gabrielaltay
commited on
Commit
·
8e78222
1
Parent(s):
a8c1391
upload hubscripts/pico_extraction_hub.py to hub from bigbio repo
Browse files- pico_extraction.py +291 -0
pico_extraction.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
|
18 |
+
For 423 sentences, annotations collected by 3 medical experts are available.
|
19 |
+
To get the final annotations, we perform the majority voting.
|
20 |
+
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema
|
21 |
+
"""
|
22 |
+
import json
|
23 |
+
from typing import Dict, List, Tuple, Union
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
import numpy as np
|
27 |
+
|
28 |
+
from .bigbiohub import kb_features
|
29 |
+
from .bigbiohub import BigBioConfig
|
30 |
+
from .bigbiohub import Tasks
|
31 |
+
|
32 |
+
_LANGUAGES = ['English']
|
33 |
+
_PUBMED = True
|
34 |
+
_LOCAL = False
|
35 |
+
_CITATION = """\
|
36 |
+
@inproceedings{zlabinger-etal-2020-effective,
|
37 |
+
title = "Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports",
|
38 |
+
author = {Zlabinger, Markus and
|
39 |
+
Sabou, Marta and
|
40 |
+
Hofst{\"a}tter, Sebastian and
|
41 |
+
Hanbury, Allan},
|
42 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
|
43 |
+
month = nov,
|
44 |
+
year = "2020",
|
45 |
+
address = "Online",
|
46 |
+
publisher = "Association for Computational Linguistics",
|
47 |
+
url = "https://aclanthology.org/2020.findings-emnlp.274",
|
48 |
+
doi = "10.18653/v1/2020.findings-emnlp.274",
|
49 |
+
pages = "3064--3074",
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_DATASETNAME = "pico_extraction"
|
54 |
+
_DISPLAYNAME = "PICO Annotation"
|
55 |
+
|
56 |
+
|
57 |
+
_DESCRIPTION = """\
|
58 |
+
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
|
59 |
+
For 423 sentences, annotations collected by 3 medical experts are available.
|
60 |
+
To get the final annotations, we perform the majority voting.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_HOMEPAGE = "https://github.com/Markus-Zlabinger/pico-annotation"
|
64 |
+
|
65 |
+
_LICENSE = 'License information unavailable'
|
66 |
+
|
67 |
+
_DATA_PATH = (
|
68 |
+
"https://raw.githubusercontent.com/Markus-Zlabinger/pico-annotation/master/data"
|
69 |
+
)
|
70 |
+
_URLS = {
|
71 |
+
_DATASETNAME: {
|
72 |
+
"sentence_file": f"{_DATA_PATH}/sentences.json",
|
73 |
+
"annotation_files": {
|
74 |
+
"intervention": f"{_DATA_PATH}/annotations/interventions_expert.json",
|
75 |
+
"outcome": f"{_DATA_PATH}/annotations/outcomes_expert.json",
|
76 |
+
"participant": f"{_DATA_PATH}/annotations/participants_expert.json",
|
77 |
+
},
|
78 |
+
}
|
79 |
+
}
|
80 |
+
|
81 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
82 |
+
_SOURCE_VERSION = "1.0.0"
|
83 |
+
_BIGBIO_VERSION = "1.0.0"
|
84 |
+
|
85 |
+
|
86 |
+
def _pico_extraction_data_loader(
|
87 |
+
sentence_file: str, annotation_files: Dict[str, str]
|
88 |
+
) -> Tuple[Dict[str, str], Dict[str, Dict[str, Dict[str, List[int]]]]]:
|
89 |
+
"""Loads four files with PICO extraction dataset:
|
90 |
+
- one json file with sentences
|
91 |
+
- three json files with annotations for PIO
|
92 |
+
"""
|
93 |
+
# load sentences
|
94 |
+
with open(sentence_file) as fp:
|
95 |
+
sentences = json.load(fp)
|
96 |
+
|
97 |
+
# load annotations
|
98 |
+
annotation_dict = {}
|
99 |
+
for annotation_type, _file in annotation_files.items():
|
100 |
+
with open(_file) as fp:
|
101 |
+
annotations = json.load(fp)
|
102 |
+
annotation_dict[annotation_type] = annotations
|
103 |
+
|
104 |
+
return sentences, annotation_dict
|
105 |
+
|
106 |
+
|
107 |
