Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 17,719 Bytes
ca22192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbe39b
ca22192
 
c0e0bc6
 
ca22192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e0bc6
 
ca22192
 
 
c0e0bc6
 
ca22192
 
 
c0e0bc6
 
ca22192
c0e0bc6
 
ca22192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e0bc6
 
ca22192
c0e0bc6
 
ca22192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The corpus of plant-disease relation consists of plants and diseases and their relation to PubMed abstract.
The corpus consists of about 2400 plant and disease entities and 300 annotated relations from 179 abstracts.

The big-bio and source version of this script are made by merging the 2 provided annotations on locations they intersected.
Both annotations (1, 2) are provided as separate source schemas.
"""
from collections import defaultdict
from pathlib import Path
from typing import Dict, Iterator, Optional, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{kim2019corpus,
  title={A corpus of plant--disease relations in the biomedical domain},
  author={Kim, Baeksoo and Choi, Wonjun and Lee, Hyunju},
  journal={PLoS One},
  volume={14},
  number={8},
  pages={e0221582},
  year={2019},
  publisher={Public Library of Science San Francisco, CA USA}
}
"""

_DATASETNAME = "pdr"
_DISPLAYNAME = "PDR"

_DESCRIPTION = """
The corpus of plant-disease relation consists of plants and diseases and their relation to PubMed abstract.
The corpus consists of about 2400 plant and disease entities and 300 annotated relations from 179 abstracts.
"""

_HOMEPAGE = "http://gcancer.org/pdr/"
_LICENSE = 'License information unavailable'
_URLS = {_DATASETNAME: "http://gcancer.org/pdr/Plant-Disease_Corpus.tar.gz"}

_SUPPORTED_TASKS = [
    Tasks.NAMED_ENTITY_RECOGNITION,
    # Tasks.RELATION_EXTRACTION,
    Tasks.EVENT_EXTRACTION,
    Tasks.COREFERENCE_RESOLUTION,
]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class PDRDataset(datasets.GeneratorBasedBuilder):
    """The corpus of plant-disease relation consists of plants and diseases and their relation to PubMed abstract"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="pdr_annotator1_source",
            version=SOURCE_VERSION,
            description="PDR annotator 1 source schema",
            schema="source",
            subset_id="pdr_annotator1",
        ),
        BigBioConfig(
            name="pdr_annotator2_source",
            version=SOURCE_VERSION,
            description="PDR annotator 2 source schema",
            schema="source",
            subset_id="pdr_annotator2",
        ),
        BigBioConfig(
            name="pdr_source",
            version=SOURCE_VERSION,
            description="PDR source schema",
            schema="source",
            subset_id="pdr",
        ),
        BigBioConfig(
            name="pdr_bigbio_kb",
            version=BIGBIO_VERSION,
            description="PDR BigBio schema",
            schema="bigbio_kb",
            subset_id="pdr",
        ),
    ]

    DEFAULT_CONFIG_NAME = "pdr_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "entities": [
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "normalized": [
                                {
                                    "db_name": datasets.Value("string"),
                                    "db_id": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                    "relations": [
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "arg1_id": datasets.Value("string"),
                            "arg2_id": datasets.Value("string"),
                            "normalized": [
                                {
                                    "db_name": datasets.Value("string"),
                                    "db_id": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                    "events": [
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            # refers to the text_bound_annotation of the trigger
                            "trigger": {
                                "text": datasets.Sequence(datasets.Value("string")),
                                "offsets": datasets.Sequence([datasets.Value("int32")]),
                            },
                            "arguments": [
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                    "coreferences": [
                        {
                            "id": datasets.Value("string"),
                            "entity_ids": datasets.Sequence(datasets.Value("string")),
                        }
                    ],
                },
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[_DATASETNAME]
        data_dir = Path(dl_manager.download_and_extract(urls))
        data_dir = data_dir / "Plant-Disease_Corpus"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": data_dir},
            )
        ]

    def _generate_examples(self, data_dir: Path) -> Iterator[Tuple[str, Dict]]:
        if self.config.schema == "source":
            for file in data_dir.iterdir():
                if not str(file).endswith(".txt"):
                    continue

                if self.config.subset_id == "pdr_annotator1":
                    # Provide annotations of annotator 1
                    example = parse_brat_file(file, [".ann"])
                    example = brat_parse_to_bigbio_kb(example)

