Dataset Viewer (First 5GB)
The table and auto-converted Parquet files contain data up to 5GB, since the original files row groups are too big to be displayed. The recommended row group size is 100-300MB in-memory.
Auto-converted to Parquet
Full Screen
Search is not available for this dataset
text
stringlengths
1.4k
102M
id
stringlengths
22
24
file_path
stringclasses
56 values
{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "f7cb05db", "metadata": { "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", "execution": { "iopub.execute_input": "2021-12-07T18:18:17.061258Z", "iopub.status.busy": "2021-12-07T18:18:17.059392Z", "iopub.status.idle": "2021-12-07T18:18:18.621168Z", "shell.execute_reply": "2021-12-07T18:18:18.621815Z", "shell.execute_reply.started": "2021-12-07T18:13:06.341340Z" }, "papermill": { "duration": 1.59804, "end_time": "2021-12-07T18:18:18.622131", "exception": false, "start_time": "2021-12-07T18:18:17.024091", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/kaggle/input/titanic/train.csv\n", "/kaggle/input/titanic/test.csv\n", "/kaggle/input/titanic/gender_submission.csv\n" ] } ], "source": [ "# This Python 3 environment comes with many helpful analytics libraries installed\n", "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n", "# For example, here's several helpful packages to load\n", "\n", "import numpy as np # linear algebra\n", "import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)\n", "\n", "# Input data files are available in the read-only \"../input/\" directory\n", "# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory\n", "\n", "import os\n", "for dirname, _, filenames in os.walk('/kaggle/input'):\n", " for filename in filenames:\n", " print(os.path.join(dirname, filename))\n", "\n", "# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using \"Save & Run All\" \n", "# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import sklearn\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.metrics import mean_absolute_error\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.neural_network import MLPClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.svm import SVC\n", "from sklearn.gaussian_process import GaussianProcessClassifier\n", "from sklearn.gaussian_process.kernels import RBF\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "id": "6811b801", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:18.687364Z", "iopub.status.busy": "2021-12-07T18:18:18.686588Z", "iopub.status.idle": "2021-12-07T18:18:18.742736Z", "shell.execute_reply": "2021-12-07T18:18:18.743365Z", "shell.execute_reply.started": "2021-12-07T18:13:07.822147Z" }, "papermill": { "duration": 0.089214, "end_time": "2021-12-07T18:18:18.743562", "exception": false, "start_time": "2021-12-07T18:18:18.654348", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 891 entries, 0 to 890\n", "Data columns (total 12 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 PassengerId 891 non-null int64 \n", " 1 Survived 891 non-null int64 \n", " 2 Pclass 891 non-null int64 \n", " 3 Name 891 non-null object \n", " 4 Sex 891 non-null object \n", " 5 Age 714 non-null float64\n", " 6 SibSp 891 non-null int64 \n", " 7 Parch 891 non-null int64 \n", " 8 Ticket 891 non-null object \n", " 9 Fare 891 non-null float64\n", " 10 Cabin 204 non-null object \n", " 11 Embarked 889 non-null object \n", "dtypes: float64(2), int64(5), object(5)\n", "memory usage: 83.7+ KB\n" ] } ], "source": [ "train_data = pd.read_csv('../input/titanic/train.csv')\n", "test_data = pd.read_csv('../input/titanic/test.csv')\n", "train_data.info()" ] }, { "cell_type": "code", "execution_count": 3, "id": "7dc7e5a2", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:18.818945Z", "iopub.status.busy": "2021-12-07T18:18:18.818166Z", "iopub.status.idle": "2021-12-07T18:18:18.831367Z", "shell.execute_reply": "2021-12-07T18:18:18.831973Z", "shell.execute_reply.started": "2021-12-07T18:13:07.880407Z" }, "papermill": { "duration": 0.06028, "end_time": "2021-12-07T18:18:18.832190", "exception": false, "start_time": "2021-12-07T18:18:18.771910", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Total</th>\n", " <th>Percent</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Cabin</th>\n", " <td>687</td>\n", " <td>3.367647</td>\n", " </tr>\n", " <tr>\n", " <th>Age</th>\n", " <td>177</td>\n", " <td>0.247899</td>\n", " </tr>\n", " <tr>\n", " <th>Embarked</th>\n", " <td>2</td>\n", " <td>0.002250</td>\n", " </tr>\n", " <tr>\n", " <th>PassengerId</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Survived</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Pclass</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Name</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Sex</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>SibSp</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Parch</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Total Percent\n", "Cabin 687 3.367647\n", "Age 177 0.247899\n", "Embarked 2 0.002250\n", "PassengerId 0 0.000000\n", "Survived 0 0.000000\n", "Pclass 0 0.000000\n", "Name 0 0.000000\n", "Sex 0 0.000000\n", "SibSp 0 0.000000\n", "Parch 0 0.000000" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_train_total = train_data.isnull().sum().sort_values(ascending= False)\n", "missing_train_percentage = (train_data.isnull().sum()/train_data.count()).sort_values(ascending= False)\n", "missing_train_data = pd.concat([missing_train_total, missing_train_percentage], axis=1, keys=['Total', 'Percent'])\n", "missing_train_data.head(10)" ] }, { "cell_type": "code", "execution_count": 4, "id": "2c1fa63e", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:18.896140Z", "iopub.status.busy": "2021-12-07T18:18:18.895357Z", "iopub.status.idle": "2021-12-07T18:18:18.912853Z", "shell.execute_reply": "2021-12-07T18:18:18.913596Z", "shell.execute_reply.started": "2021-12-07T18:13:07.911251Z" }, "papermill": { "duration": 0.05132, "end_time": "2021-12-07T18:18:18.913785", "exception": false, "start_time": "2021-12-07T18:18:18.862465", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Total</th>\n", " <th>Percent</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>Cabin</th>\n", " <td>327</td>\n", " <td>3.593407</td>\n", " </tr>\n", " <tr>\n", " <th>Age</th>\n", " <td>86</td>\n", " <td>0.259036</td>\n", " </tr>\n", " <tr>\n", " <th>Fare</th>\n", " <td>1</td>\n", " <td>0.002398</td>\n", " </tr>\n", " <tr>\n", " <th>PassengerId</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Pclass</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Name</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Sex</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>SibSp</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Parch</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " <tr>\n", " <th>Ticket</th>\n", " <td>0</td>\n", " <td>0.000000</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Total Percent\n", "Cabin 327 3.593407\n", "Age 86 0.259036\n", "Fare 1 0.002398\n", "PassengerId 0 0.000000\n", "Pclass 0 0.000000\n", "Name 0 0.000000\n", "Sex 0 0.000000\n", "SibSp 0 0.000000\n", "Parch 0 0.000000\n", "Ticket 0 0.000000" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_test_total = test_data.isnull().sum().sort_values(ascending= False)\n", "missing_test_percentage = (test_data.isnull().sum()/test_data.count()).sort_values(ascending= False)\n", "missing_test_data = pd.concat([missing_test_total, missing_test_percentage], axis=1, keys=['Total', 'Percent'])\n", "missing_test_data.head(10)" ] }, { "cell_type": "code", "execution_count": 5, "id": "d454ece4", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:18.980106Z", "iopub.status.busy": "2021-12-07T18:18:18.979215Z", "iopub.status.idle": "2021-12-07T18:18:18.992930Z", "shell.execute_reply": "2021-12-07T18:18:18.992187Z", "shell.execute_reply.started": "2021-12-07T18:13:07.937504Z" }, "papermill": { "duration": 0.04841, "end_time": "2021-12-07T18:18:18.993075", "exception": false, "start_time": "2021-12-07T18:18:18.944665", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Pclass\n", "1 60.2875\n", "2 14.2500\n", "3 8.0500\n", "Name: Fare, dtype: float64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.groupby('Pclass')['Fare'].median()" ] }, { "cell_type": "code", "execution_count": 6, "id": "a976b7c5", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:19.054173Z", "iopub.status.busy": "2021-12-07T18:18:19.053467Z", "iopub.status.idle": "2021-12-07T18:18:19.060921Z", "shell.execute_reply": "2021-12-07T18:18:19.061498Z", "shell.execute_reply.started": "2021-12-07T18:13:09.654153Z" }, "papermill": { "duration": 0.040121, "end_time": "2021-12-07T18:18:19.061680", "exception": false, "start_time": "2021-12-07T18:18:19.021559", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Pclass\n", "1 37.0\n", "2 29.0\n", "3 24.0\n", "Name: Age, dtype: float64" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.groupby('Pclass')['Age'].median()" ] }, { "cell_type": "code", "execution_count": 7, "id": "563a97a7", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:19.125753Z", "iopub.status.busy": "2021-12-07T18:18:19.124998Z", "iopub.status.idle": "2021-12-07T18:18:19.135968Z", "shell.execute_reply": "2021-12-07T18:18:19.136548Z", "shell.execute_reply.started": "2021-12-07T18:13:09.668176Z" }, "papermill": { "duration": 0.044453, "end_time": "2021-12-07T18:18:19.136749", "exception": false, "start_time": "2021-12-07T18:18:19.092296", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Pclass\n", "1 38.233441\n", "2 29.877630\n", "3 25.140620\n", "Name: Age, dtype: float64" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.groupby('Pclass')['Age'].mean()" ] }, { "cell_type": "code", "execution_count": 8, "id": "ce6a521b", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:19.206611Z", "iopub.status.busy": "2021-12-07T18:18:19.205472Z", "iopub.status.idle": "2021-12-07T18:18:19.218536Z", "shell.execute_reply": "2021-12-07T18:18:19.219269Z", "shell.execute_reply.started": "2021-12-07T18:13:09.681579Z" }, "papermill": { "duration": 0.050526, "end_time": "2021-12-07T18:18:19.219446", "exception": false, "start_time": "2021-12-07T18:18:19.168920", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Pclass Sex \n", "1 female 94\n", " male 122\n", "2 female 76\n", " male 108\n", "3 female 144\n", " male 347\n", "Name: Sex, dtype: int64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.groupby(['Pclass','Sex'])['Sex'].count()" ] }, { "cell_type": "code", "execution_count": 9, "id": "de70f8c8", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:19.291855Z", "iopub.status.busy": "2021-12-07T18:18:19.290757Z", "iopub.status.idle": "2021-12-07T18:18:19.297248Z", "shell.execute_reply": "2021-12-07T18:18:19.297904Z", "shell.execute_reply.started": "2021-12-07T18:13:09.697763Z" }, "papermill": { "duration": 0.046329, "end_time": "2021-12-07T18:18:19.298102", "exception": false, "start_time": "2021-12-07T18:18:19.251773", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Sex\n", "female 314\n", "male 577\n", "Name: Sex, dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.groupby('Sex')['Sex'].count()" ] }, { "cell_type": "code", "execution_count": 10, "id": "d08d2ea7", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:19.365892Z", "iopub.status.busy": "2021-12-07T18:18:19.364774Z", "iopub.status.idle": "2021-12-07T18:18:20.118672Z", "shell.execute_reply": "2021-12-07T18:18:20.119242Z", "shell.execute_reply.started": "2021-12-07T18:13:09.709149Z" }, "papermill": { "duration": 0.789466, "end_time": "2021-12-07T18:18:20.119423", "exception": false, "start_time": "2021-12-07T18:18:19.329957", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.FacetGrid at 0x7f075e962310>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAFgCAYAAACVLS/VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZTUlEQVR4nO3dfbRldX3f8fdn7gAqGBGl0ylzYYgYLWLEOD6BTSLGiA8VtMRIWYYKCbokrQab1Ic2hpXGpTYLtSlKQVFqic+ihhgIQYQYLQoI8qTBGIZcFjIDSnxolzp3vv3j7IGbYWbuOb+5+5x7z7xfa511z95n/87+cs9hPnf/fnv/dqoKSZJGtWrSBUiSViYDRJLUxACRJDUxQCRJTQwQSVKT1ZMuYBjHHntsXXLJJZMuQ5KGlUkXMA4r4gjknnvumXQJkqTtrIgAkSQtPwaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgbIHmR2dpYkIz9mZ2cnXbqkZWhF3A9ES2Nubo6zzzp/5Hann3FKD9VIWuk8ApEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA2QFmp2dJcnID0laSqsnXYBGNzc3x9lnnT9yu9PPOKWHaiTtqTwCkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTXqdyiTJ7cAPgHlgS1VtSHIA8FFgPXA78LKq+l6fdUiSlt44jkCeXVVHVtWGbvkNwOVV9Vjg8m5ZkrTCTKIL6zjggu75BcDxE6hBkrSb+g6QAv4yybVJTuvWramqu7rn3wHW7KhhktOSXJPkms2bN/dcpiRpVH1P5/6sqrozyT8DLkvyjYUvVlUlqR01rKpzgXMBNmzYsMNtJEmT0+sRSFXd2f3cBFwEPA24O8lagO7npj5rkCT1o7cASbJvkodvew78KnAT8Fng5G6zk4HP9FWDJKk/fXZhrQEu6m6luhr406q6JMlXgY8lORXYCLysxxokST3pLUCq6tvAk3aw/l7gOX3tV5I0Hl6JLklqYoBIkpoYIJKkJgaIJKmJAaKhJBnpMTs7O+mSJfWs7yvRNSXOPuv8kbY//YxTeqpE0nLhEYgkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoCoN6PeQ8T7iEgri/cDUW9GvYcIeB8RaSXxCESS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUpPeAyTJTJKvJbm4Wz40ydVJvpXko0n27rsGSdLSG8cRyGuBWxcsvx14Z1UdBnwPOHUMNUiSllivAZJkHfBC4H3dcoBjgE90m1wAHN9nDZKkfvR9BPIu4PeArd3yo4D7qmpLtzwHHLSjhklOS3JNkms2b97cc5mSpFH1FiBJXgRsqqprW9pX1blVtaGqNhx44IFLXJ0kaXet7vG9jwZenOQFwEOAnwHeDeyfZHV3FLIOuLPHGiRJPentCKSq3lhV66pqPfBy4PNVdRJwBXBCt9nJwGf6qkGS1J9JXAfyn4AzknyLwZjI+ydQgyRpN/XZhXW/qvoC8IXu+beBp41jv5Kk/ngluiSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJajJUgCQ5eph1kqQ9x7BHIH8y5DpJ0hJJMp/k+iQ3Jfl4koftYts/SPIfx1nf6l29mOSZwFHAgUnOWPDSzwAzfRYmSeL/VdWRAEkuBF4NnDXRihZY7Ahkb2A/BkHz8AWP7wMn9FuaJGmBvwYOA0jyG0m+nuSGJB/afsMkv5Xkq93rn9x25JLk17qjmRuSXNWte0KSr3RHOl9P8thhC9rlEUhVXQlcmeSDVbVxlP9SSdLSSLIaeD5wSZInAP8ZOKqq7klywA6afKqqzuva/lfgVAbDDr8PPK+q7kyyf7ftq4F3V9WFSfZmhN6lXQbIAvskORdYv7BNVR0z7I4kSSN7aJLru+d/DbwfeBXw8aq6B6CqvruDdkd0wbE/g16kS7v1fwN8MMnHgE91674MvDnJOgbBc9uwxQ0bIB8HzgHeB8wP++aSpN1y/xjINkmGafdB4PiquiHJvwN+GaCqXp3k6cALgWuTPKWq/jTJ1d26zyV5VVV9fpidDBsgW6rqvUNuK0nqz+eBi5KcVVX3JjlgB0chDwfuSrIXcBJwJ0CSx1TV1cDVSZ4PzCZ5BPDtqvrvSQ4Gfr7bx6KGPY33z5K8JsnaJAdsewzZVpK0RKrqZuCPGIxP38COz8r6L8DVDLqsvrFg/X9LcmOSm4AvATcALwNu6rrKjgD+17C1DHsEcnL383cX/ncAP7uzBkkeAlwF7NPt5xNV9ZYkhwIfAR4FXAu8oqp+MmzBkrSnqKr9drL+AuCC7db9wYLn7wUe1GtUVS/dwdu9rXuMbKgAqapDG977x8AxVfXD7jDqi0n+AjgDeGdVfSTJOQzODrB7TJJWmKECJMlv7Gh9Ve30UKeqCvhht7hX9yjgGODfdusvAP4AA0SSVpxhu7CeuuD5Q4DnANexSF9ZkhkG3VSHAWcDfwfcV1Vbuk3mgIN20vY04DSAgw8+eMgyJUnjMmwX1r9fuNxdgPKRIdrNA0d2218EPH7YwqrqXOBcgA0bNtSw7SRJ49E6nfuPgKHHRarqPuAK4JnA/t1VlQDr6E4vkyStLMOOgfwZg/ELGFzm/i+Bjy3S5kDgp1V1X5KHAs8F3s4gSE5gcARzMvCZttIlSZM07BjIHy94vgXYWFVzi7RZC1zQjYOsAj5WVRcnuQX4SHeZ/dcYXJovSerstXr13Jb5+R2OD7dYPTNz50+3bFm3q22SnA+8CNhUVUcM9b7DbFRVVyZZwwOD6YvOlVJVXweevIP13waeNsx+JWlPtGV+/qB7b/jqmUv1fo960lPfMsRmHwT+ByNcSDjsHQlfBnwF+DUGVy1encTp3CVpSlTVVcCOJmbcqWG7sN4MPLWqNsH94xt/BXxipAolSVNj2LOwVm0Lj869I7SVJE2hYY9ALklyKfDhbvnXgc/1U5IkaSVY7J7ohwFrqup3k7wUeFb30peBC/suTpK0fC12BPIu4I0AVfUpujtYJXli99q/7rE2SdojrZ6ZuXPIM6eGfr/FtknyYQY3nnp0kjngLVW1y8ssFguQNVV14/Yrq+rGJOsXK0iSNLrFrtnoQ1WdOGqbxQbC99/Faw8ddWeSpOmxWIBck+S3tl+Z5DcZzLIrSdpDLdaF9ToG9949iQcCYwOwN/CSHuuSJC1zuwyQqrobOCrJsxncKxfgz6tqqBuuS5Km17BzYV3BYBZdSZIAryaXJDUyQCRpmZlZNTOXpJbqMbNqZpe330gym+SKJLckuTnJa4epc9ipTCRJY7K1th700Ve9c8mmc//1//k7i12UuAV4fVVdl+ThwLVJLquqW3bVyCMQSdrDVdVdVXVd9/wHwK3Aoje0MkAkSffrZhl5MnD1YtsaIJIkAJLsB3wSeF1VfX+x7Q0QSRJJ9mIQHhd2k+cuamoDZHZ2liQjP2ZnZydd+h5tVVY1fW5777X3pEuXVqwkAd4P3FpVZw3bbmrPwpqbm+Pss84fud3pZ5zSQzUa1tbaygfe9J6R273yra/poRppMlZl1Z1DnDk10vstssnRwCuAG5Nc3617U1Xt8saBUxsgkrRSzW+dH+t07lX1RSCjtpvaLixJUr8MEElSEwNEktTEMRAtalVWjXxywar4t4k07QwQLarlzCjPipKmn38mSpKaeAQiSctMsmoOatHJDEd4xzurtu701OAkDwGuAvZhkAufqKpFr0MxQCRp2amDnnjwLy7ZdO433nHVYmHwY+CYqvphN6XJF5P8RVX9n101MkD2IC2D4ePe18zMTNP4yczMzMhtJA1UVQE/7Bb36h61WDsDZA8yzmlCdmdfX7rw0yO3O+qk40duI+kBSWaAa4HDgLOryuncJUmLq6r5qjoSWAc8LckRi7UxQCRJ96uq+4ArgGMX29YAkaQ9XJIDk+zfPX8o8FzgG4u1cwxkwmZnZ5mbm5t0GZKWldw5xJlTI73fIhusBS7oxkFWAR+rqosXe1cDZMJa7lviPUuk6barazb62V99ncF90EdiF5YkqYkBIklqYoBIkpoYIJKkJgaIJKlJbwGSZDbJFUluSXJzktd26w9IclmS27qfj+yrBklSf/o8AtkCvL6qDgeeAZye5HDgDcDlVfVY4PJuWZK0wvQWIFV1V1Vd1z3/AXArcBBwHHBBt9kFwPF91SBJ6s9YxkCSrGdwkcrVwJqquqt76TvAmp20OS3JNUmu2bx58zjKlCSNoPcASbIf8EngdVX1/YWvdXPQ73DO+ao6t6o2VNWGAw88sO8yJUkj6jVAujtbfRK4sKo+1a2+O8na7vW1wKY+a5Ak9aPPs7ACvB+4tarOWvDSZ4GTu+cnA5/pqwZJUn/6nEzxaOAVwI1Jru/WvQl4G/CxJKcCG4GX9ViDJKknvQVIVX0RyE5efk5f+9WeaWZmhsFB7/AOOeRgbr99Y08VSdPP6dw1Febn5/nRXaPdV2XftWOdMVuaOk5lIklqYoBIkpoYIJKkJo6B7EFmZmZ45Vtf09ROD1i//hA2brxj5HYO2mvaGCB7kPn5eb504adHbnfUSccveS0r2caNd4w8YA8O2mv62IUlSWpigEiSmhggkqQmjoFoapx55pkjtxn16vXd4dXymjYGiKbGC5933Ejbv+Oc8zj7rPNH3s/pZ5wychvwanlNH7uwJElNDBBJUhMDRJLUxACRJDVxEF29aJ02RdLKYYCoF06bIk0/u7AkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDXxQsIlMjs7y9zc6PfJbrEqq5qnFJekpWKALJG5ubmx3Vtia23lA296z8jtnFpE0lKyC0uS1MQAkSQ1MUAkSU0cA9GinJpd0o4YIFpUy9TsTssuTT+7sCRJTQwQSVITA0SS1GRqx0Bar9ZeleWfqQ5qS1oOpjZApvlqbe83Lmk5WP5/bkuSliUDRJLUxACRJDWZ2jEQqU9nnnnmpEuQJs4AkRq88HnHjdzmHeec10Ml0uT01oWV5Pwkm5LctGDdAUkuS3Jb9/ORfe1fktSvPsdAPggcu926NwCXV9Vjgcu7ZUnSCtRbgFTVVcB3t1t9HHBB9/wC4Pi+9i9J6te4z8JaU1V3dc+/A6zZ2YZJTktyTZJrNm/ePJ7qpGVmZmaGJCM/1q8/ZNKlaw8wsUH0qqoktYvXzwXOBdiwYcNOt5Om2fz8PD+6a27kdvuuXddDNdI/Ne4jkLuTrAXofm4a8/4lSUtk3AHyWeDk7vnJwGfGvH9J0hLp8zTeDwNfBh6XZC7JqcDbgOcmuQ34lW5ZkrQC9TYGUlUn7uSl5/S1T0nS+Hgl+g4kmXQJavDnl47WIzozM9N0zxhJAwbIDpx91vkjt/Efosk7/l+9cKTt33HOed5XRdoNzsYrSWpigEiSmhggkqQmBog0hVqnQNlnn32cNkVDcxBdmkK7MwXKqO2cNmXP5RGIJKmJASJJamKASJKaOAYijdGZZ5456RKkJWOASGP0mhNPHWn7d5xzXk+VSLvPLixJUhMDRJLUxACRJDVxDERqMOrU8dI0MkCkBqNOHQ8OiGv62IUlSWpigEiSmhggkqQmjoFsZ1VWNd2edlXastj7cu9ZvnDllSO38ep1LVcGyHa21lY+8Kb3jNzulW99TdP+5ufnufKii0dq80sveVHTvjR5P/eYx43cZtSr18EBe42HXViSpCYGiCSpiQEiSWriGMgy4FXN6oOD7+qbAbIMjHpVswOkGoaD7+qbXViSpCYGiCSpiQEiSWoytWMgMzMzTRf3zczM9FCNpO2tX38IGzfeMXK7Qw45mNtv39hDRRrV1AbI/Pw8X7rw0yO3O+qk45e8FkkPtnHjHfzorrmR2+27dl0P1aiFXViSpCYGiCSpiQEiSWpigEiSmkztILqkNqNOgTIzM0OSnqrRcmaASPonXvi840ba/h3nnOfZVHsou7AkSU0MEElSEwNEktTEMZAlMjMzw+lnnDLpMjSFvnDllWNt13J/mtZ7j7S2G3XQfu+99+YnP/nJyPtx2pRdM0CWyPz8PFdedPHI7X7pJS/qoRpNk597zOPG2q7l/jSjttnddmefdf5IbU4/4xQH+nswkS6sJMcm+WaSbyV5wyRqkCTtnrEHSJIZ4Gzg+cDhwIlJDh93HZKk3TOJI5CnAd+qqm9X1U+AjwCjnXguSZq4VNV4d5icABxbVb/ZLb8CeHpV/fZ2250GnNYtPg745gi7eTRwzxKUu7uWSx2wfGqxjgdbLrUslzpg+dTSWsc9VXXsUhez3CzbQfSqOhc4t6VtkmuqasMSl7Ri64DlU4t1PNhyqWW51AHLp5blUsdyNYkurDuB2QXL67p1kqQVZBIB8lXgsUkOTbI38HLgsxOoQ5K0G8behVVVW5L8NnApMAOcX1U3L/Fumrq+erBc6oDlU4t1PNhyqWW51AHLp5blUseyNPZBdEnSdHAuLElSEwNEktRk6gJkUtOkJDk/yaYkNy1Yd0CSy5Lc1v185BjqmE1yRZJbktyc5LUTrOUhSb6S5IauljO79Ycmubr7jD7anUzRuyQzSb6W5OJJ1ZHk9iQ3Jrk+yTXdurF/Nt1+90/yiSTfSHJrkmeOu5Ykj+t+F9se30/yugl9X3+n+57elOTD3fd3It/VlWKqAmTC06R8ENj+wqE3AJdX1WOBy7vlvm0BXl9VhwPPAE7vfgeTqOXHwDFV9STgSODYJM8A3g68s6oOA74HnDqGWgBeC9y6YHlSdTy7qo5ccH3BJD4bgHcDl1TV44EnMfjdjLWWqvpm97s4EngK8H+Bi8ZdR5KDgP8AbKiqIxic4PNyJvcdWRmqamoewDOBSxcsvxF44xj3vx64acHyN4G13fO1wDcn8Dv5DPDcSdcCPAy4Dng6gyt7V+/oM+tx/+sY/EN0DHAxkAnVcTvw6O3Wjf2zAR4B/D3diTSTrGXBvn8V+JtJ1AEcBPwDcACDs1MvBp43ie/ISnpM1REID3wJtpnr1k3Kmqq6q3v+HWDNOHeeZD3wZODqSdXSdRtdD2wCLgP+DrivqrZ0m4zrM3oX8HvA1m75UROqo4C/THJtN10PTOazORTYDHyg69Z7X5J9J1TLNi8HPtw9H2sdVXUn8MfAHcBdwD8C1zKZ78iKMW0BsmzV4E+YsZ0znWQ/4JPA66rq+5Oqparma9A9sY7BRJqPH8d+F0ryImBTVV077n3vwLOq6hcYdLOenuQXF744xs9mNfALwHur6snAj9ium2ic35NubOHFwMe3f20cdXRjLMcxCNZ/AezLg7uktZ1pC5DlNk3K3UnWAnQ/N41jp0n2YhAeF1bVpyZZyzZVdR9wBYNugP2TbLuIdRyf0dHAi5PczmD252MY9P+Pu45tf+lSVZsY9PU/jcl8NnPAXFVd3S1/gkGgTOp78nzguqq6u1sedx2/Avx9VW2uqp8Cn2LwvRn7d2QlmbYAWW7TpHwWOLl7fjKD8YheJQnwfuDWqjprwrUcmGT/7vlDGYzF3MogSE4YVy1V9caqWldV6xl8Jz5fVSeNu44k+yZ5+LbnDPr8b2ICn01VfQf4hyTbblv4HOCWSdTSOZEHuq+YQB13AM9I8rDu/6Ftv4+xfkdWnEkPwiz1A3gB8LcM+trfPMb9fphB3+lPGfx1dyqDfvbLgduAvwIOGEMdz2JwuP914Pru8YIJ1fLzwNe6Wm4Cfr9b/7PAV4BvMeiy2GeMn9MvAxdPoo5ufzd0j5u3fT8n8dl0+z0SuKb7fD4NPHJC35N9gXuBRyxYN4k6zgS+0X1XPwTsM8nv6kp4OJWJJKnJtHVhSZLGxACRJDUxQCRJTQwQSVITA0SS1MQA0VRLcnySSjL2K+ClaWeAaNqdCHyx+ylpCRkgmlrdfGDPYnBR58u7dauSvKe7B8ZlST6X5ITutackubKb6PDSbVNpSNoxA0TT7DgG97v4W+DeJE8BXspg2v3DgVcwmJtr2/xhfwKcUFVPAc4H/mgSRUsrxerFN5FWrBMZTJoIg0kUT2Twnf94VW0FvpPkiu71xwFHAJcNpkJihsHUNJJ2wgDRVEpyAINZd5+YpBgEQjGYAXeHTYCbq+qZYypRWvHswtK0OgH4UFUdUlXrq2qWwR34vgv8m24sZA2DyRVhcAe8A5Pc36WV5AmTKFxaKQwQTasTefDRxieBf85gtuRbgP/N4Da7/1hVP2EQOm9PcgODWYyPGlu10grkbLza4yTZr6p+mORRDKbqProG98eQNALHQLQnuri70dXewB8aHlIbj0AkSU0cA5EkNTFAJElNDBBJUhMDRJLUxACRJDX5/yNxnB9IslY8AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 402.375x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.displot(data = train_data, x= 'Age', hue ='Pclass')" ] }, { "cell_type": "code", "execution_count": 11, "id": "ccbe7448", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:20.187604Z", "iopub.status.busy": "2021-12-07T18:18:20.186932Z", "iopub.status.idle": "2021-12-07T18:18:20.190841Z", "shell.execute_reply": "2021-12-07T18:18:20.191365Z", "shell.execute_reply.started": "2021-12-07T18:13:10.257876Z" }, "papermill": { "duration": 0.04003, "end_time": "2021-12-07T18:18:20.191540", "exception": false, "start_time": "2021-12-07T18:18:20.151510", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "#sns.displot(data = train_data, x= 'Age', hue ='Pclass', multiple=\"stack\", kind=\"kde\")" ] }, { "cell_type": "code", "execution_count": 12, "id": "ff870102", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:20.260476Z", "iopub.status.busy": "2021-12-07T18:18:20.259711Z", "iopub.status.idle": "2021-12-07T18:18:20.278293Z", "shell.execute_reply": "2021-12-07T18:18:20.278903Z", "shell.execute_reply.started": "2021-12-07T18:13:10.266180Z" }, "papermill": { "duration": 0.054949, "end_time": "2021-12-07T18:18:20.279128", "exception": false, "start_time": "2021-12-07T18:18:20.224179", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>Age mean</th>\n", " <th>Age median</th>\n", " </tr>\n", " <tr>\n", " <th>Pclass</th>\n", " <th>Sex</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">1</th>\n", " <th>female</th>\n", " <td>34.611765</td>\n", " <td>35.0</td>\n", " </tr>\n", " <tr>\n", " <th>male</th>\n", " <td>41.281386</td>\n", " <td>40.0</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">2</th>\n", " <th>female</th>\n", " <td>28.722973</td>\n", " <td>28.0</td>\n", " </tr>\n", " <tr>\n", " <th>male</th>\n", " <td>30.740707</td>\n", " <td>30.0</td>\n", " </tr>\n", " <tr>\n", " <th rowspan=\"2\" valign=\"top\">3</th>\n", " <th>female</th>\n", " <td>21.750000</td>\n", " <td>21.5</td>\n", " </tr>\n", " <tr>\n", " <th>male</th>\n", " <td>26.507589</td>\n", " <td>25.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Age mean Age median\n", "Pclass Sex \n", "1 female 34.611765 35.0\n", " male 41.281386 40.0\n", "2 female 28.722973 28.0\n", " male 30.740707 30.0\n", "3 female 21.750000 21.5\n", " male 26.507589 25.0" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mean = train_data.groupby(['Pclass','Sex'])['Age'].mean()\n", "median = train_data.groupby(['Pclass','Sex'])['Age'].median()\n", "age_sex_Pclass = pd.concat([mean, median], axis=1, keys=['Age mean', 'Age median'])\n", "\n", "age_sex_Pclass.head(6)\n" ] }, { "cell_type": "code", "execution_count": 13, "id": "97bde06f", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:20.348933Z", "iopub.status.busy": "2021-12-07T18:18:20.348130Z", "iopub.status.idle": "2021-12-07T18:18:20.355667Z", "shell.execute_reply": "2021-12-07T18:18:20.356244Z", "shell.execute_reply.started": "2021-12-07T18:13:10.295076Z" }, "papermill": { "duration": 0.043951, "end_time": "2021-12-07T18:18:20.356433", "exception": false, "start_time": "2021-12-07T18:18:20.312482", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "S 644\n", "C 168\n", "Q 77\n", "Name: Embarked, dtype: int64" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.Embarked.value_counts()" ] }, { "cell_type": "code", "execution_count": 14, "id": "de561783", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:20.430368Z", "iopub.status.busy": "2021-12-07T18:18:20.429610Z", "iopub.status.idle": "2021-12-07T18:18:20.447605Z", "shell.execute_reply": "2021-12-07T18:18:20.448167Z", "shell.execute_reply.started": "2021-12-07T18:13:10.304718Z" }, "papermill": { "duration": 0.059062, "end_time": "2021-12-07T18:18:20.448371", "exception": false, "start_time": "2021-12-07T18:18:20.389309", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Embarked</th>\n", " <th>C</th>\n", " <th>Q</th>\n", " <th>S</th>\n", " </tr>\n", " <tr>\n", " <th>Survived</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>75</td>\n", " <td>47</td>\n", " <td>427</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>93</td>\n", " <td>30</td>\n", " <td>217</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "Embarked C Q S\n", "Survived \n", "0 75 47 427\n", "1 93 30 217" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(train_data.Survived, train_data.Embarked)" ] }, { "cell_type": "code", "execution_count": 15, "id": "d170f7b3", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:20.537787Z", "iopub.status.busy": "2021-12-07T18:18:20.527406Z", "iopub.status.idle": "2021-12-07T18:18:20.550279Z", "shell.execute_reply": "2021-12-07T18:18:20.550766Z", "shell.execute_reply.started": "2021-12-07T18:13:10.335555Z" }, "papermill": { "duration": 0.062634, "end_time": "2021-12-07T18:18:20.550967", "exception": false, "start_time": "2021-12-07T18:18:20.488333", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>Embarked</th>\n", " <th>C</th>\n", " <th>Q</th>\n", " <th>S</th>\n", " </tr>\n", " <tr>\n", " <th>Pclass</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1</th>\n", " <td>85</td>\n", " <td>2</td>\n", " <td>127</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>17</td>\n", " <td>3</td>\n", " <td>164</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>66</td>\n", " <td>72</td>\n", " <td>353</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ "Embarked C Q S\n", "Pclass \n", "1 85 2 127\n", "2 17 3 164\n", "3 66 72 353" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.crosstab(train_data.Pclass, train_data.Embarked)" ] }, { "cell_type": "code", "execution_count": 16, "id": "34ae242a", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:20.622271Z", "iopub.status.busy": "2021-12-07T18:18:20.621550Z", "iopub.status.idle": "2021-12-07T18:18:21.107899Z", "shell.execute_reply": "2021-12-07T18:18:21.107126Z", "shell.execute_reply.started": "2021-12-07T18:13:10.357033Z" }, "papermill": { "duration": 0.523754, "end_time": "2021-12-07T18:18:21.108055", "exception": false, "start_time": "2021-12-07T18:18:20.584301", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.FacetGrid at 0x7f075194c6d0>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAFgCAYAAACCD78cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXrUlEQVR4nO3df7RdZX3n8feH3ICOFPDHbRpJGBhNaZkOIl4R0VYUpwvUJdgi6LhKyqKGzqjLDtNWOnQtZbUzrfOjVmtFWKJGl0IoI0OKDGj5Ucf6i6CI8sOSMkASQQJV8Cca+M4f54k5xkjuTe5zz70n79daZ529n/3svb/3rKz1ybPPPs9OVSFJUi97jboASdJ4M2gkSV0ZNJKkrgwaSVJXBo0kqauJURewO44//vi66qqrRl2GJA3LqAuYbxb0iOaBBx4YdQmSpJ1Y0EEjSZr/DBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6mpBPyZgVxy4/CC+vnHDqMsYe09ftpxNG+4ZdRmS5oE9Lmi+vnEDp57/mVGXMfbWnHnMqEuQNE946UyS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSV12DJskBSS5NcnuS25I8P8lTknwyyR3t/cmtb5K8K8n6JDcnObJnbZKkudF7RPNO4Kqq+iXgWcBtwNnANVW1ArimrQOcAKxor1XAeZ1rkyTNgW5Bk2R/4NeACwGq6odV9S3gRGB167YaOKktnwh8qAY+BxyQZGmv+iRJc6PniOYQYDPwgSRfSvK+JE8CllTVva3PfcCStnwgsGFo/42t7SckWZVkXZJ1mzdv7li+JGk29AyaCeBI4LyqejbwXbZdJgOgqgqomRy0qi6oqqmqmpqcnJy1YiVJffQMmo3Axqr6fFu/lEHwfGPrJbH2fn/bvglYPrT/stYmSVrAugVNVd0HbEhyaGs6DrgVWAusbG0rgcvb8lrgtHb32dHAQ0OX2CRJC9RE5+O/CfhIkr2BO4HTGYTbJUnOAO4GTml9rwReBqwHvtf6SpIWuK5BU1U3AVM72HTcDvoW8Iae9UiS5p4zA0iSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSV12DJsldSb6S5KYk61rbU5J8Mskd7f3JrT1J3pVkfZKbkxzZszZJ0tyYixHNi6vqiKqaautnA9dU1QrgmrYOcAKwor1WAefNQW2SpM5GcensRGB1W14NnDTU/qEa+BxwQJKlI6hPkjSLegdNAZ9IcmOSVa1tSVXd25bvA5a05QOBDUP7bmxtkqQFbKLz8V9YVZuS/DzwySS3D2+sqkpSMzlgC6xVAAcddNDsVSpJ6qLriKaqNrX3+4HLgKOAb2y9JNbe72/dNwHLh3Zf1tq2P+YFVTVVVVOTk5M9y5ckzYJuQZPkSUl+busy8OvAV4G1wMrWbSVweVteC5zW7j47Gnho6BKbJGmB6nnpbAlwWZKt5/loVV2V5AbgkiRnAHcDp7T+VwIvA9YD3wNO71ibJGmOdAuaqroTeNYO2h8EjttBewFv6FWPJGk0nBlAktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXXUPmiSLknwpyRVt/ZAkn0+yPsmaJHu39n3a+vq2/eDetUmS+puLEc2bgduG1t8OvKOqngl8EzijtZ8BfLO1v6P1kyQtcF2DJsky4OXA+9p6gJcAl7Yuq4GT2vKJbZ22/bjWX5K0gPUe0fwl8IfAY239qcC3qmpLW98IHNiWDwQ2ALTtD7X+PyHJqiTrkqzbvHlzx9IlSbOhW9AkeQVwf1XdOJvHraoLqmqqqqYmJydn89CSpA4mOh77BcArk7wMeAKwH/BO4IAkE23UsgzY1PpvApYDG5NMAPsDD3asT5I0B7qNaKrqj6pqWVUdDLwGuLaqXgdcB5zcuq0ELm/La9s6bfu1VVW96pMkzY1R/I7mLcBZSdYz+A7mwtZ+IfDU1n4WcPYIapMkzbKel85+rKquB65vy3cCR+2gzw+AV89FPZKkuePMAJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJX0wqaJC+YTpskSdub7ojmr6bZJknST3jcSTWTPB84BphMctbQpv2ART0LkySNh53N3rw3sG/r93ND7Q+z7ZkykiT9TI8bNFX198DfJ/lgVd09RzVJksbIdJ9Hs0+SC4CDh/epqpf0KEqSND6mGzR/A7wXeB/waL9yJEnjZrpBs6WqzutaiSRpLE339ua/TfIfkixN8pStr66VSdIeLMk5SW5JcnOSm5I8bxaO+cokZ89Sfd+Zbt/pjmhWtvc/GGor4F9N90SSpOlpPy15BXBkVT2S5GkM7gKezr4TVbVlR9uqai2wdvYqnZ5pBU1VHdK7EEnSjy0FHqiqRwCq6gGAJHcBU1X1QJIp4H9U1bFJ3gY8g8F//u9JcghwRlXd0va7Hvh94FeAKeAc4GbgkKp6LMmTgNvb/gcBfw1MAt8DXl9Vt7djfpTBT14un8kfM90paE7b0WsmJ5IkTdsngOVJ/jHJe5K8aBr7HAa8tKpeC6wBTgFIshRYWlXrtnasqoeAm4Ctx30FcHVV/Qi4AHhTVT2HQTi9p/V5J3BeVf0b4N6Z/DHT/Y7muUOvXwXeBrxyJieSJE1PVX0HeA6wCtgMrEny2zvZbW1Vfb8tX8K2H9WfAly6g/5rgFPb8mvaOfZlMBvM3yS5CTifwegK4AXARW35wzP5e6Z76exNw+tJDgAunsmJJEnTV1WPAtcD1yf5CoPvyrewbYDwhO12+e7QvpuSPJjkcAZh8rs7OMVa4L+2G7ueA1wLPAn4VlUd8bPK2pW/ZVcfE/BdwO9tJKmDJIcmWTHUdARwN3AXg1AA+M2dHGYN8IfA/lV18/Yb26jpBgaXxK6oqker6mHg/yV5dasjSZ7VdvkHBiMfgNfN5O+Z1ogmyd+yLckWAb/MYGgmSZp9+wJ/1a4ebQHWM7iM9svAhUn+hMFo5/FcyiBE/uRx+qxh8IP8Y4faXgecl+SPgcUMrl59GXgz8NEkb2GGNwOkaucjoe2+iNoC3F1VG2dyoh6mpqZq3bp1O+84JAmnnv+ZThVpqzVnHsN0/m1JYyijLmC+mdalsza55u0MZnB+MvDDnkVJksbHdG9vPgX4AvBqBncwfD6JjwmQJO3UdGcGOAd4blXdD5BkEvg7dnzLnCRJPzbdu8722hoyzYMz2FeStAeb7ojmqiRXs+3HOqcCV/YpSZI0Th43aJI8E1hSVX+Q5DeAF7ZNnwU+0rs4SdLCt7PLX38JPAxQVR+rqrOq6izgsrZNkjSmkhyf5GtJ1u/O4wV2FjRLquor2ze2toN39aSSpOnLxOKvJ6lZe00s/vpOz5ksYjCL8wkMJux8bZLDdqX+nX1Hc8DjbHvirpxQkjRDj25Z+i/fcsX1s3W4u9/+imOn0e0oYH1V3QmQ5GLgRODWmZ5vZyOadUlev31jkt8Bbny8HZM8IckXkny5PSXu3NZ+SJLPt6HYmiR7t/Z92vr6tv3gmf4xkqRZcyCwYWh9Y2ubsZ2NaH4PuCzJ69gWLFMMnvT2qp3s+wjwkqr6TpLFwKeT/B/gLOAdVXVxkvcCZwDntfdvVtUzk7wGeDvbprCWJC1QjzuiqapvVNUxwLkMZg29Czi3qp5fVfftZN9qs4PCYGK2xQwm5nwJ237ouRo4qS2f2NZp249L4pxBkjQam4DlQ+vLWtuMTfd5NNcB18304O3LpBuBZzL4UumfGDzrYOvzrIeHYj8eplXVliQPAU8FHtjumKsYzGLKQQcdNNOSJEnTcwOwoj3CeRODRwT8u105UNdf97fnGxzBIAmPAn5pFo55QVVNVdXU5OTk7h5OkrQDbUDwRuBq4Dbgkqq6ZVeONd2ZAXZLVX0ryXXA84EDkky0P2J4KLZ1mLYxyQSwP4OpbiRpz7Zo4t5p3ik27eNNp1tVXckszALTbUSTZLI9tIckTwT+LYNUvI5tz7JeybYH6Kxt67Tt15YPNJEkasuPnl5VmbXXlh89fS7r7zmiWQqsbt/T7MVg2HVFkluBi5P8KfAl4MLW/0Lgw0nWA//MtkeGSpIWsG5B055R/ewdtN/J4Pua7dt/wOB5N5KkMeJU/5KkrgwaSVJXBo0kqSuDRpL0U5K8P8n9Sb66u8cyaCRpnttnIrP6mIB9JrLTxwQAHwSOn4365+QHm5KkXffDR1lab93v+tk6Xs59+Nid9amqT83WLPqOaCRJXRk0kqSuDBpJUlcGjSSpK4NGkvRTklwEfBY4NMnGJGfs6rG860yS5rm9F3HvdO4Um8nxdtanql47W+czaCRpnntkS83ptP6zzUtnkqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpq4lRFzDXFi3emzVnHjPqMsbeosV7j7oESfPEHhc0j/7oh9QHXj7qMsZeTv/4qEuQNE946UyS1JVBI0nqyqCRJHXVLWiSLE9yXZJbk9yS5M2t/SlJPpnkjvb+5NaeJO9Ksj7JzUmO7FWbJGnu9BzRbAH+U1UdBhwNvCHJYcDZwDVVtQK4pq0DnACsaK9VwHkda5MkzZFuQVNV91bVF9vyt4HbgAOBE4HVrdtq4KS2fCLwoRr4HHBAkqW96pMkzY05+Y4mycHAs4HPA0uq6t626T5gSVs+ENgwtNvG1rb9sVYlWZdk3ebNm/sVLUmaFd2DJsm+wP8Cfq+qHh7eVlUF1EyOV1UXVNVUVU1NTk7OYqWSpB66Bk2SxQxC5iNV9bHW/I2tl8Ta+/2tfROwfGj3Za1NkrSA9bzrLMCFwG1V9RdDm9YCK9vySuDyofbT2t1nRwMPDV1ikyQtUD2noHkB8FvAV5Lc1Nr+M/DnwCVJzgDuBk5p264EXgasB74HnN6xNknSHOkWNFX1aSA/Y/NxO+hfwBt61SNJGg1nBpAkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSeqq58wA2pPtNcFgFiL18vRly9m04Z5RlyHtlEGjPh7bwqnnf2bUVYy1NWceM+oSpGnx0pkkqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUVbegSfL+JPcn+epQ21OSfDLJHe39ya09Sd6VZH2Sm5Mc2asuSdLc6jmi+SBw/HZtZwPXVNUK4Jq2DnACsKK9VgHndaxLkjSHugVNVX0K+Oftmk8EVrfl1cBJQ+0fqoHPAQckWdqrNknS3Jnr72iWVNW9bfk+YElbPhDYMNRvY2v7KUlWJVmXZN3mzZv7VSpJmhUjuxmgqgqoXdjvgqqaqqqpycnJDpVJkmbTXAfNN7ZeEmvv97f2TcDyoX7LWpskaYGb66BZC6xsyyuBy4faT2t3nx0NPDR0iU2StIBN9DpwkouAY4GnJdkIvBX4c+CSJGcAdwOntO5XAi8D1gPfA07vVZfmRvaaYM2Zx4y6jLG2aPHeoy5BmpZuQVNVr/0Zm47bQd8C3tCrFs29emwL9YGXj7qMsZbTPz7qEqRpcWYASVJXBo0kqSuDRpLUlUEjSerKoJEkddXtrjNJne01QZJRVzHWnr5sOZs23DPqMhY8g0ZaqB7bwqnnf2bUVYw1fws2O7x0JknqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSupoYdQGSdk32mvCZ9p0tWrz3qEsYCwaNtEDVY1uoD7x81GWMtZz+8VGXMBa8dCZJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6mpeBU2S45N8Lcn6JGePuh5J0u6bN0GTZBHw18AJwGHAa5McNtqqJEm7a94EDXAUsL6q7qyqHwIXAyeOuCZJ0m5KVY26BgCSnAwcX1W/09Z/C3heVb1xu36rgFVt9VDga3Na6Gg8DXhg1EWMOT/j/vaUz/iBqjp+1EXMJwtu9uaqugC4YNR1zKUk66pqatR1jDM/4/78jPdc8+nS2SZg+dD6stYmSVrA5lPQ3ACsSHJIkr2B1wBrR1yTJGk3zZtLZ1W1JckbgauBRcD7q+qWEZc1X+xRlwpHxM+4Pz/jPdS8uRlAkjSe5tOlM0nSGDJoJEldGTTzXJJzktyS5OYkNyV53qhrGidJfiHJxUn+KcmNSa5M8oujrmucJFmW5PIkdyS5M8m7k+wz6ro0dwyaeSzJ84FXAEdW1eHAS4ENo61qfCQJcBlwfVU9o6qeA/wRsGS0lY2P9hl/DPjfVbUCWAE8EfhvIy1Mc2re3HWmHVrK4FfGjwBU1Z7wq+q59GLgR1X13q0NVfXlEdYzjl4C/KCqPgBQVY8m+Y/A3UnOqarvjLY8zQVHNPPbJ4DlSf4xyXuSvGjUBY2ZXwFuHHURY+5fs91nXFUPA3cBzxxFQZp7Bs081v639xwGc7ttBtYk+e2RFiVJM2TQzHNV9WhVXV9VbwXeCPzmqGsaI7cwCHL1cyvbfcZJ9gN+gT1jQlxh0MxrSQ5NsmKo6Qjg7hGVM46uBfZpM4IDkOTwJL86wprGzTXAv0hyGvz4uVP/E3h3VX1/pJVpzhg089u+wOoktya5mcED4d422pLGRw2mxXgV8NJ2e/MtwJ8B9422svEx9BmfnOQO4EHgsar6L6OtTHPJKWgkzZkkxwAXAa+qqi+Ouh7NDYNGktSVl84kSV0ZNJKkrgwaSVJXBo0kqSuDRgtCkkfb7NVbX2fPYN9jk1yxm+e/PsnULu77wSQn7875pYXMSTW1UHy/qo4YxYnbjwwl7SJHNFrQktyV5M/aKGddkiOTXN1+gPm7Q133S/LxJF9L8t4ke7X9z2v73ZLk3O2O+/YkXwRePdS+Vxuh/GmSRUn+e5Ib2vOCzmx90p658rUkfwf8/Bx9HNK8ZNBooXjidpfOTh3adk8b7fxf4IPAycDRwLlDfY4C3sRgdoVnAL/R2s+pqingcOBFSQ4f2ufBqjqyqi5u6xPAR4A7quqPgTOAh6rqucBzgdcnOYTBL+EPbec6DThmVj4BaYHy0pkWise7dLa2vX8F2Leqvg18O8kjSQ5o275QVXcCJLkIeCFwKXBKm+tsgsHzfw4Dbm77rNnuPOcDlwxNn/LrwOFD37/sz+DBXr8GXFRVjwJfT3LtrvzB0rhwRKNx8Eh7f2xoeev61v9MbT8FRrXRx+8Dx7UnmH4ceMJQn+9ut89ngBcn2donwJuq6oj2OqSqPrGbf4s0dgwa7SmOSnJI+27mVODTwH4MwuShJEuAE3ZyjAuBK4FLkkwAVwP/PsligCS/mORJwKeAU9t3OEsZPMlT2mN56UwLxROT3DS0flVVTfsWZ+AG4N0Mnup4HXBZVT2W5EvA7cAG4B92dpCq+osk+wMfBl4HHAx8MUkYPJzuJOAyBo8wvhW4B/jsDOqUxo6TakqSuvLSmSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSu/j+4ihvlP/CPkAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 411.875x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.displot(data = train_data, x= 'Embarked', hue ='Survived', multiple=\"stack\")" ] }, { "cell_type": "code", "execution_count": 17, "id": "724e984e", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:21.185729Z", "iopub.status.busy": "2021-12-07T18:18:21.184922Z", "iopub.status.idle": "2021-12-07T18:18:21.649229Z", "shell.execute_reply": "2021-12-07T18:18:21.649807Z", "shell.execute_reply.started": "2021-12-07T18:13:10.659317Z" }, "papermill": { "duration": 0.503838, "end_time": "2021-12-07T18:18:21.649983", "exception": false, "start_time": "2021-12-07T18:18:21.146145", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.FacetGrid at 0x7f07517884d0>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAFgCAYAAACCD78cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXCElEQVR4nO3dfbTdVX3n8feHhIcWFEQzWTGJE1ozuBinPBgpos6g2DYgS2ir+MAMgckYu4qOHcZWps6MOrYdnelUsVVqliBxFtUg1RKVkVIetFVBYkUogjWjYhJQLlZBZYoGvvPH2YFDvHDvTe6+596b92uts87vt3/7t8/3cG/uh9/D2SdVhSRJvewz6gIkSfObQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuugZNkkOSXJbk9iS3JXlOkkOTXJXka+35Sa1vkrw7yZYkNyc5ZqLxV69eXYAPHz58zKaHdtH7iOZ84FNV9QzgSOA24Dzg6qpaCVzd1gFOAla2xzrggokGv+eee3rULEmaRt2CJsnBwL8ELgSoqh9X1feBU4ENrdsG4LS2fCrwwRq4HjgkyZJe9UmSZkbPI5rDgDHgA0m+lOT9SQ4EFlfVXa3Pt4HFbXkpsHVo/22t7VGSrEuyOcnmsbGxjuVLkqZDz6BZCBwDXFBVRwM/4pHTZADUYP6bKZ3TrKr1VbWqqlYtWrRo2oqVJPXRM2i2Aduq6oa2fhmD4PnOzlNi7fnutn07sHxo/2WtTZI0h3ULmqr6NrA1yeGt6UTgK8AmYE1rWwNc3pY3AWe2u8+OA+4dOsUmSZqjFnYe/3XAJUn2A74OnM0g3C5Nsha4Azi99b0COBnYAtzf+kqS5riuQVNVNwGrxtl04jh9CzinZz2SpJnnzACSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHXV+3M0s87S5U/jzm1bJ+6ovcpTly1n+9ZvjboMaV7a64Lmzm1befn7PjfqMjTLbHzN8aMuQZq3PHUmSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkddU1aJJ8M8ktSW5Ksrm1HZrkqiRfa89Pau1J8u4kW5LcnOSYnrVJkmbGTBzRvKCqjqqqVW39PODqqloJXN3WAU4CVrbHOuCCGahNktTZKE6dnQpsaMsbgNOG2j9YA9cDhyRZMoL6JEnTqHfQFPCXSb6YZF1rW1xVd7XlbwOL2/JSYOvQvtta26MkWZdkc5LNY2NjveqWJE2ThZ3Hf15VbU/yT4Crktw+vLGqKklNZcCqWg+sB1i1atWU9pUkzbyuRzRVtb093w18DDgW+M7OU2Lt+e7WfTuwfGj3Za1NkjSHdQuaJAcmecLOZeCXgb8DNgFrWrc1wOVteRNwZrv77Djg3qFTbJKkOarnqbPFwMeS7HydP6uqTyW5Ebg0yVrgDuD01v8K4GRgC3A/cHbH2iRJM6Rb0FTV14Ejx2n/LnDiOO0FnNOrHknSaDgzgCSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpq+5Bk2RBki8l+URbPyzJDUm2JNmYZL/Wvn9b39K2r+hdmySpv5k4onk9cNvQ+juAd1bV04HvAWtb+1rge639na2fJGmO6xo0SZYBLwbe39YDvBC4rHXZAJzWlk9t67TtJ7b+kqQ5rPcRzbuA3wEeautPBr5fVTva+jZgaVteCmwFaNvvbf0fJcm6JJuTbB4bG+tYuiRpOnQLmiSnAHdX1Renc9yqWl9Vq6pq1aJFi6ZzaElSBws7jv1c4CVJTgYOAJ4InA8ckmRhO2pZBmxv/bcDy4FtSRYCBwPf7VifJGkGdDuiqar/VFXLqmoF8Argmqo6A7gWeGnrtga4vC1vauu07ddUVfWqT5I0M0bxOZo3Aucm2cLgGsyFrf1C4Mmt/VzgvBHUJkmaZj1PnT2sqq4DrmvLXweOHafPPwIvm4l6JEkzx5kBJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHU1qaBJ8tzJtEmStKvJHtH88STbJEl6lIWPtzHJc4DjgUVJzh3a9ERgQc/CJEnzw+MGDbAfcFDr94Sh9vuAl/YqSpI0fzxu0FTVp4FPJ7m4qu6YoZokSfPIREc0O+2fZD2wYnifqnphj6IkSfPHZIPmI8CfAu8HHuxXjiRpvpls0Oyoqgu6ViKN0j4LSTLqKjTLPHXZcrZv/daoy5jzJhs0H0/ym8DHgAd2NlbVP3SpSpppD+3g5e/73Kir0Cyz8TXHj+y1k7wJeBWDs0gPAa+pqhv2cMyXAEdU1dunob4fVtVBk+k72aBZ055/e6itgJ+bSmGSpIm1j5acAhxTVQ8keQqDu4Ans+/Cqtox3raq2gRsmr5KJ2dSQVNVh/UuRJL0sCXAPVX1AEBV3QOQ5JvAqqq6J8kq4A+r6oQkbwF+nsH//H8ryWHA2qq6te13HfAG4JnAKuBNwM3AYVX1UJIDgdvb/k8D3gMsAu4HXl1Vt7cx/4zBR14un8qbmewUNGeO95hgnwOSfCHJl5PcmuStrf2wJDck2ZJkY5L9Wvv+bX1L275iKm9EkuaRvwSWJ/n7JO9N8q8msc8RwIuq6pXARuB0gCRLgCVVtXlnx6q6F7gJ2DnuKcCVVfUTYD3wuqp6FoNwem/rcz5wQVX9C+CuqbyZyU5B8+yhx/OBtwAvmWCfB4AXVtWRwFHA6iTHAe8A3llVTwe+B6xt/dcC32vt72z9JGmvU1U/BJ4FrAPGgI1Jzppgt01V9f/a8qU88qH604HLxum/EXh5W35Fe42DGMwG85EkNwHvY3B0BfBc4ENt+X9P5f1M9tTZ64bXkxwCfHiCfQr4YVvdtz0KeCGDC1wAGxiE1gXAqW0ZBv9R/iRJ2jiStFepqgeB64DrktzC4Fr5Dh45QDhgl11+NLTv9iTfTfILDMLkN8Z5iU3AHyQ5lEGoXQMcCHy/qo56rLJ2573s7tcE/AiY8LpNkgUtFe8GrgL+L4M3sfNC1TZgaVteCmwFaNvvBZ48zpjrkmxOsnlsbGw3y5ek2SvJ4UlWDjUdBdwBfJNBKAD8+gTDbAR+Bzi4qm7edWM7arqRwSmxT1TVg1V1H/CNJC9rdSTJkW2XzzI48gE4YyrvZ7LXaD6eZFN7fBL4KoNbnR9XK/woYBlwLPCMqRT3GGOur6pVVbVq0aJFezqcJM1GBwEbknwlyc0Mrr+8BXgrcH6SzUz84fnLGATDpY/TZyPwr9vzTmcAa5N8GbiVwdkmgNcD57Sjq6VMwWRvb/7DoeUdwB1VtW2yL1JV309yLfAc4JCh2++WAdtbt+3AcmBbkoXAwcB3J/sakjRfVNUXGVwr2dVfA/9snP5vGaftO+zyN76qLgYuHlq/DMgufb4BrB5nvG8w+Bu+039+7HfwaJM6ommTa97OYAbnJwE/nmifJIvatRyS/AzwS8BtwLU8cpFqDY/cJreJRz6v81LgGq/PSNLcN9lTZ6cDXwBexuAOhhuSTPQ1AUuAa9th343AVVX1CeCNwLlJtjC4BnNh638h8OTWfi5w3lTfjCRp9pnsqbM3Ac+uqrthcLQC/BXj3zIHQLv4dPQ47V9ncL1m1/Z/ZBBkkqR5ZLJ3ne2zM2Sa705hX0nSXmyyRzSfSnIlj3xY5+XAFX1KkiTNJ48bNEmeDiyuqt9O8mvA89qmzwOX9C5OkjT3TXT6613AfQBV9dGqOreqzmXwGZp39S1NkjRKSVYn+Wqbg3K3b9CaKGgWV9Utuza2thW7+6KSpMnLwn3vTFLT9li4750TvmaygMEszicx+MDoK5McsTv1T3SN5pDH2fYzu/OCkqQpenDHkn/6xk9cN13D3fGOU06YRLdjgS3tTmGSfJjBLAFfmerrTXREsznJq3dtTPLvgC9O9cUkSXPGw/NPNsNzU07JREc0vwV8LMkZPBIsqxh809uv7s4LSpL2Lo8bNG2unOOTvIDBN7MBfLKqrulemSRplHbOP7nT8NyUUzLZ76O5lsEcZZKkvcONwMr2Fc7bGcwE/arH32V8k/3ApiRpL1JVO5K8FrgSWABcVFW37s5YBo0kzXYLFt41yTvFJj3eZLpV1RVMwywwBo0kzXK14ydPHXUNe8KJMSVJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ+ilJLkpyd5K/29OxDBpJmuX2X5hp/ZqA/Rdmwq8JAC4GVk9H/X6ORpJmuR8/yJJ68xOvm67x8tb7TpioT1V9JsmK6Xg9j2gkSV0ZNJKkrgwaSVJXBo0kqSuDRpL0U5J8CPg8cHiSbUnW7u5Y3nUmSbPcfgu4azJ3ik1lvIn6VNUrp+v1DBpJmuUe2FFz+msCDBoJYJ+FbHzN8aOuQrPMgn33G3UJ84JBIwE8tIP6wItHXYVmmZz9yVGXMC94M4AkqSuDRpLUlUEjSerKoJEkdWXQSJK6MmgkSV0ZNJKkrgwaSVJXBo0kqSuDRpLUlUEjSerKoJEkddUtaJIsT3Jtkq8kuTXJ61v7oUmuSvK19vyk1p4k706yJcnNSY7pVZskaeb0PKLZAfzHqjoCOA44J8kRwHnA1VW1Eri6rQOcBKxsj3XABR1rkyTNkG5BU1V3VdXftuUfALcBS4FTgQ2t2wbgtLZ8KvDBGrgeOCTJkl71SZJmxoxco0myAjgauAFYXFU7v0b028DitrwU2Dq027bWtutY65JsTrJ5bGysX9GSpGnRPWiSHAT8OfBbVXXf8LaqKqCmMl5Vra+qVVW1atGiRdNYqSSph65Bk2RfBiFzSVV9tDV/Z+cpsfZ8d2vfDiwf2n1Za5MkzWE97zoLcCFwW1X90dCmTcCatrwGuHyo/cx299lxwL1Dp9gkSXPUwo5jPxf4N8AtSW5qbb8LvB24NMla4A7g9LbtCuBkYAtwP3B2x9okSTOkW9BU1d8AeYzNJ47Tv4BzetUjSRoNZwaQJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEldGTSSpK4MGklSVwaNJKkrg0aS1JVBI0nqauGoC5hpC/bdj42vOX7UZWi22Wev+6cgzZhu/7qSXAScAtxdVc9sbYcCG4EVwDeB06vqe0kCnA+cDNwPnFVVf9ujrgd/8mPqAy/uMbTmsJz9yVGXIM1bPU+dXQys3qXtPODqqloJXN3WAU4CVrbHOuCCjnVJkmZQt6Cpqs8A/7BL86nAhra8AThtqP2DNXA9cEiSJb1qkyTNnJm+GWBxVd3Vlr8NLG7LS4GtQ/22tbafkmRdks1JNo+NjfWrVJI0LUZ211lVFVC7sd/6qlpVVasWLVrUoTJJ0nSa6aD5zs5TYu357ta+HVg+1G9Za5MkzXEzHTSbgDVteQ1w+VD7mRk4Drh36BSbJGkO63l784eAE4CnJNkGvBl4O3BpkrXAHcDprfsVDG5t3sLg9uaze9UlSZpZ3YKmql75GJtOHKdvAef0qkWSNDpOQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1ZdBIkroyaCRJXRk0kqSuDBpJUlcGjSSpK4NGktSVQSNJ6sqgkSR1NauCJsnqJF9NsiXJeaOuR5K052ZN0CRZALwHOAk4AnhlkiNGW5UkaU/NmqABjgW2VNXXq+rHwIeBU0dckyRpDy0cdQFDlgJbh9a3Ab+4a6ck64B1bfWHSb461RfK2Z/crQLnoacA94y6iNnC34uH+XsxJMlUd/lUVa3uUctcNZuCZlKqaj2wftR1zAdJNlfVqlHXodnF3wtNt9l06mw7sHxofVlrkyTNYbMpaG4EViY5LMl+wCuATSOuSZK0h2bNqbOq2pHktcCVwALgoqq6dcRlzXeegtR4/L3QtEpVjboGSdI8NptOnUmS5iGDRpLUlUGjhyU5IcknRl2H9kySf5/ktiSXdBr/LUne0GNszU+z5mYASdPmN4EXVdW2URcigUc0806SFUluT3Jxkr9PckmSFyX5bJKvJTm2PT6f5EtJPpfk8HHGOTDJRUm+0Po5HdAckORPgZ8D/k+SN433M0xyVpK/SHJVkm8meW2Sc1uf65Mc2vq9OsmNSb6c5M+T/Ow4r/fzST6V5ItJ/jrJM2b2HWsuMGjmp6cD/wt4Rnu8Cnge8Abgd4HbgedX1dHAfwX+YJwx3gRcU1XHAi8A/meSA2egdu2BqvoN4E4GP7MDeeyf4TOBXwOeDfw+cH/7ffg8cGbr89GqenZVHQncBqwd5yXXA6+rqmcx+P16b593prnMU2fz0zeq6haAJLcCV1dVJbkFWAEcDGxIshIoYN9xxvhl4CVD5+IPAJ7G4A+O5obH+hkCXFtVPwB+kORe4OOt/RbgF9ryM5P8HnAIcBCDz7g9LMlBwPHAR4bmA9u/w/vQHGfQzE8PDC0/NLT+EIOf+dsY/KH51SQrgOvGGSPAr1fVlCct1awx7s8wyS8y8e8IwMXAaVX15SRnASfsMv4+wPer6qhprVrzjqfO9k4H88g8cmc9Rp8rgdel/a9qkqNnoC5Nrz39GT4BuCvJvsAZu26sqvuAbyR5WRs/SY7cw5o1Dxk0e6f/Afz3JF/isY9q38bglNrN7fTb22aqOE2bPf0Z/hfgBuCzDK7rjecMYG2SLwO34ndIaRxOQSNJ6sojGklSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0Giv0eb+ujXJzUluah9clNSZMwNor5DkOcApwDFV9UCSpwD7jbgsaa/gEY32FkuAe6rqAYCquqeq7kzyrCSfbrMPX5lkSZKDk3x156zWST6U5NUjrV6aw/zApvYKbQLIvwF+FvgrYCPwOeDTwKlVNZbk5cCvVNW/TfJLwH8DzgfOqqrVIypdmvM8daa9QlX9MMmzgOczmDJ/I/B7DKbLv6pNB7YAuKv1v6rN4fUewPm7pD3gEY32SkleCpwDHFBVzxln+z4MjnZWACfv/NoFSVPnNRrtFZIc3r5/Z6ejGHy3zqJ2owBJ9k3yz9v2/9C2vwr4QJvBWNJu8IhGe4V22uyPGXyJ1w5gC7AOWAa8m8FXJywE3gV8BvgL4Niq+kGSPwJ+UFVvnvHCpXnAoJEkdeWpM0lSVwaNJKkrg0aS1JVBI0nqyqCRJHVl0EiSujJoJEld/X+9H+VZ/rIJDQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 411.875x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.displot(data = train_data, x= 'Sex', hue ='Survived', multiple=\"stack\")" ] }, { "cell_type": "code", "execution_count": 18, "id": "0f04afb1", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:21.723022Z", "iopub.status.busy": "2021-12-07T18:18:21.722144Z", "iopub.status.idle": "2021-12-07T18:18:23.058368Z", "shell.execute_reply": "2021-12-07T18:18:23.057722Z", "shell.execute_reply.started": "2021-12-07T18:13:10.954670Z" }, "papermill": { "duration": 1.374104, "end_time": "2021-12-07T18:18:23.058513", "exception": false, "start_time": "2021-12-07T18:18:21.684409", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.FacetGrid at 0x7f07517b0dd0>" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAFgCAYAAADjFJ/HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlYUlEQVR4nO3df7Skd10n+PenuxNQEojBTCZ0uic4sLARJUoPSGBn+KEzQVxhRobAsBjdzATO4g6Msyqss/4448zIGY/KuuqQBQRZBwIISwYcEMMvFQZIIPwWQX51J4EQFJK4HpLufPaP+zS0bf+4fW/VrW/Vfb3OqXOrnqqnns+tW/dzq9/9PJ+nujsAAAAALN6ORRcAAAAAwBpBDQAAAMAgBDUAAAAAgxDUAAAAAAxCUAMAAAAwCEENAAAAwCAENayUqjpUVddX1Ueq6tVV9c0neOzPVdX/tpX1HaeOB1bVu6vqayPUA3C0Je2tT6uqD1XVh6vqXVX14EXXBHDYkvbVJ0x99fqquraqHrnommBVCWpYNX/V3Rd194OS3JHkmYsuaB3+PMm/TPJLiy4E4DiWsbd+Jsk/6O7vSPJvk1y54HoAjrSMffWaJA/u7ouS/M9JXrTYcmB1CWpYZX+Y5H5JUlU/PP0PwAer6uVHP7Cq/kVVvW+6/3cP/69GVf3T6X86PlhV75yWfXtVvXf634QPVdX9N1Nkd9/c3e9LcudmngdgiyxLb31Xd//FdPO/JTl/M88HMEfL0ldv7+6ebt4jSZ/o8cDG7Vp0ATAPVbUryeOSvKmqvj3Jv0lycXffUlVnH2OV13b3/z2t+wtJLk/ya0l+Jsk/6u4bquqs6bHPTPKC7v6dqjo9yc5jbP+qJA84xnZ+ubt/e5PfHsBCLHFvvTzJf13XNwmwhZatr1bVP07yH5L8rSSPP7XvFlgvQQ2r5puq6vrp+h8meXGSZyR5dXffkiTd/efHWO9B0x+7s5KckeTN0/I/TvLSqnpVktdOy96d5Ker6vys/bH85NFP1t2XzubbARjC0vbWqnp01v4hY5YCMJKl7Kvd/bokr6uqv5+1w0q/91TWB9ZHUMOq+avpuNmvq6r1rPfSJE/s7g9W1Y8keVSSdPczq+phWfsfg+uq6iHd/Z+r6j3Tst+rqmd091uP2qY9aoBVspS9taq+M2szFB7X3V9eT8EAW2Qp++ph3f3Oqvq2qvrWw8ESMDuCGraDt2Yt+f/l7v5yVZ19jP+hODPJTVV1WpKnJbkhSarq73b3e5K8p6oel2RPVd0ryae7+/+sqr1JvnPaxtfZowbYBoburdNzvDbJ07v7Tzf6TQJsodH76v2S/Fl3d1V9d5K7JRGCwxwIalh53f3Rqvp3Sd5RVYeSfCDJjxz1sP8jyXuSfGn6eua0/D9Og9cqa5PuP5jkp5I8varuTPKFJP9+M/VV1d9Ocm2Seya5q6qek+TC7r51M88LME+j99aszWu4d5LfmP6X+mB379vkcwLMzRL01R9K8sPT8/1VkkuPGC4MzFD53QIAAAAYg9NzAwAAAAxCUAMAAAAwCEENAAAAwCAENQAAAACDWIqzPl1yySX9pje9adFlAIyoNrKSvgpwQnorwGxtqK9uV0uxR80tt9yy6BIAVoq+CjB7eisAs7AUQQ0AAADAdiCoAQAAABiEoAYAAABgEIIaAAAAgEEIagAAAAAGIagBAAAAGISgBgAAAGAQghoAAACAQQhqAAAAAAYhqAEAAAAYhKAGAAAAYBCCGgAAAIBBCGoAAIClsXvP3lTVKV9279m76NIB1mXXogsAAABYrxsP7M+lL3zXKa931TMunkM1ALNnjxoAAACAQQhqAAAAAAYhqAEAAAAYhKAGAAAAYBCCGgAAAIBBCGoAAAAABiGoAQAAABiEoAYAAABgEIIaAAAAgEEIagAAAAAGIagBAAAAGISgBgAAAGAQghoAAACAQQhqAAAAAAYhqAEAAAAYhKAGAAAAYBCCGgAAAIBBCGoAAAAABiGoAQAAttTuPXtTVRu6AKy6XYsuAAAA2F5uPLA/l77wXRta96pnXDzjagDGYo8aAAAAgEEIagAAAAAGIagBAAAAGISgBgAAAGAQghoAAACAQQhqAAAAAAYhqAEAAAAYhKAGAAAAYBCCGgAAAIBB7Jrnk1fVZ5PcluRQkoPdva+qzk5yVZILknw2yZO7+y/mWQcAAADAMtiKPWoe3d0Xdfe+6fZzk1zT3fdPcs10GwAAAGDbW8ShT09I8rLp+suSPHEBNQAAAAAMZ95BTSf5/aq6rqqumJad2903Tde/kOTcOdcAAAAAsBTmOqMmySO7+4aq+ltJ3lJVf3Lknd3dVdXHWnEKdq5Ikr179865TIDVp68CzJ7eCsCszXWPmu6+Yfp6c5LXJXloki9W1XlJMn29+TjrXtnd+7p73znnnDPPMgG2BX0VYPb0VgBmbW5BTVXdo6rOPHw9yT9M8pEkVye5bHrYZUleP68aAAAAAJbJPA99OjfJ66rq8Hb+c3e/qarel+RVVXV5ks8lefIcawAAAABYGnMLarr700kefIzlX07y2HltFwAAAGBZLeL03AAAAAAcg6AGAAAAYBCCGgAAAIBBCGoAAAAABiGoAQAAVt+OXamqDV1279m76OqBbWSep+cGAAAYw10Hc+kL37WhVa96xsUzLgbg+OxRAwAAADAIQQ0AAADAIAQ1AAAAAIMQ1AAAAAAMQlADAAAAMAhBDQAAAMAgBDUAAAAAgxDUAAAAAAxCUAMAAAAwCEENAAAAwCAENQAAAACDENQAAAAADEJQAwAAADAIQQ0AAMCJ7NiVqtrQZfeevYuuHlgyuxZdAAAAwNDuOphLX/iuDa161TMunnExwKqzRw0AAADAIAQ1AAAAAIMQ1AAAAAAMQlADAAAAMAhBDQAAAMAgBDUAAAAAgxDUAAAAAAxCUAMAAAAwCEENAAAAwCAENQAAAACDENQAAAAADEJQAwAAADAIQQ0AAADAIAQ1AAAAAIMQ1AAAAAAMQlADAAAAMAhBDQAAAMAgBDUAAAAAgxDUAAAAAAxCUAMAAAAwiLkHNVW1s6o+UFVvmG7ft6reU1Wfqqqrqur0edcAAAAAsAy2Yo+aZyf5+BG3n5/kV7r7fkn+IsnlW1ADAAAAwPDmGtRU1flJHp/kRdPtSvKYJK+ZHvKyJE+cZw0AAAAAy2Lee9T8apKfTHLXdPveSb7S3Qen2weS7D7WilV1RVVdW1XXfulLX5pzmQCrT18FmD29FYBZm1tQU1U/kOTm7r5uI+t395Xdva+7951zzjkzrg5g+9FXAWZPbwVg1nbN8bkfkeQHq+r7k9w9yT2TvCDJWVW1a9qr5vwkN8yxBgAAAIClMbc9arr7ed19fndfkOQpSd7a3U9L8rYkT5oedlmS18+rBgAAAIBlshVnfTraTyX58ar6VNZm1rx4ATUAAAAADGeehz59XXe/Pcnbp+ufTvLQrdguAAAAwDJZxB41AAAAAByDoAYAAABgEIIaAAAAgEEIagAAAAAGIagBAAAAGISgBgAAAGAQghoAAACAQQhqAAAAAAYhqAEAAAAYhKAGAAAAYBCCGgAAAIBBCGoAAAAABiGoAQAAABiEoAYAAABgEIIaAAAAgEEIagAAAAAGIagBAAAAGISgBgAAAGAQghoAAACAQQhqAAAAAAYhqAEAAAAYhKAGAAAAYBCCGgAAAIBBCGoAAAAABiGoAQAAABiEoAYAAABgEIIaAAAAgEEIagAAAAAGIagBAAAAGISgBgAAAGAQghoAAACAQawrqKmqR6xnGQAAAAAbt949an5tncsAAAAAtlRV/XRVfbSqPlRV11fVw2bwnD9YVc+dUX23r/exu07yRA9PcnGSc6rqx4+4655Jdm6sPAAAAIDZmLKLH0jy3d39tar61iSnr3PdXd198Fj3dffVSa6eXaXrc7I9ak5PckbWAp0zj7jcmuRJ8y0NAAAA4KTOS3JLd38tSbr7lu6+sao+O4U2qap9VfX26frPVdXLq+qPk7y8qv5bVX374SerqrdPj/+Rqvq/qupeVfW5qtox3X+PqtpfVadV1d+tqjdV1XVV9YdV9cDpMfetqndX1Yer6hdO5Zs54R413f2OJO+oqpd29+dO5YkBAAAAtsDvJ/mZqvrTJH+Q5KopzziRC5M8srv/qqr+VZInJ/nZqjovyXndfW1VPShJuvurVXV9kn+Q5G1Z23vnzd19Z1VdmeSZ3f3J6XCr30jymCQvSPKb3f3bVfWsU/lmThjUHOFu08YvOHKd7n7MqWwMAAAAYJa6+/aqekiS/yHJo5NctY7ZMld3919N11+VtbDnZ7MW2LzmGI+/KsmlWQtqnpLkN6rqjKyNi3l1VR1+3N2mr49I8kPT9Zcnef56v5/1BjWvTvKfkrwoyaH1PjkAAADAvHX3oSRvT/L2qvpwksuSHMw3Rr7c/ahV/vKIdW+oqi9X1XdmLYx55jE2cXWSf19VZyd5SJK3JrlHkq9090XHK2sj38t6z/p0sLt/s7vf293XHb5sZIMAAAAAs1JVD6iq+x+x6KIkn0vy2ayFKsk39m45nquS/GSSe3X3h46+s7tvT/K+rB3S9IbuPtTdtyb5TFX906mOqqoHT6v8cdb2vEmSp53K97PeoOa/VNX/UlXnVdXZhy+nsiEAAACAOTgjycuq6mNV9aGszZ/5uSQ/n+QFVXVtTn500GuyFqy86gSPuSrJ/zR9PexpSS6vqg8m+WiSJ0zLn53kWdPePbtP5ZtZ76FPl01ff+KIZZ3k2463QlXdPck7s3Z81q4kr+nun62q+yZ5ZZJ7J7kuydO7+45TKRoAAAAgSaYjfi4+xl1/mOS/O8bjf+4Yy76YozKS7n5pkpcecfs1Seqox3wmySXHeL7PJHn4EYv+zfG/g79uXUFNd993vU94hK8lecw01Oe0JH9UVf81yY8n+ZXufmVV/acklyf5zQ08PwAAAMBKWVdQU1U/fKzl3f3bx1unuzvJ7dPN06ZLZ+00Vf9sWv6yrO2OJKgBAAAAtr31Hvr09464fvckj03y/iTHDWqSpKp2Zu3wpvsl+fUkf5a1icgHp4ccyHGO1aqqK5JckSR79+5dZ5kAHI++CjB7eisAs7beQ5/+1yNvV9VZWZszc7L1DiW5aHr865I8cL2FdfeVSa5Mkn379m3olFYAfIO+CjB7eisAs7besz4d7S+TrHtuTXd/JcnbsjZI56yqOhwQnZ/khg3WAAAAALBS1juj5r9kbb5MkuxM8t/nxKesSlWdk+TO7v5KVX1Tku9L8vysBTZPytoeOZclef3GSgcAAABYLeudUfNLR1w/mORz3X3gJOucl7XzmO/M2p47r+ruN1TVx5K8sqp+IckHkrz4VIsGAAAAGElVXZLkBVnbweVF3f2LG3me9c6oeUdVnZtvDBX+5DrW+VCS7zrG8k8neeipFAkAAACwHrXrtBtz6OB5M3vCnbtu6oN33ueE21zbSeXXs3Y00YEk76uqq7v7Y6e6ufUe+vTkJP8xyduTVJJfq6qf6O7XnOoGAQAAAObm0MHz/s5PveHts3q6zz3/Bx61joc9NMmnpp1TUlWvTPKEJPMJapL8dJK/1903Txs8J8kfJBHUAAAAANvd7iT7j7h9IMnDNvJE6z3r047DIc3ky6ewLgAAAADrsN49at5UVW9O8orp9qVJfm8+JQEAAAAslRuS7Dni9vnTslN2wqCmqu6X5Nzu/omq+idJHjnd9e4kv7ORDQIAAACsmPcluX9V3TdrAc1TkvyzjTzRyfao+dUkz0uS7n5tktcmSVV9x3Tf/7iRjQIAAACsiu4+WFU/luTNWTs990u6+6Mbea6TBTXndveHj1HAh6vqgo1sEAAAAGBudu66aZ1nalr3863nYd39e5nBmJiTBTVnneC+b9rsxgEAAABmqQ/eeZ9F17AZJztz07VV9S+OXlhV/zzJdfMpCQAAAGB7OtkeNc9J8rqqelq+EczsS3J6kn88x7oAAAAAtp0TBjXd/cUkF1fVo5M8aFr8xu5+69wrAwAAANhmTrZHTZKku9+W5G1zrgUAAABgWzvZjBoAAAAAtoigBgAAAGATquolVXVzVX1ks88lqAEAAABWxt121Y1V1bO63G1X3biOzb40ySWzqH9dM2oAAAAAlsEdh3Je/+w93z6r56ufv/VRJ3tMd7+zqi6YxfbsUQMAAAAwCEENAAAAwCAENQDA1+3eszdVtaHL7j17F10+LC2/eytsxy4/W+CUmFEDAHzdjQf259IXvmtD6171jItnXA1sH373VthdB/1sgVNijxoAAACATaiqVyR5d5IHVNWBqrp8o89ljxoAAABgZZy+Mzet50xNp/J8J3tMdz91VtsT1AAAAAAr42sH+z6LrmEzHPoEAAMyWBQAYHuyRw0ADMhgUQCA7ckeNQAAAACDENQAAAAADEJQAwAAADAIQQ1Ly6BNYHSb6VObsmPXYrYLAMCmGSbM0jJoExjdwvrUXQf1RwCAJWWPGgAAAIBBCGoAAAAABiGoAQAAABiEoAYAADhlCxuYDrDiDBMGAABOmRM7AMyHPWoAAAAABiGoAQAAABiEoAYAAABgEIIaAAAAgEEIagAAAAAGMbegpqr2VNXbqupjVfXRqnr2tPzsqnpLVX1y+vot86oBAAAAYJnMc4+ag0n+dXdfmOR7kjyrqi5M8twk13T3/ZNcM90GAAAA2PbmFtR0903d/f7p+m1JPp5kd5InJHnZ9LCXJXnivGoAAAAAWCa7tmIjVXVBku9K8p4k53b3TdNdX0hy7nHWuSLJFUmyd+/eLaiSZbPztNNz1TMu3vC6sN3oqwCzp7cCMGtzD2qq6owkv5vkOd19a1V9/b7u7qrqY63X3VcmuTJJ9u3bd8zHsL0duvOO9G89fkPr1o++ccbVwPj0VYDZ01sBmLW5nvWpqk7LWkjzO9392mnxF6vqvOn+85LcPM8aAAAAAJbFPM/6VElenOTj3f3LR9x1dZLLpuuXJXn9vGoAAAAAWCbzPPTpEUmenuTDVXX9tOx/T/KLSV5VVZcn+VySJ8+xBgAAAIClMbegprv/KEkd5+7Hzmu7sC47duXIeUmn4j7n78kN+z8/44IAAABgi876BMO562AufeG7NrTqRs80BQAAACcz12HCAAAAAKyfoAYAAABgEIIaAAAAgEEIakiS7N6zN1W1ocvuPXsXXf7S8DoDAABwIoYJkyS58cB+w3W3gNcZAACAE7FHDQAAAMAgBDUAAAAAgxDUwLLYsct8GwCA7WQTn/92nX53nx1hSZlRA8viroPm2wAAbCeb/PznsyMsJ3vUAAAAAAxCUAMAAAAwCEENAAAAwCAENSzU7j17NzzkLDuMWAIAAGC1+JcuC3Xjgf2GnAEAAMDEHjUAAAAAgxDUAAAAAAxCUAMAAAAwCEENAAAAwCAENQAAAACDENQAAAAADEJQAwAAADAIQQ0AAADAIHYtugDGsPO003PVMy7e8LoAq2r3nr258cD+RZcBMBd63Drt2LXhz8oAp0pQQ5Lk0J13pH/r8Rtat370jTOuBmAcNx7Yn0tf+K4NretDPTA6PW6d7jroszKwZRz6BAAAADAIQQ0AAADAIAQ1AAAAAIMwo4bN27ErVbXoKgAAlpYTOwBwmKCGzbvroCF0AACb4MQOABzm0CcAAACAQQhqAAAAAAYhqAEAAAAYhBk1K2T3nr258cD+ja28Y3u9FWrHLgP7YIPOuueZ+eptt29o3XudeUa+cuttM66ImdIfgdFttE9tor9tt8/KwGLpOCvkxgP7DfVdp77roIF9sEFfve12vz+rTH8ERrfBPlU/+kb9DVgKDn0CAAAAGISgBgAAAGAQghoAAACAQZhRw2IZ6rZ+BnwCAKvCZ8Cx7diVqtrQqvc5f09u2P/5GRcE24sux2IZWrl+XisAYFX4XDO2uw46SQks0NwOfaqql1TVzVX1kSOWnV1Vb6mqT05fv2Ve2wcAAABYNvOcUfPSJJcctey5Sa7p7vsnuWa6DQAAAEDmGNR09zuT/PlRi5+Q5GXT9ZcleeK8tg8AAACwbLZ6Rs253X3TdP0LSc493gOr6ookVyTJ3r17t6A0WGEGwhF9dSE2MyxzUds1pBNOid4KwKwt7NNYd3dV9QnuvzLJlUmyb9++4z4OWAcD4Yi+uhCLGpZpSCdsGb0VgFmb54yaY/liVZ2XJNPXm7d4+wAAAADD2uqg5uokl03XL0vy+i3ePgAAAMCw5nl67lckeXeSB1TVgaq6PMkvJvm+qvpkku+dbgMAAACQOc6o6e6nHueux85rm9vdztNOX8jwyNpuQys3MZgXYL2Wsrduoj/uPO1uOXTn1055PQPPIT6bAKyYJfxXMsdz6M47FjI8srfb0EqDeYEtsJS9dZP9cSPr6qsQn00AVsxWz6gBAAAA4DgENQAAAACDENQAAAAADMKMGthKhoOumwGhADC4ZfxcA7AEdEjYSoaDntK6AMDAlvFzDcAScOgTAAAAwCAENQAAAACDcOgTnKJyPDZsKztPO93v/IravWdvbjywf0PrmqMFAMyLT5Bwitrx2LCtHLrzDr/zK+rGA/vN0QIAhuPQJwAAAIBBCGoAAAAABiGoAQAAABiEGTUAwPLasStVtegqAABmRlADACyvuw4aCAwArBSHPgEAAAAMQlADAAAAMAhBDQAAAMAgzKgZ0Fn3PDNfve32RZfBCqkduzY+i2Ez68JRdiQbHvx6rzPPyFduvW22BcFGbWKI8X3O35Mb9n9+xgUBDEJ/hE0T1Azoq7fdnv6tx5/yevWjb5xDNayCvuvght5Tydr7ajPrwpHuSryfWA2GGAMcm/4Im+bQJwAAAIBBCGoAAAAABiGoAQAAABiEGTUArLzde/bmxgP7N7byDn8qt8R2Glxu0CYztqmTBgAwHJ8+AVh5Nx7Yb7Dh6DY49Hwph0wbtMmMbfakAQCMxaFPAAAAAIMQ1AAAAAAMQlADAAAAMIiVn1GzmQGSBvbB8vE7D4uzqYGmGxzavNltmvnCdreI39vtxrBn4FStfHc1QBK2F7/zsDiLGGi62W0awMp2ZxDx/HmNgVPl0CcAAACAQQhqAAAAAAYhqAEAAAAYxMrPqNl52ukbnjux87TTZ1wNbC+bGp63c1eqarYFsW1t5m+BYZkci+GgwFbQa7aGk1EwmpX/9HnozjsM74IF2ezwvI0MBfZhhmPxt4BZMxwU2Ap6zdZwMgpG49AnAAAAgEEIagAAAAAGIagBAAAAGMTKz6hZlLPueWa+etvtiy4D2CKb+Z2/15ln5Cu33jbjioBVtdFB6zt2npa7Dt25oXV3nna3HLrzaxta16BNWIxNDSJe1BDjHRs/mcRm+lR2LuYEGJupeaPr6snLQVAzJ1+97XaDv2Ab8TsPbJWtHtKerA3LNGgTlstmBxEv5HPNXQcX1qeWsbc68cbqWsihT1V1SVV9oqo+VVXPXUQNAAAAAKPZ8qCmqnYm+fUkj0tyYZKnVtWFW10HAAAAwGgWsUfNQ5N8qrs/3d13JHllkicsoA4AAACAoVR3b+0Gq56U5JLu/ufT7acneVh3/9hRj7siyRXTzQck+cQpbupbk9yyyXLnYcS6RqwpGbOuEWtKxqxrxJqSMevaTE23dPcl63ngDPpqsnqv3zyNWNeINSVj1jViTcmYdY1YU7I8vXUVX795GbGmZMy6RqwpGbOuEWtKxqxrS/oqAwc1M9jOtd29b5bPOQsj1jViTcmYdY1YUzJmXSPWlIxZ14g1Hc+ItY5YUzJmXSPWlIxZ14g1JWPWNWJNybh1HW3UOkesa8SakjHrGrGmZMy6RqwpGbOuEWtaVYs49OmGJHuOuH3+tAwAAABgW1tEUPO+JPevqvtW1elJnpLk6gXUAQAAADCUXVu9we4+WFU/luTNSXYmeUl3f3QOm7pyDs85CyPWNWJNyZh1jVhTMmZdI9aUjFnXiDUdz4i1jlhTMmZdI9aUjFnXiDUlY9Y1Yk3JuHUdbdQ6R6xrxJqSMesasaZkzLpGrCkZs64Ra1pJWz6jBgAAAIBjW8ShTwAAAAAcg6AGAAAAYBArGdRU1SVV9Ymq+lRVPXdBNbykqm6uqo8csezsqnpLVX1y+votC6hrT1W9rao+VlUfrapnL7q2qrp7Vb23qj441fTz0/L7VtV7pp/jVdPw6S1VVTur6gNV9YaBavpsVX24qq6vqmunZSO8t86qqtdU1Z9U1cer6uELfl89YHqNDl9urarnDPJa/avpvf6RqnrF9Duw8PfWiYzQV6c6huutI/bVaft666nVNFxvHa2vTjUN2VuXsa8meutJahqut47cV6c6huqtI/bVqYaheuuofXWqbSl76ypYuaCmqnYm+fUkj0tyYZKnVtWFCyjlpUkuOWrZc5Nc0933T3LNdHurHUzyr7v7wiTfk+RZ0+uzyNq+luQx3f3gJBcluaSqvifJ85P8SnffL8lfJLl8C2s67NlJPn7E7RFqSpJHd/dF3b1vuj3Ce+sFSd7U3Q9M8uCsvW4Lq6u7PzG9RhcleUiS/y/J6xZZU5JU1e4k/zLJvu5+UNaGqj8l47y3/oaB+moyZm8dsa8meutGjNZbh+qryZi9dRn7aqK3rsOIvXXkvpqM2VtH66vJYL11xL6aLG9vXRndvVKXJA9P8uYjbj8vyfMWVMsFST5yxO1PJDlvun5ekk8M8Hq9Psn3jVJbkm9O8v4kD0tyS5Jdx/q5blEt52etKT4myRuS1KJrmrb72STfetSyhf78ktwryWcyDSgfpa4j6viHSf54hJqS7E6yP8nZWTvz3huS/KMR3lsnqHmYvjptf+jeOlpfnbavt568rqF66+h9ddr+EL11GfvqsWrSW09a31C9daS+Om13uN46Wl+dtjl0bx2lr07bXMreuiqXldujJt94Qx12YFo2gnO7+6bp+heSnLvIYqrqgiTfleQ9WXBt066a1ye5OclbkvxZkq9098HpIYv4Of5qkp9Mctd0+94D1JQkneT3q+q6qrpiWrbo99Z9k3wpyW9Nu9y+qKruMUBdhz0lySum6wutqbtvSPJLST6f5KYkX01yXcZ4bx3PyH01Ged9NlRfnerRW9dvtN46el9NBumtS9pXE7113UbqrYP21WTM3jpaX03G761D9NVkqXvrSljFoGYp9FoEubBzo1fVGUl+N8lzuvvWI+9bRG3dfajXdvc7P8lDkzxwK7d/tKr6gSQ3d/d1i6zjOB7Z3d+dtV2ln1VVf//IOxf03tqV5LuT/GZ3f1eSv8xRu2cu6j0/HTf7g0leffR9i6hpOr74CVn7oHCfJPfI39zdnA1aZG8dra9O29Vb12+03jpsX03G6q366vzprX9tm0P11WTo3jpaX00G7q0j9dWpHr11gVYxqLkhyZ4jbp8/LRvBF6vqvCSZvt68iCKq6rSs/cH7ne5+7Ui1dfdXkrwta7vRnVVVu6a7tvrn+IgkP1hVn03yyqztRvqCBdeU5Ovpdrr75qwdv/rQLP7ndyDJge5+z3T7NVn7I7joupK1Dwfv7+4vTrcXXdP3JvlMd3+pu+9M8tqsvd8W/t46gZH7arL4n+nQfTXRW9djwN46cl9Nxuqty9hXE731pEburQP11WTQ3jpgX03G7q0j9dVkeXvrSljFoOZ9Se4/TaM+PWu7j1294JoOuzrJZdP1y7J2rO2WqqpK8uIkH+/uXx6htqo6p6rOmq5/U9aOP/541v74PWkRNXX387r7/O6+IGvvobd299MWWVOSVNU9qurMw9ezdhzrR7Lg91Z3fyHJ/qp6wLTosUk+tui6Jk/NN3YhTRZf0+eTfE9VffP0+3j4tVroe+skRu6ryYJ/piP21akuvXWdRuytg/fVZKzeuox9NdFbT2jE3jpiX03G7K0j9tVk+N46Ul9Nlre3roaTDbFZxkuS70/yp1k7ZvSnF1TDK7J2LN+dWUtuL8/asaLXJPlkkj9IcvYC6npk1nab+1CS66fL9y+ytiTfmeQDU00fSfIz0/JvS/LeJJ/K2i6Ad1vQz/JRSd4wQk3T9j84XT56+P09yHvroiTXTj/H/zfJtyy6rqztovnlJPc6YtkIr9XPJ/mT6f3+8iR3W/R7ax01L7yvTnUM11tH7KtTXXrr+msZsreO2FenuobrrcvYV6e69dbj1zRcbx29r061DNFbR+2rUw3D9dYR++pUw1L21lW41PQDAAAAAGDBVvHQJwAAAIClJKgBAAAAGISgBgAAAGAQghoAAACAQQhqAAAAAAYhqIGjVNUTq6qr6oGLrgVgVeitALOnt8JqEtTA3/TUJH80fQVgNvRWgNnTW2EFCWrgCFV1RpJHJrk8yVOmZTuq6jeq6k+q6i1V9XtV9aTpvodU1Tuq6rqqenNVnbfA8gGGpLcCzJ7eCqtLUAN/3ROSvKm7/zTJl6vqIUn+SZILklyY5OlJHp4kVXVakl9L8qTufkiSlyT5d4soGmBweivA7OmtsKJ2LboAGMxTk7xguv7K6fauJK/u7ruSfKGq3jbd/4AkD0rylqpKkp1JbtracgGWgt4KMHt6K6woQQ1MqursJI9J8h1V1Vn7A9ZJXne8VZJ8tLsfvkUlAiwdvRVg9vRWWG0OfYJveFKSl3f33+nuC7p7T5LPJPnzJD80HfN7bpJHTY//RJJzqurru5RW1bcvonCAgemtALOnt8IKE9TANzw1f/N/IX43yd9OciDJx5L8P0nen+Sr3X1H1v5IPr+qPpjk+iQXb1m1AMtBbwWYPb0VVlh196JrgOFV1RndfXtV3TvJe5M8oru/sOi6AJaZ3gowe3orLD8zamB93lBVZyU5Pcm/9ccOYCb0VoDZ01thydmjBgAAAGAQZtQAAAAADEJQAwAAADAIQQ0AAADAIAQ1AAAAAIMQ1AAAAAAM4v8HOpqI2iMCD+YAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1131.88x360 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.displot(data = train_data, x= 'Age', hue ='Survived', col = 'Pclass', multiple=\"stack\")" ] }, { "cell_type": "code", "execution_count": 19, "id": "d3f32059", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:23.136617Z", "iopub.status.busy": "2021-12-07T18:18:23.135540Z", "iopub.status.idle": "2021-12-07T18:18:24.003372Z", "shell.execute_reply": "2021-12-07T18:18:24.003929Z", "shell.execute_reply.started": "2021-12-07T18:13:11.992392Z" }, "papermill": { "duration": 0.910257, "end_time": "2021-12-07T18:18:24.004107", "exception": false, "start_time": "2021-12-07T18:18:23.093850", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "<seaborn.axisgrid.FacetGrid at 0x7f0751645110>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwIAAAFgCAYAAAAIH87AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjmklEQVR4nO3de7RdZX3u8e9jEtAKFZCUxhAKKrUFqhEjKtpT1NOKlxbtUcF6FDlU8BQ61FaPt56qbenQUVtaHUqlFUGHSvBWUSlKFdSKgEG5BURTQJOAEFRQ1AMm/s4fa0a2231ZSfZca2e/388Ya+y53vmuOX9rZebd+1nzlqpCkiRJUlvuM+4CJEmSJI2eQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQAtGktclWZvkqiRXJHnMuGvaFknekOQV465D0sIyH8bGJB/o1v/yHtdxUZJVfS1fWogWj7sAaS4keRzwDODQqro7yd7ALmMuS5LGaj6MjUl+FXh0VT10lOuVNDv3CGihWAbcXlV3A1TV7VV1M0CSRyX5XJLLk3wqybIkD0hyfZKHdX0+kOTFO1JAkhcl+bckFyS5KcnJSf4syVeTXJJkr67fi5N8OcmVST6c5JemWNZDkpzf1fyFJL+xI7VJatbYx0bg08Dybm/Eb083viU5M8lp3Xh5Q5IjkpyR5LokZ25dWNdnTbeX441TrTDJ7yX5UpKvJPlgkt128D1IC5JBQAvFp4EVSb6e5B1JfgcgyRLgbcCzq+pRwBnAKVV1J3AycGaSY4A9q+pfJi80yandL6/Jj1dPU8chwB8CjwZOAX5UVY8EvgS8sOvzkap6dFU9ArgOOH6K5ZwO/GlX8yuAd2zPhyKpefNhbPwD4L+qamVVfYGZx7c9gccBLwfOBU4FDgZ+K8nKrs/rqmoV8HDgd5I8fFJtewN/Afz3qjoUWAP82TZ+blITPDRIC0JV3ZXkUcBvA08EVne/kNYw+OP8giQAi4BbutdckOQ5wNuBR0yz3G09nvXCqvoB8IMkdwIf79qvZvBLC+CQJH8D7AHsBnxq4gK6b64OBz7Y1Qyw6zbWIUnzaWwEhhrfPl5VleRq4Naqurp73Vpgf+AK4LlJTmDwN8wy4CDgqgnLeGzX9sVuHbsw+DJG0iQGAS0YVbUFuAi4qPslcixwObC2qh43uX+S+wC/CfyIwbdQG6bocyqDX56TnV1Vb5qi/e4J0z+d8Pyn3Pv/7UzgmVV1ZZIXAUdMWsZ9gDuqauUUy5ekbTJPxsatZhvfJo6Zk8fTxUkOYLAX4dFV9b3ukKH7Ti4PuKCqnjdDHZLw0CAtEEkeluTACU0rgW8C1wNLuxPmSLIkycFdn5czODTnj4B3d7vKf05VvbzbnT35MdMvutnsDtzSre/5U6zz+8CN3TdyZGDKb+UkaSbzbWycg/Htl4EfAncm2Qd46hR9LgEen+Sh3Trun+TXt2EdUjPcI6CFYjfgbUn2ADYD64ATquqeJM8G3prkAQy2+X9Mshn4Y+CwqvpBks8zOKb09SOo9f8ClwKbup+7T9Hn+cBpSf4CWAKcDVw5gtokLSzzcWzc7vGt25P6VeBrwHrgi1P02dTtbf1Akq2HHf0F8PU5qF1aUFJV465BkiRJ0oh5aJAkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUoJ36qkFHHnlknX/++eMuQ5JGKbN3mZpjpqQGbfeY2YKdeo/A7bffPu4SJGmn4ZgpSZpopw4CkiRJkraPQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWpQb0EgyX2TXJbkyiRrk7yxaz8zyY1JrugeK7v2JHlrknVJrkpyaF+1SZIkSa3r887CdwNPqqq7kiwB/jPJv3fzXllVH5rU/6nAgd3jMcBp3U9JkiRJc6y3PQI1cFf3dEn3qBlechTwnu51lwB7JFnWV32SJElSy3o9RyDJoiRXALcBF1TVpd2sU7rDf05NsmvXthxYP+HlG7q2ycs8IcmaJGs2bdrUZ/mStNNzzJQkTafXIFBVW6pqJbAvcFiSQ4DXAL8BPBrYC3jVNi7z9KpaVVWrli5dOtclS9KC4pgpSZrOSK4aVFV3ABcCR1bVLd3hP3cD7wYO67ptBFZMeNm+XZskjczyFfuRpPfH8hX7jfutSpIa19vJwkmWAj+pqjuS3A/4XeDNSZZV1S1JAjwTuKZ7ybnAyUnOZnCS8J1VdUtf9UnSVG7esJ6j33lx7+tZfeLhva9DkqSZ9HnVoGXAWUkWMdjzcE5VfSLJZ7uQEOAK4CVd//OApwHrgB8Bx/VYmyRJktS03oJAVV0FPHKK9idN07+Ak/qqR5IkSdK9vLOwJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1CCDgCRJktQgg4AkSZLUIIOAJEmS1KDegkCS+ya5LMmVSdYmeWPXfkCSS5OsS7I6yS5d+67d83Xd/P37qk2SJElqXZ97BO4GnlRVjwBWAkcmeSzwZuDUqnoo8D3g+K7/8cD3uvZTu36SJEmSetBbEKiBu7qnS7pHAU8CPtS1nwU8s5s+qntON//JSdJXfZIkSVLLej1HIMmiJFcAtwEXAP8F3FFVm7suG4Dl3fRyYD1AN/9O4IFTLPOEJGuSrNm0aVOf5UvSTs8xU5I0nV6DQFVtqaqVwL7AYcBvzMEyT6+qVVW1aunSpTu6OEla0BwzJUnTGclVg6rqDuBC4HHAHkkWd7P2BTZ20xuBFQDd/AcA3xlFfZIkSVJr+rxq0NIke3TT9wN+F7iOQSB4dtftWOBj3fS53XO6+Z+tquqrPkmSJKlli2fvst2WAWclWcQgcJxTVZ9Ici1wdpK/Ab4KvKvr/y7gvUnWAd8FjumxNkmSJKlpvQWBqroKeOQU7TcwOF9gcvv/A57TVz2SJEmS7uWdhSVJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQGGQQkSZKkBhkEJEmSpAYZBCRJkqQG9RYEkqxIcmGSa5OsTfLSrv0NSTYmuaJ7PG3Ca16TZF2S65M8pa/aJEmSpNYt7nHZm4E/r6qvJNkduDzJBd28U6vqLRM7JzkIOAY4GHgQ8B9Jfr2qtvRYoyRJktSk3vYIVNUtVfWVbvoHwHXA8hlechRwdlXdXVU3AuuAw/qqT5IkSWrZSM4RSLI/8Ejg0q7p5CRXJTkjyZ5d23Jg/YSXbWCK4JDkhCRrkqzZtGlTn2VL0k7PMVOSNJ3eg0CS3YAPAy+rqu8DpwEPAVYCtwB/vy3Lq6rTq2pVVa1aunTpXJcrSQuKY6YkaTq9BoEkSxiEgPdV1UcAqurWqtpSVT8F/oV7D//ZCKyY8PJ9uzZJkiRJc6zPqwYFeBdwXVX9w4T2ZRO6PQu4pps+Fzgmya5JDgAOBC7rqz5JkiSpZX1eNejxwAuAq5Nc0bW9FnhekpVAATcBJwJU1dok5wDXMrji0EleMUiSJEnqR29BoKr+E8gUs86b4TWnAKf0VZMkSZKkAe8sLEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1qLcgkGRFkguTXJtkbZKXdu17JbkgyTe6n3t27Uny1iTrklyV5NC+apMkSZJa1+cegc3An1fVQcBjgZOSHAS8GvhMVR0IfKZ7DvBU4MDucQJwWo+1SZIkSU3rLQhU1S1V9ZVu+gfAdcBy4CjgrK7bWcAzu+mjgPfUwCXAHkmW9VWfJEmS1LKRnCOQZH/gkcClwD5VdUs369vAPt30cmD9hJdt6NomL+uEJGuSrNm0aVN/RUvSAuCYKUmaTu9BIMluwIeBl1XV9yfOq6oCaluWV1WnV9Wqqlq1dOnSOaxUkhYex0xJ0nSGCgJJHj9M2xR9ljAIAe+rqo90zbduPeSn+3lb174RWDHh5ft2bZIkSZLm2LB7BN42ZNvPJAnwLuC6qvqHCbPOBY7tpo8FPjah/YXd1YMeC9w54RAiSZIkaeySvK67IuZVSa5I8pg5WOYfJHn17D2HWtZdw/ZdPMuCHgccDixN8mcTZv0ysGiWZT8eeAFwdZIrurbXAm8CzklyPPBN4LndvPOApwHrgB8Bxw37JiRJkqS+dX8bPwM4tKruTrI3sMuQr11cVZunmldV5zL4UnykZgwCDN7Ybl2/3Se0fx949kwvrKr/BDLN7CdP0b+Ak2apR5IkSRqXZcDtVXU3QFXdDpDkJmBVVd2eZBXwlqo6IskbgIcADwa+leQA4PiqWtu97iLgFcAhwCrgdcBVwAFV9dMk9we+1r1+P+DtwFIGX5q/uKq+1i3z/Qz+Zt96pM1QZgwCVfU54HNJzqyqb27LgiVJkqQF5tPAXyb5OvAfwOru7+WZHAQ8oap+nOTlDI6GeX13ruyyqlqT5BCAqrqzO5Lmd4ALGex9+FRV/STJ6cBLquob3eFI7wCeBPwTcFpVvSfJNn2pPtsega127Va+/8TXVNWTtmVlkiRJ0s6qqu5K8ijgt4EnAquHOLb/3Kr6cTd9DoMw8XoGgeBDU/RfDRzNIAgcA7yjuwrn4cAHB6fhArBr9/PxwP/opt8LvHnY9zNsEPgg8M/AvwJbhl24JEmStJBU1RbgIuCiJFczuPjNZu69CM99J73khxNeuzHJd5I8nMEf+y+ZYhXnAn+bZC/gUcBngfsDd1TVyunK2p73MuxVgzZX1WlVdVlVXb71sT0rlCRJknZGSR6W5MAJTSsZXPzmJgZ/tMO9385PZzXwf4AHVNVVk2dW1V3Alxkc8vOJqtrS3YvrxiTP6epIkkd0L/kigz0HAM/flvczbBD4eJI/SbIsyV5bH9uyIkmSJGkntxtwVpJrk1zF4Pj/NwBvBP4pyRpmP3rmQwz+cD9nhj6rgf/Z/dzq+cDxSa4E1gJHde0vBU7q9k4s35Y3k8HFembplNw4RXNV1YO3ZWVzbdWqVbVmzZpxliBpgUnC0e+8uPf1rD7xcIYZf6cw3dXYZuWYKalB2z1mtmCocwSq6oC+C5EkSZI0OkMFgSQvnKq9qt4zt+VIkiRJGoVhrxr06AnT92VwQ7CvAAYBSZIkaSc07KFBfzrxeZI9gLP7KEiSJElS/4a9atBkPwQ8b0CSJEnaSQ17jsDHufdGBYuA32TmSx5JkiRJmseGPUfgLROmNwPfrKoNPdQjSZIkaQZJjmRww7FFwL9W1Zu2ZzlDHRpUVZ8DvgbsDuwJ3LM9K5MkSZIWiixecnOSmrPH4iU3z7rOZBHwduCpDG5o9rwkB21P/cMeGvRc4O+AixjcmOFtSV5ZVR/anpVKkiRJO70tm5f92qs+cdFcLe6bb37GEUN0OwxYV1U3ACQ5m8Fdhq/d1vUNe2jQ64BHV9Vt3QqXAv/B4BbJkiRJkkZjObB+wvMNwGO2Z0HDXjXoPltDQOc72/BaSZIkSfPMsHsEzk/yKeAD3fOjgfP6KUmSJEnSNDYCKyY837dr22YzBoEkDwX2qapXJvlD4AndrC8B79ueFUqSJEnabl8GDkxyAIMAcAzwR9uzoNn2CPwj8BqAqvoI8BGAJL/Vzfv97VmpJEmSpG1XVZuTnAx8isHlQ8+oqrXbs6zZgsA+VXX1FAVcnWT/7VmhJEmStCAsWnzLkFf6GXp5w3SrqvOYg8P0ZwsCe8ww7347unJJkiRpZ1Wbf/KgcdewI2a78s+aJC+e3Jjkj4HL+ylJkiRJUt9m2yPwMuCjSZ7PvX/4rwJ2AZ7VY12SJEmSejRjEKiqW4HDkzwROKRr/mRVfbb3yiRJkiT1Zqj7CFTVhcCFPdciSZIkaUS8O7AkSZLUIIOAJEmStJNIckaS25Jcs6PLMghIkiRJ22HXxbk5Sc3VY9fFuXmI1Z4JHDkX9Q91joAkSZKkn3fPFpbV63/5orlaXt74/SNm61NVn5+rG/u6R0CSJElqUG9BYKrjl5K8IcnGJFd0j6dNmPeaJOuSXJ/kKX3VJUmSJKnfPQJnMvXxS6dW1crucR5AkoOAY4CDu9e8I8miHmuTJEmSmtZbEKiqzwPfHbL7UcDZVXV3Vd0IrAMO66s2SZIkqXXjOEfg5CRXdYcO7dm1LQfWT+izoWv7BUlOSLImyZpNmzb1Xask7dQcMyVpYUnyAeBLwMOSbEhy/PYua9RXDToN+Gugup9/D/yvbVlAVZ0OnA6watWqmusCJWkhccyUpP7ssohbhrnSz7Ysb7Y+VfW8uVrfSINAVd26dTrJvwCf6J5uBFZM6Lpv1yZJkiTNS3dvrgeNu4YdMdJDg5Ism/D0WcDWKwqdCxyTZNckBwAHApeNsjZJkiSpJb3tEeiOXzoC2DvJBuD1wBFJVjI4NOgm4ESAqlqb5BzgWmAzcFJVbemrNkmSJKl1vQWBaY5fetcM/U8BTumrHkmSJM2d5Sv24+YN62fvuIMetO8KNq7/Vu/radGoTxaWJEnSAnDzhvUc/c6Le1/P6hMP730drRrH5UMlSZIkjZlBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJalCzQWD5iv1I0vtj+Yr9xv1WJUmSpF+weNwFjMvNG9Zz9Dsv7n09q088vPd1SJIkSduq2T0CkiRJUssMApIkSVKDDAKSJElSgwwCkiRJUoMMApIkSVKDDAKSJElSgwwCkiRJUoMMApIkSVKDDAKSJElSgwwCat7yFfuRpPfH8hX7jfutSpIk/czicRcgjdvNG9Zz9Dsv7n09q088vPd1SJIkDcs9ApIkSVKDegsCSc5IcluSaya07ZXkgiTf6H7u2bUnyVuTrEtyVZJD+6pLkiRJUr97BM4EjpzU9mrgM1V1IPCZ7jnAU4EDu8cJwGk91iVJkiQ1r7cgUFWfB747qfko4Kxu+izgmRPa31MDlwB7JFnWV22SJElS60Z9jsA+VXVLN/1tYJ9uejmwfkK/DV3bL0hyQpI1SdZs2rSpv0olaQFwzJQkTWdsJwtXVQG1Ha87vapWVdWqpUuX9lCZJC0cjpmSpOmMOgjcuvWQn+7nbV37RmDFhH77dm2SJEmSejDqIHAucGw3fSzwsQntL+yuHvRY4M4JhxBJkiRJmmO93VAsyQeAI4C9k2wAXg+8CTgnyfHAN4Hndt3PA54GrAN+BBzXV12SJEmSegwCVfW8aWY9eYq+BZzUVy2SpO23fMV+3Lxh/ewdd9CD9l3BxvXf6n09kqSB3oKAJGlhuHnDeo5+58W9r2f1iYf3vg5J0r3GdtUgSZIkSePjHgFJ0owWLdllJN/WL1qyS+/rkCTdyyAgSZrRlp/cQ7376b2vJ8d9svd1SJLu5aFBkiRJUoMMApIkSVKDDAKSJElSgwwCkiRJUoMMApIkSVKDDAKSJElSgwwCkiRJUoMMApIkSVKDDAKSJElSgwwCkiRJUoMMApIkaWjLV+xHkt4fy1fsN+63Ki14i8ddgCRJ2nncvGE9R7/z4t7Xs/rEw3tfh9Q69whIkiRJDXKPgCRJkrbZoiW7jGTPzaIlu/S+jlYZBCRJ0tD8409bbfnJPdS7n977enLcJ3tfR6sMApIkaWj+8SctHJ4jIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1yCAgSZIkNcggIEmSJDXIICBJkiQ1aPE4VprkJuAHwBZgc1WtSrIXsBrYH7gJeG5VfW8c9UmSJEkL3Tj3CDyxqlZW1aru+auBz1TVgcBnuueSJEmSejCfDg06Cjirmz4LeOb4SpEkSZIWtnEFgQI+neTyJCd0bftU1S3d9LeBfcZTmiRJkrTwjeUcAeAJVbUxya8AFyT52sSZVVVJaqoXdsHhBID99tuv/0olaSfmmClJms5Y9ghU1cbu523AR4HDgFuTLAPoft42zWtPr6pVVbVq6dKloypZknZKjpmSpOmMfI9AkvsD96mqH3TTvwf8FXAucCzwpu7nx0ZdmyQtWrILq088fCTrkSRpnMZxaNA+wEeTbF3/+6vq/CRfBs5JcjzwTeC5Y6hNUuO2/OQe6t1P7309Oe6Tva9DkqSZjDwIVNUNwCOmaP8O8ORR1eG3fpIkSWrZuE4WHju/9ZMkSVLL5tN9BCRJkiSNiEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJatDicRcgjduiJbuw+sTDR7IeSZKk+cIgoOZt+ck91Luf3vt6ctwne1+HJEnSsDw0SJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJapBBQJIkSWqQQUCSJElqkEFAkiRJatC8CwJJjkxyfZJ1SV497nokSZKkhWheBYEki4C3A08FDgKel+Sg8VYlSZIkLTzzKggAhwHrquqGqroHOBs4asw1SZIkSQtOqmrcNfxMkmcDR1bVH3fPXwA8pqpOntDnBOCE7unDgOu3c3V7A7fvQLlzzXpmZj0zm2/1wPyraaHUc3tVHTls5zkaMxfKZ9eX+VYPzL+arGdm1jOzHalnm8bM1iwedwHbqqpOB07f0eUkWVNVq+agpDlhPTOznpnNt3pg/tXUaj1zMWa2+tkNa77VA/OvJuuZmfXMbL7Vs5DMt0ODNgIrJjzft2uTJEmSNIfmWxD4MnBgkgOS7AIcA5w75pokSZKkBWdeHRpUVZuTnAx8ClgEnFFVa3ta3Q4fXjTHrGdm1jOz+VYPzL+arGf7zbdarWd2860m65mZ9cxsvtWzYMyrk4UlSZIkjcZ8OzRIkiRJ0ggYBCRJkqQGLbggkOSMJLcluWaa+Uny1iTrklyV5NAJ845N8o3uceyI6nl+V8fVSS5O8ogJ827q2q9IsmZE9RyR5M5unVck+csJ845Mcn332b16RPW8ckIt1yTZkmSvbl4fn8+KJBcmuTbJ2iQvnaLPyLahIesZ2TY0ZD0j24aGrGfU29B9k1yW5MqupjdO0WfXJKu7z+HSJPtPmPearv36JE+Zi5pmqNXxcsfqGel4OWRNI9veh/z/N+ptyDFzx+sZ5Ta004yXC1ZVLagH8N+AQ4Frppn/NODfgQCPBS7t2vcCbuh+7tlN7zmCeg7fuh7gqVvr6Z7fBOw94s/nCOATU7QvAv4LeDCwC3AlcFDf9Uzq+/vAZ3v+fJYBh3bTuwNfn/w+R7kNDVnPyLahIesZ2TY0TD1j2IYC7NZNLwEuBR47qc+fAP/cTR8DrO6mD+o+l12BA7rPa9Fc1jepDsfLHatnZNv6sDVN6tvr9j7keDDqbcgxcwfrGfE2tNOMlwv1seD2CFTV54HvztDlKOA9NXAJsEeSZcBTgAuq6rtV9T3gAmCH70Q3Wz1VdXG3PoBLGNw7oTdDfD7TOQxYV1U3VNU9wNkMPstR1vM84AM7us6ZVNUtVfWVbvoHwHXA8kndRrYNDVPPKLehIT+f6cz5NrQd9YxiG6qquqt7uqR7TL4qw1HAWd30h4AnJ0nXfnZV3V1VNwLrGHxufdXqeLkD9cygl/FyO2rqdXufb+PlsDU5Zs6fMXNnGi8XqgUXBIawHFg/4fmGrm269lE6nsE3J1sV8Okklyc5YYR1PK7bTffvSQ7u2sb6+ST5JQa/JD48obnXz6fb/fhIBt9QTDSWbWiGeiYa2TY0Sz0j34Zm+3xGuQ0lWZTkCuA2Bn/sTLsNVdVm4E7ggcyPcWgix8vZzbvxEkY/Zs638XKWmiZyzBzzmLmAxsud0ry6j0DLkjyRwYD0hAnNT6iqjUl+Bbggyde6b4P69BXg16rqriRPA/4NOLDndQ7j94EvVtXEb8J6+3yS7MZg8HtZVX1/LpbZdz2j3IZmqWfk29CQ/14j24aqaguwMskewEeTHFJVUx7TrW3neDmUkW3v8228BMfMHaxnq5FsQ46X49XiHoGNwIoJz/ft2qZr712ShwP/ChxVVd/Z2l5VG7uftwEfZQS7vKrq+1t301XVecCSJHszxs+ncwyTdk/29fkkWcJggHxfVX1kii4j3YaGqGek29Bs9Yx6Gxrm8+mMbBuasPw7gAv5xUMefvZZJFkMPAD4DuP/fzaZ4+UM5vF4CSPa3ufbeDlkTY6Z83DMXADj5c6p5sGJCnP9APZn+pO7ns7Pn7h0Wde+F3Ajg5OW9uym9xpBPfsxOK7t8Ent9wd2nzB9MXDkCOr5Ve690dxhwLe6z2oxg5O5DuDek5YO7ruebv4DGBwTe/++P5/uvb4H+McZ+oxsGxqynpFtQ0PWM7JtaJh6xrANLQX26KbvB3wBeMakPifx8ye/ndNNH8zPn/x2Az2f/DbLeOB4Oc/Gy9lqGuX2PuR4MNJtaMiaHDPnyZjJTjZeLsTHgjs0KMkHGJyBv3eSDcDrGZx8QlX9M3Aeg6sYrAN+BBzXzftukr8Gvtwt6q/q53eH9VXPXzI41u0dg3Nf2FxVq4B9GOwig8Fg8P6qOn8E9Twb+N9JNgM/Bo6pwf+4zUlOBj7F4EoGZ1TV2hHUA/As4NNV9cMJL+3l8wEeD7wAuLo7ZhHgtQx+cYxjGxqmnlFuQ8PUM8ptaJh6YLTb0DLgrCSLGOx1PaeqPpHkr4A1VXUu8C7gvUnWMfhle0xX79ok5wDXApuBk2qw27wXjpc7XM9Ix8sha4LRbe/zbbwctibHzPkzZu404+VCtTWBSpIkSWpIi+cISJIkSc0zCEiSJEkNMghIkiRJDTIISJIkSQ0yCEiSJEkNMgioaUm2JLkiyTVJPtjdUn26vm9I8opR1idJ84XjpbTwGATUuh9X1cqqOgS4B3jJuAuSpHnK8VJaYAwC0r2+ADwUIMkLk1yV5Mok753cMcmLk3y5m//hrd+MJXlO923ZlUk+37UdnOSy7pu0q5IcONJ3JUlzz/FSWgC8oZialuSuqtotyWLgw8D5wOeBjzK4/fztSfbq7oL5BuCuqnpLkgdW1Xe6ZfwNcGtVvS3J1Qxuub4xyR5VdUeStwGXVNX7kuzC4BboPx7LG5ak7eR4KS087hFQ6+7X3WZ9DfAtBrcyfxLwwaq6HWCa294fkuQL3S+y5wMHd+1fBM5M8mIGt4QH+BLw2iSvAn7NX2qSdlKOl9ICs3jcBUhj9uOqWjmxIckwrzsTeGZVXZnkRcARAFX1kiSPAZ4OXJ7kUVX1/iSXdm3nJTmxqj47d29BkkbC8VJaYNwjIP2izwLPSfJAgCR7TdFnd+CWJEsYfMNF1/chVXVpVf0lsAlYkeTBwA1V9VbgY8DDe38HkjQajpfSTsw9AtIkVbU2ySnA55JsAb4KvGhSt/8LXMrgl9elDH7RAfxdd3JbgM8AVwKvAl6Q5CfAt4G/7f1NSNIIOF5KOzdPFpYkSZIa5KFBkiRJUoMMApIkSVKDDAKSJElSgwwCkiRJUoMMApIkSVKDDAKSJElSgwwCkiRJUoP+P6nqybFsk4KXAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 771.875x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.displot(data = train_data, x= 'Pclass', hue ='Survived', col = 'Sex', multiple=\"stack\")" ] }, { "cell_type": "code", "execution_count": 20, "id": "fdd48756", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:24.084416Z", "iopub.status.busy": "2021-12-07T18:18:24.083584Z", "iopub.status.idle": "2021-12-07T18:18:24.086772Z", "shell.execute_reply": "2021-12-07T18:18:24.087273Z", "shell.execute_reply.started": "2021-12-07T18:13:12.857025Z" }, "papermill": { "duration": 0.046369, "end_time": "2021-12-07T18:18:24.087437", "exception": false, "start_time": "2021-12-07T18:18:24.041068", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',\n", " 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],\n", " dtype='object')" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_data.columns" ] }, { "cell_type": "code", "execution_count": 21, "id": "82d106f5", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:24.164402Z", "iopub.status.busy": "2021-12-07T18:18:24.163419Z", "iopub.status.idle": "2021-12-07T18:18:24.198885Z", "shell.execute_reply": "2021-12-07T18:18:24.199424Z", "shell.execute_reply.started": "2021-12-07T18:14:56.158824Z" }, "papermill": { "duration": 0.075639, "end_time": "2021-12-07T18:18:24.199604", "exception": false, "start_time": "2021-12-07T18:18:24.123965", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 891 entries, 0 to 890\n", "Data columns (total 7 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Pclass 891 non-null int64 \n", " 1 Sex 891 non-null int64 \n", " 2 Age 891 non-null float64\n", " 3 SibSp 891 non-null int64 \n", " 4 Parch 891 non-null int64 \n", " 5 Fare 891 non-null float64\n", " 6 Embarked 891 non-null int64 \n", "dtypes: float64(2), int64(5)\n", "memory usage: 48.9 KB\n", "0 1\n", "1 0\n", "2 0\n", "3 0\n", "4 1\n", " ..\n", "886 1\n", "887 0\n", "888 0\n", "889 1\n", "890 1\n", "Name: Sex, Length: 891, dtype: int64\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py:6392: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " return self._update_inplace(result)\n", "/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py:6619: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " return self._update_inplace(result)\n" ] } ], "source": [ "#Creating a list of features\n", "features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", "# X is created according to the list of features we would like to include in our model\n", "X = train_data[features]\n", "# y is our target variable 'Survived'\n", "y = train_data.Survived\n", "\n", "#Transforming categorical variables ('Sex', 'Embarked') and filling the missing date for 'Age' and 'Fare'\n", "\n", "Pclass_Sex_Age_median = X.groupby(['Pclass','Sex']).Age.transform('median')\n", "X.Age.fillna(Pclass_Sex_Age_median, inplace = True)\n", "\n", "Pclass_Fare_median = X.groupby('Pclass').Fare.transform('median')\n", "X.Fare.fillna(Pclass_Fare_median, inplace = True)\n", "\n", "\n", "\n", "missing_test_total = X.isnull().sum().sort_values(ascending= False)\n", "\n", "\n", "#X.groupby('Embarked')['Embarked'].count()\n", "#Filling missing Embarked values with 'S' \n", "#( for the greater part of passangers the port of embarkation was Southampton, U.K.)\n", "#wikipedia confirms that whose two ladies (for whom the embarkation info is missing) embarked at Southampton\n", "X.Embarked.fillna('S', inplace = True)\n", "\n", "\n", "X['Embarked'].replace({'S': 0, 'Q': 1, 'C': 2}, inplace = True)\n", "X['Sex'].replace({'female': 0, 'male': 1}, inplace = True)\n", "X.info()\n", "print(X.Sex)" ] }, { "cell_type": "code", "execution_count": 22, "id": "19b070cd", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:24.282392Z", "iopub.status.busy": "2021-12-07T18:18:24.281668Z", "iopub.status.idle": "2021-12-07T18:18:24.288986Z", "shell.execute_reply": "2021-12-07T18:18:24.287824Z", "shell.execute_reply.started": "2021-12-07T18:13:12.906545Z" }, "papermill": { "duration": 0.052219, "end_time": "2021-12-07T18:18:24.289237", "exception": false, "start_time": "2021-12-07T18:18:24.237018", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n" ] } ], "source": [ "#splitting the train data so that we have a validation set\n", "\n", "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.25, random_state=1)\n", "print(type(X_train))\n", "\n" ] }, { "cell_type": "code", "execution_count": 23, "id": "f0c802f5", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:24.371250Z", "iopub.status.busy": "2021-12-07T18:18:24.370554Z", "iopub.status.idle": "2021-12-07T18:18:26.068420Z", "shell.execute_reply": "2021-12-07T18:18:26.068966Z", "shell.execute_reply.started": "2021-12-07T18:13:12.920028Z" }, "papermill": { "duration": 1.739165, "end_time": "2021-12-07T18:18:26.069141", "exception": false, "start_time": "2021-12-07T18:18:24.329976", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[71.74887892376682, 76.23318385650224, 78.47533632286996, 78.9237668161435, 78.02690582959642, 77.57847533632287, 78.9237668161435, 78.47533632286996]\n" ] } ], "source": [ "clf_mae=[]\n", "for md in range(8):\n", " clf = RandomForestClassifier(max_depth=(md+1), random_state=1)\n", " clf.fit(X_train, y_train)\n", " predictions = clf.predict(X_val)\n", " mae = (1.- mean_absolute_error(predictions, y_val))*100.\n", " clf_mae.append(mae)\n", " \n", "print(clf_mae)" ] }, { "cell_type": "code", "execution_count": 24, "id": "09fafb58", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.149277Z", "iopub.status.busy": "2021-12-07T18:18:26.148250Z", "iopub.status.idle": "2021-12-07T18:18:26.363223Z", "shell.execute_reply": "2021-12-07T18:18:26.363777Z", "shell.execute_reply.started": "2021-12-07T18:13:14.209467Z" }, "papermill": { "duration": 0.256714, "end_time": "2021-12-07T18:18:26.363973", "exception": false, "start_time": "2021-12-07T18:18:26.107259", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "78.9237668161435\n" ] } ], "source": [ "clf = RandomForestClassifier(max_depth=4, random_state=1)\n", "clf.fit(X_train, y_train)\n", "predictions = clf.predict(X_val)\n", "mae = (1.- mean_absolute_error(predictions, y_val))*100.\n", "print(mae)" ] }, { "cell_type": "code", "execution_count": 25, "id": "79e9be4e", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.450222Z", "iopub.status.busy": "2021-12-07T18:18:26.449536Z", "iopub.status.idle": "2021-12-07T18:18:26.459226Z", "shell.execute_reply": "2021-12-07T18:18:26.458410Z", "shell.execute_reply.started": "2021-12-07T18:13:14.382136Z" }, "papermill": { "duration": 0.055896, "end_time": "2021-12-07T18:18:26.459418", "exception": false, "start_time": "2021-12-07T18:18:26.403522", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "80.26905829596413 %\n" ] } ], "source": [ "logreg = LogisticRegression(solver='liblinear')\n", "logreg.fit(X_train, y_train)\n", "predictions = logreg.predict(X_val)\n", "mae = mean_absolute_error(predictions, y_val)\n", "print((1-mae)*100,\"%\")\n" ] }, { "cell_type": "code", "execution_count": 26, "id": "bd5da09e", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.548289Z", "iopub.status.busy": "2021-12-07T18:18:26.541960Z", "iopub.status.idle": "2021-12-07T18:18:26.550750Z", "shell.execute_reply": "2021-12-07T18:18:26.551241Z", "shell.execute_reply.started": "2021-12-07T18:15:08.700306Z" }, "papermill": { "duration": 0.051758, "end_time": "2021-12-07T18:18:26.551420", "exception": false, "start_time": "2021-12-07T18:18:26.499662", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Cabin 327\n", "Age 86\n", "Fare 1\n", "PassengerId 0\n", "Pclass 0\n", "dtype: int64" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#test data info, missing data\n", "missing_test_total = test_data.isnull().sum().sort_values(ascending= False)\n", "missing_test_total.head()" ] }, { "cell_type": "code", "execution_count": 27, "id": "3d3c3512", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.635018Z", "iopub.status.busy": "2021-12-07T18:18:26.634326Z", "iopub.status.idle": "2021-12-07T18:18:26.646388Z", "shell.execute_reply": "2021-12-07T18:18:26.647216Z", "shell.execute_reply.started": "2021-12-07T18:13:14.408147Z" }, "papermill": { "duration": 0.0552, "end_time": "2021-12-07T18:18:26.647446", "exception": false, "start_time": "2021-12-07T18:18:26.592246", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<class 'pandas.core.frame.DataFrame'>\n", "RangeIndex: 418 entries, 0 to 417\n", "Data columns (total 11 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 PassengerId 418 non-null int64 \n", " 1 Pclass 418 non-null int64 \n", " 2 Name 418 non-null object \n", " 3 Sex 418 non-null object \n", " 4 Age 332 non-null float64\n", " 5 SibSp 418 non-null int64 \n", " 6 Parch 418 non-null int64 \n", " 7 Ticket 418 non-null object \n", " 8 Fare 417 non-null float64\n", " 9 Cabin 91 non-null object \n", " 10 Embarked 418 non-null object \n", "dtypes: float64(2), int64(4), object(5)\n", "memory usage: 36.0+ KB\n" ] } ], "source": [ "test_data.info()" ] }, { "cell_type": "code", "execution_count": 28, "id": "2490f462", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.741769Z", "iopub.status.busy": "2021-12-07T18:18:26.737499Z", "iopub.status.idle": "2021-12-07T18:18:26.744666Z", "shell.execute_reply": "2021-12-07T18:18:26.744003Z", "shell.execute_reply.started": "2021-12-07T18:15:13.785353Z" }, "papermill": { "duration": 0.056944, "end_time": "2021-12-07T18:18:26.744841", "exception": false, "start_time": "2021-12-07T18:18:26.687897", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "Pclass_Sex_Age_median = test_data.groupby(['Pclass','Sex']).Age.transform('median')\n", "test_data.Age.fillna(Pclass_Sex_Age_median, inplace = True)\n", "\n", "Pclass_Fare_median = test_data.groupby('Pclass').Fare.transform('median')\n", "test_data.Fare.fillna(Pclass_Fare_median, inplace = True)\n", "\n", "test_data['Embarked'].replace({'S': 0, 'Q': 1, 'C': 2}, inplace = True)\n", "test_data['Sex'].replace({'female': 0, 'male': 1}, inplace = True)\n" ] }, { "cell_type": "code", "execution_count": 29, "id": "05c81a34", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.889405Z", "iopub.status.busy": "2021-12-07T18:18:26.888409Z", "iopub.status.idle": "2021-12-07T18:18:26.897851Z", "shell.execute_reply": "2021-12-07T18:18:26.898418Z", "shell.execute_reply.started": "2021-12-07T18:15:17.047120Z" }, "papermill": { "duration": 0.053499, "end_time": "2021-12-07T18:18:26.898610", "exception": false, "start_time": "2021-12-07T18:18:26.845111", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "Cabin 327\n", "PassengerId 0\n", "Pclass 0\n", "Name 0\n", "Sex 0\n", "dtype: int64" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "missing_test_total = test_data.isnull().sum().sort_values(ascending= False)\n", "missing_test_total.head()" ] }, { "cell_type": "code", "execution_count": 30, "id": "5961a629", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:18:26.983338Z", "iopub.status.busy": "2021-12-07T18:18:26.982313Z", "iopub.status.idle": "2021-12-07T18:18:27.109149Z", "shell.execute_reply": "2021-12-07T18:18:27.108389Z", "shell.execute_reply.started": "2021-12-07T18:15:20.534805Z" }, "papermill": { "duration": 0.170508, "end_time": "2021-12-07T18:18:27.109433", "exception": true, "start_time": "2021-12-07T18:18:26.938925", "status": "failed" }, "tags": [] }, "outputs": [ { "ename": "NameError", "evalue": "name 'X_test' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/tmp/ipykernel_20/2907192097.