+
def _get_entities_pico(
|
108 |
+
annotation_dict: Dict[str, Dict[str, Dict[str, List[int]]]],
|
109 |
+
sentence: str,
|
110 |
+
sentence_id: str,
|
111 |
+
) -> List[Dict[str, Union[int, str]]]:
|
112 |
+
"""extract entities from sentences using annotation_dict"""
|
113 |
+
|
114 |
+
def _partition(alist, indices):
|
115 |
+
return [alist[i:j] for i, j in zip([0] + indices, indices + [None])]
|
116 |
+
|
117 |
+
ents = []
|
118 |
+
for annotation_type, annotations in annotation_dict.items():
|
119 |
+
# get indices from three annotators by majority voting
|
120 |
+
indices = np.where(
|
121 |
+
np.round(np.mean(annotations[sentence_id]["annotations"], axis=0)) == 1
|
122 |
+
)[0]
|
123 |
+
|
124 |
+
if len(indices) > 0: # if annotations exist for this sentence
|
125 |
+
split_indices = []
|
126 |
+
# if there are two annotations of one type in one sentence
|
127 |
+
for item_index, item in enumerate(indices):
|
128 |
+
if item_index + 1 == len(indices):
|
129 |
+
break
|
130 |
+
if indices[item_index] + 1 != indices[item_index + 1]:
|
131 |
+
split_indices.append(item_index + 1)
|
132 |
+
multiple_indices = _partition(indices, split_indices)
|
133 |
+
|
134 |
+
for _indices in multiple_indices:
|
135 |
+
|
136 |
+
annotation_text = " ".join([sentence.split()[ind] for ind in _indices])
|
137 |
+
|
138 |
+
char_start = sentence.find(annotation_text)
|
139 |
+
char_end = char_start + len(annotation_text)
|
140 |
+
|
141 |
+
ent = {
|
142 |
+
"annotation_text": annotation_text,
|
143 |
+
"annotation_type": annotation_type,
|
144 |
+
"char_start": char_start,
|
145 |
+
"char_end": char_end,
|
146 |
+
}
|
147 |
+
|
148 |
+
ents.append(ent)
|
149 |
+
return ents
|
150 |
+
|
151 |
+
|
152 |
+
class PicoExtractionDataset(datasets.GeneratorBasedBuilder):
|
153 |
+
"""PICO Extraction dataset with annotations for
|
154 |
+
Participants, Interventions, and Outcomes."""
|
155 |
+
|
156 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
157 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
158 |
+
|
159 |
+
BUILDER_CONFIGS = [
|
160 |
+
BigBioConfig(
|
161 |
+
name="pico_extraction_source",
|
162 |
+
version=SOURCE_VERSION,
|
163 |
+
description="pico_extraction source schema",
|
164 |
+
schema="source",
|
165 |
+
subset_id="pico_extraction",
|
166 |
+
),
|
167 |
+
BigBioConfig(
|
168 |
+
name="pico_extraction_bigbio_kb",
|
169 |
+
version=BIGBIO_VERSION,
|
170 |
+
description="pico_extraction BigBio schema",
|
171 |
+
schema="bigbio_kb",
|
172 |
+
subset_id="pico_extraction",
|
173 |
+
),
|
174 |
+
]
|
175 |
+
|
176 |
+
DEFAULT_CONFIG_NAME = "pico_extraction_source"
|
177 |
+
|
178 |
+
def _info(self) -> datasets.DatasetInfo:
|
179 |
+
|
180 |
+
if self.config.schema == "source":
|
181 |
+
features = datasets.Features(
|
182 |
+
{
|
183 |
+
"doc_id": datasets.Value("string"),
|
184 |
+
"text": datasets.Value("string"),
|
185 |
+
"entities": [
|
186 |
+
{
|
187 |
+
"text": datasets.Value("string"),
|
188 |
+
"type": datasets.Value("string"),
|
189 |
+
"start": datasets.Value("int64"),
|
190 |
+
"end": datasets.Value("int64"),
|
191 |
+
}
|
192 |
+
],
|
193 |
+
}
|
194 |
+
)
|
195 |
+
|
196 |
+
elif self.config.schema == "bigbio_kb":
|
197 |
+
features = kb_features
|
198 |
+
|
199 |
+
return datasets.DatasetInfo(
|
200 |
+
description=_DESCRIPTION,
|
201 |
+
features=features,
|
202 |
+
homepage=_HOMEPAGE,
|
203 |
+
license=str(_LICENSE),
|
204 |
+
citation=_CITATION,
|
205 |
+
)
|
206 |
+
|
207 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
208 |
+
"""Returns SplitGenerators."""