                elif self.config.subset_id == "pdr_annotator2":
                    # Provide annotations of annotator 2
                    example = parse_brat_file(file, [".ann2"])
                    example = brat_parse_to_bigbio_kb(example)

                elif self.config.subset_id == "pdr":
                    # Provide merged version of annotator 1 and 2
                    annotator1 = parse_brat_file(file, [".ann"])
                    annotator1 = brat_parse_to_bigbio_kb(annotator1)

                    annotator2 = parse_brat_file(file, [".ann2"])
                    annotator2 = brat_parse_to_bigbio_kb(annotator2)

                    example = self._merge_annotations_by_intersection(
                        file, annotator1, annotator2
                    )

                example["text"] = example["passages"][0]["text"][0]
                example.pop("id", None)
                example.pop("passages", None)

                yield example["document_id"], example

        elif self.config.schema == "bigbio_kb":
            for file in data_dir.iterdir():
                if not str(file).endswith(".txt"):
                    continue

                annotator1 = parse_brat_file(file, [".ann"])
                annotator1 = brat_parse_to_bigbio_kb(annotator1)

                annotator2 = parse_brat_file(file, [".ann2"])
                annotator2 = brat_parse_to_bigbio_kb(annotator2)

                merged_annotation = self._merge_annotations_by_intersection(
                    file, annotator1, annotator2
                )
                merged_annotation["id"] = merged_annotation["document_id"]

                yield merged_annotation["id"], merged_annotation

    def _merge_annotations_by_intersection(
        self, file: Path, example_ann1: Dict, example_ann2: Dict
    ) -> Dict:
        """
        Merges the two given examples by only keeping annotations on which both annotators agree.
        """
        id_prefix = str(file.stem) + "_"

        # Mapping entity identifiers from annotator 1 / 2 to merged entity ids
        a1_entity_to_merged_entity = {}
        a2_entity_to_merged_entity = {}
        merged_entities = []

        # 1. Find all common entities, i.e. both annotators agree on same type and their offsets overlap
        entity_id = 1
        for entity1 in example_ann1["entities"]:
            for entity2 in example_ann2["entities"]:
                if (
                    self._overlaps(entity1, entity2)
                    and entity1["type"] == entity2["type"]
                ):
                    text_entity1 = "".join(entity1["text"])
                    text_entity2 = "".join(entity2["text"])

                    longer_entity = (
                        entity1 if len(text_entity1) > len(text_entity2) else entity2
                    )
                    merged_entity_id = id_prefix + f"E{entity_id}"
                    entity_id += 1

                    merged_entity = longer_entity.copy()
                    merged_entity["id"] = merged_entity_id
                    merged_entity["normalized"] = []
                    merged_entities.append(merged_entity)

                    a1_entity_to_merged_entity[entity1["id"]] = merged_entity_id
                    a2_entity_to_merged_entity[entity2["id"]] = merged_entity_id
                    break

        # Find all relations the two annotators agree on
        relations_ann1 = self._map_relations(example_ann1, a1_entity_to_merged_entity)
        relations_ann2 = self._map_relations(example_ann2, a2_entity_to_merged_entity)
        relations = []
        relation_id = 1

        for rel_type, relations_1 in relations_ann1.items():
            relations_2 = relations_ann2[rel_type]

            for relation_pair_1 in relations_1:
                for relation_pair_2 in relations_2:
                    if relation_pair_1 == relation_pair_2:
                        relations.append(
                            {
                                "id": id_prefix + f"R{relation_id}",
                                "type": rel_type,
                                "arg1_id": relation_pair_1[0],
                                "arg2_id": relation_pair_1[1],
                                "normalized": [],
                            }
                        )
                        relation_id += 1
                        break

        # Find all events the two annotators agree on
        events_ann1 = self._map_events(example_ann1, a1_entity_to_merged_entity)
        events_ann2 = self._map_events(example_ann2, a2_entity_to_merged_entity)
        events = []
        event_id = 1

        for event_type, events_1 in events_ann1.items():
            events_2 = events_ann2[event_type]

            for (trigger1, theme1, cause1) in events_1:
                for (trigger2, theme2, cause2) in events_2:
                    if (
                        theme1 == theme2
                        and cause1 == cause2
                        and self._overlaps(trigger1, trigger2)
                    ):
                        trigger1_text = "".join(trigger1["text"])
                        trigger2_text = "".join(trigger2["text"])