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0mX_test\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX_val\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_val\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrain_test_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.25\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_state\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'X_test' is not defined" ] } ], "source": [ "names = [\n", " \"Nearest Neighbors\",\n", " \"Linear SVM\",\n", " \"RBF SVM\",\n", " \"Gaussian Process\",\n", " \"Decision Tree\",\n", " \"Random Forest\",\n", " \"Neural Net\",\n", " \"AdaBoost\",\n", " \"Naive Bayes\",\n", " \"QDA\",\n", "]\n", "\n", "classifiers = [\n", " KNeighborsClassifier(3),\n", " SVC(kernel=\"linear\", C=0.025),\n", " SVC(gamma=2, C=1),\n", " GaussianProcessClassifier(1.0 * RBF(1.0)),\n", " DecisionTreeClassifier(max_depth=5),\n", " RandomForestClassifier(max_depth=5, n_estimators=100),\n", " MLPClassifier(alpha=1, max_iter=1000),\n", " AdaBoostClassifier(),\n", " GaussianNB(),\n", " QuadraticDiscriminantAnalysis(),\n", "]\n", "\n", "X = StandardScaler().fit_transform(X)\n", "X_test = StandardScaler().fit_transform(X_test)\n", "\n", "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size = 0.25, random_state=1)\n", "\n", "for name, clf in zip(names, classifiers):\n", " \n", " clf.fit(X_train, y_train)\n", " score = clf.score(X_val, y_val)\n", " print(name, score)" ] }, { "cell_type": "code", "execution_count": null, "id": "6a7577aa", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:16:27.905816Z", "iopub.status.busy": "2021-12-07T18:16:27.904781Z", "iopub.status.idle": "2021-12-07T18:16:29.315883Z", "shell.execute_reply": "2021-12-07T18:16:29.314796Z", "shell.execute_reply.started": "2021-12-07T18:16:27.905770Z" }, "papermill": { "duration": null, "end_time": null, "exception": null, "start_time": null, "status": "pending" }, "tags": [] }, "outputs": [], "source": [ "#Using logistic regression for sumbmission\n", "#Features list assigned above ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']\n", "clf = MLPClassifier(alpha=1, max_iter=1000)\n", "\n", "clf.fit(X, y)\n", "predictions = clf.predict(X_test)\n", "output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions})\n", "output.to_csv('submission.csv', index=False)\n", "print(\"Your submission was successfully saved!\")" ] }, { "cell_type": "code", "execution_count": null, "id": "0af16413", "metadata": { "papermill": { "duration": null, "end_time": null, "exception": null, "start_time": null, "status": "pending" }, "tags": [] }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" }, "papermill": { "default_parameters": {}, "duration": 20.729422, "end_time": "2021-12-07T18:18:27.962274", "environment_variables": {}, "exception": true, "input_path": "__notebook__.ipynb", "output_path": "__notebook__.ipynb", "parameters": {}, "start_time": "2021-12-07T18:18:07.232852", "version": "2.3.3" } }, "nbformat": 4, "nbformat_minor": 5 }
0081/792/81792572.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
{ "cells": [ { "cell_type": "markdown", "id": "9ea92fe7", "metadata": { "papermill": { "duration": 0.023907, "end_time": "2021-12-07T18:24:45.881420", "exception": false, "start_time": "2021-12-07T18:24:45.857513", "status": "completed" }, "tags": [] }, "source": [ "**Introduction**\n", "\n", "The aim of this project, is to calculate the area of a polygon, by calculating the centroid and performing iteration to calculate the overall area. \n", "\n", "The function created will be tested against the Shapely Library, with test data from multiple Shapefiles. " ] }, { "cell_type": "code", "execution_count": 1, "id": "aad7e7ea", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:45.939736Z", "iopub.status.busy": "2021-12-07T18:24:45.938870Z", "iopub.status.idle": "2021-12-07T18:24:46.301981Z", "shell.execute_reply": "2021-12-07T18:24:46.301096Z", "shell.execute_reply.started": "2021-12-07T18:14:54.0851Z" }, "papermill": { "duration": 0.398301, "end_time": "2021-12-07T18:24:46.302152", "exception": false, "start_time": "2021-12-07T18:24:45.903851", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "# As code is read top-down, libraries for this project are imported before any calculations or functions\n", "import math \n", "import shapely.geometry as shg\n", "# Shapely Library used for analysis of geometric objects\n", "import matplotlib.pyplot as plt \n", "# Matplotlib Library is the plotting library, allowing for visualization of the polygons \n", "import fiona \n", "# Fiona Library allows for the intergration of geographic data\n", "import numpy as np\n", "# Numpy Library not key, but may be used to check statistical calculations\n", "import time\n", "# Time Library not required, but will be used later in the project\n", "import random\n", "# Random Library used to generate random numbers, which will be applied to the buildings shapefile data" ] }, { "cell_type": "markdown", "id": "6f4ffaf4", "metadata": { "papermill": { "duration": 0.021817, "end_time": "2021-12-07T18:24:46.346696", "exception": false, "start_time": "2021-12-07T18:24:46.324879", "status": "completed" }, "tags": [] }, "source": [ "**Calculations and Code Function**\n", "\n", "For the area of a polygon calculation, the centroid of the polygon needs to be calculated firstly, then the area of the triangles formed between the centroid and the current and next vertices are calculated giving the area of a polygon." ] }, { "cell_type": "markdown", "id": "d9fabcc9", "metadata": { "papermill": { "duration": 0.021977, "end_time": "2021-12-07T18:24:46.390912", "exception": false, "start_time": "2021-12-07T18:24:46.368935", "status": "completed" }, "tags": [] }, "source": [ "**The Centroid Calculation Code**\n", "\n", "The centroid, or spatial mean as it can be referred to, calculation code is below.\n", "\n", "Inputs for the function are the Cartesian Coordinates of the polygon (tupel) and the output is the centroid x and y value." ] }, { "cell_type": "code", "execution_count": 2, "id": "d1d29484", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.443422Z", "iopub.status.busy": "2021-12-07T18:24:46.442715Z", "iopub.status.idle": "2021-12-07T18:24:46.444705Z", "shell.execute_reply": "2021-12-07T18:24:46.445287Z", "shell.execute_reply.started": "2021-12-07T18:14:54.092565Z" }, "papermill": { "duration": 0.032292, "end_time": "2021-12-07T18:24:46.445456", "exception": false, "start_time": "2021-12-07T18:24:46.413164", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "def centroid(coords):\n", " adj = 1\n", " if coords[0] != coords[-1]:\n", " adj == 0\n", " # The above code stops the start point of the polygon being repeated\n", " # This is because in the polygon tupel, the start and end point are indentical to close the polygon\n", " \n", " x, y = zip(*coords)\n", " # The zip function pairs the x and y values of each vertices of the polygon together \n", " mx = 0\n", " my = 0\n", " # Mx and My are the average x and average y values, which is the centroid calculation output\n", " # The Mx and My values need to be set to 0 before iteration\n", " \n", " for i in range(len(coords)-adj):\n", " # I acts as a bookmark as the iteration is carried out along the length (len) of the coords tupel\n", " mx = mx + x[i]\n", " my = my + y[i]\n", " mx = mx / (len(coords)-adj)\n", " my = my / (len(coords)-adj) \n", " return mx, my\n", " # Output of the function is the x value and y value of the centroid of the polygon" ] }, { "cell_type": "markdown", "id": "66fb8a21", "metadata": { "papermill": { "duration": 0.021942, "end_time": "2021-12-07T18:24:46.489645", "exception": false, "start_time": "2021-12-07T18:24:46.467703", "status": "completed" }, "tags": [] }, "source": [ "**Testing the Centroid Code**\n", "\n", "To test the code for the centroid calculation, input a tupel of coordinates with the centroid value known." ] }, { "cell_type": "code", "execution_count": 3, "id": "2a76e5f1", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.537029Z", "iopub.status.busy": "2021-12-07T18:24:46.536406Z", "iopub.status.idle": "2021-12-07T18:24:46.540014Z", "shell.execute_reply": "2021-12-07T18:24:46.540621Z", "shell.execute_reply.started": "2021-12-07T18:14:54.105041Z" }, "papermill": { "duration": 0.029005, "end_time": "2021-12-07T18:24:46.540784", "exception": false, "start_time": "2021-12-07T18:24:46.511779", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "TestPoly = [(3,5), (5,2), (3,0), (2,2), (1,2), (3,5)] \n", "# Expected values of 2.8 and 2.2" ] }, { "cell_type": "code", "execution_count": 4, "id": "d8d40edd", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.588294Z", "iopub.status.busy": "2021-12-07T18:24:46.587676Z", "iopub.status.idle": "2021-12-07T18:24:46.592129Z", "shell.execute_reply": "2021-12-07T18:24:46.592736Z", "shell.execute_reply.started": "2021-12-07T18:14:54.122595Z" }, "papermill": { "duration": 0.030026, "end_time": "2021-12-07T18:24:46.592895", "exception": false, "start_time": "2021-12-07T18:24:46.562869", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2.8 2.2\n" ] } ], "source": [ "x, y = (centroid(TestPoly))\n", "print(x,y)\n", "# Values of 2.8 and 2.2 so passes the test" ] }, { "cell_type": "markdown", "id": "87e54b24", "metadata": { "papermill": { "duration": 0.022423, "end_time": "2021-12-07T18:24:46.638114", "exception": false, "start_time": "2021-12-07T18:24:46.615691", "status": "completed" }, "tags": [] }, "source": [ "**Area of Polygon Code**\n", "\n", "The next step of the calculation is to calculate the area of the triangles formed from the centroid to vertices, hence calculating the area of the polygon." ] }, { "cell_type": "code", "execution_count": 5, "id": "26889a43", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.686784Z", "iopub.status.busy": "2021-12-07T18:24:46.686114Z", "iopub.status.idle": "2021-12-07T18:24:46.694209Z", "shell.execute_reply": "2021-12-07T18:24:46.694811Z", "shell.execute_reply.started": "2021-12-07T18:14:54.13533Z" }, "papermill": { "duration": 0.034103, "end_time": "2021-12-07T18:24:46.694985", "exception": false, "start_time": "2021-12-07T18:24:46.660882", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "def polyarea(coords):\n", " area = 0\n", " # For summation, have to set area to zero before any calculation \n", " xr,yr = (centroid(coords))\n", " # Gives the centroid values from centroid code before summation calculation \n", " # print(xr,yr)\n", " # Print(xr,yr) not required, however put in to ensure no errors from centroid code when writing code\n", " for i in range(len(coords)-1):\n", " # The -1 is included above to ignore the last repeated coordinate from the tupel input data\n", " xc = coords[i][0]\n", " yc = coords[i][1]\n", " xn = coords[i+1][0]\n", " yn = coords[i+1][1]\n", " # The code above sets current and next vertices points of the polygon for the equation\n", " calc1 = (((xn - xr) * (yc - yr)) - ((yn - yr) * (xc - xr)))\n", " # Main Calculation for area of a polygon above\n", " area = area + (calc1)\n", " # Summation Ends at this point, so the code below is unindented\n", " \n", " area = (abs(area))\n", " # Above code performs absolute value to the answer from summation calculation\n", " area = ((area) * 0.5)\n", " # The final step is to 1/2 the absolute value \n", " return area" ] }, { "cell_type": "markdown", "id": "53db4469", "metadata": { "papermill": { "duration": 0.022821, "end_time": "2021-12-07T18:24:46.740313", "exception": false, "start_time": "2021-12-07T18:24:46.717492", "status": "completed" }, "tags": [] }, "source": [ "**Initial Testing of The Area of Polygon Code**\n", "\n", "As a first test of the code, a polygon in tupel format with be tested.\n", "\n", "The answer from the code will be checked against the shapely library." ] }, { "cell_type": "code", "execution_count": 6, "id": "3c1347a1", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.790278Z", "iopub.status.busy": "2021-12-07T18:24:46.789549Z", "iopub.status.idle": "2021-12-07T18:24:46.793249Z", "shell.execute_reply": "2021-12-07T18:24:46.793775Z", "shell.execute_reply.started": "2021-12-07T18:14:54.146984Z" }, "papermill": { "duration": 0.030566, "end_time": "2021-12-07T18:24:46.793950", "exception": false, "start_time": "2021-12-07T18:24:46.763384", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "TestPoly = [(3,5), (5,2), (3,0), (2,2), (1,2), (3,5)]\n", "# Test data in the Tupel format" ] }, { "cell_type": "code", "execution_count": 7, "id": "8717bcf7", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.843089Z", "iopub.status.busy": "2021-12-07T18:24:46.842405Z", "iopub.status.idle": "2021-12-07T18:24:46.848594Z", "shell.execute_reply": "2021-12-07T18:24:46.847801Z", "shell.execute_reply.started": "2021-12-07T18:14:54.162486Z" }, "papermill": { "duration": 0.031661, "end_time": "2021-12-07T18:24:46.848784", "exception": false, "start_time": "2021-12-07T18:24:46.817123", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9.0\n" ] } ], "source": [ "print(polyarea(TestPoly))\n", "# Should output the area of the polygon" ] }, { "cell_type": "code", "execution_count": 8, "id": "6b3986b3", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.901275Z", "iopub.status.busy": "2021-12-07T18:24:46.900576Z", "iopub.status.idle": "2021-12-07T18:24:46.902422Z", "shell.execute_reply": "2021-12-07T18:24:46.902885Z", "shell.execute_reply.started": "2021-12-07T18:14:54.175752Z" }, "papermill": { "duration": 0.030358, "end_time": "2021-12-07T18:24:46.903073", "exception": false, "start_time": "2021-12-07T18:24:46.872715", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "t1 = shg.Polygon(TestPoly)\n", "# Using the Shapely library to test against the function outputs to see if the area coding is correct" ] }, { "cell_type": "code", "execution_count": 9, "id": "49f64124", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:46.954500Z", "iopub.status.busy": "2021-12-07T18:24:46.953677Z", "iopub.status.idle": "2021-12-07T18:24:46.956813Z", "shell.execute_reply": "2021-12-07T18:24:46.957315Z", "shell.execute_reply.started": "2021-12-07T18:14:54.187651Z" }, "papermill": { "duration": 0.031177, "end_time": "2021-12-07T18:24:46.957481", "exception": false, "start_time": "2021-12-07T18:24:46.926304", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9.0\n" ] } ], "source": [ "print(t1.area)\n", "# The function and Shapely library output matches for the polygon\n", "# Hence this test is passed and the code works for this value\n", "# However, further testing is essential" ] }, { "cell_type": "markdown", "id": "36aa6d42", "metadata": { "papermill": { "duration": 0.024348, "end_time": "2021-12-07T18:24:47.005926", "exception": false, "start_time": "2021-12-07T18:24:46.981578", "status": "completed" }, "tags": [] }, "source": [ "**Plotting the Polygons for Visualization**\n", "\n", "For users of the code, it may be benificial to visualize a polygon, alongside the centroid and area calculations. \n", "\n", "To do this, the matplotlib Library must be used, and the time Library can be used.