|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loader for the n2c2 2010 relations dataset. |
|
|
|
The dataset consists of three archive files, |
|
βββ concept_assertion_relation_training_data.tar.gz |
|
βββ reference_standard_for_test_data.tar.gz |
|
βββ test_data.tar.gz |
|
|
|
The individual data files (inside the zip and tar archives) come in 4 types, |
|
|
|
* docs (*.txt files): text of a patient record |
|
* concepts (*.con files): entities along with offsets used as input to a named entity recognition model |
|
* assertions (*.ast files): entities, offsets and their assertion used as input to a named entity recognition model |
|
* relations (*.rel files): pairs of entities related by relation type used as input to a relation extraction model |
|
|
|
|
|
The files comprising this dataset must be on the users local machine |
|
in a single directory that is passed to `datasets.load_dataset` via |
|
the `data_dir` kwarg. This loader script will read the archive files |
|
directly (i.e. the user should not uncompress, untar or unzip any of |
|
the files). |
|
|
|
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/ |
|
""" |
|
|
|
import os |
|
import re |
|
import tarfile |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from typing import List, Tuple |
|
|
|
import datasets |
|
from datasets import Version |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = True |
|
_CITATION = """\ |
|
@article{DBLP:journals/jamia/UzunerSSD11, |
|
author = { |
|
Ozlem Uzuner and |
|
Brett R. South and |
|
Shuying Shen and |
|
Scott L. DuVall |
|
}, |
|
title = {2010 i2b2/VA challenge on concepts, assertions, and relations in clinical |
|
text}, |
|
journal = {J. Am. Medical Informatics Assoc.}, |
|
volume = {18}, |
|
number = {5}, |
|
pages = {552--556}, |
|
year = {2011}, |
|
url = {https://doi.org/10.1136/amiajnl-2011-000203}, |
|
doi = {10.1136/amiajnl-2011-000203}, |
|
timestamp = {Mon, 11 May 2020 23:00:20 +0200}, |
|
biburl = {https://dblp.org/rec/journals/jamia/UzunerSSD11.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "n2c2_2010" |
|
_DISPLAYNAME = "n2c2 2010 Concepts, Assertions, and Relations" |
|
|
|
_DESCRIPTION = """\ |
|
The i2b2/VA corpus contained de-identified discharge summaries from Beth Israel |
|
Deaconess Medical Center, Partners Healthcare, and University of Pittsburgh Medical |
|
Center (UPMC). In addition, UPMC contributed de-identified progress notes to the |
|
i2b2/VA corpus. This dataset contains the records from Beth Israel and Partners. |
|
|
|
The 2010 i2b2/VA Workshop on Natural Language Processing Challenges for Clinical Records comprises three tasks: |
|
1) a concept extraction task focused on the extraction of medical concepts from patient reports; |
|
2) an assertion classification task focused on assigning assertion types for medical problem concepts; |
|
3) a relation classification task focused on assigning relation types that hold between medical problems, |
|
tests, and treatments. |
|
|
|
i2b2 and the VA provided an annotated reference standard corpus for the three tasks. |
|
Using this reference standard, 22 systems were developed for concept extraction, |
|
21 for assertion classification, and 16 for relation classification. |
|
""" |
|
|
|
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/" |
|
|
|
_LICENSE = 'Data User Agreement' |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
def _read_tar_gz(file_path: str, samples=None): |
|
if samples is None: |
|
samples = defaultdict(dict) |
|
with tarfile.open(file_path, "r:gz") as tf: |
|
|
|
for member in tf.getmembers(): |
|
base, filename = os.path.split(member.name) |
|
_, ext = os.path.splitext(filename) |
|
ext = ext[1:] |
|
sample_id = filename.split(".")[0] |
|
|
|
if ext in ["txt", "ast", "con", "rel"]: |
|
samples[sample_id][f"{ext}_source"] = ( |
|
os.path.basename(file_path) + "|" + member.name |
|
) |
|
|
|
with tf.extractfile(member) as fp: |
|
content_bytes = fp.read() |
|
|
|
content = content_bytes.decode("utf-8") |