                        longer_trigger = (
                            trigger1
                            if len(trigger1_text) >= len(trigger2_text)
                            else trigger2
                        )
                        events.append(
                            {
                                "id": id_prefix + f"T{event_id}",
                                "type": event_type,
                                "trigger": longer_trigger,
                                "arguments": [
                                    {"role": "Theme", "ref_id": theme1},
                                    {"role": "Cause", "ref_id": cause1},
                                ],
                            }
                        )
                        event_id += 1
                        break

        # Find all coreferences the annotators agree on
        coferences_ann1 = self._map_coreferences(
            example_ann1, a1_entity_to_merged_entity
        )
        coferences_ann2 = self._map_coreferences(
            example_ann2, a2_entity_to_merged_entity
        )
        coreferences = []
        coreference_id = 1

        for _, entity_ids1 in coferences_ann1.items():
            for _, entity_ids2 in coferences_ann2.items():
                if entity_ids1.intersection(entity_ids2) == entity_ids1.union(
                    entity_ids2
                ):
                    coreferences.append(
                        {
                            "id": id_prefix + f"CO{coreference_id}",
                            "entity_ids": list(entity_ids1),
                        }
                    )
                    coreference_id += 1

        merged_example = example_ann1.copy()
        merged_example["entities"] = merged_entities
        merged_example["relations"] = relations
        merged_example["events"] = events
        merged_example["coreferences"] = coreferences

        return merged_example

    def _map_relations(self, example: Dict, entity_id_mapping: Dict) -> Dict:
        """
        Maps the all relations of the given example to their merged entity identifiers
        (if existent)
        """
        relation_map = defaultdict(list)

        for relation in example["relations"]:
            arg1_id = relation["arg1_id"]
            arg2_id = relation["arg2_id"]

            # Are both entities also in the merged version?
            if arg1_id not in entity_id_mapping or arg2_id not in entity_id_mapping:
                continue

            com_arg1_id = entity_id_mapping[arg1_id]
            com_arg2_id = entity_id_mapping[arg2_id]

            relation_map[relation["type"]].append((com_arg1_id, com_arg2_id))

        return relation_map

    def _map_events(self, example: Dict, entity_id_mapping: Dict) -> Dict:
        """
        Maps the all events of the given example to their merged entity identifiers
        (if existent)
        """
        event_map = defaultdict(list)

        for event in example["events"]:
            theme_id = self._get_event_argument(event, "Theme")
            cause_id = self._get_event_argument(event, "Cause")

            if theme_id not in entity_id_mapping or cause_id not in entity_id_mapping:
                continue

            common_theme_id = entity_id_mapping[theme_id]
            common_cause_id = entity_id_mapping[cause_id]

            event_map[event["type"]].append(
                (event["trigger"], common_theme_id, common_cause_id)
            )

        return event_map

    def _map_coreferences(self, annotation: Dict, entity_mapping: Dict) -> Dict:
        """
        Maps the all coreferences of the given example to their merged entity identifiers
        (if existent)
        """
        id_to_corefs = defaultdict(set)
        for coreference in annotation["coreferences"]:
            entity_ids = set(
                [
                    entity_mapping[id]
                    for id in coreference["entity_ids"]
                    if id in entity_mapping
                ]
            )

            # Are both id's also in the merged version?
            if len(entity_ids) > 1:
                id_to_corefs[coreference["id"]] = entity_ids

        return id_to_corefs

    def _overlaps(self, annotation1: Dict, annotation2: Dict) -> bool:
        """
        Checks whether the offsets of the two given annotations overlap.
        """
        for (start1, end1) in annotation1["offsets"]:
            for (start2, end2) in annotation2["offsets"]:
                if (start2 <= start1 <= end2) or (start2 <= end1 <= end2):
                    return True

        return False

    def _get_event_argument(self, event: Dict, role: str) -> Optional[str]:
        """
        Returns the argument with the given role from the given event annotation.
        """
        for argument in event["arguments"]:
            if argument["role"] == role:
                return argument["ref_id"]

        return None