\n", "\n", "For testing purposes the TestPoly data will be used to ensure the polygon is correctly plotted." ] }, { "cell_type": "code", "execution_count": 10, "id": "7e81bd65", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:47.055737Z", "iopub.status.busy": "2021-12-07T18:24:47.055063Z", "iopub.status.idle": "2021-12-07T18:24:47.059843Z", "shell.execute_reply": "2021-12-07T18:24:47.060427Z", "shell.execute_reply.started": "2021-12-07T18:14:54.201511Z" }, "papermill": { "duration": 0.031229, "end_time": "2021-12-07T18:24:47.060589", "exception": false, "start_time": "2021-12-07T18:24:47.029360", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(3, 5, 3, 2, 1, 3) (5, 2, 0, 2, 2, 5)\n" ] } ], "source": [ "x, y = zip(*TestPoly)\n", "# The above code transforms the tupel list for TestPoly2 into a set of x values and a set of y values\n", "print(x, y)" ] }, { "cell_type": "code", "execution_count": 11, "id": "9038d0a2", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:47.116471Z", "iopub.status.busy": "2021-12-07T18:24:47.115472Z", "iopub.status.idle": "2021-12-07T18:24:48.347689Z", "shell.execute_reply": "2021-12-07T18:24:48.347090Z", "shell.execute_reply.started": "2021-12-07T18:14:54.213705Z" }, "papermill": { "duration": 1.261838, "end_time": "2021-12-07T18:24:48.347838", "exception": false, "start_time": "2021-12-07T18:24:47.086000", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb+klEQVR4nO3de5hddXX/8fciCSEZsLRkHqWGGH6tt4hcpxELBQkgl9BQsSgIiiKmIApUrIC/Hwhataj1VrU0ReQWQFTQcJGLEguCBhPuAYoBQpuATRANl3MSclm/P9YZc+lM5pyZvfd3730+r+eZJxPmZM5yO+cz+3z32t9l7o6IiJTXFqkLEBGRzVNQi4iUnIJaRKTkFNQiIiWnoBYRKbnReXzTCRMm+OTJk/P41iIitbRgwYJn3b13oK/lEtSTJ09m/vz5eXxrEZFaMrOnBvualj5EREpOQS0iUnIKahGRklNQi4iUnIJaRKTk2ur6MLPFwAvAWmCNu/flWZSIiKzXSXvefu7+bG6ViIjIgLT0IV3jd8CK1EWIDEO7Qe3ALWa2wMxmDvQAM5tpZvPNbP7y5cuzq1AkAz8FJgM7AnelLUWkY+0G9d7uvjtwCHCyme2z6QPcfZa797l7X2/vgHdBihTOgX8E/hp4njirPgD4autrIlXQVlC7+9LWn8uAa4GpeRYlkoUVwMHA54HmBv+9Cfxf4AjgpQR1iXRqyKA2sx4z26b/c+DtwEN5FyYyEg8BbwL+A2gM8PUGcBPwZuDXBdYlMhztnFG/Evi5md0P3A3c4O435VuWyPBdDrwFWAqs2szjVgKLgd2It4kiZTVke567PwHsUkAtIiPyMvARYDYDn0UPxInlj2OAE4EvkNOWkiIjoPY8qYWlxIWTy2k/pDfUBP4N2BtYlmFdIllQUEvl/YxYj17IxhcNO9UA7gGmAPNGXpZIZhTUUlkO/BNwKNHhsSaD77ka+C2wH/AN1MIn5aCglkp6AZgOfIaRnUUPpgmcAbyb4S2liGRJQS2V8zCxPHEb+YZoA7gO2Bl4PMfnERmKgloq5SrgL4AlbL71LisrgSeAXYE5BTyfyEAU1FIJq4EPAx+k+KUIB14EjgI+Qez1K1IkBbWU3jPEDSyXkHa9uAl8E9gH0H6/UiQFtZTaHUTr3YOU46JeA/gVsUb+q8S1SPdQUEspOfAl4CBix7ssWu+yshpYDuwLXIBa+CR/CmopnReBw4FPkU/rXVaawOnAeyh3nVJ9CmoplUeJpY5bKcdSx1AawA+JrpAnk1YidaagltL4PtAH/DfRFlcVK4FFxM5lNySuRepJQS3JrQFOAY4jdrKr4prvOuJuySOBT7b+LpIVBbUk9T/AXwLfphpLHUNpAl8D3gY8l7YUqREFtSRzF9Hmdi/1COl+DWL3vTcSu/GJjJSCWgrnxHDZA4izzjK13mXlZWJf672BCxPXItWnoJZCvQS8kxgu2w0tbU3gVOC9VOsCqZSLgloK82timOyPqddSx1AawA+I2YxPJa5FqklBLYW4lgiqxXTnmWUTeIzYMvXmxLVI9SioJVdriLv3jqG6rXdZWQc8D7yDuOtSLXzSLgW15Kb/YtoFdMd6dLuaxD4mBxD7mIgMRUEtuZhHtN7dQ3etR7erAdxJHKP7E9ci5aeglkw5MRR2P2JI7Oq05ZTay8BviBt+Lk5bipScgloy0yCGwZ6Bljo60QBOBo6nmPFiUj0KasnE40RHw3VoqWM4GsQ8yD2ITalENqSglhGbw/ptPrux9S4rTWKb152AnySuRcpFQS3DtpYY9noUsdm/2s1Gbi3RwjcD+DQ6phIU1DIszxJDXr+J1qPz0ATOBw4GViSuRdJTUEvHNhzuqvXo/DSA24lj/WDiWiQtBbW0zYmbV/Ylhruq9S5/q4CngT2ByxLXIum0HdRmNsrM7jWz6/MsSMqpSQxxPR0tdaTQAE4EPkT0X0t36eSM+lTgkbwKkfJ6kujq+CFa6kipAcwG/gJYmrgWKVZbQW1mE4HpaA/0rnMDMbR1EWq9K4MmsJCY1D43cS1SnHbPqL9KdGIN2i1kZjPNbL6ZzV++fHkWtUlC64ghrUcSQ1vVJlYea4lOkOnA5+juHQm7xZBBbWaHAcvcfcHmHufus9y9z937ent7MytQivccMZz1a2g9usyawGeBQ4nea6mvds6o9wJmmNli4i7XaWZ2ea5VSTL3EENZ56H16CpoEEsgU4glEamnIYPa3c9y94nuPpm4Ce02dz8298qkcBcS+0cvQ50FVbKKuLg4FbgycS2SD/VRCyuB9xFtPVrqqK4GcAJwEupxr5uOgtrdf+buh+VVjBTvKWKW4ffRUkcdNIBLgLcAzySuRbKjM+oudjOxNelj6Ey6TprELedTgDsS1yLZUFB3oXXEcNV3EN0Car2rnzXA74GDgC+iFr6qU1B3md8RQ1W/hM6iu0ETOJfYNvWFtKXICCiou8j9xNvhO9F6dDdpALcSAwkeTVyLDI+CuktcTAxR/Q1qvetGq4gRX3sAVyeuRTqnoK65VcTQ1JPRWXS3c+Jn4APAR4l1bKkGBXWN9Z9BXYVCWtZrABcBbyXeYUn5Kahr6iesX5PURUPZVAO4j/XXLKTcFNQ1s44YijqDaL1bm7YcKbE1RBfQgcCXUQtfmSmoa2QFMQz1fHQWLe1rAmcTffUvJa5FBqagron+O9FuR+vR0rkGcafqTsSdqlIuCuoauIwYfvo00eUhMhwrib1fdgeuSVyLbExBXWEvE8NOT0Rn0ZINJ5Y/jgX+HrXwlYWCuqKWEkNOZ6OQluw1gVnE1JBliWsRBXUlzSWGmy5EFw0lPw3gXuLaxy8T19LtFNQV4sQw0+lEh4da7yRvq4HfAtOAf0EtfKkoqCvieWKI6WfRWbQUrwmcSUyl11Jb8RTUFbCQWOqYi14kkk4DuIEYNrEocS3dRkFdclcSQ0uXoNY7SW8l8AQxvm1O4lq6iYK6pFYDHyaGleosWsrEgReBo4B/QNdKiqCgLqFniOGkF6OQlvJqAt8C9gGeTVxL3SmoS+YOoh3qQXTRUMqvAfwKeGPrT8mHgroknBhCehAxlFR3hElVrCbOqPcF/hW18OVBQV0CLxDbkp6LzqKluprAx4Gj0c9x1hTUiT1K7Fh2K1qPluprAD8CdiG6QyQbCuqEvgf0ESOz1HondbESeJwI6xsS11IXCuoE1hDDRY8jdirTmp7UzTqihe9I4CzUwjdSCuqC/YYYKnoRWseT+msCXwf2I/YMkeFRUBfoTqL17j60Hi3do0HsvjcFWJC4lqpSUBfAieGhBxLDRNV6J91mNbGv9V8R+1xLZ4YMajPbyszuNrP7zWyhmZ1XRGF18RIxNPRstNQh0iQmxxxLXHSU9rRzRr0KmObuuwC7Ageb2Z65VlUTjxGtdzejpQ6Rfg1iJuNuwOK0pVTGkEHt4cXWX8e0PtSoMIRriCGhT6EzB5FNNYkTmZ2BmxLXUgVtrVGb2Sgzu49YZrrV3ecN8JiZZjbfzOYvX7484zKrYw3r39qp9U5kcOuIu3KPAM5p/V0G1lZQu/tad98VmAhMNbOdBnjMLHfvc/e+3t7ejMushmXEMNBZaD1apF1N4J+B/YmL7fK/ddT14e6/JwaNHJxLNRXW3350L1qPFulUA7iL9e2rsrF2uj56zWzb1ufjiC6zR3OuqzKcGPo5jWjoX522HJHKepm4IWwv4DuJaymb0W08ZnvgEjMbRQT71e5+fb5lVUODuA38RrTUIZKVBvAR4HbgAmBs2nJKYcigdvcHiE4a2cAiYv1nKerqEMlaA/guMYzgRmBS2nKS052JwzCH+M31BAppkbw0iTXWNxPbAHczBXUH1gKfIIZ6voha70TythZ4HjgcOI/ubeFTULfpWWKI5zfRerRI0ZrAF1g/qq7bKKjbsOHwTrXeiaTRIC4wvgl4IHEtRVNQb4YTwzr3Jc6o1XonktbLwNPEnu6XJq6lSArqQTSJIZ0fR0sdImXTAE4CTiDCu+4U1AN4gpj3NgctdYiUVQO4gpg7uiRxLXlTUG/iBmIv18fRmbRI2TWBh4nthOcmriVPCuqWtcQQziOJHb26tQ1IpGrWAiuA6cBnqWfbrIKa2KNjP2IIp86iRaqpCXwOOJTova6Trg/qBcSOXfPQerRI1TWIJZApwMLEtWSpq4N6FjFscxndceVYpBusIvbgmUpcbKyDrgzqlcQElr9HSx0iddUAPgScSPXvgei6oF5MbKj0A7TUIVJ3DeAy4uz66cS1jERXBfVNxDDNx9CudyLdogE8RNx6fnviWoarK4J6HTE88wjUeifSjdYQmzkdDJxP9Vr4ah/UvwMOIIZnaj1apLs1gU8DhxEnbVVR66C+j2jTuROtR4tIaAA/JZZCHklcS7tqG9TfIYZk/ga13onIxlYR+4P0ESO/yq52Qb0K+AAxHFNn0SIyGCcy4njgo8Q6dlnVKqj/C9iD+A2pkBaRdjSAi4A9iXfgZVSboL6VGIL5KLpoKCKdaQD3s/6aVtlUPqjXEUMvDyc2YlmbthwRqag1RJfYgUSXWJla+Cod1L8nhl1+AZ1Fi0g2msCngL8BXkxbyh9UNqgfINpr7kDr0SKSrZeAW4jl1McS1wIVDepLieGWTxNdHiIiWVsJPAXsDlyTuJZKBfXLxDDLk9BZtIjkz4mz62OB00jXwleZoO5vTr8ChbSIFKsJ/DtxE92yBM9fiaCeSwyvfBhdNBSRNBrAPcAbgV8U/NylDmonhlVOJ4ZXqvVORFJaAzwH7E/MWC2qha+0Qf08MaTyc+gsWkTKpQmcBRxJrGHnbcigNrMdzGyumT1sZgvN7NS8i1pI3CE0F61Hi0g5NYAbiGEki3J+rnbOqNcAp7v7FOJ2+JPNbEpeBV1BjM1ZilrvRKTcVgJPEuP9fpTj84we6gHu/gzwTOvzF8zsEeDVxLW9TF0BHANsCWyT9TevIac8d06JdKv+1+E7gdnAu3N4jiGDekNmNpn45TFvgK/NBGYCTJo0aVjFTKM+492LsAI4HS0PiaTWA7wB2CWn7992UJvZ1sTw7tPc/flNv+7us4BZAH19fcO6GPoq4Ojh/MMu9lpgBgprkRR6gEnA14iRf5bT87TV9WFmY4iQnu3uqe+mlA3sD3wPGJe6EJEu0gPsCFxOND8cSH4hDe11fRjwbeARd/9yjrXIMB1K/MAorEXy1QP8KbF0sIjYYS/PgO7Xzhn1XsB7gWlmdl/r49Cc65IOHUHc4qqwFsneeGAC8BVio6b3UOxNKO10ffycYn5pyAgdQzTin4JuEhLJwnhgDHAusRnc2ER1dNT1IeV3AnFh8UwU1iLDtRURjmcSu+b1JK1GQV1LpxBh/RnUDSLSibHAKOBU4Azgj9KW8wcK6prqP6P+EgprkaGMIQL6Q8A5xHp0mSioa+xcYsOYf0VhLTKQ0a2Po4F/JDo6ykhBXWMGfJEI60tRWIv024JY5vhr4HxgctJqhqagrjkDvkUsg3wPhbV0NyMuFE4jlgXfkLactimou4ABFxFn1jeisJbuNJ7YmfMrwK5pS+lYaQcHSLa2AK4E9kM3xUh36SEC+ifEHve7Jq1meBTUXWQ0cC1xq+lWiWsRyVsPMWt1DrHd51vTljMiCuouMwa4DtgDhbXUUw/wZ8BVwAPEenTVKai70FbALcTZRqpbYkWy1gNMJHaQeww4jPrsfaGg7lLjgduA1xETdUSqqgfoJaaCP0lMWKlbsNXtf490YBvgdmJf3TGJaxHp1HhgW+DzwBLgeOrbxqag7nLbAncSbxnr+kMu9TKOOMk4mxiC/VHq/65QQS1sB9xFjEIblbgWkcGMJc6iTyfOoM9s/b0bKKgFiJD+BbEZjX4opEy2JM6iTwL+i9gV8hVJKyqeXpPyBxOJsP5j6nO1XKprNNGhdBzwBHFH4XZJK0pHQS0b2ZFYBinLPrzSfUYRAf0u4FFiPuGrklaUnoJa/pfXAXfQfW8vJS0jljimA/cDs4HXJK2oPBTUMqCdgJ8BWyeuQ7rDeOIOwnnAj4iTBVlPQS2D2g24le65si7FG0/swTGX2DTpzWnLKS0FtWzWnsCPUVhLtnqAnYltd+8idreTwSmoZUj7ELvuaXtUGake4LXEEIv7gH2TVlMdCmppy9uJ3cgU1jIcPcAOwHeITo5DUAtoJxTU0rYZwMUorKV9PcAriXFwTwJHotAZDm3vIB15F7ASOJGYwygykPHELd+fBU5Am36NlIJaOvY+Yu7ix1BYy8bGEaFyDnAyeveVFQW1DMuJRFifjYblStxJOAr4OLFp0jZpy6kdBbUM28eIkP48CututSUR0CcDnyT2iZHsKahlRP4f8BIxXUNh3T3GEAF9HHAeccFQ8jPkBVgzu8jMlpnZQ0UUJNXzOeKCkW6Kqb/+DZPeTcwlvACFdBHa6ZS5GDg45zqkwgz4KnA0Cuu62oK4MDgDeBC4jOiLlmIMGdTufjvwXAG1SIUZsR3l36CwrptxwAHA3cA1wJ+nLacrZdZ7bmYzzWy+mc1fvnx5Vt9WKmQL4FLgINSWVQfjgb2IAcg3EzsqShqZBbW7z3L3Pnfv6+3tzerbSsWMAq4m9nBQWFdTD7Fz4k3Az4G+tOUIuptTcjCa2FN4KnHhSaqhB3gD8ANgAfBXacuRDSioJRdbEmdkuxK3Ekt59RCTVC4FHiaWrrRhUrm00553JTHz9PVmtsTMPph/WVIHWxGbwU9BYV1GPcQswguAx4EjUECX1ZA3vLj70UUUIvXUQ4z0eivwa2B10moE4iLhOGLDpOPRhklVoKUPyd0riGG5r0G3wqY0jpgu/xlgCfB3KKSrQkEthfgTYuTSnxKdIVKcrYh3NmcRAf0xdJG3ahTUUphe4JfELcf6wcvfWOIs+hQioM9GU+WrSq8XKdT2xJXp7dCFq7yMIc6YTwCeAs4Htk1ZkIyYgloKN4kIa22Jma3+DZPeAywCvkG8i5HqU1BLEn8G3Elc3JKR2YII6HcAC4ld1F6dsiDJnIJaknkDsY+EpoEMjxFr0AcB9wDfA/5P0ookLwpqSWpn4DaiK0HaN564xftO4EbgjWnLkZwpqCW5PuAWFNbt6GH98foPYvMkqT8FtZTCXxIbOWnHvYH1ELfi/5DYF3qvpNVI0RTUUhr7Ezu3KazX6wF2BGYDDxEb+KutsfsoqKVUDiFCqdvDuoe4i/PfiVa7w1FAdzMFtZTOO4AL6c6w7gEmEDMonyLmUOpFKtojR0rpPUAT+Gjrz7obR+zhfR5wItoWVjamoJbS+iAR0p+gvmG9FfEiPAs4DQ0GloEpqKXUPgK8BHwaaCSuJUtjiVu+TyN+EekOTdkcBbWU3hnEGfUXqX5YjyFedB8idrObkLYcqQgFtVTCucSZ9beoZliPbn0cQ2zcv33acqRiFNRSGV8gwvoSqhPWWxAXCQ8H/gmYnLQaqSoFtVSGAd8klkGuptxhbcSFwv2BLwGvT1uOVJyCWirFgG8TZ9Y3UM6wHg+8BfgKsEviWqQe1EsvlbMFcAUwjXLdFNMf0D8ldgRUSEtWFNRSSaOBa4C9SR/WPcBOwPXETMg905YjNaSglsoaA1wH7EGaqdo9xKSa7wIPAPslqEG6g4JaKm0scDPwZoq77boHmEislT8GTEcbJkm+FNRSeeOJdeHXE61weekhhsV+HXgSeDd6AUkx9HMmtbANMfFkR2JJJEvjgW2JPuglwPGoXUqKpaCW2tiWmCE4kWyCdBzxC+Ac4Gli35E8z9hFBqOgllrZDvgF8Cpi06PhGEucRZ9OnEGfQfrOEuluCmqpnVcSYd1LZz/gWxKBfDLw38SeHK/IvDqRzimopZYmEmH9JwzdkTGaaO87DngC+OfWvxMpi7aC2swONrP/NLNFZnZm3kWJZGEycBexdj2QUURAvwv4T2AWsWQiUjZDBrWZjSL2wjmEmFh/tJlNybswkSy8FriDjZcw+jdMmk7cqDIbmFR8aSJta+eMeiqwyN2fcPeXgauIXRtFKuFNwM+ArYk16GnA3cCPiCAXKbt2upheTVxb6beE2HtmI2Y2E5gJMGmSzk+kXHYDFgAvArsnrkWkU5ldTHT3We7e5+59vb29WX1bkcy8DoW0VFM7Qb0U2GGDv09s/TcRESlAO0H9K+C1ZrajmW0JHAXMybcsERHpN+QatbuvMbOPEJuUjQIucveFuVcmIiJAm1siuPuNwI051yIiIgPQnYkiIiWnoBYRKTkFtYhIySmoRURKztw9+29qthx4apj/fALwbIblZEV1dUZ1dUZ1daaOdb3G3Qe8WzCXoB4JM5vv7n2p69iU6uqM6uqM6upMt9WlpQ8RkZJTUIuIlFwZg3pW6gIGobo6o7o6o7o601V1lW6NWkRENlbGM2oREdmAglpEpOSSBLWZXWRmy8zsoUG+bmb29dYw3QfMrJD93tuo621mtsLM7mt9nFNQXTuY2Vwze9jMFprZqQM8pvBj1mZdhR8zM9vKzO42s/tbdZ03wGPGmtl3W8drnplNLkld7zez5RscrxPyrmuD5x5lZvea2fUDfK3w49VmXUmOl5ktNrMHW885f4CvZ/t6dPfCP4B9iGEbDw3y9UOBHxNzSPcE5pWkrrcB1yc4XtsDu7c+3wZ4DJiS+pi1WVfhx6x1DLZufT4GmAfsucljPgxc0Pr8KOC7Janr/cA3iv4Zaz33x4ArBvr/K8XxarOuJMcLWAxM2MzXM309Jjmjdvfbgec285DDgUs9/BLY1sy2L0FdSbj7M+5+T+vzF4BHiFmWGyr8mLVZV+Fax+DF1l/HtD42vWp+OHBJ6/PvA/ubmZWgriTMbCIxmP3CQR5S+PFqs66yyvT1WNY16oEG6iYPgJa3tt66/tjM3lT0k7fecu5GnI1tKOkx20xdkOCYtd4u3wcsA25190GPl7uvAVYA25WgLoB3tt4uf9/Mdhjg63n4KvAJYN0gX09yvNqoC9IcLwduMbMFFoO9N5Xp67GsQV1W9xD34+8C/AvwwyKf3My2Bn4AnObuzxf53JszRF1Jjpm7r3X3XYkZn1PNbKcinncobdR1HTDZ3XcGbmX9WWxuzOwwYJm7L8j7uTrRZl2FH6+Wvd19d+AQ4GQz2yfPJytrUJdyoK67P9//1tVj6s0YM5tQxHOb2RgiDGe7+zUDPCTJMRuqrpTHrPWcvwfmAgdv8qU/HC8zGw38EfDb1HW5+2/dfVXrrxcCexRQzl7ADDNbDFwFTDOzyzd5TIrjNWRdiY4X7r609ecy4Fpg6iYPyfT1WNagngO8r3XldE9ghbs/k7ooM3tV/7qcmU0ljl/uL+7Wc34beMTdvzzIwwo/Zu3UleKYmVmvmW3b+nwccCDw6CYPmwMc1/r8b4HbvHUVKGVdm6xjziDW/XPl7me5+0R3n0xcKLzN3Y/d5GGFH6926kpxvMysx8y26f8ceDuwaadYpq/HtmYmZs3MriS6ASaY2RLgU8SFFdz9AmI+46HAIqABfKAkdf0tcJKZrQGawFF5/7C27AW8F3iwtb4J8Elg0ga1pThm7dSV4phtD1xiZqOIXwxXu/v1ZvZpYL67zyF+wVxmZouIC8hH5VxTu3WdYmYzgDWtut5fQF0DKsHxaqeuFMfrlcC1rfOP0cAV7n6TmZ0I+bwedQu5iEjJlXXpQ0REWhTUIiIlp6AWESk5BbWISMkpqEVESk5BLSJScgpqEZGS+/9XrrbxNwd38wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.fill(x, y, color='aqua')\n", "# This code above plots the polygon and specifies the colour of the polygon\n", "time.sleep(1) # The time library can be used to put animations on plotting, in this case it is a simple one second delay\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "8bb58757", "metadata": { "papermill": { "duration": 0.02464, "end_time": "2021-12-07T18:24:48.397207", "exception": false, "start_time": "2021-12-07T18:24:48.372567", "status": "completed" }, "tags": [] }, "source": [ "**Using data in Shapefiles to Test Function**\n", "\n", "To further test the function, polygon data from shapefiles will be used.\n", "\n", "First the data from the shapefile needs to be loaded." ] }, { "cell_type": "markdown", "id": "3955b282", "metadata": { "papermill": { "duration": 0.024787, "end_time": "2021-12-07T18:24:48.447371", "exception": false, "start_time": "2021-12-07T18:24:48.422584", "status": "completed" }, "tags": [] }, "source": [ "**Code to Load Shapefile Data**\n", "\n", "Below is the code to load shapefile data into the format for the area function created.\n", "\n", "Both the polygons and building shapefiles will be loaded.\n", "\n", "The code to print the shapefiles will be disabled as the quantity of data when displayed leads to the Kaggle notebook being hard to navigate.\n", "\n", "Also for the testing with data from the building shapefile, there is a section of code that selects three tupels out of the 1033 to test at random." ] }, { "cell_type": "code", "execution_count": 12, "id": "4a89e12d", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:48.500519Z", "iopub.status.busy": "2021-12-07T18:24:48.499839Z", "iopub.status.idle": "2021-12-07T18:24:48.549354Z", "shell.execute_reply": "2021-12-07T18:24:48.548685Z", "shell.execute_reply.started": "2021-12-07T18:14:55.420734Z" }, "papermill": { "duration": 0.077231, "end_time": "2021-12-07T18:24:48.549504", "exception": false, "start_time": "2021-12-07T18:24:48.472273", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[[(1.0, 1.0), (1.0, 50.0), (50.0, 50.0), (50.0, 1.0), (1.0, 1.0)],\n", " [(75.0, 75.0), (120.0, 180.0), (140.0, 75.0), (75.0, 75.0)],\n", " [(1.0, 1.0), (1.0, 5.0), (5.0, 5.0), (5.0, 1.0), (1.0, 1.0)]]" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "shapefile_polygons = [] # This line of code stores the shapefile polygon data as a list \n", "\n", "c = fiona.open('../input/ceg1713-data-files/polygons.shp') # Using the fiona Library to open shapefile\n", "\n", "for each_poly in c:\n", " geom = shg.shape(each_poly['geometry'])\n", " poly_data = each_poly[\"geometry\"][\"coordinates\"][0]\n", " poly = shg.Polygon(poly_data)\n", " # print(poly)\n", " # The code above converts shapefile data into suitable tupel format\n", " shapefile_polygons.append(list(poly.exterior.coords))\n", " \n", "display(shapefile_polygons)" ] }, { "cell_type": "code", "execution_count": 13, "id": "dd4024cb", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:48.603524Z", "iopub.status.busy": "2021-12-07T18:24:48.602553Z", "iopub.status.idle": "2021-12-07T18:24:49.067517Z", "shell.execute_reply": "2021-12-07T18:24:49.066365Z", "shell.execute_reply.started": "2021-12-07T18:14:55.441946Z" }, "papermill": { "duration": 0.492906, "end_time": "2021-12-07T18:24:49.067680", "exception": false, "start_time": "2021-12-07T18:24:48.574774", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "shapefile_buildings = [] # This line of code stores the shapefile building data as a list \n", "\n", "c = fiona.open('../input/ceg1713-data-files/buildings.shp') # Using the fiona Library to open shapefile\n", "\n", "for each_poly in c:\n", " geom = shg.shape(each_poly['geometry'])\n", " poly_data = each_poly[\"geometry\"][\"coordinates\"][0]\n", " poly = shg.Polygon(poly_data)\n", " # print(poly)\n", " # The code above converts shapefile data into suitable tupel format\n", " shapefile_buildings.append(list(poly.exterior.coords))\n", " \n", "# display(shapefile_buildings)" ] }, { "cell_type": "code", "execution_count": 14, "id": "1a3f8ff1", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.122296Z", "iopub.status.busy": "2021-12-07T18:24:49.121325Z", "iopub.status.idle": "2021-12-07T18:24:49.128476Z", "shell.execute_reply": "2021-12-07T18:24:49.129245Z", "shell.execute_reply.started": "2021-12-07T18:14:55.619358Z" }, "papermill": { "duration": 0.035717, "end_time": "2021-12-07T18:24:49.129466", "exception": false, "start_time": "2021-12-07T18:24:49.093749", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1033\n", "[599, 996, 504]\n" ] } ], "source": [ "print(len(shapefile_buildings)) # Code to display the number of polygon tupels in the buildings shapefile (1033)\n", "\n", "mylist = []\n", "for i in range(0,3):\n", " x = random.randint(0,1033) # Uses the random library to generate random value\n", " mylist.append(x)\n", "print(mylist)\n", "# The code above produces three random numbers from 0 to 1033 which correspond to a certain polygon tupel in the shapefile" ] }, { "cell_type": "code", "execution_count": 15, "id": "e3ed1e45", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.185302Z", "iopub.status.busy": "2021-12-07T18:24:49.183040Z", "iopub.status.idle": "2021-12-07T18:24:49.189150Z", "shell.execute_reply": "2021-12-07T18:24:49.188618Z", "shell.execute_reply.started": "2021-12-07T18:14:55.628528Z" }, "papermill": { "duration": 0.033929, "end_time": "2021-12-07T18:24:49.189303", "exception": false, "start_time": "2021-12-07T18:24:49.155374", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(424294.4000000004, 565144.6600000001), (424291.9500000002, 565137.8000000007), (424290.9000000004, 565134.9000000004), (424282.2000000002, 565138.0999999996), (424283.3499999996, 565141.25), (424284.6299999999, 565144.7699999996), (424285.75, 565147.8399999999), (424294.4000000004, 565144.6600000001)]\n", "[(425081.1500000004, 564700.1999999993), (425081.5499999998, 564699.1999999993), (425083.0, 564695.6500000004), (425077.25, 564693.4000000004), (425075.9000000004, 564696.8499999996), (425075.2999999998, 564698.0), (425081.1500000004, 564700.1999999993)]\n", "[(424754.32100000046, 565224.6640000008), (424752.99700000044, 565223.25), (424751.2000000002, 565224.9499999993), (424750.6469999999, 565225.4499999993), (424751.9709999999, 565226.8640000001), (424754.32100000046, 565224.6640000008)]\n" ] } ], "source": [ "print(shapefile_buildings[921])\n", "print(shapefile_buildings[264])\n", "print(shapefile_buildings[7])\n", "# The above code displays the corresponding polygon data to the random number generated " ] }, { "cell_type": "markdown", "id": "04e60f06", "metadata": { "papermill": { "duration": 0.025237, "end_time": "2021-12-07T18:24:49.240713", "exception": false, "start_time": "2021-12-07T18:24:49.215476", "status": "completed" }, "tags": [] }, "source": [ "**Code to Test the Function with Loaded Shapefile Data**\n", "\n", "Now that the two shapefiles have been loaded and converted, the data can now be inputed into the area function and tested against the shapely library again." ] }, { "cell_type": "code", "execution_count": 16, "id": "43689f08", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.295674Z", "iopub.status.busy": "2021-12-07T18:24:49.295001Z", "iopub.status.idle": "2021-12-07T18:24:49.299932Z", "shell.execute_reply": "2021-12-07T18:24:49.300391Z", "shell.execute_reply.started": "2021-12-07T18:14:55.642404Z" }, "papermill": { "duration": 0.034217, "end_time": "2021-12-07T18:24:49.300563", "exception": false, "start_time": "2021-12-07T18:24:49.266346", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "data1 = (shapefile_polygons[0])\n", "data2 = (shapefile_polygons[1])\n", "data3 = (shapefile_polygons[2])\n", "data4 = (shapefile_buildings[921])\n", "data5 = (shapefile_buildings[264])\n", "data6 = (shapefile_buildings[7])" ] }, { "cell_type": "code", "execution_count": 17, "id": "f0b54d29", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.355336Z", "iopub.status.busy": "2021-12-07T18:24:49.354729Z", "iopub.status.idle": "2021-12-07T18:24:49.363761Z", "shell.execute_reply": "2021-12-07T18:24:49.363143Z", "shell.execute_reply.started": "2021-12-07T18:14:55.649806Z" }, "papermill": { "duration": 0.037069, "end_time": "2021-12-07T18:24:49.363904", "exception": false, "start_time": "2021-12-07T18:24:49.326835", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The area is 2401.0\n", "The area is 3412.5\n", "The area is 16.0\n", "The area is 95.87215000122636\n", "The area is 30.488749994030222\n", "The area is 6.214900001753494\n" ] } ], "source": [ "print('The area is {}'.format(polyarea(data1)))\n", "print('The area is {}'.format(polyarea(data2)))\n", "print('The area is {}'.format(polyarea(data3)))\n", "print('The area is {}'.format(polyarea(data4)))\n", "print('The area is {}'.format(polyarea(data5)))\n", "print('The area is {}'.format(polyarea(data6)))\n", "# Area of polygon outputs from the function created" ] }, { "cell_type": "code", "execution_count": 18, "id": "15f361eb", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.418994Z", "iopub.status.busy": "2021-12-07T18:24:49.418351Z", "iopub.status.idle": "2021-12-07T18:24:49.424810Z", "shell.execute_reply": "2021-12-07T18:24:49.423798Z", "shell.execute_reply.started": "2021-12-07T18:14:55.664656Z" }, "papermill": { "duration": 0.03511, "end_time": "2021-12-07T18:24:49.425060", "exception": false, "start_time": "2021-12-07T18:24:49.389950", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The area is 2401.0\n", "The area is 3412.5\n", "The area is 16.0\n" ] } ], "source": [ "for i in shapefile_polygons:\n", " shg_poly = shg.Polygon(i)\n", " print(\"The area is {}\".format(shg_poly.area))\n", "# The shapely library values and function values match, so the code passes testing" ] }, { "cell_type": "code", "execution_count": 19, "id": "25010b59", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.481226Z", "iopub.status.busy": "2021-12-07T18:24:49.480596Z", "iopub.status.idle": "2021-12-07T18:24:49.486524Z", "shell.execute_reply": "2021-12-07T18:24:49.487092Z", "shell.execute_reply.started": "2021-12-07T18:14:55.679292Z" }, "papermill": { "duration": 0.035236, "end_time": "2021-12-07T18:24:49.487289", "exception": false, "start_time": "2021-12-07T18:24:49.452053", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The area is 95.87215000122634\n", "The area is 30.488749994030222\n", "The area is 6.214900001753493\n" ] } ], "source": [ "t4 = shg.Polygon(data4)\n", "t5 = shg.Polygon(data5)\n", "t6 = shg.Polygon(data6)\n", "print('The area is {}'.format(t4.area))\n", "print('The area is {}'.format(t5.area))\n", "print('The area is {}'.format(t6.area))\n", "# The shapely library values and function values match, so the code passes testing" ] }, { "cell_type": "code", "execution_count": 20, "id": "9d022ac8", "metadata": { "execution": { "iopub.execute_input": "2021-12-07T18:24:49.544379Z", "iopub.status.busy": "2021-12-07T18:24:49.543703Z", "iopub.status.idle": "2021-12-07T18:24:49.734296Z", "shell.execute_reply": "2021-12-07T18:24:49.733463Z", "shell.execute_reply.started": "2021-12-07T18:14:55.689113Z" }, "papermill": { "duration": 0.220383, "end_time": "2021-12-07T18:24:49.734443", "exception": false, "start_time": "2021-12-07T18:24:49.514060", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANEAAAD4CAYAAABymQMRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAQwklEQVR4nO3da6xc5XnF8f/C9rGLuRobCwGOIXKQSNOY1KKRGqKkuRRQVUM/UGgVHIFkUIPUKJEq0nwoUpWqakuRorSkRkEYKRBQKIIPtMV1K6JKoc0xcc3N4EtssGMfX4htyt320w+zB29vz9hz5t179p6Z9ZOOzsw7M2fekb08M4/3WaOIwMz6d1rdGzAbdg6RWSKHyCyRQ2SWyCEySzSz7g0AzJ8/PxYvXlz3Nsy6Wrdu3b6IWNDpskaEaPHixUxOTta9DbOuJG3vdplfzpklcojMEjlEZokcIrNEDpFZIofILJFDZJbIITJL5BDZ8DiwB555FI4erXsnx3GIbHhs3QBT2+GdN+veyXEcIhsO774Fr2+EmRPw5q/q3s1xThkiSfdL2iPphdzaI5LWZ1/bJK3P1hdLeid32fcr3LuNk9c2QgScdhoc3Ff3bo7TywGoDwDfAx5sL0TEH7ZPS7obOJi7/paIWFrS/szgyGHY/BycfhZ88D688cu6d3ScUz4TRcRPgDc6XSZJwA3AwyXvy+yYqW3w7jswazZMzIE3dreelRoi9T3RVcBURGzKrV0i6eeSnpF0VbcbSlopaVLS5N69exO3YSMrAl5dB3N+rXV+5iz44D147+1695WTGqKbOP5ZaBewKCKuAL4BPCTprE43jIhVEbEsIpYtWNDxd53M4OBe+NUUzDkjtyj4vwN17egEfYdI0kzgD4BH2msR8V5E7M9OrwO2AB9L3aSNsa0bYMZMkI6txVE41JzhQsoz0ReBjRGxo70gaYGkGdnpS4ElwNa0LdrYao+15559/Pqs2a33RQ3Ry4j7YeCnwGWSdki6NbvoRk4cKHwW2JCNvH8M3B4RHYcSZqf04Vh7xvHrE3Ng/6569tTBKUfcEXFTl/Wvdlh7DHgsfVs29vJj7aKZE633Sh+813pWqpmPWLBmyo+1iyTQaY0ZLjhE1jzFsXbH6xyFN5vxTsEhsubpONYumDGrMcMFh8iap9NYu2hiDrzRjOGCQ2TN0m2sXTQxGw7tbw0gauYQWbN0G2sXKfur+9bBk19vABwia46TjbU7ikb8bpFDZM0xtQ3e6zLW7kQzWr8yXjOHyJqhPdaefZKxdtHEHNhf/+8WOUTWDL2MtYsm5rSeiWouLnGIrBl6GWsXnTYDjh6pvbjEIbL69TrW7qbm4YJDZPXrdazdTc3FJQ6R1WvaY+2CWXNqLy5xiKxe0x1rFzWguMQhsvpEwKZpjrWLGlBc4hBZfQ7uhTemOdbuqN7iEofI6tPPWLuTmotL+q0RvkvSzlxd8LW5y74labOkVyT9blUbtyGXOtbOq7m4pJdnogeAqzus3xMRS7OvpwAkXU6rwOTj2W3+sd3+Y3ac1LF2Xs3FJUk1wh0sB36U9c/9AtgMXJmwPxtFqWPtopkT8Pah1oChBinvie6QtCF7uXdutnYh8HruOjuytRO4RniMpY61i2ouLuk3RPcCHwWW0qoOvnu6P8A1wmOqjLF2x59bX3FJXyGKiKmIOBIRR4H7OPaSbSdwce6qF2VrZi2ljbULaiwu6StEki7Inb0eaE/ungRulDRb0iW0aoT/J22LNlLKGmsX1VhccsoG1KxG+HPAfEk7gL8APidpKRDANuA2gIh4UdKjwEvAYeBrEXGkkp3b8GmPtc8499TXna58ccmMXj67rjz91gj/4CTX/w7wnZRN2Ygqc6xdlC8uOeu88n/+SfiIBRuMssfaHdVTXOIQ2WCUPdbupKbiEofIqlfVWLuopuISh8iqV9VYu6im4hKHyKpX1Vi7qKbiEofIqlXm0dq9GvBwwSGyalU51u5mwMUlDpFVZyBj7YIaikscIqvOIMbaRTUUlzhEVo1BjbWLaigucYisGoMaa3c02OISh8iqMaixdicDLi5xiKx8dYy18wZcXOIQWfnqGGvnDbi4xCGyctUx1i4acHGJQ2TlqmOsXTTg4hKHyMrz4Vj79Lp3MtDiEofIyvPhWHtu3TsZaHGJQ2TlqXOsXTTA4pJ+u7j/VtLGrLzxcUnnZOuLJb2T6+j+foV7tyape6xdlC8uqVi/XdxrgF+PiN8AXgW+lbtsS66j+/ZytmmNV/dYuyhfXFKxvrq4I+LpiGhH/FlaJY02rpow1u5oMMUlZbwnugX4l9z5SyT9XNIzkq7qdiN3cY+QJoy1OxlQcUlSiCR9m1ZJ4w+zpV3Aooi4AvgG8JCkjv88uYt7RDRprF00oOKSvkMk6avA7wF/HNH65Y3sI1X2Z6fXAVuAj5WwT2uqJo21iwZUXNJvF/fVwJ8Bvx8Rb+fWF7Q/1EvSpbS6uLeWsVFrqCaNtYsGVFzSy4j7YeCnwGWSdki6FfgecCawpjDK/iywQdJ64MfA7RFRz+ddWPXefQtee7k5Y+1uKj78p9Qu7oh4DHgsdVM2JF7b2PrelLF2Nwf2wsKPVPbjfcSC9aexY+2CARSXOETWn6aOtYsGUFziENn0NXmsXTSA4hKHyKavyWPtjqotLnGIbPqaPNbuJKLS4hKHyKZnWMbaebMmKv3dIofIpmdYxtp5FReXOETWu2EZaxdVXFziEFnvprYPx1i7qOLiEofIehMBmyaHY6zdSYXFJQ6R9WboxtoFFRaXOETWm2EbaxdVWFziENmpDeNYu6jC4hKHyE5tGMfaRRUWlzhEdnLDOtbuqJriEofITm5Yx9qdVFRc4hBZd8M+1i6qqLjEIbLuhn2sXVRRcUlPIepSJTxP0hpJm7Lv52brkvRdSZuzmuFPlbpjG5xhH2sXVVRc0usz0QOcWCV8J7A2IpYAa7PzANfQavlZAqwE7k3fpg3cKIy1uyn58J+eQtSpShhYDqzOTq8GrsutPxgtzwLnSLqghL3aII3CWLubA+U27qa8J1oYEe3/At4NLMxOXwi8nrvejmzNhsVIjbULKiguKWWwkDWgTqsJwl3cDTZKY+2iCopLUkI01X6Zln1vD+B3AhfnrndRtnYcd3E31KiNtYsqKC5JCdGTwIrs9Argidz6zdmU7tPAwdzLPmu6URtrd1RucUmvI+5OVcJ/DXxJ0ibgi9l5gKdo9W9vBu4D/qS03Vr1Rm2s3UnJxSWnrBFu3WfHKmGAL3S4bgBfS9mU1aQ91j5zXt07qVa7uOTST5by43zEgh0zymPtvJKLSxwiaxnlsXZRycUlDpG1jPJYu6jk4hKHyEZ/rN1JicUlDpGNyVi7oMTiEofIxmOsXVRicYlDNO5G+WjtkymxuMQhGnfjMtYuKrG4xCEaZ+M01u6onOISh2icjdNYu5OSiksconE1jmPtopKKSxyicTWOY+2ikopLHKJxNY5j7aKSiksconE0rmPtbhIP/3GIxtG4jrW7SSwucYjGzdiPtQtKKC5xiMbNuI+1i0ooLnGIxonH2icqobjEIRonHmt3kVZc0neIJF0maX3u65Ckr0u6S9LO3Pq1fe/OyuWxdmeJxSV9hygiXomIpRGxFPhN4G3g8ezie9qXRcRTfe/OyuOxdnft4pI+9dT204MvAFsiYrv8r1wzvbYR3n+nFSY73pHDScUlZYXoRuDh3Pk7JN0MTALfjIgTDpWVtJLWp0awaNGikrZhXc09GxZ/ou5dNFdCTZgisZNY0gTwS+DjETElaSGwj1Y3918CF0TELSf7GcuWLYvJycmkfZhVSdK6iFjW6bIypnPXAM9FxBRARExFxJGIOEqrAfXKEu7DrLHKCNFN5F7KFT6L6HrghRNuYTZCkt4TSZoLfAm4Lbf8N5KW0no5t61wmdnISQpRRLwFnFdY+0rSjsyGjI9YMEvkEJklcojMEjlEZokcIrNEDpFZIofILJFDZJbIITJL5BCZJXKIzBI5RGaJHCKzRA6RWSKHyCyRQ2SWyCEyS+QQmSVyiMwSJZc3StoGvAkcAQ5HxDJJ84BHgMW0ykpu6FTgaDYKynom+nzWu90ut7sTWBsRS4C12XmzkVTVy7nlwOrs9Grguorux6x2ZXRxB/C0pAD+KSJWAQsjot0QvhtYWLzRtLq4/+MhONj/R1801tnz4Xf+qO5dWKIyQvSZiNgp6XxgjaSN+QsjIrKAUVhfBayCVhf3Se/h4D445/wSttowB/bUvQMrQfLLuYjYmX3fQ+vzia4Eptp1wtl3/22xkZUUIklzJZ3ZPg18mVb39pPAiuxqK4AnUu7HrMlSX84tBB7PPthrJvBQRPyrpJ8Bj0q6FdgO3JB4P2aNldrFvRX4ZIf1/bQ+Pc9s5PmIBbNEDpFZIofILJFDZJbIITJL5BCZJXKIzBI5RGaJHCKzRA6RWSKHyCyRQ2SWyCEyS+QQmSVyiMwSOURmiRwis0QOkVmivkMk6WJJ/ynpJUkvSvrTbP0uSTslrc++ri1vu2bNk9KxcBj4ZkQ8lzX+rJO0Jrvsnoj4u/TtmTVf3yHKGk53ZafflPQycGFZGzMbFqW8J5K0GLgC+O9s6Q5JGyTdL+ncLrdZKWlS0uTevXvL2IZZLZJDJOkM4DHg6xFxCLgX+CiwlNYz1d2dbhcRqyJiWUQsW7BgQeo2zGqT2oA6i1aAfhgR/wwQEVMRcSQijgL30aoVNhtZKdM5AT8AXo6Iv8+tX5C72vW0aoXNRlbKdO63ga8Az0tan639OXCTpKW0PnJlG3Bbwn2YNV7KdO6/AHW46Kn+t2M2fHzEglkih8gskUNklsghMkvkEJklcojMEjlEZokcIrNEDpFZIofILJFDZJbIITJL5BCZJXKIzBI5RGaJHCKzRCm/2To4u7fC7l8cOz/7dLjkE/XtxyxnOEL0/rtw1vxj5999q769mBX45ZxZospCJOlqSa9I2izpzqrux6xulYRI0gzgH4BrgMtpNQBdXsV9mdWtqvdEVwKbI2IrgKQfAcuBl/r6aWfOg0P7jp2fmAMH9qTvsm5nzz/1dazxqgrRhcDrufM7gN/KX0HSSmAlwKJFi07+0275q3J3Z1ai2gYL7uK2UVFViHYCF+fOX5StmY2cqkL0M2CJpEskTQA3Ak9WdF9mtarkPVFEHJZ0B/BvwAzg/oh4sYr7MqtbZUcsRMRTuJfbxoCPWDBL5BCZJXKIzBIpIureA5L2Atu7XDwf2NflsmHnxzY8PhIRHf9DsxEhOhlJkxGxrO59VMGPbTT45ZxZIofILNEwhGhV3RuokB/bCGj8eyKzphuGZyKzRnOIzBI1NkSj2NEgaZuk5yWtlzSZrc2TtEbSpuz7uXXvsxeS7pe0R9ILubWOj0Ut383+LDdI+lR9Oy9fI0M04h0Nn4+Ipbn/Q7kTWBsRS4C12flh8ABwdWGt22O5BliSfa0E7h3QHgeikSEi19EQEe8D7Y6GUbQcWJ2dXg1cV99WehcRPwHeKCx3eyzLgQej5VngHEkXDGSjA9DUEHXqaLiwpr2UKYCnJa3LOiYAFkbEruz0bmBhPVsrRbfHMqp/nsCwNKCOjs9ExE5J5wNrJG3MXxgRIWkk/s9hlB7LqTT1mWgkOxoiYmf2fQ/wOK2XrVPtlzbZ92HuAuv2WEbyz7OtqSEauY4GSXMlndk+DXwZeIHW41qRXW0F8EQ9OyxFt8fyJHBzNqX7NHAw97Jv+EVEI7+Aa4FXgS3At+veTwmP51Lgf7OvF9uPCTiP1iRrE/DvwLy699rj43kY2AV8QOs9zq3dHgsgWtPWLcDzwLK691/mlw/7MUvU1JdzZkPDITJL5BCZJXKIzBI5RGaJHCKzRA6RWaL/B/WBcrWRvjAGAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.gca().set_aspect('equal', adjustable='box') \n", "#The Code above is to make the x and y axis the same scale when plotting\n", "\n", "for poly in shapefile_polygons:\n", " xy = list(zip(*poly))\n", " plt.fill(xy[0], xy[1], alpha=0.5, color = 'coral')" ] }, { "cell_type": "markdown", "id": "78b1893b", "metadata": { "papermill": { "duration": 0.026711, "end_time": "2021-12-07T18:24:49.788343", "exception": false, "start_time": "2021-12-07T18:24:49.761632", "status": "completed" }, "tags": [] }, "source": [ "**Conclusion**\n", "\n", "In summary, the function created to calculate the area of a polygon is functioning as it should having been tested against the Shapely Library for Seven different tupels. " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" }, "papermill": { "default_parameters": {}, "duration": 14.810441, "end_time": "2021-12-07T18:24:50.425952", "environment_variables": {}, "exception": null, "input_path": "__notebook__.ipynb", "output_path": "__notebook__.ipynb", "parameters": {}, "start_time": "2021-12-07T18:24:35.615511", "version": "2.3.3" } }, "nbformat": 4, "nbformat_minor": 5 }
0081/792/81792932.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"e0823ebd\",\n \"metadata\": (...TRUNCATED)
0081/793/81793766.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"f64311d6\",\n \"metadata\": (...TRUNCATED)
0081/793/81793978.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED)
0081/794/81794264.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\n \"cells\": [\n {\n \"attachments\": {\n \"2b356f54-cb7f-4259-9290-3dd331b9d154.png\": {\n(...TRUNCATED)
0081/794/81794582.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"ec1eb105\",\n \"metadata\": (...TRUNCATED)
0081/795/81795695.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED)
0081/795/81795719.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"922cf2a0\",\n \"metadata\": (...TRUNCATED)
0081/795/81795796.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"f53847f5\",\n \"metadata\": (...TRUNCATED)
0081/795/81795919.ipynb
s3://data-agents/kaggle-outputs/sharded/033_00081.jsonl.gz
README.md exists but content is empty.
Downloads last month
28