|
samples[sample_id][ext] = content |
|
|
|
return samples |
|
|
|
|
|
C_PATTERN = r"c=\"(.+?)\" (\d+):(\d+) (\d+):(\d+)" |
|
T_PATTERN = r"t=\"(.+?)\"" |
|
A_PATTERN = r"a=\"(.+?)\"" |
|
R_PATTERN = r"r=\"(.+?)\"" |
|
|
|
|
|
DELIMITER = "||" |
|
SOURCE = "source" |
|
BIGBIO_KB = "bigbio_kb" |
|
|
|
|
|
def _parse_con_line(line: str) -> dict: |
|
"""Parse one line from a *.con file. |
|
|
|
A typical line has the form, |
|
'c="angie cm johnson , m.d." 13:2 13:6||t="person" |
|
|
|
This represents one concept to be placed into a coreference group. |
|
It can be interpreted as follows, |
|
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<concept type>"' |
|
|
|
""" |
|
c_part, t_part = line.split(DELIMITER) |
|
c_match, t_match = re.match(C_PATTERN, c_part), re.match(T_PATTERN, t_part) |
|
return { |
|
"text": c_match.group(1), |
|
"start_line": int(c_match.group(2)), |
|
"start_token": int(c_match.group(3)), |
|
"end_line": int(c_match.group(4)), |
|
"end_token": int(c_match.group(5)), |
|
"concept": t_match.group(1), |
|
} |
|
|
|
|
|
def _parse_rel_line(line: str) -> dict: |
|
"""Parse one line from a *.rel file. |
|
|
|
A typical line has the form, |
|
'c="coronary artery bypass graft" 115:4 115:7||r="TrAP"||c="coronary artery disease" 115:0 115:2' |
|
|
|
This represents two concepts related to one another. |
|
It can be interpreted as follows, |
|
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||r="<type>"||c="<string>" |
|
<start_line>:<start_token> <end_line>:<end_token>' |
|
|
|
""" |
|
c1_part, r_part, c2_part = line.split(DELIMITER) |
|
c1_match, r_match, c2_match = ( |
|
re.match(C_PATTERN, c1_part), |
|
re.match(R_PATTERN, r_part), |
|
re.match(C_PATTERN, c2_part), |
|
) |
|
return { |
|
"concept_1": { |
|
"text": c1_match.group(1), |
|
"start_line": int(c1_match.group(2)), |
|
"start_token": int(c1_match.group(3)), |
|
"end_line": int(c1_match.group(4)), |
|
"end_token": int(c1_match.group(5)), |
|
}, |
|
"concept_2": { |
|
"text": c2_match.group(1), |
|
"start_line": int(c2_match.group(2)), |
|
"start_token": int(c2_match.group(3)), |
|
"end_line": int(c2_match.group(4)), |
|
"end_token": int(c2_match.group(5)), |
|
}, |
|
"relation": r_match.group(1), |
|
} |
|
|
|
|
|
def _parse_ast_line(line: str) -> dict: |
|
"""Parse one line from a *.ast file. |
|
|
|
A typical line has the form, |
|
'c="mild inferior wall hypokinesis" 42:2 42:5||t="problem"||a="present"' |
|
|
|
This represents one concept along with it's assertion. |
|
It can be interpreted as follows, |
|
'c="<string>" <start_line>:<start_token> <end_line>:<end_token>||t="<concept type>"||a="<assertion type>"' |
|
|
|
""" |
|
c_part, t_part, a_part = line.split(DELIMITER) |
|
c_match, t_match, a_match = ( |
|
re.match(C_PATTERN, c_part), |
|
re.match(T_PATTERN, t_part), |
|
re.match(A_PATTERN, a_part), |
|
) |
|
return { |
|
"text": c_match.group(1), |
|
"start_line": int(c_match.group(2)), |
|
"start_token": int(c_match.group(3)), |
|
"end_line": int(c_match.group(4)), |
|
"end_token": int(c_match.group(5)), |
|
"concept": t_match.group(1), |
|
"assertion": a_match.group(1), |
|
} |
|
|
|
|
|
def _tokoff_from_line(text: str) -> List[Tuple[int, int]]: |
|
"""Produce character offsets for each token (whitespace split) |
|
|
|
For example, |
|
text = " one two three ." |
|
tokoff = [(1,4), (6,9), (10,15), (16,17)] |
|
""" |
|
tokoff = [] |
|
start = None |
|
end = None |
|
for ii, char in enumerate(text): |
|
if char != " " and start is None: |
|
start = ii |
|
if char == " " and start is not None: |
|
end = ii |
|
tokoff.append((start, end)) |
|
start = None |
|
if start is not None: |
|
end = ii + 1 |
|
tokoff.append((start, end)) |
|
return tokoff |
|
|
|
|
|
def _form_entity_id(sample_id, split, start_line, start_token, end_line, end_token): |
|
return "{}-entity-{}-{}-{}-{}-{}".format( |
|
sample_id, |
|
split, |
|
start_line, |
|
start_token, |
|
end_line, |
|
end_token, |
|
) |
|
|
|
|
|
