Datasets:

Languages:
English
License:
File size: 22,315 Bytes
2e0672f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and
#
# * Ayush Singh (singhay)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A dataset loader for the n2c2 2010 relations dataset.

The dataset consists of three archive files,
β”œβ”€β”€ concept_assertion_relation_training_data.tar.gz
β”œβ”€β”€ reference_standard_for_test_data.tar.gz
└── test_data.tar.gz

The individual data files (inside the zip and tar archives) come in 4 types,

* docs (*.txt files): text of a patient record
* concepts (*.con files): entities along with offsets used as input to a named entity recognition model
* assertions (*.ast files): entities, offsets and their assertion used as input to a named entity recognition model
* relations (*.rel files): pairs of entities related by relation type used as input to a relation extraction model


The files comprising this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_dataset` via
the `data_dir` kwarg. This loader script will read the archive files
directly (i.e. the user should not uncompress, untar or unzip any of
the files).

Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
"""

import os
import re
import tarfile
from collections import defaultdict
from dataclasses import dataclass
from typing import List, Tuple

import datasets
from datasets import Version

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{DBLP:journals/jamia/UzunerSSD11,
  author    = {
                Ozlem Uzuner and
                Brett R. South and
                Shuying Shen and
                Scott L. DuVall
               },
  title     = {2010 i2b2/VA challenge on concepts, assertions, and relations in clinical
               text},
  journal   = {J. Am. Medical Informatics Assoc.},
  volume    = {18},
  number    = {5},
  pages     = {552--556},
  year      = {2011},
  url       = {https://doi.org/10.1136/amiajnl-2011-000203},
  doi       = {10.1136/amiajnl-2011-000203},
  timestamp = {Mon, 11 May 2020 23:00:20 +0200},
  biburl    = {https://dblp.org/rec/journals/jamia/UzunerSSD11.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""

_DATASETNAME = "n2c2_2010"
_DISPLAYNAME = "n2c2 2010 Concepts, Assertions, and Relations"

_DESCRIPTION = """\
The i2b2/VA corpus contained de-identified discharge summaries from Beth Israel
Deaconess Medical Center, Partners Healthcare, and University of Pittsburgh Medical
Center (UPMC). In addition, UPMC contributed de-identified progress notes to the
i2b2/VA corpus. This dataset contains the records from Beth Israel and Partners.

The 2010 i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records comprises three tasks:
1) a concept extraction task focused on the extraction of medical concepts from patient reports;
2) an assertion classification task focused on assigning assertion types for medical problem concepts;
3) a relation classification task focused on assigning relation types that hold between medical problems,
tests, and treatments.

i2b2 and the VA provided an annotated reference standard corpus for the three tasks.
Using this reference standard, 22 systems were developed for concept extraction,
21 for assertion classification, and 16 for relation classification.
"""

_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"

_LICENSE = 'Data User Agreement'

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


def _read_tar_gz(file_path: str, samples=None):
    if samples is None:
        samples = defaultdict(dict)
    with tarfile.open(file_path, "r:gz") as tf:

        for member in tf.getmembers():
            base, filename = os.path.split(member.name)
            _, ext = os.path.splitext(filename)
            ext = ext[1:]  # get rid of dot
            sample_id = filename.split(".")[0]

            if ext in ["txt", "ast", "con", "rel"]:
                samples[sample_id][f"{ext}_source"] = (
                    os.path.basename(file_path) + "|" + member.name
                )

                with tf.extractfile(member) as fp:
                    content_bytes = fp.read()

                content = content_bytes.decode("utf-8")
                samples[sample_id][ext] = content

    return samples


C_PATTERN = r"c=\"(.+?)\" (\d+):(\d+) (\d+):(\d+)"
T_PATTERN = r"t=\"(.+?)\""
A_PATTERN = r"a=\"(.+?)\""
R_PATTERN = r"r=\"(.+?)\""

# Constants
DELIMITER = "||"
SOURCE = "source"
BIGBIO_KB = "bigbio_kb"


def _parse_con_line(line: str) -> dict:
    """Parse one line from a *.con file.

