File size: 7,788 Bytes
cc0c03a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
State of the art models using deep neural networks have become very good in learning an accurate
mapping from inputs to outputs. However, they still lack generalization capabilities in conditions
that differ from the ones encountered during training. This is even more challenging in specialized,
and knowledge intensive domains, where training data is limited. To address this gap, we introduce
MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI),
grounded in the medical history of patients. As the source of premise sentences, we used the
MIMIC-III. More specifically, to minimize the risks to patient privacy, we worked with clinical
notes corresponding to the deceased patients. The clinicians in our team suggested the Past Medical
History to be the most informative section of a clinical note, from which useful inferences can be
drawn about the patient.
The files comprising this dataset must be on the users local machine in a single directory that is
passed to `datasets.load_datset` via the `data_dir` kwarg. This loader script will read the archive
files directly (i.e. the user should not uncompress, untar or unzip any of the files). For example,
if `data_dir` is `"mednli"` it should contain the following files:
mednli
├── mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip
"""
import json
import os
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import entailment_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ["English"]
_PUBMED = False
_LOCAL = True
_CITATION = """\
@misc{https://doi.org/10.13026/c2rs98,
title = {MedNLI — A Natural Language Inference Dataset For The Clinical Domain},
author = {Shivade, Chaitanya},
year = 2017,
publisher = {physionet.org},
doi = {10.13026/C2RS98},
url = {https://physionet.org/content/mednli/}
}
"""
_DATASETNAME = "mednli"
_DISPLAYNAME = "MedNLI"
_DESCRIPTION = """\
State of the art models using deep neural networks have become very good in learning an accurate
mapping from inputs to outputs. However, they still lack generalization capabilities in conditions
that differ from the ones encountered during training. This is even more challenging in specialized,
and knowledge intensive domains, where training data is limited. To address this gap, we introduce
MedNLI - a dataset annotated by doctors, performing a natural language inference task (NLI),
grounded in the medical history of patients. As the source of premise sentences, we used the
MIMIC-III. More specifically, to minimize the risks to patient privacy, we worked with clinical
notes corresponding to the deceased patients. The clinicians in our team suggested the Past Medical
History to be the most informative section of a clinical note, from which useful inferences can be
drawn about the patient.
"""
_HOMEPAGE = "https://physionet.org/content/mednli/1.0.0/"
_LICENSE = "PHYSIONET_LICENSE_1p5"
_URLS = {}
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MedNLIDataset(datasets.GeneratorBasedBuilder):
"""MedNLI"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="mednli_source",
version=SOURCE_VERSION,
description="MedNLI source schema",
schema="source",
subset_id="mednli",
),
BigBioConfig(
name="mednli_bigbio_te",
version=BIGBIO_VERSION,
description="MedNLI BigBio schema",
schema="bigbio_te",
subset_id="mednli",
),
]
DEFAULT_CONFIG_NAME = "mednli_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pairID": datasets.Value("string"),
"gold_label": datasets.Value("string"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"sentence1_parse": datasets.Value("string"),
"sentence2_parse": datasets.Value("string"),
"sentence1_binary_parse": datasets.Value("string"),
"sentence2_binary_parse": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_te":
features = entailment_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
extract_dir = dl_manager.extract(
os.path.join(
self.config.data_dir,
"mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0.zip",
)
)
data_dir = os.path.join(
extract_dir,
"mednli-a-natural-language-inference-dataset-for-the-clinical-domain-1.0.0",
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "mli_train_v1.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "mli_test_v1.jsonl"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "mli_dev_v1.jsonl"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
with open(filepath, "r") as f:
if self.config.schema == "source":
for line in f:
json_line = json.loads(line)
yield json_line["pairID"], json_line
elif self.config.schema == "bigbio_te":
for line in f:
json_line = json.loads(line)
entailment_example = {
"id": json_line["pairID"],
"premise": json_line["sentence1"],
"hypothesis": json_line["sentence2"],
"label": json_line["gold_label"],
}
yield json_line["pairID"], entailment_example
|