Dataset Viewer (First 5GB)
The table and auto-converted Parquet files contain data up to 5GB, since the original files row groups are too big to be displayed. The recommended row group size is 100-300MB in-memory.
Auto-converted to Parquet
Full Screen
Search is not available for this dataset
text
stringlengths
1.72k
101M
id
stringlengths
23
24
file_path
stringclasses
45 values
{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "e017c017", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:32.118432Z", "iopub.status.busy": "2023-01-05T14:35:32.117858Z", "iopub.status.idle": "2023-01-05T14:35:33.681993Z", "shell.execute_reply": "2023-01-05T14:35:33.680390Z" }, "papermill": { "duration": 1.577074, "end_time": "2023-01-05T14:35:33.685918", "exception": false, "start_time": "2023-01-05T14:35:32.108844", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.model_selection import train_test_split, cross_val_score\n", "from sklearn.compose import ColumnTransformer\n", "from sklearn.preprocessing import StandardScaler, OneHotEncoder\n", "from sklearn.impute import SimpleImputer\n", "from sklearn.decomposition import PCA\n", "from sklearn.pipeline import Pipeline\n", "from sklearn.linear_model import LogisticRegression\n" ] }, { "cell_type": "code", "execution_count": 2, "id": "bd03e67e", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:33.701755Z", "iopub.status.busy": "2023-01-05T14:35:33.701263Z", "iopub.status.idle": "2023-01-05T14:35:33.808244Z", "shell.execute_reply": "2023-01-05T14:35:33.806713Z" }, "papermill": { "duration": 0.11813, "end_time": "2023-01-05T14:35:33.811121", "exception": false, "start_time": "2023-01-05T14:35:33.692991", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "df = pd.read_csv(\"/kaggle/input/credit-card-customer-churn-prediction/Churn_Modelling.csv\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "72a45aab", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:33.825122Z", "iopub.status.busy": "2023-01-05T14:35:33.824698Z", "iopub.status.idle": "2023-01-05T14:35:33.840287Z", "shell.execute_reply": "2023-01-05T14:35:33.839028Z" }, "papermill": { "duration": 0.0257, "end_time": "2023-01-05T14:35:33.842855", "exception": false, "start_time": "2023-01-05T14:35:33.817155", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "df = df.drop(columns=['RowNumber','CustomerId','Surname'])" ] }, { "cell_type": "code", "execution_count": 4, "id": "82c42c57", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:33.858172Z", "iopub.status.busy": "2023-01-05T14:35:33.856981Z", "iopub.status.idle": "2023-01-05T14:35:33.893394Z", "shell.execute_reply": "2023-01-05T14:35:33.892056Z" }, "papermill": { "duration": 0.047249, "end_time": "2023-01-05T14:35:33.896480", "exception": false, "start_time": "2023-01-05T14:35:33.849231", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>CreditScore</th>\n", " <th>Geography</th>\n", " <th>Gender</th>\n", " <th>Age</th>\n", " <th>Tenure</th>\n", " <th>Balance</th>\n", " <th>NumOfProducts</th>\n", " <th>HasCrCard</th>\n", " <th>IsActiveMember</th>\n", " <th>EstimatedSalary</th>\n", " <th>Exited</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>619</td>\n", " <td>France</td>\n", " <td>Female</td>\n", " <td>42</td>\n", " <td>2</td>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>101348.88</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>608</td>\n", " <td>Spain</td>\n", " <td>Female</td>\n", " <td>41</td>\n", " <td>1</td>\n", " <td>83807.86</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>112542.58</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>502</td>\n", " <td>France</td>\n", " <td>Female</td>\n", " <td>42</td>\n", " <td>8</td>\n", " <td>159660.80</td>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113931.57</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>699</td>\n", " <td>France</td>\n", " <td>Female</td>\n", " <td>39</td>\n", " <td>1</td>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>93826.63</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>850</td>\n", " <td>Spain</td>\n", " <td>Female</td>\n", " <td>43</td>\n", " <td>2</td>\n", " <td>125510.82</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>79084.10</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>9995</th>\n", " <td>771</td>\n", " <td>France</td>\n", " <td>Male</td>\n", " <td>39</td>\n", " <td>5</td>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>96270.64</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>9996</th>\n", " <td>516</td>\n", " <td>France</td>\n", " <td>Male</td>\n", " <td>35</td>\n", " <td>10</td>\n", " <td>57369.61</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>101699.77</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>9997</th>\n", " <td>709</td>\n", " <td>France</td>\n", " <td>Female</td>\n", " <td>36</td>\n", " <td>7</td>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>42085.58</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>9998</th>\n", " <td>772</td>\n", " <td>Germany</td>\n", " <td>Male</td>\n", " <td>42</td>\n", " <td>3</td>\n", " <td>75075.31</td>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>92888.52</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>9999</th>\n", " <td>792</td>\n", " <td>France</td>\n", " <td>Female</td>\n", " <td>28</td>\n", " <td>4</td>\n", " <td>130142.79</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>38190.78</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>10000 rows × 11 columns</p>\n", "</div>" ], "text/plain": [ " CreditScore Geography Gender Age Tenure Balance NumOfProducts \\\n", "0 619 France Female 42 2 0.00 1 \n", "1 608 Spain Female 41 1 83807.86 1 \n", "2 502 France Female 42 8 159660.80 3 \n", "3 699 France Female 39 1 0.00 2 \n", "4 850 Spain Female 43 2 125510.82 1 \n", "... ... ... ... ... ... ... ... \n", "9995 771 France Male 39 5 0.00 2 \n", "9996 516 France Male 35 10 57369.61 1 \n", "9997 709 France Female 36 7 0.00 1 \n", "9998 772 Germany Male 42 3 75075.31 2 \n", "9999 792 France Female 28 4 130142.79 1 \n", "\n", " HasCrCard IsActiveMember EstimatedSalary Exited \n", "0 1 1 101348.88 1 \n", "1 0 1 112542.58 0 \n", "2 1 0 113931.57 1 \n", "3 0 0 93826.63 0 \n", "4 1 1 79084.10 0 \n", "... ... ... ... ... \n", "9995 1 0 96270.64 0 \n", "9996 1 1 101699.77 0 \n", "9997 0 1 42085.58 1 \n", "9998 1 0 92888.52 1 \n", "9999 1 0 38190.78 0 \n", "\n", "[10000 rows x 11 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 5, "id": "5b922b0a", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:33.913374Z", "iopub.status.busy": "2023-01-05T14:35:33.912560Z", "iopub.status.idle": "2023-01-05T14:35:33.923652Z", "shell.execute_reply": "2023-01-05T14:35:33.921400Z" }, "papermill": { "duration": 0.024221, "end_time": "2023-01-05T14:35:33.927696", "exception": false, "start_time": "2023-01-05T14:35:33.903475", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "# define the input and output variables\n", "X = df.drop(columns='Exited')\n", "y = df['Exited']" ] }, { "cell_type": "code", "execution_count": 6, "id": "96a5bd4b", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:33.944446Z", "iopub.status.busy": "2023-01-05T14:35:33.943095Z", "iopub.status.idle": "2023-01-05T14:35:33.954947Z", "shell.execute_reply": "2023-01-05T14:35:33.953478Z" }, "papermill": { "duration": 0.023793, "end_time": "2023-01-05T14:35:33.958376", "exception": false, "start_time": "2023-01-05T14:35:33.934583", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "# split the data into training and test sets\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)" ] }, { "cell_type": "code", "execution_count": 7, "id": "a0f8527f", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:33.974986Z", "iopub.status.busy": "2023-01-05T14:35:33.974548Z", "iopub.status.idle": "2023-01-05T14:35:33.980075Z", "shell.execute_reply": "2023-01-05T14:35:33.978965Z" }, "papermill": { "duration": 0.017196, "end_time": "2023-01-05T14:35:33.982566", "exception": false, "start_time": "2023-01-05T14:35:33.965370", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "from sklearn.preprocessing import OneHotEncoder" ] }, { "cell_type": "code", "execution_count": 8, "id": "babb0c1c", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:34.001442Z", "iopub.status.busy": "2023-01-05T14:35:34.000771Z", "iopub.status.idle": "2023-01-05T14:35:34.015064Z", "shell.execute_reply": "2023-01-05T14:35:34.013429Z" }, "papermill": { "duration": 0.027736, "end_time": "2023-01-05T14:35:34.018267", "exception": false, "start_time": "2023-01-05T14:35:33.990531", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "# create a column transformer to standardize the numeric columns, one-hot encode the categorical columns, and impute missing values in all columns\n", "num_cols = X_train.select_dtypes(include='number').columns.tolist()\n", "# determine the categorical columns\n", "cat_cols = X_train.select_dtypes(exclude='number').columns.tolist()\n", "\n", "# num_cols = ['numeric_col_1', 'numeric_col_2']\n", "# cat_cols = ['cat_col_1', 'cat_col_2']\n", "\n", "transformer = ColumnTransformer(transformers=[\n", " ('num', StandardScaler(), num_cols),\n", " ('cat', OneHotEncoder(drop='first'), cat_cols),\n", "])" ] }, { "cell_type": "code", "execution_count": 