path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
122247715/cell_22 | [
"text_plain_output_1.png"
] | import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.isnull().sum()
titanic.shape[0]
titanic.isnull().sum() / titanic.shape[0]
titanic['age'].isnull().sum() | code |
122247715/cell_27 | [
"text_plain_output_1.png"
] | import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.isnull().sum()
titanic.shape[0]
titanic.isnull().sum() / titanic.shape[0]
titanic['embark_town'] = titanic['embark_town'].fillna(titanic['embark_town'].mode()[0])
titanic['embark_town'].isnull().sum() | code |
122247715/cell_36 | [
"text_plain_output_1.png"
] | import seaborn as sns
titanic = sns.load_dataset('titanic')
titanic.isnull().sum()
titanic.shape[0]
titanic.isnull().sum() / titanic.shape[0]
titanic.isnull().sum()
titanic.drop('deck', axis=1, inplace=True)
titanic.isnull().sum()
titanic['adult_male'].value_counts() | code |
88092005/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import numpy as np
import random
import geocoder
import geopy
import plotly.express as px | code |
2005328/cell_13 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
def process_text(text):
nopunc = [char for char in text if char not in string.punctuation]
nopunc = ''.join(nopunc)
clean_words = [w for w in nopunc.split() if w.lower() not in stopwords.words('english')]
return clean_words
messages['text'].apply(process_text).head()
pipeline = Pipeline([('bow', CountVectorizer(analyzer=process_text)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB())])
pipeline.fit(X_train, y_train) | code |
2005328/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
f, ax = plt.subplots(figsize=(12, 8))
sns.stripplot(x="class", y="words_len", data=messages)
plt.title('Number of words per class')
f, ax = plt.subplots(figsize=(12, 8))
sns.stripplot(x='class', y='char_len', data=messages)
plt.title('Number of characters per class') | code |
2005328/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
messages.head() | code |
2005328/cell_19 | [
"text_plain_output_1.png"
] | from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.manifold import TSNE
import hypertools as hyp
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
from sklearn.feature_extraction.text import TfidfVectorizer
vectors = TfidfVectorizer().fit_transform(messages.text)
X_reduced = TruncatedSVD(n_components=100, random_state=0).fit_transform(vectors)
tsne = TSNE(n_components=2, perplexity=110, verbose=2).fit_transform(X_reduced)
import hypertools as hyp
hyp.plot(tsne, 'o', group=messages['class'], legend=list({'ham': 0, 'spam': 1})) | code |
2005328/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.manifold import TSNE
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
from sklearn.feature_extraction.text import TfidfVectorizer
vectors = TfidfVectorizer().fit_transform(messages.text)
X_reduced = TruncatedSVD(n_components=100, random_state=0).fit_transform(vectors)
tsne = TSNE(n_components=2, perplexity=110, verbose=2).fit_transform(X_reduced) | code |
2005328/cell_8 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
f, ax = plt.subplots(figsize=(12, 8))
sns.stripplot(x='class', y='words_len', data=messages)
plt.title('Number of words per class') | code |
2005328/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
def process_text(text):
nopunc = [char for char in text if char not in string.punctuation]
nopunc = ''.join(nopunc)
clean_words = [w for w in nopunc.split() if w.lower() not in stopwords.words('english')]
return clean_words
messages['text'].apply(process_text).head()
pipeline = Pipeline([('bow', CountVectorizer(analyzer=process_text)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB())])
pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
print(classification_report(y_test, predictions)) | code |
2005328/cell_16 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import seaborn as sns
import string
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
f, ax = plt.subplots(figsize=(12, 8))
sns.stripplot(x="class", y="words_len", data=messages)
plt.title('Number of words per class')
f, ax = plt.subplots(figsize=(12, 8))
sns.stripplot(x="class", y="char_len", data=messages)
plt.title('Number of characters per class')
def process_text(text):
nopunc = [char for char in text if char not in string.punctuation]
nopunc = ''.join(nopunc)
clean_words = [w for w in nopunc.split() if w.lower() not in stopwords.words('english')]
return clean_words
messages['text'].apply(process_text).head()
pipeline = Pipeline([('bow', CountVectorizer(analyzer=process_text)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB())])
pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
import seaborn as sns
sns.heatmap(confusion_matrix(y_test, predictions), annot=True) | code |
2005328/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.head() | code |
2005328/cell_10 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import string
messages = pd.read_csv('../input/spam.csv', encoding='latin-1')
messages.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
messages = messages.rename(columns={'v1': 'class', 'v2': 'text'})
def process_text(text):
nopunc = [char for char in text if char not in string.punctuation]
nopunc = ''.join(nopunc)
clean_words = [w for w in nopunc.split() if w.lower() not in stopwords.words('english')]
return clean_words
messages['text'].apply(process_text).head() | code |
128029591/cell_21 | [
"image_output_1.png"
] | 0.101 * 1141 + 16.57 | code |
128029591/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
sns.relplot(data=cleaned_cars_data, x='EngineSize', y='CO2', hue='PropulsionType', aspect=2) | code |
128029591/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
sns.relplot(data=cleaned_cars_data, x='EngineSize', y='CO2', aspect=2) | code |
128029591/cell_34 | [
"text_plain_output_1.png"
] | import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
diesel_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Diesel'].copy()
diesel_data | code |
128029591/cell_20 | [
"image_output_1.png"
] | 0.101 * 1355 + 16.57 | code |
128029591/cell_29 | [
"text_plain_output_1.png"
] | 0.0604 * 998 + 57.087 | code |
128029591/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
sns.relplot(data=cleaned_cars_data, x='Mass', y='CO2', hue='PropulsionType', aspect=2) | code |
128029591/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
sns.relplot(data=cleaned_cars_data, x='Mass', y='CO2', aspect=2) | code |
128029591/cell_18 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
petrol_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Petrol'].copy()
petrol_data
input_features = ['Mass']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
print('Coefficients: ', linear_model.coef_.round(3))
print('Intercept: ', linear_model.intercept_.round(3))
target_pred = linear_model.predict(input_test)
print('R²: ', r2_score(target_test, target_pred).round(3)) | code |
128029591/cell_28 | [
"text_plain_output_1.png"
] | 0.0604 * 1398 + 57.087 | code |
128029591/cell_16 | [
"image_output_1.png"
] | import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
petrol_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Petrol'].copy()
petrol_data | code |
128029591/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data | code |
128029591/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
petrol_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Petrol'].copy()
petrol_data
input_features = ['Mass']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['Mass', 'EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
print('Coefficients: ', linear_model.coef_.round(4))
print('Intercept: ', linear_model.intercept_.round(3))
target_pred = linear_model.predict(input_test)
print('R²: ', r2_score(target_test, target_pred).round(3)) | code |
128029591/cell_24 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
petrol_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Petrol'].copy()
petrol_data
input_features = ['Mass']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
print('Coefficients: ', linear_model.coef_.round(4))
print('Intercept: ', linear_model.intercept_.round(3))
target_pred = linear_model.predict(input_test)
print('R²: ', r2_score(target_test, target_pred).round(3)) | code |
128029591/cell_22 | [
"text_html_output_1.png"
] | 0.101 * 1177 + 16.57 | code |
128029591/cell_27 | [
"text_plain_output_1.png"
] | 0.0604 * 1598 + 57.087 | code |
128029591/cell_37 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
petrol_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Petrol'].copy()
petrol_data
input_features = ['Mass']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['Mass', 'EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
diesel_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Diesel'].copy()
diesel_data
input_features = ['Mass']
input_data = diesel_data[input_features]
target_data = diesel_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['EngineSize']
input_data = diesel_data[input_features]
target_data = diesel_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
print('Coefficients: ', linear_model.coef_.round(4))