    A typical line has the form,
      'c="angie cm johnson , m.d." 13:2 13:6||t="person"

    This represents one concept to be placed into a coreference group.
    It can be interpreted as follows,
      'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<concept type>"'

    """
    c_part, t_part = line.split(DELIMITER)
    c_match, t_match = re.match(C_PATTERN, c_part), re.match(T_PATTERN, t_part)
    return {
        "text": c_match.group(1),
        "start_line": int(c_match.group(2)),
        "start_token": int(c_match.group(3)),
        "end_line": int(c_match.group(4)),
        "end_token": int(c_match.group(5)),
        "concept": t_match.group(1),
    }


def _parse_rel_line(line: str) -> dict:
    """Parse one line from a *.rel file.

    A typical line has the form,
      'c="coronary artery bypass graft" 115:4 115:7||r="TrAP"||c="coronary artery disease" 115:0 115:2'

    This represents two concepts related to one another.
    It can be interpreted as follows,
      'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||r="<type>"||c="<string>"
      <start_line>:<start_token> <end_line>:<end_token>'

    """
    c1_part, r_part, c2_part = line.split(DELIMITER)
    c1_match, r_match, c2_match = (
        re.match(C_PATTERN, c1_part),
        re.match(R_PATTERN, r_part),
        re.match(C_PATTERN, c2_part),
    )
    return {
        "concept_1": {
            "text": c1_match.group(1),
            "start_line": int(c1_match.group(2)),
            "start_token": int(c1_match.group(3)),
            "end_line": int(c1_match.group(4)),
            "end_token": int(c1_match.group(5)),
        },
        "concept_2": {
            "text": c2_match.group(1),
            "start_line": int(c2_match.group(2)),
            "start_token": int(c2_match.group(3)),
            "end_line": int(c2_match.group(4)),
            "end_token": int(c2_match.group(5)),
        },
        "relation": r_match.group(1),
    }


def _parse_ast_line(line: str) -> dict:
    """Parse one line from a *.ast file.

    A typical line has the form,
      'c="mild inferior wall hypokinesis" 42:2 42:5||t="problem"||a="present"'

    This represents one concept along with it's assertion.
    It can be interpreted as follows,
      'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<concept type>"||a="<assertion type>"'

    """
    c_part, t_part, a_part = line.split(DELIMITER)
    c_match, t_match, a_match = (
        re.match(C_PATTERN, c_part),
        re.match(T_PATTERN, t_part),
        re.match(A_PATTERN, a_part),
    )
    return {
        "text": c_match.group(1),
        "start_line": int(c_match.group(2)),
        "start_token": int(c_match.group(3)),
        "end_line": int(c_match.group(4)),
        "end_token": int(c_match.group(5)),
        "concept": t_match.group(1),
        "assertion": a_match.group(1),
    }


def _tokoff_from_line(text: str) -> List[Tuple[int, int]]:
    """Produce character offsets for each token (whitespace split)

    For example,
      text = " one  two three ."
      tokoff = [(1,4), (6,9), (10,15), (16,17)]
    """
    tokoff = []
    start = None
    end = None
    for ii, char in enumerate(text):
        if char != " " and start is None:
            start = ii
        if char == " " and start is not None:
            end = ii
            tokoff.append((start, end))
            start = None
    if start is not None:
        end = ii + 1
        tokoff.append((start, end))
    return tokoff


def _form_entity_id(sample_id, split, start_line, start_token, end_line, end_token):
    return "{}-entity-{}-{}-{}-{}-{}".format(
        sample_id,
        split,
        start_line,
        start_token,
        end_line,
        end_token,
    )


def _get_relations_from_sample(sample_id, sample, split):
    rel_lines = sample["rel"].splitlines()

    relations = []
    for i, rel_line in enumerate(rel_lines):
        a = {}
        rel = _parse_rel_line(rel_line)
        a["arg1_id"] = _form_entity_id(
            sample_id,
            split,
            rel["concept_1"]["start_line"],
            rel["concept_1"]["start_token"],
            rel["concept_1"]["end_line"],
            rel["concept_1"]["end_token"],
        )
        a["arg2_id"] = _form_entity_id(
            sample_id,
            split,
            rel["concept_2"]["start_line"],
            rel["concept_2"]["start_token"],
            rel["concept_2"]["end_line"],
            rel["concept_2"]["end_token"],
        )
        a["id"] = (
            sample_id + "_" + a["arg1_id"] + "_" + rel["relation"] + "_" + a["arg2_id"]
        )
        a["normalized"] = []
        a["type"] = rel["relation"]
        relations.append(a)

    return relations


def _get_entities_from_sample(sample_id, sample, split):
    """Parse the lines of a *.con concept file into entity objects"""
    con_lines = sample["con"].splitlines()

    text = sample["txt"]
    text_lines = text.splitlines()
    text_line_lengths = [len(el) for el in text_lines]