9, "id": "3de68c6d", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:34.034435Z", "iopub.status.busy": "2023-01-05T14:35:34.033459Z", "iopub.status.idle": "2023-01-05T14:35:34.068923Z", "shell.execute_reply": "2023-01-05T14:35:34.067608Z" }, "papermill": { "duration": 0.046505, "end_time": "2023-01-05T14:35:34.071950", "exception": false, "start_time": "2023-01-05T14:35:34.025445", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "X_train = transformer.fit_transform(X_train)\n", "X_test = transformer.fit_transform(X_test)" ] }, { "cell_type": "code", "execution_count": 10, "id": "4aefeeb5", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:34.087528Z", "iopub.status.busy": "2023-01-05T14:35:34.087017Z", "iopub.status.idle": "2023-01-05T14:35:34.099134Z", "shell.execute_reply": "2023-01-05T14:35:34.097422Z" }, "papermill": { "duration": 0.023433, "end_time": "2023-01-05T14:35:34.101941", "exception": false, "start_time": "2023-01-05T14:35:34.078508", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "array([[ 1.27754581, -1.23264342, -0.012743 , ..., 0. ,\n", " 0. , 0. ],\n", " [-0.49959477, 0.28410615, 0.33282985, ..., 1. ,\n", " 0. , 0. ],\n", " [ 0.67827747, -0.09508124, -1.39503438, ..., 0. ,\n", " 0. , 0. ],\n", " ...,\n", " [ 2.06279398, -0.28467494, -0.70388869, ..., 0. ,\n", " 0. , 1. ],\n", " [-1.02653762, 1.42166833, -0.012743 , ..., 1. ,\n", " 0. , 1. ],\n", " [ 0.03768029, -1.04304972, 0.67840269, ..., 0. ,\n", " 0. , 0. ]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train" ] }, { "cell_type": "code", "execution_count": 11, "id": "d547fcf0", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:34.119763Z", "iopub.status.busy": "2023-01-05T14:35:34.118584Z", "iopub.status.idle": "2023-01-05T14:35:42.632915Z", "shell.execute_reply": "2023-01-05T14:35:42.631556Z" }, "papermill": { "duration": 8.526953, "end_time": "2023-01-05T14:35:42.635764", "exception": false, "start_time": "2023-01-05T14:35:34.108811", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import tensorflow\n", "from tensorflow import keras\n", "from tensorflow.keras import Sequential\n", "from tensorflow.keras.layers import Dense" ] }, { "cell_type": "code", "execution_count": 12, "id": "d66f9057", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:42.651024Z", "iopub.status.busy": "2023-01-05T14:35:42.650077Z", "iopub.status.idle": "2023-01-05T14:35:42.788508Z", "shell.execute_reply": "2023-01-05T14:35:42.786217Z" }, "papermill": { "duration": 0.149673, "end_time": "2023-01-05T14:35:42.792070", "exception": false, "start_time": "2023-01-05T14:35:42.642397", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2023-01-05 14:35:42.698676: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.\n" ] } ], "source": [ "model = Sequential()\n", "\n", "model.add(Dense(3, activation='sigmoid',input_dim=11))\n", "model.add(Dense(1, activation='sigmoid'))" ] }, { "cell_type": "code", "execution_count": 13, "id": "5f4a0f17", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:42.807846Z", "iopub.status.busy": "2023-01-05T14:35:42.807461Z", "iopub.status.idle": "2023-01-05T14:35:42.814610Z", "shell.execute_reply": "2023-01-05T14:35:42.812911Z" }, "papermill": { "duration": 0.018465, "end_time": "2023-01-05T14:35:42.817846", "exception": false, "start_time": "2023-01-05T14:35:42.799381", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "dense (Dense) (None, 3) 36 \n", "_________________________________________________________________\n", "dense_1 (Dense) (None, 1) 4 \n", "=================================================================\n", "Total params: 40\n", "Trainable params: 40\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 14, "id": "6c54d920", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:42.834033Z", "iopub.status.busy": "2023-01-05T14:35:42.833623Z", "iopub.status.idle": "2023-01-05T14:35:42.848878Z", "shell.execute_reply": "2023-01-05T14:35:42.847232Z" }, "papermill": { "duration": 0.026372, "end_time": "2023-01-05T14:35:42.851676", "exception": false, "start_time": "2023-01-05T14:35:42.825304", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 15, "id": "5b76e768", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:35:42.866713Z", "iopub.status.busy": "2023-01-05T14:35:42.866292Z", "iopub.status.idle": "2023-01-05T14:36:19.405992Z", "shell.execute_reply": "2023-01-05T14:36:19.404111Z" }, "papermill": { "duration": 36.550371, "end_time": "2023-01-05T14:36:19.408808", "exception": false, "start_time": "2023-01-05T14:35:42.858437", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2023-01-05 14:35:42.962762: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/100\n", "200/200 [==============================] - 1s 3ms/step - loss: 0.5797 - accuracy: 0.7614 - val_loss: 0.5205 - val_accuracy: 0.8056\n", "Epoch 2/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.5071 - accuracy: 0.7905 - val_loss: 0.4740 - val_accuracy: 0.8062\n", "Epoch 3/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4802 - accuracy: 0.7900 - val_loss: 0.4546 - val_accuracy: 0.8062\n", "Epoch 4/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4673 - accuracy: 0.7902 - val_loss: 0.4435 - val_accuracy: 0.8062\n", "Epoch 5/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4589 - accuracy: 0.7900 - val_loss: 0.4353 - val_accuracy: 0.8062\n", "Epoch 6/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4524 - accuracy: 0.7903 - val_loss: 0.4292 - val_accuracy: 0.8094\n", "Epoch 7/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4473 - accuracy: 0.7931 - val_loss: 0.4242 - val_accuracy: 0.8112\n", "Epoch 8/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4435 - accuracy: 0.7959 - val_loss: 0.4204 - val_accuracy: 0.8169\n", "Epoch 9/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4404 - accuracy: 0.7989 - val_loss: 0.4171 - val_accuracy: 0.8206\n", "Epoch 10/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4379 - accuracy: 0.7991 - val_loss: 0.4148 - val_accuracy: 0.8200\n", "Epoch 11/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4359 - accuracy: 0.8031 - val_loss: 0.4126 - val_accuracy: 0.8256\n", "Epoch 12/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4343 - accuracy: 0.8064 - val_loss: 0.4107 - val_accuracy: 0.8281\n", "Epoch 13/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4329 - accuracy: 0.8084 - val_loss: 0.4093 - val_accuracy: 0.8306\n", "Epoch 14/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4316 - accuracy: 0.8095 - val_loss: 0.4079 - val_accuracy: 0.8306\n", "Epoch 15/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4304 - accuracy: 0.8108 - val_loss: 0.4067 - val_accuracy: 0.8338\n", "Epoch 16/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4292 - accuracy: 0.8112 - val_loss: 0.4055 - val_accuracy: 0.8331\n", "Epoch 17/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4281 - accuracy: 0.8120 - val_loss: 0.4043 - val_accuracy: 0.8338\n", "Epoch 18/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4270 - accuracy: 0.8136 - val_loss: 0.4032 - val_accuracy: 0.8331\n", "Epoch 19/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4261 - accuracy: 0.8145 - val_loss: 0.4023 - val_accuracy: 0.8344\n", "Epoch 20/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4252 - accuracy: 0.8156 - val_loss: 0.4016 - val_accuracy: 0.8331\n", "Epoch 21/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4243 - accuracy: 0.8186 - val_loss: 0.4012 - val_accuracy: 0.8319\n", "Epoch 22/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4236 - accuracy: 0.8189 - val_loss: 0.4004 - val_accuracy: 0.8331\n", "Epoch 23/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4228 - accuracy: 0.8213 - val_loss: 0.3996 - val_accuracy: 0.8350\n", "Epoch 24/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4223 - accuracy: 0.8214 - val_loss: 0.3990 - val_accuracy: 0.8356\n", "Epoch 25/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4215 - accuracy: 0.8233 - val_loss: 0.3985 - val_accuracy: 0.8363\n", "Epoch 26/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4209 - accuracy: 0.8228 - val_loss: 0.3980 - val_accuracy: 0.8363\n", "Epoch 27/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4203 - accuracy: 0.8241 - val_loss: 0.3976 - val_accuracy: 0.8363\n", "Epoch 28/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4198 - accuracy: 0.8253 - val_loss: 0.3970 - val_accuracy: 0.8363\n", "Epoch 29/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4192 - accuracy: 0.8248 - val_loss: 0.3966 - val_accuracy: 0.8369\n", "Epoch 30/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4188 - accuracy: 0.8248 - val_loss: 0.3961 - val_accuracy: 0.8375\n", "Epoch 31/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4183 - accuracy: 0.8250 - val_loss: 0.3960 - val_accuracy: 0.8375\n", "Epoch 32/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4178 - accuracy: 0.8273 - val_loss: 0.3955 - val_accuracy: 0.8381\n", "Epoch 33/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4174 - accuracy: 0.8266 - val_loss: 0.3953 - val_accuracy: 0.8394\n", "Epoch 34/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4169 - accuracy: 0.8264 - val_loss: 0.3951 - val_accuracy: 0.8400\n", "Epoch 35/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4165 - accuracy: 0.8275 - val_loss: 0.3949 - val_accuracy: 0.8413\n", "Epoch 36/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4162 - accuracy: 0.8280 - val_loss: 0.3946 - val_accuracy: 0.8406\n", "Epoch 37/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4158 - accuracy: 0.8278 - val_loss: 0.3944 - val_accuracy: 0.8406\n", "Epoch 38/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4155 - accuracy: 0.8277 - val_loss: 0.3942 - val_accuracy: 0.8425\n", "Epoch 39/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4151 - accuracy: 0.8280 - val_loss: 0.3941 - val_accuracy: 0.8438\n", "Epoch 40/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4148 - accuracy: 0.8281 - val_loss: 0.3938 - val_accuracy: 0.8438\n", "Epoch 41/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4146 - accuracy: 0.8281 - val_loss: 0.3936 - val_accuracy: 0.8431\n", "Epoch 42/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4142 - accuracy: 0.8283 - val_loss: 0.3933 - val_accuracy: 0.8444\n", "Epoch 43/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4139 - accuracy: 0.8283 - val_loss: 0.3932 - val_accuracy: 0.8450\n", "Epoch 44/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4137 - accuracy: 0.8289 - val_loss: 0.3931 - val_accuracy: 0.8444\n", "Epoch 45/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4134 - accuracy: 0.8292 - val_loss: 0.3930 - val_accuracy: 0.8450\n", "Epoch 46/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4131 - accuracy: 0.8295 - val_loss: 0.3930 - val_accuracy: 0.8438\n", "Epoch 47/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4129 - accuracy: 0.8288 - val_loss: 0.3929 - val_accuracy: 0.8431\n", "Epoch 48/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4127 - accuracy: 0.8288 - val_loss: 0.3928 - val_accuracy: 0.8431\n", "Epoch 49/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4125 - accuracy: 0.8298 - val_loss: 0.3928 - val_accuracy: 0.8438\n", "Epoch 50/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4123 - accuracy: 0.8298 - val_loss: 0.3925 - val_accuracy: 0.8444\n", "Epoch 51/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4121 - accuracy: 0.8302 - val_loss: 0.3925 - val_accuracy: 0.8438\n", "Epoch 52/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4120 - accuracy: 0.8308 - val_loss: 0.3924 - val_accuracy: 0.8444\n", "Epoch 53/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4118 - accuracy: 0.8313 - val_loss: 0.3923 - val_accuracy: 0.8438\n", "Epoch 54/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4115 - accuracy: 0.8311 - val_loss: 0.3922 - val_accuracy: 0.8438\n", "Epoch 55/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4114 - accuracy: 0.8311 - val_loss: 0.3920 - val_accuracy: 0.8438\n", "Epoch 56/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4112 - accuracy: 0.8311 - val_loss: 0.3921 - val_accuracy: 0.8444\n", "Epoch 57/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4110 - accuracy: 0.8319 - val_loss: 0.3920 - val_accuracy: 0.8438\n", "Epoch 58/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4110 - accuracy: 0.8319 - val_loss: 0.3919 - val_accuracy: 0.8431\n", "Epoch 59/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4108 - accuracy: 0.8319 - val_loss: 0.3919 - val_accuracy: 0.8431\n", "Epoch 60/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4107 - accuracy: 0.8322 - val_loss: 0.3919 - val_accuracy: 0.8438\n", "Epoch 61/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4106 - accuracy: 0.8313 - val_loss: 0.3920 - val_accuracy: 0.8425\n", "Epoch 62/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4105 - accuracy: 0.8327 - val_loss: 0.3918 - val_accuracy: 0.8431\n", "Epoch 63/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4103 - accuracy: 0.8330 - val_loss: 0.3918 - val_accuracy: 0.8425\n", "Epoch 64/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4103 - accuracy: 0.8316 - val_loss: 0.3918 - val_accuracy: 0.8419\n", "Epoch 65/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4101 - accuracy: 0.8328 - val_loss: 0.3917 - val_accuracy: 0.8413\n", "Epoch 66/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4100 - accuracy: 0.8322 - val_loss: 0.3917 - val_accuracy: 0.8406\n", "Epoch 67/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4099 - accuracy: 0.8330 - val_loss: 0.3917 - val_accuracy: 0.8419\n", "Epoch 68/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4098 - accuracy: 0.8336 - val_loss: 0.3915 - val_accuracy: 0.8419\n", "Epoch 69/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4097 - accuracy: 0.8330 - val_loss: 0.3916 - val_accuracy: 0.8425\n", "Epoch 70/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4096 - accuracy: 0.8333 - val_loss: 0.3916 - val_accuracy: 0.8419\n", "Epoch 71/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4095 - accuracy: 0.8331 - val_loss: 0.3917 - val_accuracy: 0.8431\n", "Epoch 72/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4095 - accuracy: 0.8334 - val_loss: 0.3917 - val_accuracy: 0.8431\n", "Epoch 73/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4094 - accuracy: 0.8338 - val_loss: 0.3918 - val_accuracy: 0.8431\n", "Epoch 74/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4093 - accuracy: 0.8344 - val_loss: 0.3916 - val_accuracy: 0.8425\n", "Epoch 75/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4093 - accuracy: 0.8348 - val_loss: 0.3916 - val_accuracy: 0.8419\n", "Epoch 76/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4091 - accuracy: 0.8347 - val_loss: 0.3918 - val_accuracy: 0.8413\n", "Epoch 77/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4091 - accuracy: 0.8344 - val_loss: 0.3918 - val_accuracy: 0.8419\n", "Epoch 78/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4090 - accuracy: 0.8347 - val_loss: 0.3918 - val_accuracy: 0.8413\n", "Epoch 79/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4089 - accuracy: 0.8345 - val_loss: 0.3917 - val_accuracy: 0.8413\n", "Epoch 80/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4088 - accuracy: 0.8350 - val_loss: 0.3917 - val_accuracy: 0.8413\n", "Epoch 81/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4088 - accuracy: 0.8350 - val_loss: 0.3916 - val_accuracy: 0.8413\n", "Epoch 82/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4088 - accuracy: 0.8356 - val_loss: 0.3917 - val_accuracy: 0.8413\n", "Epoch 83/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4086 - accuracy: 0.8355 - val_loss: 0.3919 - val_accuracy: 0.8419\n", "Epoch 84/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4087 - accuracy: 0.8361 - val_loss: 0.3918 - val_accuracy: 0.8419\n", "Epoch 85/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4086 - accuracy: 0.8363 - val_loss: 0.3918 - val_accuracy: 0.8413\n", "Epoch 86/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4085 - accuracy: 0.8353 - val_loss: 0.3917 - val_accuracy: 0.8413\n", "Epoch 87/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4085 - accuracy: 0.8356 - val_loss: 0.3918 - val_accuracy: 0.8406\n", "Epoch 88/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4084 - accuracy: 0.8367 - val_loss: 0.3918 - val_accuracy: 0.8413\n", "Epoch 89/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4083 - accuracy: 0.8359 - val_loss: 0.3919 - val_accuracy: 0.8413\n", "Epoch 90/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4083 - accuracy: 0.8366 - val_loss: 0.3918 - val_accuracy: 0.8413\n", "Epoch 91/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4083 - accuracy: 0.8359 - val_loss: 0.3919 - val_accuracy: 0.8413\n", "Epoch 92/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4081 - accuracy: 0.8364 - val_loss: 0.3920 - val_accuracy: 0.8419\n", "Epoch 93/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4081 - accuracy: 0.8363 - val_loss: 0.3921 - val_accuracy: 0.8419\n", "Epoch 94/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4080 - accuracy: 0.8366 - val_loss: 0.3920 - val_accuracy: 0.8419\n", "Epoch 95/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4080 - accuracy: 0.8356 - val_loss: 0.3918 - val_accuracy: 0.8419\n", "Epoch 96/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4080 - accuracy: 0.8366 - val_loss: 0.3919 - val_accuracy: 0.8413\n", "Epoch 97/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4079 - accuracy: 0.8359 - val_loss: 0.3921 - val_accuracy: 0.8413\n", "Epoch 98/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4079 - accuracy: 0.8366 - val_loss: 0.3921 - val_accuracy: 0.8413\n", "Epoch 99/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4078 - accuracy: 0.8372 - val_loss: 0.3921 - val_accuracy: 0.8419\n", "Epoch 100/100\n", "200/200 [==============================] - 0s 2ms/step - loss: 0.4077 - accuracy: 0.8366 - val_loss: 0.3921 - val_accuracy: 0.8425\n" ] } ], "source": [ "history = model.fit(X_train,y_train, epochs=100, validation_split=0.2)" ] }, { "cell_type": "code", "execution_count": 16, "id": "841a48df", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:19.518517Z", "iopub.status.busy": "2023-01-05T14:36:19.517458Z", "iopub.status.idle": "2023-01-05T14:36:19.529988Z", "shell.execute_reply": "2023-01-05T14:36:19.527865Z" }, "papermill": { "duration": 0.071934, "end_time": "2023-01-05T14:36:19.533178", "exception": false, "start_time": "2023-01-05T14:36:19.461244", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[array([[ 0.28448325, -0.02245507, -0.09248985],\n", " [-2.7325892 , 0.16243261, 3.1476219 ],\n", " [-0.03595207, 0.0515544 , -0.23199946],\n", " [-0.33810443, -0.46231556, -0.42554903],\n", " [-0.07120212, 0.25548536, -0.24803253],\n", " [-0.03078385, 0.12762287, 0.06006212],\n", " [-0.71293795, 2.3186512 , 1.2540545 ],\n", " [ 0.13830076, -0.32949525, 0.0871588 ],\n", " [-0.9696152 , -1.8935156 , 0.4912738 ],\n", " [-0.11053856, -0.16680455, -0.18380535],\n", " [ 0.6139277 , 1.3153068 , -0.26745653]], dtype=float32),\n", " array([-0.02505367, -0.1938342 , -0.44920772], dtype=float32)]" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.layers[0].get_weights()" ] }, { "cell_type": "code", "execution_count": 17, "id": "3fcf1fb5", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:19.646804Z", "iopub.status.busy": "2023-01-05T14:36:19.646189Z", "iopub.status.idle": "2023-01-05T14:36:19.847796Z", "shell.execute_reply": "2023-01-05T14:36:19.846341Z" }, "papermill": { "duration": 0.260268, "end_time": "2023-01-05T14:36:19.850870", "exception": false, "start_time": "2023-01-05T14:36:19.590602", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "y_log = model.predict(X_test)" ] }, { "cell_type": "code", "execution_count": 18, "id": "eaa77573", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:19.956326Z", "iopub.status.busy": "2023-01-05T14:36:19.955199Z", "iopub.status.idle": "2023-01-05T14:36:19.961265Z", "shell.execute_reply": "2023-01-05T14:36:19.960001Z" }, "papermill": { "duration": 0.061827, "end_time": "2023-01-05T14:36:19.964190", "exception": false, "start_time": "2023-01-05T14:36:19.902363", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import numpy as np\n", "y_pred = np.where(y_log>.5,1,0)" ] }, { "cell_type": "code", "execution_count": 19, "id": "c2490165", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:20.067963Z", "iopub.status.busy": "2023-01-05T14:36:20.067542Z", "iopub.status.idle": "2023-01-05T14:36:20.078071Z", "shell.execute_reply": "2023-01-05T14:36:20.076791Z" }, "papermill": { "duration": 0.065211, "end_time": "2023-01-05T14:36:20.080722", "exception": false, "start_time": "2023-01-05T14:36:20.015511", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "0.836" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import accuracy_score\n", "\n", "accuracy_score(y_test,y_pred)" ] }, { "cell_type": "code", "execution_count": 20, "id": "a52fec2b", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:20.189458Z", "iopub.status.busy": "2023-01-05T14:36:20.188989Z", "iopub.status.idle": "2023-01-05T14:36:20.205216Z", "shell.execute_reply": "2023-01-05T14:36:20.203072Z" }, "papermill": { "duration": 0.076319, "end_time": "2023-01-05T14:36:20.209822", "exception": false, "start_time": "2023-01-05T14:36:20.133503", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "{'loss': [0.579720139503479,\n", " 0.5071350336074829,\n", " 0.4801632761955261,\n", " 0.4673421382904053,\n", " 0.4588596224784851,\n", " 0.45240330696105957,\n", " 0.4473477303981781,\n", " 0.44349852204322815,\n", " 0.4403742849826813,\n", " 0.43791520595550537,\n", " 0.43590763211250305,\n", " 0.4342821538448334,\n", " 0.43285828828811646,\n", " 0.4315628707408905,\n", " 0.43035492300987244,\n", " 0.4291659891605377,\n", " 0.4280838072299957,\n", " 0.4270162284374237,\n", " 0.4260644018650055,\n", " 0.4251551926136017,\n", " 0.4242737889289856,\n", " 0.4235641062259674,\n", " 0.4228026270866394,\n", " 0.422276109457016,\n", " 0.4215034246444702,\n", " 0.4208539128303528,\n", " 0.4202958047389984,\n", " 0.4197642207145691,\n", " 0.41923341155052185,\n", " 0.418750524520874,\n", " 0.4183063209056854,\n", " 0.4178014099597931,\n", " 0.41738414764404297,\n", " 0.41692909598350525,\n", " 0.4165254533290863,\n", " 0.4161551594734192,\n", " 0.4157627820968628,\n", " 0.4154772460460663,\n", " 0.41512900590896606,\n", " 0.4147557020187378,\n", " 0.4145616888999939,\n", " 0.4142163395881653,\n", " 0.41393935680389404,\n", " 0.4136735498905182,\n", " 0.41340237855911255,\n", " 0.4131392240524292,\n", " 0.41290247440338135,\n", " 0.41271087527275085,\n", " 0.4124748110771179,\n", " 0.41228556632995605,\n", " 0.4120882749557495,\n", " 0.41195160150527954,\n", " 0.411764532327652,\n", " 0.41152194142341614,\n", " 0.41135185956954956,\n", " 0.4112405776977539,\n", " 0.41103067994117737,\n", " 0.4109652638435364,\n", " 0.41080915927886963,\n", " 0.4106560945510864,\n", " 0.4105667769908905,\n", " 0.4104560613632202,\n", " 0.4103110432624817,\n", " 0.4102656841278076,\n", " 0.41007569432258606,\n", " 0.4099932014942169,\n", " 0.4099017083644867,\n", " 0.4097888171672821,\n", " 0.409700483083725,\n", " 0.4096444845199585,\n", " 0.4095328450202942,\n", " 0.40945738554000854,\n", " 0.40939751267433167,\n", " 0.40925133228302,\n", " 0.40927860140800476,\n", " 0.4090944230556488,\n", " 0.4091108441352844,\n", " 0.40900418162345886,\n", " 0.4089295566082001,\n", " 0.40882521867752075,\n", " 0.40882182121276855,\n", " 0.40875324606895447,\n", " 0.4086449146270752,\n", " 0.4086594879627228,\n", " 0.40855321288108826,\n", " 0.4085313081741333,\n", " 0.4084637761116028,\n", " 0.4083958864212036,\n", " 0.4083433449268341,\n", " 0.40827152132987976,\n", " 0.4082847535610199,\n", " 0.40812626481056213,\n", " 0.4081360995769501,\n", " 0.4080168604850769,\n", " 0.4080437421798706,\n", " 0.4079635739326477,\n", " 0.40791910886764526,\n", " 0.40790149569511414,\n", " 0.40781787037849426,\n", " 0.40773922204971313],\n", " 'accuracy': [0.7614062428474426,\n", " 0.7904687523841858,\n", " 0.7900000214576721,\n", " 0.7901562452316284,\n", " 0.7900000214576721,\n", " 0.7903125286102295,\n", " 0.7931249737739563,\n", " 0.7959374785423279,\n", " 0.7989062666893005,\n", " 0.7990624904632568,\n", " 0.8031250238418579,\n", " 0.8064062595367432,\n", " 0.8084375262260437,\n", " 0.8095312714576721,\n", " 0.8107812404632568,\n", " 0.8112499713897705,\n", " 0.8120312690734863,\n", " 0.8135937452316284,\n", " 0.8145312666893005,\n", " 0.815625011920929,\n", " 0.8185937404632568,\n", " 0.8189062476158142,\n", " 0.8212500214576721,\n", " 0.8214062452316284,\n", " 0.8232812285423279,\n", " 0.8228124976158142,\n", " 0.8240625262260437,\n", " 0.8253124952316284,\n", " 0.8248437643051147,\n", " 0.8248437643051147,\n", " 0.824999988079071,\n", " 0.827343761920929,\n", " 0.8265625238418579,\n", " 0.8264062404632568,\n", " 0.8274999856948853,\n", " 0.8279687762260437,\n", " 0.8278124928474426,\n", " 0.8276562690734863,\n", " 0.8279687762260437,\n", " 0.828125,\n", " 0.828125,\n", " 0.8282812237739563,\n", " 0.8282812237739563,\n", " 0.828906238079071,\n", " 0.8292187452316284,\n", " 0.8295312523841858,\n", " 0.8287500143051147,\n", " 0.8287500143051147,\n", " 0.8298437595367432,\n", " 0.8298437595367432,\n", " 0.8301562666893005,\n", " 0.8307812213897705,\n", " 0.831250011920929,\n", " 0.8310937285423279,\n", " 0.8310937285423279,\n", " 0.8310937285423279,\n", " 0.8318750262260437,\n", " 0.8318750262260437,\n", " 0.8318750262260437,\n", " 0.8321874737739563,\n", " 0.831250011920929,\n", " 0.8326562643051147,\n", " 0.8329687714576721,\n", " 0.8315625190734863,\n", " 0.832812488079071,\n", " 0.8321874737739563,\n", " 0.8329687714576721,\n", " 0.8335937261581421,\n", " 0.8329687714576721,\n", " 0.8332812786102295,\n", " 0.8331249952316284,\n", " 0.8334375023841858,\n", " 0.8337500095367432,\n", " 0.8343750238418579,\n", " 0.8348437547683716,\n", " 0.8346874713897705,\n", " 0.8343750238418579,\n", " 0.8346874713897705,\n", " 0.8345312476158142,\n", " 0.8349999785423279,\n", " 0.8349999785423279,\n", " 0.8356249928474426,\n", " 0.8354687690734863,\n", " 0.8360937237739563,\n", " 0.8362500071525574,\n", " 0.8353124856948853,\n", " 0.8356249928474426,\n", " 0.836718738079071,\n", " 0.8359375,\n", " 0.8365625143051147,\n", " 0.8359375,\n", " 0.8364062309265137,\n", " 0.8362500071525574,\n", " 0.8365625143051147,\n", " 0.8356249928474426,\n", " 0.8365625143051147,\n", " 0.8359375,\n", " 0.8365625143051147,\n", " 0.8371875286102295,\n", " 0.8365625143051147],\n", " 'val_loss': [0.5204576253890991,\n", " 0.47397488355636597,\n", " 0.4545578360557556,\n", " 0.4435015916824341,\n", " 0.4353470206260681,\n", " 0.42916443943977356,\n", " 0.42421555519104004,\n", " 0.42035460472106934,\n", " 0.4170624911785126,\n", " 0.4148324728012085,\n", " 0.4126419126987457,\n", " 0.41074100136756897,\n", " 0.40926167368888855,\n", " 0.40790289640426636,\n", " 0.40668758749961853,\n", " 0.4055469036102295,\n", " 0.4042659103870392,\n", " 0.4031772315502167,\n", " 0.40227437019348145,\n", " 0.4016236364841461,\n", " 0.4011818766593933,\n", " 0.4003976583480835,\n", " 0.399636834859848,\n", " 0.3989734649658203,\n", " 0.3984656035900116,\n", " 0.39797908067703247,\n", " 0.3976438045501709,\n", " 0.39701542258262634,\n", " 0.39664605259895325,\n", " 0.3961338400840759,\n", " 0.39602893590927124,\n", " 0.395476758480072,\n", " 0.3952946364879608,\n", " 0.39506667852401733,\n", " 0.39488011598587036,\n", " 0.39464256167411804,\n", " 0.39444586634635925,\n", " 0.3942069709300995,\n", " 0.3941064178943634,\n", " 0.39381298422813416,\n", " 0.39358508586883545,\n", " 0.3933354616165161,\n", " 0.3931877613067627,\n", " 0.3931255638599396,\n", " 0.3930497467517853,\n", " 0.393037885427475,\n", " 0.3928529620170593,\n", " 0.3927593529224396,\n", " 0.3927665650844574,\n", " 0.3925383687019348,\n", " 0.39246970415115356,\n", " 0.39243441820144653,\n", " 0.39227622747421265,\n", " 