print('Intercept: ', linear_model.intercept_.round(3))
target_pred = linear_model.predict(input_test)
print('R²: ', r2_score(target_test, target_pred).round(3)) | code |
128029591/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data | code |
128029591/cell_36 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import pandas as pd
cars_data = pd.read_csv('../input/aqalds/AQA-large-data-set.csv')
cars_data
cleaned_cars_data = cars_data[(cars_data['EngineSize'] > 0) & (cars_data['Mass'] > 0) & (cars_data['CO2'] > 0)].copy()
cleaned_cars_data['PropulsionType'] = cars_data['PropulsionTypeId'].replace({1: 'Petrol', 2: 'Diesel', 3: 'Electric', 7: 'Gas/Petrol', 8: 'Electric/Petrol'})
cleaned_cars_data
petrol_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Petrol'].copy()
petrol_data
input_features = ['Mass']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
input_features = ['Mass', 'EngineSize']
input_data = petrol_data[input_features]
target_data = petrol_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
target_pred = linear_model.predict(input_test)
diesel_data = cleaned_cars_data[cleaned_cars_data['PropulsionType'] == 'Diesel'].copy()
diesel_data
input_features = ['Mass']
input_data = diesel_data[input_features]
target_data = diesel_data['CO2']
input_train, input_test, target_train, target_test = train_test_split(input_data, target_data, train_size=0.75, random_state=1)
linear_model = LinearRegression().fit(input_train, target_train)
print('Coefficients: ', linear_model.coef_.round(4))
print('Intercept: ', linear_model.intercept_.round(3))
target_pred = linear_model.predict(input_test)
print('R²: ', r2_score(target_test, target_pred).round(3)) | code |
122255316/cell_25 | [
"text_plain_output_1.png"
] | cat_missing_cols = ['country']
cat_missing_cols | code |
122255316/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
data.info() | code |
122255316/cell_23 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
print('Samples Before Removal : {}'.format(df_temp.shape[0]))
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
print('Samples After Removal : {}'.format(df_temp.shape[0])) | code |
122255316/cell_30 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
print(num_cols)
df_temp = df_temp[num_cols] | code |
122255316/cell_33 | [
"text_html_output_1.png"
] | from sklearn.impute import KNNImputer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
df_temp = df_temp[num_cols]
knn = KNNImputer(n_neighbors=3)
knn.fit(df_temp)
X = knn.transform(df_temp)
df_temp = pd.DataFrame(X, columns=num_cols)
df_temp | code |
122255316/cell_44 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import BaggingRegressor
from sklearn.impute import KNNImputer
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeRegressor
import missingno as msno
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
import missingno as msno
from matplotlib import pyplot as plt
msno.matrix(data)
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
msno.dendrogram(data[missing_c])
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
df_temp = df_temp[num_cols]
knn = KNNImputer(n_neighbors=3)
knn.fit(df_temp)
X = knn.transform(df_temp)
df_temp = pd.DataFrame(X, columns=num_cols)
df_temp
df_temp = data.copy()
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
def tree_imputation(df):
missing_cols = [col for col in df.columns if df[col].isnull().sum() > 0]
non_missing_cols = [col for col in df.columns if df[col].isnull().sum() == 0]
for col in missing_cols:
model = BaggingRegressor(DecisionTreeRegressor(), n_estimators=40, max_samples=1.0, max_features=1.0, bootstrap=False, n_jobs=-1)
col_missing = df[df[col].isnull()]
temp = df.drop(df[df[col].isnull()].index, axis=0)
X = temp.loc[:, non_missing_cols]
y = temp[col]
model.fit(X, y)
y_pred = model.predict(col_missing[non_missing_cols])
df.loc[col_missing.index, col] = y_pred
return df
df_new = tree_imputation(df_temp)
msno.bar(df_new)
plt.show() | code |
122255316/cell_29 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
df_temp | code |
122255316/cell_26 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
cat_missing_cols = ['country']
cat_missing_cols
data[cat_missing_cols] = data[cat_missing_cols].fillna('Missing')
data | code |
122255316/cell_41 | [
"text_plain_output_1.png"
] | from sklearn.impute import KNNImputer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
df_temp = df_temp[num_cols]
knn = KNNImputer(n_neighbors=3)
knn.fit(df_temp)
X = knn.transform(df_temp)
df_temp = pd.DataFrame(X, columns=num_cols)
df_temp
df_temp = data.copy()
df_temp | code |