    # parsed concepts (sort is just a convenience)
    con_parsed = sorted(
        [_parse_con_line(line) for line in con_lines],
        key=lambda x: (x["start_line"], x["start_token"]),
    )

    entities = []
    for ii_cp, cp in enumerate(con_parsed):

        # annotations can span multiple lines
        # we loop over all lines and build up the character offsets
        for ii_line in range(cp["start_line"], cp["end_line"] + 1):

            # character offset to the beginning of the line
            # line length of each line + 1 new line character for each line
            start_line_off = sum(text_line_lengths[: ii_line - 1]) + (ii_line - 1)

            # offsets for each token relative to the beginning of the line
            # "one two" -> [(0,3), (4,6)]
            tokoff = _tokoff_from_line(text_lines[ii_line - 1])

            # if this is a single line annotation
            if ii_line == cp["start_line"] == cp["end_line"]:
                start_off = start_line_off + tokoff[cp["start_token"]][0]
                end_off = start_line_off + tokoff[cp["end_token"]][1]

            # if multi-line and on first line
            # end_off gets a +1 for new line character
            elif (ii_line == cp["start_line"]) and (ii_line != cp["end_line"]):
                start_off = start_line_off + tokoff[cp["start_token"]][0]
                end_off = start_line_off + text_line_lengths[ii_line - 1] + 1

            # if multi-line and on last line
            elif (ii_line != cp["start_line"]) and (ii_line == cp["end_line"]):
                end_off = end_off + tokoff[cp["end_token"]][1]

            # if mult-line and not on first or last line
            # (this does not seem to occur in this corpus)
            else:
                end_off += text_line_lengths[ii_line - 1] + 1

        text_slice = text[start_off:end_off]
        text_slice_norm_1 = text_slice.replace("\n", "").lower()
        text_slice_norm_2 = text_slice.replace("\n", " ").lower()
        match = text_slice_norm_1 == cp["text"] or text_slice_norm_2 == cp["text"]
        if not match:
            continue

        entity_id = _form_entity_id(
            sample_id,
            split,
            cp["start_line"],
            cp["start_token"],
            cp["end_line"],
            cp["end_token"],
        )
        entity = {
            "id": entity_id,
            "offsets": [(start_off, end_off)],
            # this is the difference between taking text from the entity
            # or taking the text from the offsets. the differences are
            # almost all casing with some small number of new line characters
            # making up the rest
            # "text": [cp["text"]],
            "text": [text_slice],
            "type": cp["concept"],
            "normalized": [],
        }
        entities.append(entity)

    # IDs are constructed such that duplicate IDs indicate duplicate (i.e. redundant) entities
    # In practive this removes one duplicate sample from the test set
    # {
    #    'id': 'clinical-627-entity-test-122-9-122-9',
    #    'offsets': [(5600, 5603)],
    #    'text': ['her'],
    #    'type': 'person'
    # }
    dedupe_entities = []
    dedupe_entity_ids = set()
    for entity in entities:
        if entity["id"] in dedupe_entity_ids:
            continue
        else:
            dedupe_entity_ids.add(entity["id"])
            dedupe_entities.append(entity)

    return dedupe_entities


class N2C22010RelationsDataset(datasets.GeneratorBasedBuilder):
    """i2b2 2010 task comprising concept, assertion and relation extraction"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    # You will be able to load the "source" or "bigbio" configurations with
    # ds_source = datasets.load_dataset('my_dataset', name='source')
    # ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio')

    # For local datasets you can make use of the `data_dir` and `data_files` kwargs
    # https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
    # ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
    # ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")

    _SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE
    _BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_KB

    BUILDER_CONFIGS = [
        BigBioConfig(
            name=_SOURCE_CONFIG_NAME,
            version=SOURCE_VERSION,
            description=_DATASETNAME + " source schema",
            schema=SOURCE,
            subset_id=_DATASETNAME,
        ),
        BigBioConfig(
            name=_BIGBIO_CONFIG_NAME,
            version=BIGBIO_VERSION,
            description=_DATASETNAME + " BigBio schema",
            schema=BIGBIO_KB,
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = _SOURCE_CONFIG_NAME