0.392160564661026,\n", " 0.39202606678009033,\n", " 0.3921109437942505,\n", " 0.39204198122024536,\n", " 0.3919193744659424,\n", " 0.39190471172332764,\n", " 0.3919389247894287,\n", " 0.3920089602470398,\n", " 0.3918154239654541,\n", " 0.391783744096756,\n", " 0.3918045461177826,\n", " 0.3916950523853302,\n", " 0.3916526436805725,\n", " 0.39174965023994446,\n", " 0.39152905344963074,\n", " 0.39163458347320557,\n", " 0.3916085362434387,\n", " 0.39166611433029175,\n", " 0.39174145460128784,\n", " 0.3917883634567261,\n", " 0.3915862739086151,\n", " 0.3916223645210266,\n", " 0.39176326990127563,\n", " 0.39178961515426636,\n", " 0.39183509349823,\n", " 0.3916601240634918,\n", " 0.39167606830596924,\n", " 0.39163529872894287,\n", " 0.39170172810554504,\n", " 0.3918759226799011,\n", " 0.39184874296188354,\n", " 0.3918250799179077,\n", " 0.3917335569858551,\n", " 0.3917996287345886,\n", " 0.3918149471282959,\n", " 0.3918618857860565,\n", " 0.39183562994003296,\n", " 0.3918890357017517,\n", " 0.3920257091522217,\n", " 0.3920975923538208,\n", " 0.3919515609741211,\n", " 0.39179062843322754,\n", " 0.3919157385826111,\n", " 0.3921232223510742,\n", " 0.3920595645904541,\n", " 0.3920861780643463,\n", " 0.39205849170684814],\n", " 'val_accuracy': [0.8056250214576721,\n", " 0.8062499761581421,\n", " 0.8062499761581421,\n", " 0.8062499761581421,\n", " 0.8062499761581421,\n", " 0.809374988079071,\n", " 0.8112499713897705,\n", " 0.8168749809265137,\n", " 0.8206250071525574,\n", " 0.8199999928474426,\n", " 0.8256250023841858,\n", " 0.828125,\n", " 0.8306249976158142,\n", " 0.8306249976158142,\n", " 0.8337500095367432,\n", " 0.8331249952316284,\n", " 0.8337500095367432,\n", " 0.8331249952316284,\n", " 0.8343750238418579,\n", " 0.8331249952316284,\n", " 0.8318750262260437,\n", " 0.8331249952316284,\n", " 0.8349999785423279,\n", " 0.8356249928474426,\n", " 0.8362500071525574,\n", " 0.8362500071525574,\n", " 0.8362500071525574,\n", " 0.8362500071525574,\n", " 0.8368750214576721,\n", " 0.8374999761581421,\n", " 0.8374999761581421,\n", " 0.8381249904632568,\n", " 0.8393750190734863,\n", " 0.8399999737739563,\n", " 0.8412500023841858,\n", " 0.840624988079071,\n", " 0.840624988079071,\n", " 0.8424999713897705,\n", " 0.84375,\n", " 0.84375,\n", " 0.8431249856948853,\n", " 0.8443750143051147,\n", " 0.8450000286102295,\n", " 0.8443750143051147,\n", " 0.8450000286102295,\n", " 0.84375,\n", " 0.8431249856948853,\n", " 0.8431249856948853,\n", " 0.84375,\n", " 0.8443750143051147,\n", " 0.84375,\n", " 0.8443750143051147,\n", " 0.84375,\n", " 0.84375,\n", " 0.84375,\n", " 0.8443750143051147,\n", " 0.84375,\n", " 0.8431249856948853,\n", " 0.8431249856948853,\n", " 0.84375,\n", " 0.8424999713897705,\n", " 0.8431249856948853,\n", " 0.8424999713897705,\n", " 0.8418750166893005,\n", " 0.8412500023841858,\n", " 0.840624988079071,\n", " 0.8418750166893005,\n", " 0.8418750166893005,\n", " 0.8424999713897705,\n", " 0.8418750166893005,\n", " 0.8431249856948853,\n", " 0.8431249856948853,\n", " 0.8431249856948853,\n", " 0.8424999713897705,\n", " 0.8418750166893005,\n", " 0.8412500023841858,\n", " 0.8418750166893005,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8418750166893005,\n", " 0.8418750166893005,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.840624988079071,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8418750166893005,\n", " 0.8418750166893005,\n", " 0.8418750166893005,\n", " 0.8418750166893005,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8412500023841858,\n", " 0.8418750166893005,\n", " 0.8424999713897705]}" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "history.history" ] }, { "cell_type": "code", "execution_count": 21, "id": "5aec792f", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:20.324966Z", "iopub.status.busy": "2023-01-05T14:36:20.324376Z", "iopub.status.idle": "2023-01-05T14:36:20.636754Z", "shell.execute_reply": "2023-01-05T14:36:20.635020Z" }, "papermill": { "duration": 0.371856, "end_time": "2023-01-05T14:36:20.639470", "exception": false, "start_time": "2023-01-05T14:36:20.267614", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7efdd0173090>]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAriElEQVR4nO3de5hdVZ3m8e/v3OpUJVWVS1VSuSdAIESIAWLASyPQiqG1AyNqA3YrtjZD27Q4YzsNM88w3djztM5F255h7MGIoqJgx1tAlAEF21bBFBgDJFxCIKRCQiqVSyV1PZff/LH2qTqpVKUqqaqcpPb7eZ79nNprX87aObDfs9baZ29zd0REJH4Sla6AiIhUhgJARCSmFAAiIjGlABARiSkFgIhITKUqXYFj0dDQ4AsXLqx0NURETilPPvnkHndvHFh+SgXAwoULaW5urnQ1REROKWa2bbBydQGJiMSUAkBEJKYUACIiMaUAEBGJKQWAiEhMKQBERGJKASAiElOxCIDvPdXCNx8f9DJYEZHYikUAPLBxJ/euf7XS1RAROanEIgCqM0k6ewuVroaIyEllRAFgZqvM7Hkz22Jmtwyy/HozazWzDdH0saj80rKyDWbWbWZXRcu+ZmYvly1bPpYHVq46naRbASAicphh7wVkZkngDuCdQAuw3szWufumAave5+43lRe4+6PA8mg/04AtwP8rW+XT7r72+Ks/MtXpJF05BYCISLmRtABWAlvcfau79wL3Alcex3u9D/ixu3cex7ajUqMuIBGRI4wkAOYA28vmW6Kyga42s41mttbM5g2y/Brg2wPK/mu0zRfMrGqwNzezG8ys2cyaW1tbR1DdI2XTSXryRYpFP67tRUQmorEaBL4fWOjuy4CHgbvLF5rZLOBc4KGy4luBJcCbgGnAXw+2Y3e/091XuPuKxsYjbmc9ItWZJADdebUCRERKRhIAO4Dyb/Rzo7I+7t7m7j3R7BrgggH7+ADwfXfPlW2z04Me4KuErqZxURMFgLqBRET6jSQA1gOLzWyRmWUIXTnryleIvuGXrAY2D9jHtQzo/iltY2YGXAU8c0w1PwbZdAiALgWAiEifYa8Ccve8md1E6L5JAne5+7NmdjvQ7O7rgE+Y2WogD+wFri9tb2YLCS2Inw/Y9T1m1ggYsAG4cdRHM4TqKAC6dSWQiEifET0S0t0fBB4cUHZb2d+3Evr0B9v2FQYZNHb3y46loqOhLiARkSPF45fApS4gtQBERPrEIgCyGQWAiMhAsQiAUheQBoFFRPrFIgCqdRWQiMgR4hUA6gISEekTjwBQF5CIyBFiEQBZtQBERI4QiwBIJxOkk6YAEBEpE4sAgOiZAOoCEhHpE58AyCgARETKxScA9FQwEZHDxCcAMindC0hEpEx8AiCd0N1ARUTKxCcAMuoCEhEpF58ASKsLSESkXHwCIJNUF5CISJn4BEA6octARUTKjCgAzGyVmT1vZlvM7JZBll9vZq1mtiGaPla2rFBWvq6sfJGZPRHt877oecPjpiaTorM3P55vISJyShk2AMwsCdwBXAEsBa41s6WDrHqfuy+PpjVl5V1l5avLyj8HfMHdzwD2AR89/sMYXjadpDtXHM+3EBE5pYykBbAS2OLuW929F7gXuHI0b2pmBlwGrI2K7gauGs0+h1OdTtJbKJIvKARERGBkATAH2F4238IgD3kHrjazjWa21szmlZVnzazZzB43s6uisunAfncv9ckMtU/M7IZo++bW1tYRVHdwNXospIjIYcZqEPh+YKG7LwMeJnyjL1ng7iuA64B/MLPTj2XH7n6nu69w9xWNjY3HXUE9F1hE5HAjCYAdQPk3+rlRWR93b3P3nmh2DXBB2bId0etW4DHgPKANmGJmqaH2OdZKTwXr7lUXkIgIjCwA1gOLo6t2MsA1wLryFcxsVtnsamBzVD7VzKqivxuAtwKb3N2BR4H3Rdt8GPjhaA5kOKUuoM6crgQSEQFIDbeCu+fN7CbgISAJ3OXuz5rZ7UCzu68DPmFmq4E8sBe4Ptr8bOD/mlmREDafdfdN0bK/Bu41s78Dfgt8ZQyP6wh6MLyIyOGGDQAAd38QeHBA2W1lf98K3DrIdr8Czh1in1sJVxidEHospIjI4WLzS+AaPRheROQwsQmAal0FJCJymPgEgMYAREQOE58AUAtAROQw8QkAtQBERA4TmwDQVUAiIoeLTQAkE0ZVSs8EEBEpiU0AgJ4LLCJSLlYBUJNOqgUgIhKJVQBkM0k61QIQEQFiFgDV6STdagGIiAAxC4AajQGIiPSJVQBk0woAEZGSWAVAtQaBRUT6xCoA1AUkItIvVgFQnVELQESkJFYBkFUXkIhIn1gFgLqARET6jSgAzGyVmT1vZlvM7JZBll9vZq1mtiGaPhaVLzezX5vZs2a20cz+qGybr5nZy2XbLB+zoxpCdTpJvujkCsXxfisRkZPesM8ENrMkcAfwTqAFWG9m68oe7l5yn7vfNKCsE/iQu79oZrOBJ83sIXffHy3/tLuvHd0hjFzpjqCdvQXqq2PV+BEROcJIzoIrgS3uvtXde4F7gStHsnN3f8HdX4z+fg3YDTQeb2VHqyYT8q5b3UAiIiMKgDnA9rL5lqhsoKujbp61ZjZv4EIzWwlkgJfKiv9rtM0XzKxqsDc3sxvMrNnMmltbW0dQ3aFVZ8LhaiBYRGTsBoHvBxa6+zLgYeDu8oVmNgv4BvARdy91wN8KLAHeBEwD/nqwHbv7ne6+wt1XNDaOrvFQXdYFJCISdyMJgB1A+Tf6uVFZH3dvc/eeaHYNcEFpmZnVAT8C/pO7P162zU4PeoCvErqaxlV11AWkK4FEREYWAOuBxWa2yMwywDXAuvIVom/4JauBzVF5Bvg+8PWBg72lbczMgKuAZ47zGIa36xloae5rAWgMQERkBFcBuXvezG4CHgKSwF3u/qyZ3Q40u/s64BNmthrIA3uB66PNPwBcDEw3s1LZ9e6+AbjHzBoBAzYAN47VQR3hkb+Bjlaq3x1yS11AIiIjCAAAd38QeHBA2W1lf99K6NMfuN03gW8Osc/Ljqmmo5Gth7YtVGf0YHgRkZJ4XAyfrYfuA30BoIfCiIjELQBS4XA7e/MVrpCISOXFJwC8QI11A9CV060gRETiEQDVUwCoyh8ENAYgIgJxCYBsPQDW3R49FUxdQCIisQoAug/oltAiIpHYBUB4KIzGAEREYhIAU8JrdCloV05dQCIiMQmAUgtgf+gC0u8ARERiEgBVdeG11AWkMQARkZgEQCoD6ZrQBaQHw4uIAHEJAAjjAKUuILUARETiFAD10WWgKQ51axBYRCR2ATCjrorWQz0Ui17pGomIVFTsAmBWfZZcwWnr6K10jUREKip2ATCzLgvArgPdFa6QiEhlxS4AZtWHANh5oKvCFRIRqawRBYCZrTKz581si5ndMsjy682s1cw2RNPHypZ92MxejKYPl5VfYGZPR/v8x+jZwOMnCoCmugwAr7erBSAi8TZsAJhZErgDuAJYClxrZksHWfU+d18eTWuibacB/wW4EFgJ/Bczmxqt/yXgz4DF0bRqtAdzVNl68CIN6RyphLFTXUAiEnMjaQGsBLa4+1Z37wXuBa4c4f7fBTzs7nvdfR/wMLDKzGYBde7+uLs78HXgqmOv/jGIngmQ6GlnZl1WYwAiEnsjCYA5wPay+ZaobKCrzWyjma01s3nDbDsn+nu4fWJmN5hZs5k1t7a2jqC6Qyi7I2hTfVYtABGJvbEaBL4fWOjuywjf8u8eo/3i7ne6+wp3X9HY2Hj8OxoQALs0BiAiMTeSANgBzCubnxuV9XH3NnfviWbXABcMs+2O6O8h9znmygJgVtQFFHqfRETiaSQBsB5YbGaLzCwDXAOsK18h6tMvWQ1sjv5+CLjczKZGg7+XAw+5+06g3cwuiq7++RDww1Eey9ENaAF05Qq0d+mWECISX6nhVnD3vJndRDiZJ4G73P1ZM7sdaHb3dcAnzGw1kAf2AtdH2+41s88QQgTgdnffG/39ceBrQDXw42gaP2UPhWkq/RagvYv6mvS4vq2IyMlq2AAAcPcHgQcHlN1W9vetwK1DbHsXcNcg5c3AOcdS2VEpeybArFmlH4N1s6Sp7oRVQUTkZBKfXwInU5CZDN37aaqvBuB1XQkkIjEWnwCA6JkAB5hRW4UZuhRURGItZgEQbgeRTiZomFylH4OJSKzFMgAAZtVn2anfAohIjMUwAPYD0FSXZZfuCCoiMRbDAOhvAagLSETiLLYBMLM+S3t3no4e/RhMROIphgHQDsVi34NhdE8gEYmr+AUADr0HaaoLvwVQN5CIxFW8AiB6JkD5oyEVACISV/EKgNIN4br2990PSF1AIhJX8QyA7gNk00mm1KT1cHgRia3YBgCUfgugFoCIxFOsA2CWHg0pIjEW6wBoqq9mp54MJiIxFa8AKHsmAMBZMyezt6OX19QKEJEYilcAJJJQ1f9r4BULpwHw5LZ9layViEhFjCgAzGyVmT1vZlvM7JajrHe1mbmZrYjmP2hmG8qmopktj5Y9Fu2ztGzGmBzRcMpuB7GkqZaaTJInX9k7zEYiIhPPsI+ENLMkcAfwTqAFWG9m69x904D1aoGbgSdKZe5+D3BPtPxc4AfuvqFssw9Gj4Y8ccoCIJVMsHzeFJ58VS0AEYmfkbQAVgJb3H2ru/cC9wJXDrLeZ4DPAUN1qF8bbVtZZbeEBrhgwVQ27zyom8KJSOyMJADmANvL5luisj5mdj4wz91/dJT9/BHw7QFlX426f/6zmdlgG5nZDWbWbGbNra2tI6juMMpaABACoFB0frd9/+j3LSJyChn1ILCZJYDPA586yjoXAp3u/kxZ8Qfd/Vzg96LpTwbb1t3vdPcV7r6isbFxtNWFmmlwaHff7Hnzp2KmgWARiZ+RBMAOYF7Z/NyorKQWOAd4zMxeAS4C1pUGgiPXMODbv7vviF4PAt8idDWNv+mnQ8fucFtooL46zZkzamlWAIhIzIwkANYDi81skZllCCfzdaWF7n7A3RvcfaG7LwQeB1aXBnejFsIHKOv/N7OUmTVEf6eB9wDlrYPxM/2M8Nq2pa/o/AVTeerVfRSL+kGYiMTHsAHg7nngJuAhYDPwHXd/1sxuN7PVI3iPi4Ht7r61rKwKeMjMNgIbCC2KLx9r5Y/L9MXhtSwALlgwlYPdeV7cfeiEVEFE5GQw7GWgAO7+IPDggLLbhlj3kgHzjxG6hcrLOoALjqGeY2faIrDEYQGwYsFUIIwDnNVUW5FqiYicaPH6JTBAqgqmzIc9L/YVLZhew/RJGZq36QdhIhIf8QsACN1AZS0AM+OCBVN5SgPBIhIjMQ2AM6DtJSi7C+jKRdN4pa2TbW0dFayYiMiJE88AaDgDch3Q/lpf0RXnzgLggY07K1UrEZETKp4BMMiloHOmVPOmhVNZt+G1ITYSEZlYYhoApUtBXzys+A/fOJvnXz/I87sOVqBSIiInVjwDoG42pGvCOECZK86ZRcLg/t+pFSAiE188A8As3BJiz+EtgMbaKt56RgP3b3xNj4kUkQkvngEAR1wKWvKHy2azra2Tp3ccGGQjEZGJI8YBcAbs3wb5nsOK3/WGJtJJ02CwiEx48Q2AhsXgRdj78mHF9TVp3n7mDB7YuFM3hxORCS2+ATD99PA6SDfQVefNZld7Nz97bvcRy0REJooYB8Dgl4JC6AaaM6WaO3+x9YhlIiITRXwDIFsHk2cO2gJIJxN85K0L+c3Le9mgR0WKyAQV3wCAMBC858gAALhm5Xxqsym+rFaAiExQCoA9zx92U7iSyVUprrtwPj9+eifb93ZWoHIiIuMr3gEw70Lo2ge7Nw+6+CNvWUTCjK/868uDLhcROZWNKADMbJWZPW9mW8zslqOsd7WZeemB8Ga20My6zGxDNP1T2boXmNnT0T7/0cxs9IdzjE57e3jd+tigi5vqs6xePpvvNG9nb0fviauXiMgJMGwAmFkSuAO4AlgKXGtmSwdZrxa4GXhiwKKX3H15NN1YVv4l4M+AxdG06vgOYRTq54ZuoCECAODjl5xOT77IFx5+4cTVS0TkBBhJC2AlsMXdt7p7L3AvcOUg630G+BzQPdwOzWwWUOfuj3u46c7XgatGXOuxdNol8Mq/QiE36OIzZtTyJxct4J4ntvHcrvYTWzcRkXE0kgCYA2wvm2+JyvqY2fnAPHf/0SDbLzKz35rZz83s98r22XK0fZbt+wYzazaz5tbW1hFU9xiddkl4OExL85CrfPIdi6mrTvO36zbpJnEiMmGMehDYzBLA54FPDbJ4JzDf3c8D/j3wLTOrO5b9u/ud7r7C3Vc0NjaOtrpHWvg2sMRRu4Gm1GT41DvP5Ndb23jo2V1jXwcRkQoYSQDsAOaVzc+NykpqgXOAx8zsFeAiYJ2ZrXD3HndvA3D3J4GXgDOj7eceZZ8nTvVUmLUcXv75UVe7duV8ljTV8nc/2kx3rnBi6iYiMo5GEgDrgcVmtsjMMsA1wLrSQnc/4O4N7r7Q3RcCjwOr3b3ZzBqjQWTM7DTCYO9Wd98JtJvZRdHVPx8Cfji2h3YMTrsEWtZDz9BPAkslE9z2h0tp2dfF7Q9sOnF1ExEZJ8MGgLvngZuAh4DNwHfc/Vkzu93MVg+z+cXARjPbAKwFbnT3vdGyjwNrgC2ElsGPj+8QxsBpl0AxD9t+ddTV3nJ6Aze+/XS+9cSr/OC3lWmwiIiMFTuVBjVXrFjhzc1DD9Yet1w3fG4BrPhTWPX3R101Xyhy3Zef4OkdB1h301tZPLN27OsjIjKGzOxJd18xsDzevwQuSWdh/kVHHQguSSUT/K/rzmNSVZKP3/MUHT358a+fiMg4UACUnH4Z7N50xANiBjOzLssXrzmPl1oPceM3n6Qnr0FhETn1KABK3vDe8Pr02hGt/tYzGvjc1cv4xYt7uPnbG8gXiuNYORGRsacAKJkyDxa8DTbeN+jdQQfz/hXzuO09S/nJs7u45XtP6xGSInJKUQCUW/aB8ISw13474k3+9G2L+OQ7FrP2yRb+3Xc26DcCInLKUACUW3olJDOw8TvHtNnNv7+YT7/rLH644TWu/fLjtB7sGacKioiMHQVAueopcOYqeGYtFEZ+dY+Z8ReXnsGXPng+m3e2c9Udv2Rjy/5xq6aIyFhQAAy07APQ0QovP3bMm15x7izW3vgWiu689//8ii8+8iI5DQ6LyElKATDQ4sshW3/M3UAl58yp5yc3X8y7l83iC4+8wNVf+pVuIy0iJyUFwECpKnjDv4HN90P38Z2462vSfPGa87jjuvPZvreTP/jiL7jluxvZ3T7soxJERE4YBcBgLrgecp3QfNeodvPuZbN49K8u4SNvXcR3n2rhkv/xGP/9oef0eEkROSnoXkBD+fqV4WHxN28Mt4oYpW1tHfy3h57nwad3Up1O8scXLeBjb1vEjLrR71tE5Gh0L6Bj9bZ/D4dehw33jMnuFkyfxB3Xnc//++TFvOsNTaz5xVbe9rlH+dR3fsem1zRGICInnloAQ3GHNe8IVwT95VOQTI3p7re1dXDXv77MPz/ZQmdvgYtOm8afXLSQy98wk3RSuSwiY2eoFoAC4Gie+xHcex28dw0se/+4vMWBzhzfXv8q33x8Gy37uphRW8U1b5rHNSvnM3tK9bi8p4jEiwLgeBSL8KU3h2cG3/hLSIzfN/NC0fmXF1r5xuPbePT53Rhw2ZIZXLtyPm8/s5GUWgUicpyGCoCx7deYaBKJMBbw/RvCr4OXfWDc3iqZMC5dMoNLl8xg+95O7lu/nXvXb+eRzc00TK7iyuWzufr8uSydXTdudRCReFELYDjFIqy5DNp3wl82Q9WJewJYb77IY8/v5ntP7eCnz71OruAsaarlvefP4crlc5ipK4hEZARG1QVkZquALwJJYI27f3aI9a4mPPv3TdFD4d8JfBbIAL3Ap939Z9G6jwGzgK5o88vdfffR6lGRAABoaYY1vw9v+QRc/pkT//7Avo5eHtj4Gt99agcbtu/HDFYsmMqqc2ax6pwm5mi8QESGcNwBYGZJ4AXgnUALsB641t03DVivFvgR4WR/UxQA5wGvu/trZnYO8JC7z4nWfwz4K3cf8Rm9YgEA8IO/CM8K+PivoWFxZeoQ2dp6iPt/t5MfP7OT53YdBOCcOXVcvrSJdy6dyZKmWsysonUUkZPHaALgzcDfuPu7ovlbAdz97wes9w/Aw8CnGeTEbuGM1AbMcveeUy4ADu2G/3UBzF0Bf/w9OElOsC/v6eAnz+zi4U27+O32/bjDnCnVvOPsGVx29kxWLpxGdSZZ6WqKSAWNZhB4DrC9bL4FuHDAzs8H5rn7j8zs00Ps52rgKXcvv1n+V82sAHwX+DsfJI3M7AbgBoD58+ePoLrjZPIMuPQ/wk9ugd99G5ZfV7m6lFnUMIk/v+R0/vyS09l9sJufbd7NI5t3c1/zdu7+9TZSCWPZ3HpWLprOm0+fzpsWTqUmo7F/ERlZC+B9wCp3/1g0/yfAhe5+UzSfAH4GXO/urwz2zd7M3gCsI/TzvxSVzXH3HVHX0XeBb7r7149Wl4q2ACA8I+AbV4UxgT/7GcxcWrm6DKM7V+DXW9v4zct7+c3Le9nYsp9cwUknjfPmTeWN8+o5q6mOJU21nNVUqx+fiUxgo2kB7ADmlc3PjcpKaoFzgMeifucmYJ2ZrY7GAeYC3wc+VDr5A7j7juj1oJl9C1gJHDUAKi6ZgqvXwD/9Hvzzh+HPHoWqyZWu1aCy6SSXnjWDS8+aAUBnb571r+zjVy/t4fGX2vj6r7fRkw/PKphcleKi06bxltMbWLloGkuaavW7A5EYGEkArAcWm9kiwon/GqCv/8PdDwANpfnyFoCZTSEMDN/i7r8sWycFTHH3PWaWBt4DPDL6wzkBapvgfV8JN4t74JPw3i+fNOMBR1OTSfH2Mxt5+5mNAOQLRV5p62TTznae2NrGL7fs4ZHNu6N1kyybW88b505h6ew63jC7nkUNk0gmTv7jFJGRGzYA3D1vZjcBDxEuA73L3Z81s9uBZndfd5TNbwLOAG4zs9uissuBDuCh6OSfJJz8vzyK4zixFl0Ml/xHePTvYNYb4S1/WekaHbNUMsEZMyZzxozJrH7jbABa9nXy5LZ9/PbV/Tz16j6++stX6I2eaFadTnJmUy1nN9WypKmWs2fVsaSpjvqadCUPQ0RGQT8EO17FIqy9Hjb9EK7+Cpz7vkrXaMzlCkW27D7Es6+1s3ln/7SvM9e3zuz6LGfMrGVxFCanNUzitMbJNEzO6FJUkZOEbgUx1hIJ+Dd3wqFW+MGfh6uEFl1c6VqNqXQywdmz6jh7Vv/tJ9yd3Qd7ojA4yAuvH+TF3Qe554k2unP9zz+uy6Y4q6mWM2eGaWHDJBZNn8TsKVmNL4icJNQCGK2ufXDXKmh/Df74uzBvZaVrVBHForNjfxdb93SwtfUQL+4+xIuvH+S5XQc52J3vWy+dNBZMn8TpjaGlsGj6JOZPr2HB9Bpm1mZJaJxBZMzpbqDjaf92+Nq7Qwhc/hm48MZTYmD4RCi1GF7Z08G2ts6+gHip9RDb2jrJF/v/+8skE8yekmXetBrmTg2hMH9aDTPrssysq6KxtoqqlH7UJnKsFADjrWsf/ODj8PyDsPRKWP2/Ias7dx5NvlDktf3dbNsbwqFlXxfb93XSsreT7fu6Bn128vRJGeZMrWZ2fTVzp1ZHYVHNjNos9dVp6qvT1GZTakmIlFEAnAju8Kt/hEf+FqYugPd/LVwlJMelvTvH9r2dvN7eze72HnYf7GHngS527O9mx75OduzvOmzcoSSTTDBrSpbZ9dXMqs/SWFvVP02uoiF6nVKT1kC1xIIC4ETa9mtY+6fQuQdW/T2s+Ki6hMaBu7PnUC/b93Wy52AP7d15DnTlaD3Yw479Xby2v4tdB7ppPdjTdzlruXTSmD4pBEPD5AzTJ1fRMLmK6ZMyTIumuqhVUV+dZmpNWgPYckpSAJxoHW3w/X8LWx6GM6+A93we6mZXulax5O60d+VpPdRN68Fe9hzqofVgT99r66Hw956DvbR19JArDP3/RH11mullwRBeU0ypzlBfnWZSVYpJVUlqMilqsynqsmnqa9JMqU5Tk0mqxSEVoQCohGIRnvgS/PQzkMyEAeLzP6TWwEnM3TnYk2fvoV72dvZyoCtHe1eOA1059nb0srejl7aOXtrLyg905WjvzlMoHv3/pWw6wfRJVX3jFLXZFJOqUlSnk2TTSSZXpZhSUxrHSJNJGelkgkwywaSqsP7kqhSTsykNhssxUQBUUttLcP/N8MovYM4KuPRWOP33FQQTiLtzqCdPR0+Bjt48HT15DkVdUge6cuzrzLG3o6c/PLrzHOwO63XnCnTlCnT05BkmQ/qkk8akqhRVqQRVqSSZVILqdJLqdJKqdIJJmRAuk6uSpJMJkkkjlQjb1GVDyNRkwnaZZIKqdDLaV4JstJ/qTChTq+XUpwCotGIRfvcteOyzcGA7zLsQ3v4fFATSp1h0DvXmOdCZo707R77g5ApFunPFKFzyHOzO0dFb4FBPns6ePD35Ij35It25QjQV6cwV6IzW7+gtkC8UyRedfNGHbaUMJpMMwZBOJUglQqsknbQQFJkk2VSSdClIUglSSSOVSJBJJZiUSYZWTvRMiqI77uEGhHXVKWqr0iQS4foJd8hEAZRNh2BLJ41MFHLZdFimO9ceOwXAySLfC7/9Bvzif0L7Dmg6F976SVh6VbjbqMg4cXd68sW+Vkl3rhACJFekt1CgNx/CpidfoKu3QFcuBEtvoX+dEEpOb6E8dMK2vQWnN18IYVMI79XZm6eztzBux5Qw+rrJysMjnUyEUMFJmFGVTlKdTpBJJUkaJMwws75utv4pzKeiFlMpyDLRMgAnhFV1JnTbTa5KkUwYpTNpOml9LahUwih6CD4jhFkmFfaVSiRIJoxkwjBCnRKJELhj3epSAJxs8r3w9Hfgl1+EPS9A3VxY8ZEwRjB5RqVrJzJmCkWnO1eITrqhrKMnH3WD5Sh6OJFDuP9UV29/8PTmw9STD62b7lyh78eDTmg15YpFcnk/bJ1coYgZGEbRne6oldSTL+LuFN0pFMNvUXLR++SKocWVy4+uxTQWMqkEVVGolaa7P7KShQ2Tjmt/uhfQySaVgfP+GN54HbzwY3ji/8LPPhO6iM7+Q7jgw7Dw4nDPIZFTWDIaeyiXTSeZPrmqQjUaOffQ2skVnN7o+RmlsApdc2E8p1j0vnDLFZyu3gKdvQWKHlogCYOi09fS6i04xb6QKUatlRCWPfn+4OtbP1+kZhwe7aoAqLREApa8O0ytL0DzV8IjJ5/9HkxZEILg/Oth0vRK11QkdsyMqlSSqhQwaF5lT3CNxpa6gE5GuS7Y/AA8dXe4ciiVhWV/FO4xdBI/hlJETk7qAjqVpKth2fvDtHszPPFP8Lt7QyDMPi90G537PqiZVumaisgpTC2AU0VHG2y8L1xKuutpSKRgwVvgrHfDme+CqQt1OamIDGpUVwGZ2Srgi4THN65x988Osd7VwFrgTe7eHJXdCnwUKACfcPeHjmWf5WIdAOV2PQPPfDfcebT1uVBWOwvmvgnmroDGJTD9jDCGoEtLRWLvuAPAzJLAC8A7gRbCQ+KvdfdNA9arJTwAPgPcFD0UfinwbWAlMJvw7N8zo02G3edACoBBtL0EWx6BlvWw/Tewf1v/smRVeEDN6ZfCaZfArOWQ0C0EROJmNGMAK4Et7r412tG9wJXAwJP1Z4DPAZ8uK7sSuNfde4CXzWxLtD9GuE8ZzvTTw3Thvw3zHW3QtgXaXoTXN8HL/wI/vT1M2XpY+Huw6O2w4M0wY6kCQSTGRhIAc4DtZfMtwIXlK5jZ+cA8d/+RmX16wLaPD9h2TvT3UfdZtu8bgBsA5s+fP4Lqxtyk6WGaX/bPeagVXv55mLb+HJ57IJRnJsOcC8IzC2YsDVcYNZwF6VP70jYRGZlRdxCbWQL4PHD9qGszCHe/E7gTQhfQeLzHhDe5MVw1dO77wvy+baG7aPsTYXrin6AQPX3LEmFAufFsmLYI6ueGqeFMmL5YP0wTmUBGEgA7gHll83OjspJa4Bzgsej+FU3AOjNbPcy2R9unjKepC8K07P1hvpCDvVvh9Weh9Xlo3RxeX/oZ5Lv6t6uqC5ehNp0bBpinzIdpp4VJg80ip5yR/F+7HlhsZosIJ+lrgOtKC939ANBQmjezx4C/igaBu4BvmdnnCYPAi4HfAHa0fcoJlkxD41lhKucOnXvD3Ut3b4KW5jDYvH4N5LvLtq+CxjNDEKRrwu8YslNg5hugaVkYo9BYg8hJZ9gAcPe8md0EPES4ZPMud3/WzG4Hmt193VG2fdbMvkMY3M0Df+HuBYDB9jn6w5ExZdY/pjB7OSyPMtodDu2G/a+Gwebdm8IP1nZvhlx3aDV07YNiPqyfSIVAyNaHqWZ6/1Q9SPmkBqieGsYo9NsGkXGjH4LJ+Mj3wp7nw4/W9rwAXfuh+wB07w+tis690NkGuY6h91EKjpppUNMQgihTGwapU1monga1TWGa1NgfIJmaE3SQIqcG3QpCTqxUJowVNJ179PUKOehuDy2Grr3QsQc690Tz+8vK22DPi9DbGVoYuS7oPTT4PtM1UWA0hPDITIaqyZCeFLq7EqnwiM5UJrwmM4CF1kYiCVVRiyRbF7qzUtmwjllo/ZiF8ZDsFA2KyylNASCVlUz3dzMdq1w3HHodDu6MgqOtf+rYAx2toaWx/1XoOQS5ztAtVejtv+ppNCwRuqrSNeE4klUhQCwRXtM1UFUbpsyk/vGRdE0IpcyksF6+O7SYvBjtJwOpqmi9mhBAliAMnQFegGIhvBZy4ViKhRBy2akhvJLp/nq4h317Mew3le2vc6mLzT3sK98drXOMt2ouFvr/XQv5/u6/UogO5B7W7e0I65bqV4y2LRZCPbN1odU3XNAWi+Hz7WkPXyjyXWBln4Ul+qdU1IJMpsv+e8j11wEP71+qC9a/j1JZIR/er7cjfBHJ9/TvJ5mKPt/J/Z9/VW3YPtcZvsT0lL707AtfZpLp/i8nXgzvD+HzsUQ4lqVXhi7TMaQAkFNXOtt/RdOxKp3wysPAHYo56DkYdVcdiE7O3eF/8PJtuw/0h03f//w94URUOkHnuqD9tbC/0v/4uY7oJHOSsEQ46ZROwiXpSaH1lEz3j+sU8uFEbNEzHIuF8O9VyIVjHkoqG1pMfSfWQvh3KIXE8JXsDzI8mk+VnSxzx7CvU9iCtygARMaEWegCSmWOXFbbNH7vW/7Nt/TtN5UN37jNwkm20BtCpxQa+W7A+0/Qloy+kSb7u7EsEYKmNNZSzPcHkSWib/oW9p3r6j+hl77RJlIhUJNVIcg6o663Qi4ac6kOYVD6luw+oDutqr/1kkhHV315f/deTzuHnbgzNf2tokQqWt/692nJUMfuA2EfxXz/MZR/Qzfr78ZLZfu77lLVUT2jfwOihw4X8yGw893h3yKZOfw9S++RTPf/G1PWgrJk//rp6ugYJoW/S/sq5EKroOdg/2t3e9hPOjruzOQQsNVTw7aFsiAttVTKj9WL4/KkQAWAyIlk1t/Fott5S4VpBEtEJKYUACIiMaUAEBGJKQWAiEhMKQBERGJKASAiElMKABGRmFIAiIjE1Cl1N1AzawW2Dbvi4BqAPWNYnVNFHI87jscM8TxuHfPILHD3xoGFp1QAjIaZNQ92O9SJLo7HHcdjhnget455dNQFJCISUwoAEZGYilMA3FnpClRIHI87jscM8TxuHfMoxGYMQEREDhenFoCIiJRRAIiIxFQsAsDMVpnZ82a2xcxuqXR9xoOZzTOzR81sk5k9a2Y3R+XTzOxhM3sxep1a6bqONTNLmtlvzeyBaH6RmT0Rfd73mdkgj/06tZnZFDNba2bPmdlmM3vzRP+szezfRf9tP2Nm3zaz7ET8rM3sLjPbbWbPlJUN+tla8I/R8W80s/OP5b0mfACYWRK4A7gCWApca2ZLK1urcZEHPuXuS4GLgL+IjvMW4Kfuvhj4aTQ/0dwMbC6b/xzwBXc/A9gHfLQitRpfXwR+4u5LgDcSjn/CftZmNgf4BLDC3c8BksA1TMzP+mvAqgFlQ322VwCLo+kG4EvH8kYTPgCAlcAWd9/q7r3AvcCVFa7TmHP3ne7+VPT3QcIJYQ7hWO+OVrsbuKoiFRwnZjYXeDewJpo34DJgbbTKRDzmeuBi4CsA7t7r7vuZ4J814RG21WaWAmqAnUzAz9rd/wXYO6B4qM/2SuDrHjwOTDGzWSN9rzgEwBxge9l8S1Q2YZnZQuA84AlgprvvjBbtAmZWql7j5B+A/wBET0xnOrDf3fPR/ET8vBcBrcBXo66vNWY2iQn8Wbv7DuB/AK8STvwHgCeZ+J91yVCf7ajOb3EIgFgxs8nAd4FPunt7+TIP1/xOmOt+zew9wG53f7LSdTnBUsD5wJfc/TyggwHdPRPws55K+La7CJgNTOLIbpJYGMvPNg4BsAOYVzY/NyqbcMwsTTj53+Pu34uKXy81CaPX3ZWq3zh4K7DazF4hdO1dRugbnxJ1E8DE/LxbgBZ3fyKaX0sIhIn8Wb8DeNndW909B3yP8PlP9M+6ZKjPdlTntzgEwHpgcXS1QIYwcLSuwnUac1Hf91eAze7++bJF64APR39/GPjhia7beHH3W919rrsvJHyuP3P3DwKPAu+LVptQxwzg7ruA7WZ2VlT0+8AmJvBnTej6ucjMaqL/1kvHPKE/6zJDfbbrgA9FVwNdBBwo6yoanrtP+An4A+AF4CXgP1W6PuN0jG8jNAs3Ahui6Q8IfeI/BV4EHgGmVbqu43T8lwAPRH+fBvwG2AL8M1BV6fqNw/EuB5qjz/sHwNSJ/lkDfws8BzwDfAOomoifNfBtwjhHjtDa++hQny1ghKscXwKeJlwlNeL30q0gRERiKg5dQCIiMggFgIhITCkARERiSgEgIhJTCgARkZhSAIiIxJQCQEQkpv4/n7xko6Rov8UAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "plt.plot(history.history['loss'])\n", "plt.plot(history.history['val_loss'])" ] }, { "cell_type": "code", "execution_count": 