|
209 |
+
|
210 |
+
urls = _URLS[_DATASETNAME]
|
211 |
+
data_dir = dl_manager.download_and_extract(urls)
|
212 |
+
|
213 |
+
return [
|
214 |
+
datasets.SplitGenerator(
|
215 |
+
name=datasets.Split.TRAIN,
|
216 |
+
gen_kwargs={
|
217 |
+
"split": "train",
|
218 |
+
"sentence_file": data_dir["sentence_file"],
|
219 |
+
"annotation_files": data_dir["annotation_files"],
|
220 |
+
},
|
221 |
+
),
|
222 |
+
]
|
223 |
+
|
224 |
+
def _generate_examples(self, split, sentence_file, annotation_files):
|
225 |
+
"""Yields examples as (key, example) tuples."""
|
226 |
+
|
227 |
+
sentences, annotation_dict = _pico_extraction_data_loader(
|
228 |
+
sentence_file=sentence_file, annotation_files=annotation_files
|
229 |
+
)
|
230 |
+
|
231 |
+
if self.config.schema == "source":
|
232 |
+
for uid, sentence_tuple in enumerate(sentences.items()):
|
233 |
+
sentence_id, sentence = sentence_tuple
|
234 |
+
ents = _get_entities_pico(annotation_dict, sentence, sentence_id)
|
235 |
+
|
236 |
+
data = {
|
237 |
+
"doc_id": sentence_id,
|
238 |
+
"text": sentence,
|
239 |
+
"entities": [
|
240 |
+
{
|
241 |
+
"text": ent["annotation_text"],
|
242 |
+
"type": ent["annotation_type"],
|
243 |
+
"start": ent["char_start"],
|
244 |
+
"end": ent["char_end"],
|
245 |
+
}
|
246 |
+
for ent in ents
|
247 |
+
],
|
248 |
+
}
|
249 |
+
yield uid, data
|
250 |
+
|
251 |
+
elif self.config.schema == "bigbio_kb":
|
252 |
+
uid = 0
|
253 |
+
for id_, sentence_tuple in enumerate(sentences.items()):
|
254 |
+
if id_ < 2:
|
255 |
+
continue
|
256 |
+
sentence_id, sentence = sentence_tuple
|
257 |
+
ents = _get_entities_pico(annotation_dict, sentence, sentence_id)
|
258 |
+
|
259 |
+
data = {
|
260 |
+
"id": str(uid),
|
261 |
+
"document_id": sentence_id,
|
262 |
+
"passages": [],
|
263 |
+
"entities": [],
|
264 |
+
"relations": [],
|
265 |
+
"events": [],
|
266 |
+
"coreferences": [],
|
267 |
+
}
|
268 |
+
uid += 1
|
269 |
+
|
270 |
+
data["passages"] = [
|
271 |
+
{
|
272 |
+
"id": str(uid),
|
273 |
+
"type": "sentence",
|
274 |
+
"text": [sentence],
|
275 |
+
"offsets": [[0, len(sentence)]],
|
276 |
+
}
|
277 |
+
]
|
278 |
+
uid += 1
|
279 |
+
|
280 |
+
for ent in ents:
|
281 |
+
entity = {
|
282 |
+
"id": uid,
|
283 |
+
"type": ent["annotation_type"],
|
284 |
+
"text": [ent["annotation_text"]],
|
285 |
+
"offsets": [[ent["char_start"], ent["char_end"]]],
|
286 |
+
"normalized": [],
|
287 |
+
}
|
288 |
+
data["entities"].append(entity)
|
289 |
+
uid += 1
|
290 |
+
|
291 |
+
yield uid, data
|