def _get_relations_from_sample(sample_id, sample, split): |
|
rel_lines = sample["rel"].splitlines() |
|
|
|
relations = [] |
|
for i, rel_line in enumerate(rel_lines): |
|
a = {} |
|
rel = _parse_rel_line(rel_line) |
|
a["arg1_id"] = _form_entity_id( |
|
sample_id, |
|
split, |
|
rel["concept_1"]["start_line"], |
|
rel["concept_1"]["start_token"], |
|
rel["concept_1"]["end_line"], |
|
rel["concept_1"]["end_token"], |
|
) |
|
a["arg2_id"] = _form_entity_id( |
|
sample_id, |
|
split, |
|
rel["concept_2"]["start_line"], |
|
rel["concept_2"]["start_token"], |
|
rel["concept_2"]["end_line"], |
|
rel["concept_2"]["end_token"], |
|
) |
|
a["id"] = ( |
|
sample_id + "_" + a["arg1_id"] + "_" + rel["relation"] + "_" + a["arg2_id"] |
|
) |
|
a["normalized"] = [] |
|
a["type"] = rel["relation"] |
|
relations.append(a) |
|
|
|
return relations |
|
|
|
|
|
def _get_entities_from_sample(sample_id, sample, split): |
|
"""Parse the lines of a *.con concept file into entity objects""" |
|
con_lines = sample["con"].splitlines() |
|
|
|
text = sample["txt"] |
|
text_lines = text.splitlines() |
|
text_line_lengths = [len(el) for el in text_lines] |
|
|
|
|
|
con_parsed = sorted( |
|
[_parse_con_line(line) for line in con_lines], |
|
key=lambda x: (x["start_line"], x["start_token"]), |
|
) |
|
|
|
entities = [] |
|
for ii_cp, cp in enumerate(con_parsed): |
|
|
|
|
|
|
|
for ii_line in range(cp["start_line"], cp["end_line"] + 1): |
|
|
|
|
|
|
|
start_line_off = sum(text_line_lengths[: ii_line - 1]) + (ii_line - 1) |
|
|
|
|
|
|
|
tokoff = _tokoff_from_line(text_lines[ii_line - 1]) |
|
|
|
|
|
if ii_line == cp["start_line"] == cp["end_line"]: |
|
start_off = start_line_off + tokoff[cp["start_token"]][0] |
|
end_off = start_line_off + tokoff[cp["end_token"]][1] |
|
|
|
|
|
|
|
elif (ii_line == cp["start_line"]) and (ii_line != cp["end_line"]): |
|
start_off = start_line_off + tokoff[cp["start_token"]][0] |
|
end_off = start_line_off + text_line_lengths[ii_line - 1] + 1 |
|
|
|
|
|
elif (ii_line != cp["start_line"]) and (ii_line == cp["end_line"]): |
|
end_off = end_off + tokoff[cp["end_token"]][1] |
|
|
|
|
|
|
|
else: |
|
end_off += text_line_lengths[ii_line - 1] + 1 |
|
|
|
text_slice = text[start_off:end_off] |
|
text_slice_norm_1 = text_slice.replace("\n", "").lower() |
|
text_slice_norm_2 = text_slice.replace("\n", " ").lower() |
|
match = text_slice_norm_1 == cp["text"] or text_slice_norm_2 == cp["text"] |
|
if not match: |
|
continue |
|
|
|
entity_id = _form_entity_id( |
|
sample_id, |
|
split, |
|
cp["start_line"], |
|
cp["start_token"], |
|
cp["end_line"], |
|
cp["end_token"], |
|
) |
|
entity = { |
|
"id": entity_id, |
|
"offsets": [(start_off, end_off)], |
|
|
|
|
|
|
|
|
|
|
|
"text": [text_slice], |
|
"type": cp["concept"], |
|
"normalized": [], |
|
} |
|
entities.append(entity) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dedupe_entities = [] |
|
dedupe_entity_ids = set() |
|
for entity in entities: |
|
if entity["id"] in dedupe_entity_ids: |
|
continue |
|
else: |
|
dedupe_entity_ids.add(entity["id"]) |
|
dedupe_entities.append(entity) |
|
|
|
return dedupe_entities |
|
|
|
|
|
class N2C22010RelationsDataset(datasets.GeneratorBasedBuilder): |
|
"""i2b2 2010 task comprising concept, assertion and relation extraction""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE |
|
_BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_KB |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name=_SOURCE_CONFIG_NAME, |
|
version=SOURCE_VERSION, |
|
description=_DATASETNAME + " source schema", |
|
schema=SOURCE, |
|
subset_id=_DATASETNAME, |
|
), |
|
BigBioConfig( |
|
name=_BIGBIO_CONFIG_NAME, |
|
version=BIGBIO_VERSION, |
|
description=_DATASETNAME + " BigBio schema", |
|
schema=BIGBIO_KB, |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = _SOURCE_CONFIG_NAME |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == SOURCE: |
|
features = datasets.Features( |
|
{ |
|
"doc_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"concepts": [ |
|
{ |
|
