|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_DATASETNAME = "bionlp_st_2011_rel" |
|
_DISPLAYNAME = "BioNLP 2011 REL" |
|
|
|
_SOURCE_VIEW_NAME = "source" |
|
_UNIFIED_VIEW_NAME = "bigbio" |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{10.5555/2107691.2107703, |
|
author = {Pyysalo, Sampo and Ohta, Tomoko and Tsujii, Jun'ichi}, |
|
title = {Overview of the Entity Relations (REL) Supporting Task of BioNLP Shared Task 2011}, |
|
year = {2011}, |
|
isbn = {9781937284091}, |
|
publisher = {Association for Computational Linguistics}, |
|
address = {USA}, |
|
abstract = {This paper presents the Entity Relations (REL) task, |
|
a supporting task of the BioNLP Shared Task 2011. The task concerns |
|
the extraction of two types of part-of relations between a gene/protein |
|
and an associated entity. Four teams submitted final results for |
|
the REL task, with the highest-performing system achieving 57.7% |
|
F-score. While experiments suggest use of the data can help improve |
|
event extraction performance, the task data has so far received only |
|
limited use in support of event extraction. The REL task continues |
|
as an open challenge, with all resources available from the shared |
|
task website.}, |
|
booktitle = {Proceedings of the BioNLP Shared Task 2011 Workshop}, |
|
pages = {83–88}, |
|
numpages = {6}, |
|
location = {Portland, Oregon}, |
|
series = {BioNLP Shared Task '11} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Entity Relations (REL) task is a supporting task of the BioNLP Shared Task 2011. |
|
The task concerns the extraction of two types of part-of relations between a |
|
gene/protein and an associated entity. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/openbiocorpora/bionlp-st-2011-rel" |
|
|
|
_LICENSE = 'GENIA Project License for Annotated Corpora' |
|
|
|
_URLs = { |
|
"source": "https://github.com/openbiocorpora/bionlp-st-2011-rel/archive/refs/heads/master.zip", |
|
"bigbio_kb": "https://github.com/openbiocorpora/bionlp-st-2011-rel/archive/refs/heads/master.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.RELATION_EXTRACTION, |
|
Tasks.COREFERENCE_RESOLUTION, |
|
] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class bionlp_st_2011_rel(datasets.GeneratorBasedBuilder): |
|
"""The Entity Relations (REL) task is a supporting task of the BioNLP Shared Task 2011.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bionlp_st_2011_rel_source", |
|
version=SOURCE_VERSION, |
|
description="bionlp_st_2011_rel source schema", |
|
schema="source", |
|
subset_id="bionlp_st_2011_rel", |
|
), |
|
BigBioConfig( |
|
name="bionlp_st_2011_rel_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bionlp_st_2011_rel BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bionlp_st_2011_rel", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bionlp_st_2011_rel_source" |
|
|
|
_FILE_SUFFIX = [".a1", ".rel", ".ann"] |
|
|
|
def _info(self): |
|
""" |
|
- `features` defines the schema of the parsed data set. The schema depends on the |
|
chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the |
|
original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the |
|
canonical KB-task schema defined in `biomedical/schemas/kb.py`. |
|
""" |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"text_bound_annotations": [ |
|
{ |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"events": [ |
|
{ |
|
"trigger": datasets.Value( |
|
"string" |
|
), |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arguments": datasets.Sequence( |
|
{ |
|
"role": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
"equivalences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"ref_ids": datasets.Sequence(datasets.Value("string")), |
|
} |
|
], |
|
"attributes": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"value": datasets.Value("string"), |
|
} |
|
], |
|
"normalizations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"ref_id": datasets.Value("string"), |
|
"resource_name": datasets.Value( |
|
"string" |
|
), |
|
"cuid": datasets.Value( |
|
"string" |
|
), |
|
"text": datasets.Value( |
|
"string" |
|
), |
|
} |
|
], |
|
}, |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
|
|
my_urls = _URLs[self.config.schema] |
|
data_dir = Path(dl_manager.download_and_extract(my_urls)) |
|
data_files = { |
|
"train": data_dir |
|
/ f"bionlp-st-2011-rel-master" |
|
/ "original-data" |
|
/ "train", |
|
"dev": data_dir / f"bionlp-st-2011-rel-master" / "original-data" / "devel", |
|
"test": data_dir / f"bionlp-st-2011-rel-master" / "original-data" / "test", |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"data_files": data_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"data_files": data_files["dev"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"data_files": data_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_files: Path): |
|
if self.config.schema == "source": |
|
txt_files = list(data_files.glob("*txt")) |
|
for guid, txt_file in enumerate(txt_files): |
|
example = parsing.parse_brat_file(txt_file, self._FILE_SUFFIX) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
elif self.config.schema == "bigbio_kb": |
|
txt_files = list(data_files.glob("*txt")) |
|
for guid, txt_file in enumerate(txt_files): |
|
example = parsing.brat_parse_to_bigbio_kb( |
|
parsing.parse_brat_file(txt_file, self._FILE_SUFFIX) |
|
) |
|
example["id"] = str(guid) |
|
yield guid, example |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|