.process_label |
|
label_classes = self.config.label_classes |
|
|
|
for idx, line in enumerate(open(filepath, "rb")): |
|
if line is not None: |
|
line = line.strip().decode("utf-8") |
|
item = json.loads(line) |
|
example = { |
|
"idx": item["idx"], |
|
"premise": item["premise"], |
|
"hypothesis": item["hypothesis"], |
|
} |
|
if self.config.label_column in item: |
|
label = item[self.config.label_column] |
|
example["label"] = process_label(label) |
|
else: |
|
example["label"] = process_label(-1) |
|
|
|
yield example["idx"], example |
|
|