"start_line": datasets.Value("int64"), |
|
"start_token": datasets.Value("int64"), |
|
"end_line": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
"concept": datasets.Value("string"), |
|
} |
|
], |
|
"assertions": [ |
|
{ |
|
"start_line": datasets.Value("int64"), |
|
"start_token": datasets.Value("int64"), |
|
"end_line": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
"concept": datasets.Value("string"), |
|
"assertion": datasets.Value("string"), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"concept_1": { |
|
"text": datasets.Value("string"), |
|
"start_line": datasets.Value("int64"), |
|
"start_token": datasets.Value("int64"), |
|
"end_line": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
}, |
|
"concept_2": { |
|
"text": datasets.Value("string"), |
|
"start_line": datasets.Value("int64"), |
|
"start_token": datasets.Value("int64"), |
|
"end_line": datasets.Value("int64"), |
|
"end_token": datasets.Value("int64"), |
|
}, |
|
"relation": datasets.Value("string"), |
|
} |
|
], |
|
"unannotated": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
"metadata": { |
|
"txt_source": datasets.Value("string"), |
|
"con_source": datasets.Value("string"), |
|
"ast_source": datasets.Value("string"), |
|
"rel_source": datasets.Value("string"), |
|
"unannotated_source": datasets.Value("string"), |
|
}, |
|
} |
|
) |
|
|
|
elif self.config.schema == BIGBIO_KB: |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
|
if self.config.data_dir is None or self.config.name is None: |
|
raise ValueError( |
|
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset." |
|
) |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": str(datasets.Split.TRAIN), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_dir": data_dir, |
|
"split": str(datasets.Split.TEST), |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _get_source_sample(sample_id, sample): |
|
return { |
|
"doc_id": sample_id, |
|
"text": sample.get("txt", ""), |
|
"concepts": list(map(_parse_con_line, sample.get("con", "").splitlines())), |
|
"assertions": list( |
|
map(_parse_ast_line, sample.get("ast", "").splitlines()) |
|
), |
|
"relations": list(map(_parse_rel_line, sample.get("rel", "").splitlines())), |
|
"unannotated": sample.get("unannotated", ""), |
|
"metadata": { |
|
"txt_source": sample.get("txt_source", ""), |
|
"con_source": sample.get("con_source", ""), |
|
"ast_source": sample.get("ast_source", ""), |
|
"rel_source": sample.get("rel_source", ""), |
|
"unannotated_source": sample.get("unannotated_source", ""), |
|
}, |
|
} |
|
|
|
@staticmethod |
|
def _get_bigbio_sample(sample_id, sample, split) -> dict: |
|
|
|
passage_text = sample.get("txt", "") |
|
entities = _get_entities_from_sample(sample_id, sample, split) |
|
relations = _get_relations_from_sample(sample_id, sample, split) |
|
return { |
|
"id": sample_id, |
|
"document_id": sample_id, |
|
"passages": [ |
|
{ |
|
"id": f"{sample_id}-passage-0", |
|
"type": "discharge summary", |
|
"text": [passage_text], |
|
"offsets": [(0, len(passage_text))], |
|
} |
|
], |
|
"entities": entities, |
|
"relations": relations, |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|
|
def _generate_examples(self, data_dir, split): |
|
if split == "train": |
|
samples = _read_tar_gz( |
|
os.path.join( |
|
data_dir, "concept_assertion_relation_training_data.tar.gz" |
|
) |
|
) |
|
elif split == "test": |
|
|
|
samples = _read_tar_gz( |
|
os.path.join(data_dir, "reference_standard_for_test_data.tar.gz") |
|
) |
|
|
|
samples = _read_tar_gz(os.path.join(data_dir, "test_data.tar.gz"), samples) |
|
|
|
_id = 0 |
|
|
|
for sample_id, sample in samples.items(): |
|
|
|
if self.config.name == N2C22010RelationsDataset._SOURCE_CONFIG_NAME: |
|
yield _id, self._get_source_sample(sample_id, sample) |
|
elif self.config.name == N2C22010RelationsDataset._BIGBIO_CONFIG_NAME: |
|
|
|
if "unannotated" not in sample["txt_source"]: |
|
yield _id, self._get_bigbio_sample(sample_id, sample, split) |
|
|
|
_id += 1 |
|
|