Search is not available for this dataset
text
stringlengths
1.74k
77.8M
id
stringlengths
22
24
file_path
stringclasses
51 values
{"cells":[{"metadata":{"_uuid":"8f2839f25d086af736a60e9eeb907d3b93b6e0e5","_cell_guid":"b1076dfc-b9ad-4769-8c92-a6c4dae69d19","trusted":true},"cell_type":"code","source":"import torch\nimport numpy as np\nimport matplotlib.pyplot as plt","execution_count":2,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"def initialize_parameters():\n Wa = torch.rand(1, 2).requires_grad_(True)\n ba = torch.zeros(1, 1).requires_grad_(True)\n Wy = torch.rand(1).requires_grad_(True)\n by = torch.zeros(1,1).requires_grad_(True)\n a = torch.zeros(1, 1).float()\n return Wa, ba, Wy, by, a","execution_count":175,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"def forward(x, a, Wa, ba, Wy, by):\n xa = torch.cat([x, a], dim = 0)\n a = (torch.matmul(Wa, xa) + ba)\n yhat = torch.matmul(Wy, a) + by\n yhat = yhat\n return yhat, a","execution_count":176,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"def onestep(x, y, a, Wa, ba, Wy, by, costfn, alpha):\n Wa = Wa.clone().detach().requires_grad_(True)\n Wy = Wy.clone().detach().requires_grad_(True)\n ba = ba.clone().detach().requires_grad_(True)\n by = by.clone().detach().requires_grad_(True)\n yhat, a = forward(x, a, Wa, ba, Wy, by)\n cost = costfn(yhat, y)\n cost.backward()\n Wa.detach_()\n ba.detach_()\n Wy.detach_()\n by.detach_()\n yhat.detach_()\n a.detach_()\n Wa -= alpha*Wa.grad\n ba -= alpha*ba.grad\n Wy -= alpha*Wy.grad\n by -= alpha*by.grad\n\n return cost, yhat, a, Wa, ba, Wy, by\n ","execution_count":177,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"Wa, ba, Wy, by, a = initialize_parameters()\ncostfn = torch.nn.MSELoss()\ncosts = []\ny = torch.zeros(1, 1)\nalpha = 0.1\nnum_iters = 10000000","execution_count":178,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"for i in range(num_iters):\n x = torch.from_numpy((np.random.rand(1, 1) > 0.5).astype(int)).float().view(1, 1)\n y += x\n cost, yhat, a, Wa, ba, Wy, by = onestep(x, y, a, Wa, ba, Wy, by, costfn, alpha)\n costs.append(cost.item())\n if(i % 1000 == 0):\n print(i, x, y, yhat, cost)","execution_count":180,"outputs":[{"output_type":"stream","text":"0 tensor([[1.]]) tensor([[4843.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n1000 tensor([[1.]]) tensor([[5320.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n2000 tensor([[0.]]) tensor([[5821.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n3000 tensor([[0.]]) tensor([[6304.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n4000 tensor([[1.]]) tensor([[6802.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n5000 tensor([[1.]]) tensor([[7293.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n6000 tensor([[1.]]) tensor([[7806.