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == SOURCE:
            features = datasets.Features(
                {
                    "doc_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "concepts": [
                        {
                            "start_line": datasets.Value("int64"),
                            "start_token": datasets.Value("int64"),
                            "end_line": datasets.Value("int64"),
                            "end_token": datasets.Value("int64"),
                            "text": datasets.Value("string"),
                            "concept": datasets.Value("string"),
                        }
                    ],
                    "assertions": [
                        {
                            "start_line": datasets.Value("int64"),
                            "start_token": datasets.Value("int64"),
                            "end_line": datasets.Value("int64"),
                            "end_token": datasets.Value("int64"),
                            "text": datasets.Value("string"),
                            "concept": datasets.Value("string"),
                            "assertion": datasets.Value("string"),
                        }
                    ],
                    "relations": [
                        {
                            "concept_1": {
                                "text": datasets.Value("string"),
                                "start_line": datasets.Value("int64"),
                                "start_token": datasets.Value("int64"),
                                "end_line": datasets.Value("int64"),
                                "end_token": datasets.Value("int64"),
                            },
                            "concept_2": {
                                "text": datasets.Value("string"),
                                "start_line": datasets.Value("int64"),
                                "start_token": datasets.Value("int64"),
                                "end_line": datasets.Value("int64"),
                                "end_token": datasets.Value("int64"),
                            },
                            "relation": datasets.Value("string"),
                        }
                    ],
                    "unannotated": [
                        {
                            "text": datasets.Value("string"),
                        }
                    ],
                    "metadata": {
                        "txt_source": datasets.Value("string"),
                        "con_source": datasets.Value("string"),
                        "ast_source": datasets.Value("string"),
                        "rel_source": datasets.Value("string"),
                        "unannotated_source": datasets.Value("string"),
                    },
                }
            )

        elif self.config.schema == BIGBIO_KB:
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:

        if self.config.data_dir is None or self.config.name is None:
            raise ValueError(
                "This is a local dataset. Please pass the data_dir and name kwarg to load_dataset."
            )
        else:
            data_dir = self.config.data_dir

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": str(datasets.Split.TRAIN),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": str(datasets.Split.TEST),
                },
            ),
        ]

    @staticmethod
    def _get_source_sample(sample_id, sample):
        return {
            "doc_id": sample_id,
            "text": sample.get("txt", ""),
            "concepts": list(map(_parse_con_line, sample.get("con", "").splitlines())),
            "assertions": list(
                map(_parse_ast_line, sample.get("ast", "").splitlines())
            ),
            "relations": list(map(_parse_rel_line, sample.get("rel", "").splitlines())),
            "unannotated": sample.get("unannotated", ""),
            "metadata": {
                "txt_source": sample.get("txt_source", ""),
                "con_source": sample.get("con_source", ""),
                "ast_source": sample.get("ast_source", ""),
                "rel_source": sample.get("rel_source", ""),
                "unannotated_source": sample.get("unannotated_source", ""),
            },
        }

    @staticmethod
    def _get_bigbio_sample(sample_id, sample, split) -> dict:

        passage_text = sample.get("txt", "")
        entities = _get_entities_from_sample(sample_id, sample, split)
        relations = _get_relations_from_sample(sample_id, sample, split)
        return {
            "id": sample_id,
            "document_id": sample_id,
            "passages": [
                {
                    "id": f"{sample_id}-passage-0",
                    "type": "discharge summary",
                    "text": [passage_text],
                    "offsets": [(0, len(passage_text))],
                }
            ],
            "entities": entities,
            "relations": relations,
            "events": [],
            "coreferences": [],
        }

    def _generate_examples(self, data_dir, split):
        if split == "train":
            samples = _read_tar_gz(
                os.path.join(
                    data_dir, "concept_assertion_relation_training_data.tar.gz"
                )
            )
        elif split == "test":
            # This file adds con, ast and rel
            samples = _read_tar_gz(
                os.path.join(data_dir, "reference_standard_for_test_data.tar.gz")
            )
            # This file adds txt to already existing samples
            samples = _read_tar_gz(os.path.join(data_dir, "test_data.tar.gz"), samples)

        _id = 0

        for sample_id, sample in samples.items():

            if self.config.name == N2C22010RelationsDataset._SOURCE_CONFIG_NAME:
                yield _id, self._get_source_sample(sample_id, sample)
            elif self.config.name == N2C22010RelationsDataset._BIGBIO_CONFIG_NAME:
                # This is to make sure unannotated data does not end up in big bio
                if "unannotated" not in sample["txt_source"]:
                    yield _id, self._get_bigbio_sample(sample_id, sample, split)

            _id += 1