122255316/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data | code |
122255316/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist() | code |
122255316/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
122255316/cell_7 | [
"text_html_output_1.png"
] | import missingno as msno
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
import missingno as msno
from matplotlib import pyplot as plt
msno.matrix(data)
msno.heatmap(data, labels=True) | code |
122255316/cell_45 | [
"text_html_output_1.png"
] | from sklearn.ensemble import BaggingRegressor
from sklearn.impute import KNNImputer
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeRegressor
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
df_temp = df_temp[num_cols]
knn = KNNImputer(n_neighbors=3)
knn.fit(df_temp)
X = knn.transform(df_temp)
df_temp = pd.DataFrame(X, columns=num_cols)
df_temp
df_temp = data.copy()
from sklearn.preprocessing import LabelEncoder
lb = LabelEncoder()
cat_cols = [col for col in data.columns if data[col].dtype == 'object']
for col in cat_cols:
df_temp[col] = lb.fit_transform(df_temp[col])
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
def tree_imputation(df):
missing_cols = [col for col in df.columns if df[col].isnull().sum() > 0]
non_missing_cols = [col for col in df.columns if df[col].isnull().sum() == 0]
for col in missing_cols:
model = BaggingRegressor(DecisionTreeRegressor(), n_estimators=40, max_samples=1.0, max_features=1.0, bootstrap=False, n_jobs=-1)
col_missing = df[df[col].isnull()]
temp = df.drop(df[df[col].isnull()].index, axis=0)
X = temp.loc[:, non_missing_cols]
y = temp[col]
model.fit(X, y)
y_pred = model.predict(col_missing[non_missing_cols])
df.loc[col_missing.index, col] = y_pred
return df
df_new = tree_imputation(df_temp)
df_new = pd.concat([data[cat_cols], df_new.drop(cat_cols, axis=1)], axis=1)
df_new.head() | code |
122255316/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
_ = get_numerical_summary(data_temp) | code |
122255316/cell_8 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c | code |
122255316/cell_43 | [
"text_html_output_1.png"
] | from sklearn.ensemble import BaggingRegressor
from sklearn.impute import KNNImputer
from sklearn.tree import DecisionTreeRegressor
from sklearn.tree import DecisionTreeRegressor
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
df_temp = df_temp[num_cols]
knn = KNNImputer(n_neighbors=3)
knn.fit(df_temp)
X = knn.transform(df_temp)
df_temp = pd.DataFrame(X, columns=num_cols)
df_temp
df_temp = data.copy()
from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor
def tree_imputation(df):
missing_cols = [col for col in df.columns if df[col].isnull().sum() > 0]
non_missing_cols = [col for col in df.columns if df[col].isnull().sum() == 0]
for col in missing_cols:
model = BaggingRegressor(DecisionTreeRegressor(), n_estimators=40, max_samples=1.0, max_features=1.0, bootstrap=False, n_jobs=-1)
col_missing = df[df[col].isnull()]
temp = df.drop(df[df[col].isnull()].index, axis=0)
X = temp.loc[:, non_missing_cols]
y = temp[col]
model.fit(X, y)
y_pred = model.predict(col_missing[non_missing_cols])
df.loc[col_missing.index, col] = y_pred
return df
df_new = tree_imputation(df_temp)
df_new.info() | code |
122255316/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.impute import KNNImputer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
SAMPLE_THRESHOLD = 5
df_temp.drop(df_temp[df_temp['missing_count'] > SAMPLE_THRESHOLD].index, axis=0, inplace=True)
from sklearn.impute import KNNImputer
df_temp = data.copy()
num_cols = df_temp.columns[2:]
df_temp = df_temp[num_cols]
knn = KNNImputer(n_neighbors=3)
knn.fit(df_temp) | code |
122255316/cell_14 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data) | code |
122255316/cell_22 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
data.select_dtypes(include=['object']).columns.tolist()
def get_numerical_summary(df):
total = df.shape[0]
missing_columns = [col for col in df.columns if df[col].isnull().sum() > 0]
missing_percent = {}
for col in missing_columns:
null_count = df[col].isnull().sum()
per = null_count / total * 100
missing_percent[col] = per
return missing_percent
missing_percent = get_numerical_summary(data)
data_temp = data.copy()
features_thread = 25
for col, per in missing_percent.items():
if per > features_thread:
data_temp.drop(col, axis=1, inplace=True)
df_temp = data.copy()
for idx in range(df_temp.shape[0]):
df_temp.loc[idx, 'missing_count'] = df_temp.iloc[idx, :].isnull().sum()
df_temp | code |
122255316/cell_10 | [
"text_html_output_1.png"
] | import missingno as msno
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