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n7000 tensor([[0.]]) tensor([[8280.]]) tensor([[nan]]) tensor(nan, grad_fn=<MseLossBackward>)\n","name":"stdout"},{"output_type":"error","ename":"KeyboardInterrupt","evalue":"","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-180-c45c7bcd2e3e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_numpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrand\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mview\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mcost\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0myhat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWa\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mba\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mby\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0monestep\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWa\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mba\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcostfn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mcosts\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcost\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitem\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mif\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;36m1000\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m<ipython-input-177-48ae863d3f5d>\u001b[0m in \u001b[0;36monestep\u001b[0;34m(x, y, a, Wa, ba, Wy, by, costfn, alpha)\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0myhat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWa\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mba\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mWy\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mby\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mcost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcostfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myhat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mcost\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mWa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetach_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mba\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdetach_\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/opt/conda/lib/python3.7/site-packages/torch/tensor.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(self, gradient, retain_graph, create_graph)\u001b[0m\n\u001b[1;32m 193\u001b[0m \u001b[0mproducts\u001b[0m\u001b[0;34m.\u001b[0m \u001b[0mDefaults\u001b[0m \u001b[0mto\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 194\u001b[0m \"\"\"\n\u001b[0;32m--> 195\u001b[0;31m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautograd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mretain_graph\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 196\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 