22, "id": "1805f8ce", "metadata": { "execution": { "iopub.execute_input": "2023-01-05T14:36:20.746818Z", "iopub.status.busy": "2023-01-05T14:36:20.745928Z", "iopub.status.idle": "2023-01-05T14:36:20.960009Z", "shell.execute_reply": "2023-01-05T14:36:20.958754Z" }, "papermill": { "duration": 0.271047, "end_time": "2023-01-05T14:36:20.962552", "exception": false, "start_time": "2023-01-05T14:36:20.691505", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7efdf06bf510>]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtPUlEQVR4nO3deXxU1cH/8c/JShIIIYQ1EBJZZJXFgIK41K0Ud6sVrMW11rr0qdY+7a9Pf3389elea1tbHy3uWitFtIotdalLAYWQsAiyL4EkbAlZgKyTmTm/P84EQggQyIRJbr7v1yuvzNy5c+fcXPjeM+eee46x1iIiIt4VFekCiIhI21LQi4h4nIJeRMTjFPQiIh6noBcR8biYSBegqbS0NJuZmRnpYoiIdCjLly/fZ63t1dxr7S7oMzMzycvLi3QxREQ6FGPMjmO9pqYbERGPU9CLiHicgl5ExOMU9CIiHqegFxHxOAW9iIjHKehFRDxOQS/eUVcJK16G7Yuh8fDbfh+sngs7lkSubCIR1O5umBI5aTXlkDMbcp50jwEGngNTH4L9hfDJ793vqFi48XkYcVVkyytymqlGLx1b0XJ4fAJ8/DMYeC7c/k+Y/igc2AWv3gQLHobkdLjpz9B/HMy9FVa/1vLtb/8EXr4OfpkJ7/0QDu51y/euhXl3wM8Hwlv3QenW42+nugw+/Cn8egg8Px22/OvIbx0ibci0txmmsrOzrYZAEMCFY85T4Ktyz6NiYPT10G+se75jCbxyIySmuiDvd9bh9wbqYcM/IKkXDJoCxkDdQXh1pmvauezHcM43ICb+6M+1FrZ8AIsehYIlbhsDJsKmd9y3gvQJbnlcVxj8Bdj8PgR8MPxKSMk4enu1++HzN6C+CoZe7k4SB3ZCv3FwwcNw5hUQ1UydK1APa/8G0bEw6rpW/znF24wxy6212c2+pqCXdqmyBF6+1oViXJJb5q+FoN+F5bBproadnA63zofk/i3brq8a5t3uQrtbP5jyAIy+wYWptbDjExfwuz9z2z7vP2DCLIhNcLX2T37nThRn3QST7nYnmcpiWPJHWPmKK2NTJhrOnOaaknoPB38dfDYHFv8WyvOh1wg4/yEYfIk7IQUDsP4t1+RUUeC2cdn/wHnfCsdf9tQE6t2JsjnxyRCtVuBIU9BLx3JgF7x0DVQUwsxXXa0ZXM142dOw9H+huhR6j4JZb0LX3ie3fWth28ew6DewfdHRr6ee4UL5rJsgJq61e3NsAb+rsS/6DZSsP/r19Gx3AlgzD9a+ARf9wH0DWPcmLHoMyrfDxDth8v0n/zc4GaVb3Um34aTTVNe+MOV+OPt2iO/aduWQ41LQS8dxYDc8Pw2qSuGrc12zS1O+Ktj4Txh8satRt0ZhLuxacfh5cjqc+SWIim7ddk9GMOja7MvzDy/rMwoGnXe4hj//AVj1CnTtA5V7IW0Y9BoOG/4O0XHuW8eUb0HKwFMvx/4iWPWq++xh01xzUvF6d9IN+uH877jms8ZsEDYugPyFkJAK594Lk74OCSmnXo7OqL7G9Rirr4ap3z6lTSjopWMIBl3NsSgPbn0bBpwd6RK1H8Gga6oqWuZq8COuciej0q2w+DHXFISBsTe5byM9Bx9/ezXlrjsqQG0F5PzJbSNY75b1HulOHgt/7a5LzHrLNTsdS2GuW3fzu64pZ+JdLvS7Nhke3VrXdBXb5VT/EofV7ofaA4efd+vXtk1IB/e4JqzjiYp25TCmZdusOwi5z8CSJ6CqBIZcCl+d1/L3N6Kgl45h6VPwzvfgyt9B9u2RLk3HUlEInz4OK15yF4ZHXedq4H1GHb3uyj/D/G+BDRxeFtPFBfu590LhMtectG8jdB/oQv5EJ44Gu1e79657y23z7NvcdZBufWH92+61vWthzI0w9cHjnzyOpXw7LP6d+4YT8B1enpIB530bxn01PCcScCemrR+6cu/4pGXvOdFFdjjc0SDnKXfCGnwxnP8wZJ53ykVV0Ev7sPUj1zY+8c6je6eUbIQ/XQBZF8LNfz2lGo3gun8u+SPkPQe+SjhzuguQhm9Hy552XU7P+AKM/rJbFhXtLgR363N4O8EgbPvInSi69T35cuzb7C42fzYHTJS7WF6xA1IHQ+ZUWPOaa64YfDEk9mz5dusOuF5OUdEu0NND+xWoc81OO/PcNYOs84HQv6HeIyD7jsPNSfU17mRXuKwF+7HRXZjv1h8m3QVJJ7gWUlsBuc+GLrIPh75nHb1OwOf2ob7K9dQ6/6HD+9EKrQ56Y8w04PdANPCMtfYXTV7PAF4EUkLrfN9au6DJ6+uAR6y1jx7vsxT0HrVuvut3Hqx37bxnzXD/+eK7ulrT377hLvbdu/TIwJFTU13mmmNynnLhc8ZF0HcMfPoHV9O88fnmu5aGW/kO13to3yb3LW3ktS6kq0rdRfV1b7n2/5YyUTDsi+5bQtOeVg0X2T99HMpC1zts0J1g4pPdtYMu3eHTP0JVMSQPcL2tjie+m/t3Ou7mlv+9Gi6y5zzlOg00Z0C2a2LrM7Jl22yBVgW9MSYa2ARcBhQBucBMa+26RuvMBlZaa580xowEFlhrMxu9Pg+wQI6CvhNa/ZoL8vSz4arfw/IXYMWLR3dF/MrLMPLqiBTRs+oOuhrmkidcuI26Dq5/+sQB5yW7Pws1J80HrDvpXfDdwxe7PeJ4Qd+SKxeTgC3W2m2hjc0BrsHV0BtYIDn0uDuwq9GHXwvkA1UnXXLp2GoPwNIn4eOfu6/rM+e4Gvz0X7k2zB2fuBoXuN4uGedGtrxeFN/N9eI45xtQmAOZ55/eHkXtQb+x8JWX3IXr+hroOzrSJTrtWhL06UBho+dFwDlN1nkEeM8Y8wCQBFwKYIzpCnwP923g4WN9gDHmbuBugIyMZu4slI6lusx9Lc+ZDXX7YeQ1cO1TEJd4eJ2uvXW35+kUm+Bqsp1ZSy8oe1C4+iLNBF6w1v7GGDMZeNkYMxp3AvittbbSHOcrkrV2NjAbXNNNmMokkVC+HV682rWLjrjK9fzoPz7SpRLp1FoS9DuBxndhDAgta+xOYBqAtXaJMaYLkIar+d9gjPkV7kJt0BhTa639Y2sLLu3Qvi3w0tXuhqY734eBkyJdIhGhZUGfCww1xmThAn4GcHOTdQqAS4AXjDEjgC5AibX2/IYVjDGPAJUKeY/auxZeuta1ud/2d9fDQ0TahRMGvbXWb4y5H3gX13XyOWvtWmPMj4E8a+184DvA08aYB3EXZm+z7a2DvrSNfZvduCur/+pGebzt79DrzEiXSkQa0Q1T0nKFue5mnIO73fNAPexaefgOyKnfPrWba0Sk1VrbvVI6M2vdgFWLHg0NXNXj8HjwsQnurr5zvnn0mCYicky19QHm5hXyzKJ84mKi+MYFZ3Dt+HRio9tmLigFvTTPWjdm+6LfQFGuu6388p+6mruGopUOzOcP8sjba1m36wA/mD6CSVluBFRrLZ9uLWX97gNcPa4/vbsdHi8nELTsKK2iZ1I8yQkxGGMorawjd3s5m/ce5Nrx6QxMPdx9uLY+wLzlRQzqmcjUIWk09DqsrPPzytIdPL0on32VdUzISKGmPsh3563md//azD0XDeaWczI4Xi/FU6Gmm87EV+XuSl3z2olH4as9APsL2magKJEwqg8EeefzPXy+az+7KmrZXVHD2YN68OBlw+gSe+TNYWVVPu7583KW5ZfRMymO0iof149P55IRfXh60TZWFVYAEB8TxYyJA5k+ph8fbizmrZW72HPA3cndNT6G7gmx7KyoObTdbvEx/OS60VwzLp0txQd54NVVrN/tRtYcO6A737hwMJv2HuT5T7azv6aeqUPSuO8LQzj3DHeS+WhjMX/8cAvdusTy4h2n1ltNg5p1djUVkPu0u0u1utRNi9f1BOPJmCg3INaYGzrX7fLSbgWClpxtpRhjGNAjgdSkOP62cidP/XsrReU1xEYb+qe45SsLKhjetxt/mDmeoX264fMHWVFQzvdeX83u/bX8+oazuGxkH574aAtPL8zHFwgyoEcC91w4mElZqTy7KJ83VhZRH7DERBkuHNaLS0f2obLWz86KGkqrfIzsl8ykrB6kJsXz8GufsXxHORed2Yul20pJjIvh59ePoazKx5Mfb6WgrBqAS0f04f6LhzBuYMpR+2etpcoXoGv8qTW0KOg7q6p97g7VZU+7Uf+GftENPaD+7dKB1AeCvLVqF09+vIWtJUePpDJuYAr3f2EIFw/vTVSUa/L4aEMxD7/2GZV1fsYOTGF1UQW19UHSusYxe1Y2EzJ6HHr/9n1V5O+rYurQtCPayHdV1JC3o5zzBvekZ9fjD2jmDwT5w4db+MOHmzlvSBq/uXEsvZO7HHpt4eYS0lMSObNvt3D8SZqloO+M1v8d3vi6G9tj5NXuDtWGi6gibag+EGThphK2lVTRt3sX0nskkNkzidSkI6dlDAYtpVU+UpPiiA4F9MY9B3ljZREfbSimzu/GQTpY66esysfwvt345kWD6ZkUz86KavbsryM7swdTBvdstk27+GAt//3WWnZW1JA9KJVJWalMHtyT7glt9w21rMpHj8TYsLext4R63XhByUZ3gbQlEzUc2AVv3QtpQ91IherXLqfB+t0HmLOsgLdX76asynfU62f0SuKcrFQG9EhkVWEFudvLqKiuJzrK0De5C/ExUWzbV0V0lGHK4J70DJ0YoqOimD6mLxcP731SAdq7WxeevOX0zlLW9GTWXijoO4JtH8OrM13QN54suznBILx5r7vYesPznXogJzk9VhSU88SHW/hgQzHxMVFcOrIP141L5+xBPdh7sJZdFTVs2ltJbn4Zf1+9m4O1fjJ7JnLZiD6M6JdMWZWPnRU17K+p59YpmVx5Vr8TNpXIyVHQR0J9Dbx8vQvhqQ+638GAm4Rh2Wx3h+n5D7nBwDa9B3+9xa1jouAvN7khV8+c1vy2c59xMwNd8ZhCXk6o+EAtb6/ezYSMFMY3arc+HtetsIyc/DJytpWxbvcBUhJjeeiyYdw6OZPuiYebRnokxTG8bzIXD+/DPRcOJhC0VNb6j1hH2p7a6CNh5Z/hrfvcTEs26EZ53LsOSjdD6hmuZ0ztfhg01Y0h3mckfO1N994/Xw971sCXnzl6mN+SjfCnC93Y7199zVOTKsixWWuxlkMXIluisKyaPy3cyty8InyhtvCpQ9L45kWDsRaW5ZeyoqCCqChDekoX+ndPYNf+Gpbllx26INolNorxA3twyYjezJyUQdIp9haR8NDF2PZm9kWuVj/rLTfzT95z0CMLLvgOjAiN/tgwM3zPIW4O1Yb5Lmv3wytfgaJlboz3sTe55fs2u+GBA3XwzU81FIHH7a+uZ/7qXSzLL2NZfinWwvO3T2RU/+6H1tm89yDPLMrnmnH9mRy6YFlV5+fxDzfz7KJ8jIEbzh7ArMmZLNpcwuyF7iYegCgDI/snE2UMO8tdd8JuXWKYmJnKxMxUJmX1YEx6CnExbXMnp5w8BX17UrQcnrkYpj/q5rA8nmAAMEfPJO+rgldnQP4iuPK3rrvkS9e41772ZqecQcerig/UEh8bfURPkf3V9dw0ewkb9hykT3I8k7J6kre9jPpAkNfumUJWWhKf79zP157Nobza3Rg3PiOF6aP78ezifPYcqOXGswfw0OXD6Nc94dB2a+sDvLt2DymJcUzISKFbl9gjXouNjjrUO0baHwV9e/K3b8L6+fDQeuiSfOL1j6W+BubOgs3vQVxXN2XcrPnQa1j4yiptJhC0/GPNborKq496zVrXt3vZ9jJ2lFbTLT6Gn14/hqvH9qfGF+CWZ3NYXVTB7FnZXDSsF8YYthRX8pU/LSExLpofXjGS7877jOQusTx/+0Ry8st46uOt7KyoYWS/ZP7n2tGcPahl7fHScSjo24uqUnhsBIy/Ba58rPXb8/vgzXtg1yq4ZZ5r35d277PCCn701ud8VrT/mOv0SIwlOzOViZk9eOfzPawoqOCGswewr7KOhZtK+OPNE5g+pt8R71ldVMHM2Uup8gUY1DORV+46hwE93Pgr9YEgG/ccZES/ZNXKPUr96NuLVX92begT7wrP9mLi4IbnXBVQF14jwucP8vHGYv62cicLN5WQnBBLekoC/VMSmm2/PlBTz/vr95LWNZ7f3TSOaaObv5YSHxN1qM/4Hedl8fgHm/njR1sIWvj59WOOCnmAswak8NxtE3l56Q7+75Uj6ZN8eGyi2OgoRqd3P+o90jmoRt+W/D43BEHdQff8s1ehRybcviCixZLWK6/y8fwn+by8dAfl1fX0TIrj8lF9qPMH2Vlew54DtfgDR//fMga+OKov37506BFt4C2xfEc5JQfrjnlykM5NNfpIWf48/Ou/Xf93jBsc7MrfRrpUcorqA0HW7NzPP9fs5pWcAqp9AS4f2YeZkzKOGielLahdXU6Vgr6t+Kpg4aOQeT7c+raaVjqYf28qYW5eIQ3feMur6llVWEFNfYAoA1eP7c+9XxjCsD5tN0iVSLgo6NvKstlQVQw3/Vkh3w7s2V9LTn4pudvLyM0vp3dyPD+YPoIR/Y7s+WSt5dnF+fxswXp6do0nJdStMTEumpsmDmRSlutH3qubbtGXjkNB3xZqKmDx72Do5ZBxTqRL0yn5A0H++fkePtpYTO72MgrL3CQRXeNjGJ+Rwuc793PlHxYza/Ig7r7gDOKiowhaeOz9Tby6rIBpo/ry2E1jSYzTfxHp+PSvuC0seQJqK+DiH0a6JJ1OnT/A68vdZBQFZdWkJsUxKTOV26ZkMSkzlRH9uhETHUVFtY9fv7uRFz7dzvOfbD9iG/deNJiHLz/zpIYUEGnPFPThVlXqetqMvEbjvx9HVZ2fbSVV9OkeT1pSfLOhWuML8Pmu/RSWVR/qyRIMtZkHgpa9B+rYVVHD7v21h8ZrCVhLIGgZO6A7P7zibC4d0afZbackxvHT68Zw8zkZLN9Rfmj5GWldmTo0rY32WiQyFPThtvgxqK+GL/xXpEvS7gSClkWbS/jbyp28t3YvNfUBAOJiougfmqAiPSWBpPgYVhVWsKZoP/7g4S6KPRJjD/VsMcaNN35GrySmDk07NDeoASYP7nnEhMzHM6p/9yPGhxHxIgV9OB3Y7QYjO+umTjfZx+yFWymt9HHfxUNIbqZ/eHloUuac/DK6J8Ry/YR0pgxOo7Sqjp3lNRSV17CzooaPN5awv6aeMend+foFZ5A9qAeZaUmkpyQcNdGziLSMgj6cFv4agn648HuRLslptX73AX7+zw1YC6+v2MkPpg/nuvHph2rUW4orufPFXHbvr+Xn14/h+gnpxMcotEVOFwV9uJRvhxUvwoRbITUr0qU5rX62YD3JXWJ54uYJPPreRh6a+xm/eW8TGamJ9E9J4P11e4iLieLVr5+rm35EIkBBHy4f/9JNJHLBdyNdktPq35tKWLR5Hz+8YgRTh6YxZXBPXl9RxMLN+9hZXs0nW/YxuHdXHp8xnoGpiZEurkinpKAPh32bYfUcOPdeSD56sCmvCgQtP1+wnozURL42eRDgZjm6MXsgN2YPjHDpRKSBgj4cNvzdTQk45YFIlyQs1u06wH1/WUFWWhLXjk/nshF9SIg7sk29ss7P3NxCNuw5yBM3T1Cbu0g7pqAPh4IcN+WfB6bvW1VYwaxnc+gSG8363Qf4cEMxSXHR9OkeGvLWwr7KOg7U+gGYkJHC9DEdf79FvExB31rBoJvA+8zpkS5Jq+VuL+P253NJTYrjlbvOIT0lgaX5pSxYs5uK0JR0AD0S4w71eb/wzF4t6q8uIpGjoG+t0s1QU9bhx7T5ZMs+7noxj34pXfjLXefSN1SDnzI4jSmDdaeoSEemKdxbq2Cp+50xObLlOAllVb4jnn+4YS+3v5DLoJ6J/PXuyYdCXkS8QTX61irMgcSero2+A5ibW8h/vr6a4X27ce34dFIT4/ivN9cwol8yL90xiZTEuEgXUUTCTEHfWgVLYeA5HWLM+R2lVTzy9lpGpycTFx3FL/65AXAzFz1/+8Rmhy4QkY5PQd8alSVQthUmzIp0SU4oELQ8NPczoqMMs7+WTf+UBLbvq2LptlKuGtufpHj9UxDxKv3vbo3CHPc749zIlqMFnvr3VpbvKOd3N42jf0oCAJlpSWSmJUW4ZCLS1hT0rVGwBKLjoN+4SJfkKLX1ARas2U1BaCz3N1ft5Iqz+nHNuP6RLpqInGYtCnpjzDTg90A08Iy19hdNXs8AXgRSQut831q7wBhzGfALIA7wAd+11n4YvuJHWGEO9J8Ase2vl8oj89cyJ7cQgN7d4jlvSBo/uWa0+ryLdEInDHpjTDTwBHAZUATkGmPmW2vXNVrth8