197\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mregister_hook\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhook\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/opt/conda/lib/python3.7/site-packages/torch/autograd/__init__.py\u001b[0m in \u001b[0;36mbackward\u001b[0;34m(tensors, grad_tensors, retain_graph, create_graph, grad_variables)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[0mgrad_tensors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgrad_tensors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 93\u001b[0;31m \u001b[0mgrad_tensors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_make_grads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtensors\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_tensors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 94\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mretain_graph\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 95\u001b[0m \u001b[0mretain_graph\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcreate_graph\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/opt/conda/lib/python3.7/site-packages/torch/autograd/__init__.py\u001b[0m in \u001b[0;36m_make_grads\u001b[0;34m(outputs, grads)\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"grad can be implicitly created only for scalar outputs\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 35\u001b[0;31m \u001b[0mnew_grads\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mones_like\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmemory_format\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpreserve_format\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 36\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0mnew_grads\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mKeyboardInterrupt\u001b[0m: "]}]},{"metadata":{"trusted":true},"cell_type":"code","source":"plt.plot(costs)\nplt.show()","execution_count":169,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAEDCAYAAAAlRP8qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAXq0lEQVR4nO3df4wc533f8feHxyPvaFI8qjxLFI8inYKwEwvVDx9kKUYTVZFTShXM/uEiMhJbcA0QEpTWbg20TgI4SFoUBVIYic1ULBErtlBBgWs7LmFQcRTHiWUgUnRiKVoUHYvIr1mTNk/a5S/t8si7+/aPnSVPxz3e3t3szszq8wIWNzvz3Ox3IfKjh88884wiAjMzK79VeRdgZmbZcKCbmfUJB7qZWZ9woJuZ9QkHuplZn3Cgm5n1iVwDXdITkk5JeqWDtv9R0quSjkj6tqTtc449LOm19PVwd6s2Mysm5TkPXdLPAeeBJyPilkXa/gvghYioS3oUuCcifknS9cAEMA4E8BLwvoiodbl8M7NCybWHHhHfBapz90n6p5L+RNJLkp6T9J607Xciop42ex4YS7f/JfBsRFTTEH8W2NWjr2BmVhir8y6gjf3AIxHxmqT3A/8TuHdem08Az6TbW4FkzrFKus/M7G2lUIEuaT3ws8D/kdTavXZem1+hObzy861dbU7l9QzM7G2nUIFOcwjodETc1u6gpPuA3wB+PiKm0t0V4J45zcaAv+hijWZmhVSoaYsRcRb4O0n/BkBNt6bbtwP/C/hQRJya82vfAn5R0iZJm4BfTPeZmb2t5D1t8Wngr4B3S6pI+gTwy8AnJL0MHAV2p81/B1hPczjmsKQDABFRBf4L8GL6+u10n5nZ20qu0xbNzCw7hRpyMTOz5cvtoujmzZtjx44deX28mVkpvfTSS69HxGi7Y7kF+o4dO5iYmMjr483MSknSPyx0zEMuZmZ9woFuZtYnHOhmZn3CgW5m1icc6GZmfcKBbmbWJxzoZmZ9YtFAlzQk6a8lvSzpqKTfatPmHkln0jVWDkv6bHfKNTMrt9/9sx/y3GuTXTl3Jz30KeDeiLgVuA3YJemuNu2ei4jb0tdvZ1qlmVkfuDg9y+99+zVe/PvuPCFz0TtFo7l61/n07WD68opeZmZLdOJ0gwjYtmm4K+fvaAxd0oCkw8Apms/vfKFNs7vTYZlnJL13gfPskTQhaWJysjv/5DAzK6qk1nws8rbr13Xl/B0FekTMpE8RGgPulHTLvCaHgO3psMwXgG8scJ79ETEeEeOjo23XljEz61tJtQHAWJ499JaIOE3z8W675u0/GxHn0+2DwKCkzVkVaWbWDyq1OqtXiS0bcwp0SaOSRtLtYeA+4Afz2tyo9KnOku5Mz/tG9uWamZVXUmtw08gwA6vaPdt+5TpZPncL8GVJAzSD+isR8U1JjwBExD7gw8CjkqaBBvBQ+FFIZmZvkVTrbLu+O71z6GyWyxHg9jb7983Z3gvszbY0M7P+UqnVue+nb+ja+X2nqJlZD9QvTvP6+Ytdm+ECDnQzs56o1Lo7wwUc6GZmPVFJ56CPbXIP3cys1Fpz0Lt5UdSBbmbWA0m1ztDgKkbXr+3aZzjQzcx6IKnVGdu0jvSWna5woJuZ9UBSbXRtUa4WB7qZWQ8ktXpXpyyCA93MrOvO1C9x7sJ0V6csggPdzKzrLi+b28Upi+BANzPrukqX10FvcaCbmXXZ5Tno7qGbmZVbUquzYWg1G9cNdvVzHOhmZl2WVOtd752DA93MrOuSWqOrt/y3ONDNzLooIqikd4l2mwPdzKyLXj9/kQuXZrt+lyg40M3Muirp0ZRFcKCbmXVVUi1QoEsakvTXkl6WdFTSb7VpI0mfl3Rc0hFJd3SnXDOzcunFk4paFn1INDAF3BsR5yUNAt+T9ExEPD+nzf3AzvT1fuDx9KeZ2dtaUq2zef0a1q3pJG5XZtEeejSdT98Opq+Y12w38GTa9nlgRNKWbEs1MyufpFZnaw9muECHY+iSBiQdBk4Bz0bEC/OabAWSOe8r6b7559kjaULSxOTk5HJrNjMrjUqt++ugt3QU6BExExG3AWPAnZJumdek3SM45vfiiYj9ETEeEeOjo6NLr9bMrERmZoMTpxs9uSAKS5zlEhGngb8Ads07VAG2zXk/BpxYUWVmZiX347MXuDQTPbntHzqb5TIqaSTdHgbuA34wr9kB4GPpbJe7gDMRcTLzas3MSuTKlMXeDLl0ctl1C/BlSQM0/wfwlYj4pqRHACJiH3AQeAA4DtSBj3epXjOz0rgc6D3qoS8a6BFxBLi9zf59c7YDeCzb0szMyi2pNZDgppECXRQ1M7Olq9Tq3HjdEGtW9yZqHehmZl1SqTZ6NtwCDnQzs65JanXGenRBFBzoZmZdMTU9w4/PXnAP3cys7E6cvkBEb1ZZbHGgm5l1wZUpix5yMTMrtV4+2KLFgW5m1gWVWoPBAXHDdUM9+0wHuplZFyTVOjeNDDOwqt3ahd3hQDcz64Kk1ts56OBANzPrikq13rNFuVoc6GZmGXtzapo33rzImHvoZmbl1nowdC9nuIAD3cwsc5V0yuJYD+eggwPdzCxzvV4HvcWBbmaWsaTWYHhwgM3r1/T0cx3oZmYZS6p1xjYNI/VuDjo40M3MMpfUGj2/IAoOdDOzTEVEcw56jy+IQgeBLmmbpO9IOibpqKRPtmlzj6Qzkg6nr892p1wzs2I707jEuanpXHroiz4kGpgGPh0RhyRtAF6S9GxEvDqv3XMR8WD2JZqZlUdrDnqvpyxCBz30iDgZEYfS7XPAMWBrtwszMyuj1pTFXt8lCkscQ5e0A7gdeKHN4bslvSzpGUnvXeD390iakDQxOTm55GLNzIouj3XQWzoOdEnrga8Bn4qIs/MOHwK2R8StwBeAb7Q7R0Tsj4jxiBgfHR1dbs1mZoWVVBtcN7SajcODPf/sjgJd0iDNMH8qIr4+/3hEnI2I8+n2QWBQ0uZMKzUzK4GkVs+ldw6dzXIR8EXgWER8boE2N6btkHRnet43sizUzKwMkmq957f8t3Qyy+UDwEeB70s6nO77deBmgIjYB3wYeFTSNNAAHoqI6EK9ZmaFFRFUag3ufc87c/n8RQM9Ir4HXPP+1YjYC+zNqigzszKaPD/F1PRsLjNcwHeKmpllJqm21kHv/Rx0cKCbmWWmtQ56XmPoDnQzs4zkeVMRONDNzDKTVBtsXr+W4TUDuXy+A93MLCPNOej5jJ+DA93MLDOVWiO34RZwoJuZZWJmNjhxupHLOugtDnQzswycPNNgejZyu+0fHOhmZpm4PAfdQy5mZuV2ZdlcD7mYmZVapVpnleCmEQe6mVmpJbUGWzYOMziQX6w60M3MMlCp1dma4wwXcKCbmWUiqTZyvSAKDnQzsxWbmp7hJ+cu5HpBFBzoZmYr9qNag4h8pyyCA93MbMWSWmsddAe6mVmptZbN9ZCLmVnJVWoNBgfEDRuGcq1j0UCXtE3SdyQdk3RU0ifbtJGkz0s6LumIpDu6U66ZWfEktTpbR4ZZteqaj1/uukUfEg1MA5+OiEOSNgAvSXo2Il6d0+Z+YGf6ej/wePrTzKzvVar13MfPoYMeekScjIhD6fY54BiwdV6z3cCT0fQ8MCJpS+bVmpkVUJLzOugtSxpDl7QDuB14Yd6hrUAy532Fq0MfSXskTUiamJycXFqlZmYF9ObUNNU3L+Z+QRSWEOiS1gNfAz4VEWfnH27zK3HVjoj9ETEeEeOjo6NLq9TMrIAur7JYlh66pEGaYf5URHy9TZMKsG3O+zHgxMrLMzMrtsvroJdhDF2SgC8CxyLicws0OwB8LJ3tchdwJiJOZlinmVkhVdIe+ljOC3NBZ7NcPgB8FPi+pMPpvl8HbgaIiH3AQeAB4DhQBz6efalmZsWTVBsMDw7wT96xJu9SFg/0iPge7cfI57YJ4LGsijIzK4ukVmfb9cM0BzPy5TtFzcxWIKnWC3FBFBzoZmbLFhFUao1CXBAFB7qZ2bKdrl/i/NR0IS6IggPdzGzZKgVZNrfFgW5mtkxJgaYsggPdzGzZrqyD7h66mVmpJbU6G4cHuW5oMO9SAAe6mdmyJdVGIRblanGgm5ktU1Irzhx0cKCbmS3L7Gyx5qCDA93MbFlePz/FxelZthVkhgs40M3MluXKlEX30M3MSu3KOujuoZuZlVprDrp76GZmJZfU6oxuWMvQ4EDepVzmQDczW4ak2ijUBVFwoJuZLUvldL1QUxbBgW5mtmTTM7OcOH2hMItytTjQzcyW6OSZC8zMRqHuEoUOAl3SE5JOSXplgeP3SDoj6XD6+mz2ZZqZFUdrDnrRhlwWfUg08CVgL/DkNdo8FxEPZlKRmVnBVVpz0MvWQ4+I7wLVHtRiZlYKSa3OKsGWkaG8S3mLrMbQ75b0sqRnJL13oUaS9kiakDQxOTmZ0UebmfVWUq2zZeMwgwPFugyZRTWHgO0RcSvwBeAbCzWMiP0RMR4R46Ojoxl8tJlZ7zVXWSzWDBfIINAj4mxEnE+3DwKDkjavuDIzs4JKavVC3fLfsuJAl3SjJKXbd6bnfGOl5zUzK6ILl2b4ydmpwl0QhQ5muUh6GrgH2CypAvwmMAgQEfuADwOPSpoGGsBDERFdq9jMLEc/Ol28VRZbFg30iPjIIsf30pzWaGbW91qrLBZtDjr4TlEzsyVJasWcgw4OdDOzJanU6qxZvYp3blibdylXcaCbmS1BpdpgbGSYVauUdylXcaCbmS1BUquztWCrLLY40M3MliCpFm8d9BYHuplZh85PTVOrXyrkBVFwoJuZdezKlEUPuZiZldrlQHcP3cys3CqtOegeQzczK7ekVmfdmgE2rRvMu5S2HOhmZh1Kqg22bVpHuh5h4TjQzcw6VKnVC3tBFBzoZmYdiQiSajHXQW9xoJuZdaBWv8SbF2cKe0EUHOhmZh2p1FpTFj3kYmZWakm12FMWwYFuZtaRJO2hj7mHbmZWbkm1zsi6QTYMFXMOOjjQzcw6ktQahb3lv2XRQJf0hKRTkl5Z4LgkfV7ScUlHJN2RfZlmZvmqVIs9Bx0666F/Cdh1jeP3AzvT1x7g8ZWXZWZWHLOzQaUfeugR8V2geo0mu4Eno+l5YETSlqwKNDPL2+T5KS7OzDJW4BkukM0Y+lYgmfO+ku67iqQ9kiYkTUxOTmbw0WZm3Xdl2dzyD7kspt0qNdGuYUTsj4jxiBgfHR3N4KPNzLrvypTF/u+hV4Btc96PAScyOK+ZWSG0bioq8hx0yCbQDwAfS2e73AWciYiTGZzXzKwQkmqdd25Yy9DgQN6lXNPqxRpIehq4B9gsqQL8JjAIEBH7gIPAA8BxoA58vFvFmpnlIanVC33Lf8uigR4RH1nkeACPZVaRmVnBVGoNxrdvyruMRflOUTOza5iemeXkmQul6KE70M3MruHkmQvMzEbhL4iCA93M7JquzEF3D93MrNRac9A95GJmVnJJtcHAKrFl41DepSzKgW5mdg1Jrc6WjUOsHih+XBa/QjOzHJVhlcUWB7qZ2TUkJVgHvcWBbma2gAuXZjh1bqrwi3K1ONDNzBZQqTUX5XIP3cys5C5PWXQP3cys3CrV8sxBBwe6mdmCKrUGa1avYnT92rxL6YgD3cxsAUmtztimYVatavdgtuJxoJuZLSCplmcOOjjQzcwW1Oqhl4UD3cysjXMXLnG6fqk0F0TBgW5m1lbrwdAecjEzK7kry+b22ZCLpF2S/kbScUmfaXP8HklnJB1OX5/NvlQzs965fJdoiXroiz4kWtIA8PvAB4EK8KKkAxHx6rymz0XEg12o0cys55JqnfVrVzOybjDvUjrWSQ/9TuB4RPxtRFwE/gjY3d2yzMzyVUlnuEjlmIMOnQX6ViCZ876S7pvvbkkvS3pG0nvbnUjSHkkTkiYmJyeXUa6ZWW8k1UZpVlls6STQ2/3vKea9PwRsj4hbgS8A32h3oojYHxHjETE+Ojq6tErNzHokIkhq5VkHvaWTQK8A2+a8HwNOzG0QEWcj4ny6fRAYlLQ5syrNzHqo+uZF6hdnSnVBFDoL9BeBnZLeJWkN8BBwYG4DSTcqHWiSdGd63jeyLtbMrBeSy+uglyvQF53lEhHTkn4V+BYwADwREUclPZIe3wd8GHhU0jTQAB6KiPnDMmZmpVAp4Rx06CDQ4fIwysF5+/bN2d4L7M22NDOzfLTuEu3Hi6JmZm8rSa3OpnWDrF/bUZ+3MBzoZmbzJNV66cbPwYFuZnaVSq1c66C3ONDNzOaYnQ1+VGswVrILouBANzN7i1Pnprg4M+seuplZ2V1ZNteBbmZWakk1DfQSPXquxYFuZjZHaw76TSMOdDOzUktqdW64bi1DgwN5l7JkDnQzszmSar2UF0TBgW5m9haVWqOUF0TBgW5mdtmlmVlOnmmU8oIoONDNzC47efoCswFj7qGbmZVbaw76mHvoZmbldmUOunvoZmalltTqDKwSWzYO5V3KsjjQzcxSSbXBTSNDrB4oZzSWs2ozsy6o1Mo7Bx0c6GZmlyUlXQe9paNAl7RL0t9IOi7pM22OS9Ln0+NHJN2RfalmZt1z4dIMk+emSvdg6LkWDXRJA8DvA/cDPwN8RNLPzGt2P7Azfe0BHs+4TjOzrqpcnrJY3h56J09AvRM4HhF/CyDpj4DdwKtz2uwGnoyIAJ6XNCJpS0SczLrgv/zhJP/1m68u3tDMbAkal2YASt1D7yTQtwLJnPcV4P0dtNkKvCXQJe2h2YPn5ptvXmqtAKxfu5qdN6xf1u+amV3LP9+5mVu2bsy7jGXrJNDVZl8sow0RsR/YDzA+Pn7V8U68b/sm3rf9fcv5VTOzvtbJRdEKsG3O+zHgxDLamJlZF3US6C8COyW9S9Ia4CHgwLw2B4CPpbNd7gLOdGP83MzMFrbokEtETEv6VeBbwADwREQclfRIenwfcBB4ADgO1IGPd69kMzNrp5MxdCLiIM3Qnrtv35ztAB7LtjQzM1sK3ylqZtYnHOhmZn3CgW5m1icc6GZmfULN65k5fLA0CfzDMn99M/B6huXkyd+lmPrlu/TL9wB/l5btETHa7kBugb4SkiYiYjzvOrLg71JM/fJd+uV7gL9LJzzkYmbWJxzoZmZ9oqyBvj/vAjLk71JM/fJd+uV7gL/Loko5hm5mZlcraw/dzMzmcaCbmfWJ0gX6Yg+sLgtJ2yR9R9IxSUclfTLvmlZC0oCk/yfpm3nXshLp4xO/KukH6X+bu/Ouabkk/Yf0z9Yrkp6WNJR3TZ2S9ISkU5JembPveknPSnot/bkpzxo7tcB3+Z30z9gRSX8saSSLzypVoHf4wOqymAY+HRE/DdwFPFbi7wLwSeBY3kVk4PeAP4mI9wC3UtLvJGkr8O+B8Yi4hebS1w/lW9WSfAnYNW/fZ4BvR8RO4Nvp+zL4Eld/l2eBWyLinwE/BH4tiw8qVaAz54HVEXERaD2wunQi4mREHEq3z9EMjq35VrU8ksaAfwX8Qd61rISk64CfA74IEBEXI+J0vlWtyGpgWNJqYB0leopYRHwXqM7bvRv4crr9ZeBf97SoZWr3XSLiTyNiOn37PM2nvK1Y2QJ9oYdRl5qkHcDtwAv5VrJsvwv8J2A270JW6KeASeAP0+GjP5D0jryLWo6I+BHwP4B/pPmw9jMR8af5VrViN7SehJb+fGfO9WTl3wLPZHGisgV6Rw+jLhNJ64GvAZ+KiLN517NUkh4ETkXES3nXkoHVwB3A4xFxO/Am5fln/Vuk48u7gXcBNwHvkPQr+VZl80n6DZrDr09lcb6yBXpfPYxa0iDNMH8qIr6edz3L9AHgQ5L+nuYQ2L2S/ne+JS1bBahEROtfSl+lGfBldB/wdxExGRGXgK8DP5tzTSv1E0lbANKfp3KuZ0UkPQw8CPxyZHRDUNkCvZMHVpeCJNEcqz0WEZ/Lu57liohfi4ixiNhB87/Hn0dEKXuCEfFjIJH07nTXLwCv5ljSSvwjcJekdemftV+gpBd45zgAPJxuPwz83xxrWRFJu4D/DHwoIupZnbdUgZ5eRGg9sPoY8JWIOJpvVcv2AeCjNHu0h9PXA3kXZfw74ClJR4DbgP+Wcz3Lkv4r46vAIeD7NP+ul+bWeUlPA38FvFtSRdIngP8OfFDSa8AH0/eFt8B32QtsAJ5N/+7vu+ZJOv0s3/pvZtYfStVDNzOzhTnQzcz6hAPdzKxPONDNzPqEA93MrE840M3M+oQD3cysT/x/AVSBUZ6qf24AAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"pygments_lexer":"ipython3","nbconvert_exporter":"python","version":"3.6.4","file_extension":".py","codemirror_mode":{"name":"ipython","version":3},"name":"python","mimetype":"text/x-python"}},"nbformat":4,"nbformat_minor":4}
0033/514/33514862.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\"cells\":[{\"metadata\":{},\"cell_type\":\"markdown\",\"source\":\"![Confirmed-min.gif](attachmen(...TRUNCATED)
0033/514/33514934.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0033/514/33514958.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0033/515/33515175.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0033/515/33515468.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0033/516/33516002.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0033/516/33516105.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0033/516/33516462.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"metadata\": {\(...TRUNCATED)
0033/516/33516528.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
"{\"cells\":[{\"metadata\":{\"_uuid\":\"8f2839f25d086af736a60e9eeb907d3b93b6e0e5\",\"_cell_guid\":\"(...TRUNCATED)
0033/517/33517042.ipynb
s3://data-agents/kaggle-outputs/sharded/023_00033.jsonl.gz
README.md exists but content is empty.
Downloads last month
39