Bca+2TxpiRwAIgE9gHXGWt3WWMGQ28C6SHeR9On03vurlgz74Nhl8Bu1bB5HsjXKijbdhzgLl5hdw6eRA/uGKEhicQ6eRaUqOfBGyx1m4DMMbMAa4BGge9BZJDj7sDuwCstSsbrbMWSDDGxFtr61pb8Ij49A9Q8Kn7SUyDYD0MbH/t8z9fsIGu8TE8eNkwhbyItOiGqXSgsNHzIo6ulT8C3GKMKcLV5psb3evLwIrmQt4Yc7cxJs8Yk1dSUtKigp92B3bB9sVw4fdhxl8gJQPik9vdhdiFm0r496YSvnXJUPWJFxEgfBdjZwIvWGt/Y4yZDLxsjBltrQ0CGGNGAb8ELm/uzdba2cBsgOzsbNvcOhG39m+AhTE3QtoQN7ZNwAcx8ZEu2SGBoOVnC9YzMDXh0LDBIiItCfqdQOPBxQeEljV2JzANwFq7xBjTBUgDio0xA4C/AbOstVtbX+QIWTMP+o11IQ/uBql2EPLWWjbtrWTZ9jL+vbGYDXsO8sebx6vJRkQOaUnQ5wJDjTFZuICfAdzcZJ0C4BLgBWPMCKALUGKMSQH+geuF80nYSn26lW6FXSvgsv+JdEmO8qt3N/Lkx+782Sc5njunZnHFmM4z+YmInNgJg95a6zfG3I/rMRMNPGetXWuM+TGQZ62dD3wHeNoY8yDuwuxt1lobet8Q4EfGmB+FNnm5tba4Tfamrax9w/0edV1ky9HE/up6XvhkO5eP7MMPrxjJwNQEdZ8UkaO0qI3eWrsAd5G18bIfNXq8Djivmff9BPhJK8sYeWted6NTprSv6fHm5BZQUx/gwcuGkdFT87GKSPM0TPGJ7F0LJeth9JcjXZIj+ANBXvx0O1MG92REv+QTv0FEOi0F/YmsfRNMNIy8NtIlOcI7a/ewa38td5yXFemiiEg7p6A/ke2Lof846Nor0iU5wnOL8xnUM5GLh/eOdFFEpJ1T0B+P3+d627Szu19XFpSzoqCC26dkEhWli68icnwK+uPZ/Rn4a9vV3a+llXU88vY6usXHcEN2+7o4LCLtk4YpPp6CJe53Own6TXsPcueLuRQfqOP3M8bRVZOFiEgLKCmOpzAHemRB18i3g3+0oZhvvbqSLnHR/PUbkxk3MCXSRRKRDkJBfyzWuvlgh14W0WLU+QP8+p2NPLM4nxH9knn21uxDM0SJiLSEgv5YyrZB9T438XeEbCup5IFXV7J21wFmTR7ED6aPoEusxrARkZOjoD+WgqXud8bkiHx8YVk1Nz61hKC1PD0rm8tG9olIOUSk41PQH0vhUuiSAmnDTvtHV9b5uevFPHyBIG/edx6De3U97WUQEe9Q0B9LQY5rtok6vT1QA0HLt+esZEtJJS/cPlEhLyKtpn70zakug30bIeP0ts/7/EF+/PZa/rW+mP++aiTnD21fd+OKSMekGn1zCnPc79N4R+wnW/bxo7c+Z2tJFbdNyWTW5MzT9tki4m0K+ubs+ASiYiF9Qpt+jD8QZNGWfcxZVsC7a/cyMDWBZ2/N5pIRuvAqIuGjoG9q32ZY9gwM+yLEtk1/dZ8/yGPvb2Le8kL2VfronhDLty8dyj0XDlb3SREJOwV9Y4F6eONuiO0CV/ymTT6itj7Afa+s4IMNxXxxVB+unzCAi87spTleRaTNKOgbW/ioG63yxhehW9+wb77a5+ful5azeMs+fnLtaG45d1DYP0NEpCkFfYOi5bDw13DWTTDq2rBvfn91PV9/KY+8HWU8euNYbjh7QNg/Q0SkOQr6Bu98z9Xiv/SrsG86f18Vd76QS2F5Nb+fMZ6rxvYP+2eIiByLgh5g10ooyoVpv4SElLBuesnWUu7583KiDLxy17lMykoN6/ZFRE5EQQ+Q+wzEJsLYGWHd7MqCcr72bA6ZaUk8d+tEMnomhnX7IiItoaCvLoM181zIh7E27/MH+f7ra0jrGs/r90yhe2Js2LYtInIyFPSr/uKmC5x4V1g3O3vhVjbuPcjTs7IV8iISUZ17rJtg0DXbDDwX+o4J22a3FFfy+AdbuOKsfhpeWEQirnMH/bYPoTwfJn09bJsMBi0/eGMNCXHRPHLVqLBtV0TkVHmv6Sbgh8/nQc5TUFV6/HVrKyCpF4y4Kmwf/966vSzbXsavvnwWvbrFh227IiKnyjtB769z7e2LfwsVO6D3SMiceuL3Db8CYsIXyH9ZVkC/7l34sm6IEpF2wjtBX1kMCx6GfmNh2i9g2LTTPmlIYVk1izaX8K2LhxIdZU7rZ4uIHIt3gj5lIHzzUzf1n4lMyL6WVwjAVyYOjMjni4g0xztBD9DrzIh9tD8Q5K95hVw0rBfpKW0zvLGIyKno3L1uwujjjSXsPVDHjEkZkS6KiMgRFPRh8uqyAnp3i+fi4b0jXRQRkSMo6MNg9/4aPtpYzI3ZA4iN1p9URNoXpVIYvP3ZLoIWvpKti7Ai0v4o6MPgnc/3MDo9mUE9kyJdFBGRoyjoW2nvgVpWFFQwbVT4px4UEQkHBX0rvbd2DwDTRivoRaR9alHQG2OmGWM2GmO2GGO+38zrGcaYj4wxK40xq40x0xu99n9C79tojPliOAvfHry7di+DeyUxpHe3SBdFRKRZJwx6Y0w08ATwJWAkMNMYM7LJaj8E5lprxwMzgP8NvXdk6PkoYBrwv6HteUJFtY8l20pVmxeRdq0lNfpJwBZr7TZrrQ+YA1zTZB0LJIcedwd2hR5fA8yx1tZZa/OBLaHtecK/1hcTCFqmjeoX6aKIiBxTS4I+HShs9LwotKyxR4BbjDFFwALggZN4b4f1zud7SE9JYHR68olXFhGJkHBdjJ0JvGCtHQBMB142xrR428aYu40xecaYvJKSkjAVqW1V1flZuLmEy0f1wURoEDURkZZoyaBmO4HGdwINCC1r7E5cGzzW2iXGmC5AWgvfi7V2NjAbIDs727a08Kdb8cFanl2cT2FZNdtKqvD5g+pWKSLtXktq3bnAUGNMljEmDndxdX6TdQqASwCMMSOALkBJaL0Zxph4Y0wWMBRYFq7Cn26PzF/LM4vy2bD7IL26xXP3BWeQnZka6WKJiBzXCWv01lq/MeZ+4F0gGnjOWrvWGPNjIM9aOx/4DvC0MeZB3IXZ26y1FlhrjJkLrAP8wH3W2kBb7UxbKiyr5p3P9/CNCwfzvWnDI10cEZEWa9F49NbaBbiLrI2X/ajR43XAecd470+Bn7aijO3CS0u2Y4xh1uRBkS6KiMhJ0Z2xLVBZ52dObiHTx/SjX3dNKiIiHYuCvgVeX17EwVo/d5yXGemiiIicNAX9CQSDluc/yWd8RgrjM3pEujgiIidNQX8CH24oZntpNXeclxXpooiInBIF/Qk8vWgb/bt30Xg2ItJhKeiPY2VBOTn5ZdwxNUtTBIpIh6X0Oo4//Xsb3RNimTkpI9JFERE5ZQr6Y9hWUsm76/bwtXMHkRTfotsNRETaJQX9MTy9aBux0VHcOiUz0kUREWkVBX0zig/W8vryndxw9gB6dYuPdHFERFpFQd+MFz7ZTn0wyNfPPyPSRRERaTUFfROVdX5eXrqDaaP6kpWWFOniiIi0moK+iVdzCjhY6+eeCwdHuigiImGhoG/E5w/y7OJ8zj0jlbEDUyJdHBGRsFDQN/LWqp3sOVCr2ryIeIqCPiQYtMxeuI3hfbtx4bBekS6OiEjYeDbo5y0v4h+rd1Nb37IJrd5fv5fNxZXcc+FgTfYtIp7iyVs+ff4gD7/2GQDd4mOYNrovqUlxFFXUsKuihtjoKAakJNA/JYHSqjpy8svYVlJFekoCV5zVL8KlFxEJL08GfbXPD8CXJwwAYMGa3dQHLP1TutA/JYH6QJCl20rZc6CWpPgYJmamcuPZA7lqbD8NXiYinuPJoK/yueaaSVk9uGliBr/88hiijCEq6sgmGX8g2OxyEREv8WTQ14Rq9AlxbvdijlFLP9ZyEREv8WTSVYdq9Elx0REuiYhI5Hky6KvqXNAnKOhFRLwZ9DX1rukmMc6TLVMiIifFk0HfUKNX042IiEeDvsanphsRkQaeDPqqUK+bJDXdiIh4M+irVaMXETnEo0HvJzrKEB/jyd0TETkpnkzCal+AxNhoDU4mIoJHg77GFyAxXs02IiLg0aCv8gXUh15EJMSTQV/j85OoC7EiIoBHg76qLqCgFxEJ8WTQV9cHDo1cKSLS2Xkz6Ov8Gv5ARCTEm0HvC+hmKRGREI8GvV/DH4iIhHg06HUxVkSkQYuC3hgzzRiz0RizxRjz/WZe/60xZlXoZ5MxpqLRa78yxqw1xqw3xjxu2vh21UDQUucPqh+9iEjICdPQGBMNPAFcBhQBucaY+dbadQ3rWGsfbLT+A8D40OMpwHnAWaGXFwMXAh+HqfxHqfY1TDqiGr2ICLSsRj8J2GKt3Wat9QFzgGuOs/5M4NXQYwt0AeKAeCAW2HvqxT2xhrHoNQSCiIjTkqBPBwobPS8KLTuKMWYQkAV8CGCtXQJ8BOwO/bxrrV3fzPvuNsbkGWPySkpKTm4PmqhqCHrV6EVEgPBfjJ0BzLPWBgCMMUOAEcAA3MnhYmPM+U3fZK2dba3NttZm9+rVq1UFaGi6SYhVG72ICLQs6HcCAxs9HxBa1pwZHG62AbgOWGqtrbTWVgL/BCafSkFbqmHSkSQ13YiIAC0L+lxgqDEmyxgThwvz+U1XMsYMB3oASxotLgAuNMbEGGNicRdij2q6CadqNd2IiBzhhEFvrfUD9wPv4kJ6rrV2rTHmx8aYqxutOgOYY621jZbNA7YCa4DPgM+stW+HrfTNqK5r6HWjphsREWhB90oAa+0CYEGTZT9q8vyRZt4XAL7RivKdNNXoRUSO5Lk7Y6vrG4JeNXoREfBi0NfphikRkca8F/ShppuEWAW9iAh4Muj9JMRGExXVpkPqiIh0GB4M+oD60IuINOLJoNekIyIih3kw6P0kavgDEZFDPBj0AY1cKSLSiDeDXk03IiKHeDTo1XQjItLAg0HvV41eRKQRDwa9avQiIo15L+jrVKMXEWnMU0FvraW6PkCSgl5E5BBPBX1tfRBrIUFNNyIih3gq6Bvmi9UQCCIih3ks6DVypYhIU54MevW6ERE5zGNBH5p0RE03IiKHeCzoQzV6Nd2IiBziyaBPilfTjYhIA48FvWu60Xj0IiKHeSzoQzV6XYwVETnEU0FfVacavYhIU54K+ppD3SsV9CIiDTwV9NX1AeKio4iN9tRuiYi0iqcSsbrOrz70IiJNeCvofQH1oRcRacJzQa8LsSIiR/JY0Pt1s5SISBOeCvoqX0AjV4qINOGpoK/xBVSjFxFpwlNBX+Xzq41eRKQJTwV9jU/zxYqINOWpoK/2BTTpiIhIEx4Ler+GPxARacIzQe/zB6kPWAW9iEgTngn6hgHNEtR0IyJyhBYFvTFmmjFmozFmizHm+828/ltjzKrQzyZjTEWj1zKMMe8ZY9YbY9YZYzLDV/wjXXFWP4b07tpWmxcR6ZBOWP01xkQDTwCXAUVArjFmvrV2XcM61toHG63/ADC+0SZeAn5qrX3fGNMVCIar8I11T4zliZsntMWmRUQ6tJbU6CcBW6y126y1PmAOcM1x1p8JvApgjBkJxFhr3wew1lZaa6tbWWYRETkJLQn6dKCw0fOi0LKjGGMGAVnAh6FFw4AKY8wbxpiVxphfh74hNH3f3caYPGNMXklJycntgYiIHFe4L8bOAOZZawOh5zHA+cDDwETgDOC2pm+y1s621mZba7N79eoV5iKJiHRuLQn6ncDARs8HhJY1ZwahZpuQImBVqNnHD7wJqCFdROQ0aknQ5wJDjTFZxpg4XJjPb7qSMWY40ANY0uS9KcaYhmr6xcC6pu8VEZG2c8KgD9XE7wfeBdYDc621a40xPzbGXN1o1RnAHGutbfTeAK7Z5gNjzBrAAE+HcwdEROT4TKNcbheys7NtXl5epIshItKhGGOWW2uzm3vNM3fGiohI89pdjd4YUwLsaMUm0oB9YSpOR9EZ9xk65353xn2GzrnfJ7vPg6y1zXZbbHdB31rGmLxjfX3xqs64z9A597sz7jN0zv0O5z6r6UZExOMU9CIiHufFoJ8d6QJEQGfcZ+ic+90Z9xk6536HbZ8910YvIiJH8mKNXkREGlHQi4h4nGeC/kSzYHmFMWagMeaj0Gxda40x/xFanmqMed8Yszn0u0ekyxpuxpjo0HDXfw89zzLG5ISO+V9DYzF5ijEmxRgzzxizITRL22SvH2tjzIOhf9ufG2NeNcZ08eKxNsY8Z4wpNsZ83mhZs8fWOI+H9n+1MeakBof0RNA3mgXrS8BIYGZo0hMv8gPfsdaOBM4F7gvt6/eBD6y1Q4EPQs+95j9w4y01+CXwW2vtEKAcuDMipWpbvwfesdYOB8bi9t+zx9oYkw58C8i21o4GonHjaHnxWL8ATGuy7FjH9kvA0NDP3cCTJ/NBngh6Tn4WrA7LWrvbWrsi9Pgg7j9+Om5/Xwyt9iJwbUQK2EaMMQOAK4BnQs8NbjTUeaFVvLjP3YELgGcBrLU+a20FHj/WuHksEowxMUAisBsPHmtr7UKgrMniYx3ba4CXrLMUNypwv5Z+lleCvsWzYHlJaKL18UAO0Mdauzv00h6gT6TK1UZ+B/wnh+cc7glUhEZXBW8e8yygBHg+1GT1jDEmCQ8fa2vtTuBRoAAX8PuB5Xj/WDc41rFtVcZ5Jeg7ndBE668D37bWHmj8WmioaM/0mzXGXAkUW2uXR7osp1kMbqKeJ62144EqmjTTePBY98DVXrOA/kASRzdvdArhPLZeCfqTmQWrwzPGxOJC/hVr7RuhxXsbvsqFfhdHqnxt4DzgamPMdlyz3MW4tuuU0Nd78OYxLwKKrLU5oefzcMHv5WN9KZBvrS2x1tYDb+COv9ePdYNjHdtWZZxXgr5Fs2B5Qaht+llgvbX2sUYvzQduDT2+FXjrdJetrVhr/4+1doC1NhN3bD+01n4V+Ai4IbSap/YZwFq7Byg0xpwZWnQJboY2zx5rXJPNucaYxNC/9YZ99vSxbuRYx3Y+MCvU++ZcYH+jJp4Ts9Z64geYDmwCtgL/FenytOF+TsV9nVsNrAr9TMe1WX8AbAb+BaRGuqxttP8XAX8PPT4DWAZsAV4D4iNdvjbY33FAXuh4v4mbrtPTxxr4f8AG4HPgZSDei8caN7/2bqAe9+3tzmMdW9zsfE+E8m0NrldSiz9LQyCIiHicV5puRETkGBT0IiIep6AXEfE4Bb2IiMcp6EVEPE5BLyLicQp6ERGP+//toaqZxGIRlAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(history.history['accuracy'])\n", "plt.plot(history.history['val_accuracy'])" ] }, { "cell_type": "code", "execution_count": null, "id": "999d2a00", "metadata": { "papermill": { "duration": 0.051822, "end_time": "2023-01-05T14:36:21.066760", "exception": false, "start_time": "2023-01-05T14:36:21.014938", "status": "completed" }, "tags": [] }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" }, "papermill": { "default_parameters": {}, "duration": 62.452221, "end_time": "2023-01-05T14:36:24.264414", "environment_variables": {}, "exception": null, "input_path": "__notebook__.ipynb", "output_path": "__notebook__.ipynb", "parameters": {}, "start_time": "2023-01-05T14:35:21.812193", "version": "2.3.4" } }, "nbformat": 4, "nbformat_minor": 5 }
0115/576/115576282.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"482149e5\",\n \"metadata\": (...TRUNCATED)
0115/577/115577449.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"939929(...TRUNCATED)
0115/577/115577765.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"10a9b8(...TRUNCATED)
0115/577/115577894.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\"metadata\":{\"kernelspec\":{\"language\":\"python\",\"display_name\":\"Python 3\",\"name\":\"pyt(...TRUNCATED)
0115/578/115578383.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"d9e4f1e9\",\n \"metadata\": (...TRUNCATED)
0115/578/115578794.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"0d7892(...TRUNCATED)
0115/578/115578812.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"3b9c65(...TRUNCATED)
0115/578/115578854.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"id\": \"e137c2e5\",\n \"metadata\": (...TRUNCATED)
0115/579/115579034.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
"{\n \"cells\": [\n {\n \"cell_type\": \"code\",\n \"execution_count\": 1,\n \"id\": \"acf4a1(...TRUNCATED)
0115/579/115579150.ipynb
s3://data-agents/kaggle-outputs/sharded/030_00115.jsonl.gz
README.md exists but content is empty.
Downloads last month
27