import missingno as msno
from matplotlib import pyplot as plt
msno.matrix(data)
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
msno.dendrogram(data[missing_c]) | code |
122255316/cell_5 | [
"image_output_1.png"
] | import missingno as msno
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
import missingno as msno
from matplotlib import pyplot as plt
msno.matrix(data)
plt.figure(figsize=(15, 9))
plt.show() | code |
122255316/cell_36 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/covid-cases-and-deaths-worldwide/covid_worldwide.csv')
data
column_change = ['serial number', 'country', 'total_cases', 'total_deaths', 'total_recovered', 'active_cases', 'total_test', 'population']
data.columns = column_change
data['total_cases'] = data['total_cases'].str.replace(',', '').astype('float64')
data['total_deaths'] = data['total_deaths'].str.replace(',', '').astype('float64')
data['total_recovered'] = data['total_recovered'].str.replace(',', '').astype('float64')
data['active_cases'] = data['active_cases'].str.replace(',', '').astype('float64')
data['total_test'] = data['total_test'].str.replace(',', '').astype('float64')
data['population'] = data['population'].str.replace(',', '').astype('float64')
missing_c = [col for col in data.columns if data[col].isnull().sum() > 0]
missing_c
missing_c | code |
73070655/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.preprocessing import OrdinalEncoder
from xgboost import XGBRegressor
import pandas as pd
df_train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
df_test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
X_train = df_train.drop('target', axis=1)
y_train = df_train.target
X_test = df_test.copy()
cat_col = X_train.select_dtypes(include='object').columns
num_col = X_train.select_dtypes(include='float64').columns
encoder = OrdinalEncoder()
X_train[cat_col] = encoder.fit_transform(X_train[cat_col])
X_test[cat_col] = encoder.transform(X_test[cat_col])
n_splits = 5
kf = KFold(n_splits, shuffle=True, random_state=0)
pred_test = 0
for fold, (train_indx, valid_indx) in enumerate(kf.split(X_train)):
X_train_fold = X_train.iloc[train_indx]
y_train_fold = y_train.iloc[train_indx]
X_valid_fold = X_train.iloc[valid_indx]
y_valid_fold = y_train.iloc[valid_indx]
model = XGBRegressor(tree_method='gpu_hist')
model.fit(X_train_fold, y_train_fold, verbose=False)
pred_valid_fold = model.predict(X_valid_fold)
RMSE_fold = mean_squared_error(pred_valid_fold, y_valid_fold, squared=False)
pred_test_fold = model.predict(X_test)
pred_test += pred_test_fold / n_splits
pd.Series(data=model.feature_importances_, index=X_train.columns).sort_values(ascending=False).plot.bar() | code |
73070655/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
df_test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
df_train.info() | code |
73070655/cell_12 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
from sklearn.preprocessing import OrdinalEncoder
from xgboost import XGBRegressor
import pandas as pd
df_train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
df_test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
X_train = df_train.drop('target', axis=1)
y_train = df_train.target
X_test = df_test.copy()
cat_col = X_train.select_dtypes(include='object').columns
num_col = X_train.select_dtypes(include='float64').columns
encoder = OrdinalEncoder()
X_train[cat_col] = encoder.fit_transform(X_train[cat_col])
X_test[cat_col] = encoder.transform(X_test[cat_col])
n_splits = 5
kf = KFold(n_splits, shuffle=True, random_state=0)
pred_test = 0
for fold, (train_indx, valid_indx) in enumerate(kf.split(X_train)):
X_train_fold = X_train.iloc[train_indx]
y_train_fold = y_train.iloc[train_indx]
X_valid_fold = X_train.iloc[valid_indx]
y_valid_fold = y_train.iloc[valid_indx]
model = XGBRegressor(tree_method='gpu_hist')
model.fit(X_train_fold, y_train_fold, verbose=False)
pred_valid_fold = model.predict(X_valid_fold)
RMSE_fold = mean_squared_error(pred_valid_fold, y_valid_fold, squared=False)
print(f'Fold {fold}: {RMSE_fold:.5f}')
pred_test_fold = model.predict(X_test)
pred_test += pred_test_fold / n_splits | code |
73070655/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df_train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0)
df_test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0)
df_train.head() | code |
18103775/cell_21 | [
"text_html_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.sample(100)
df_partition['partition'].value_counts().sort_index() | code |
18103775/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
for i, j in enumerate(df_attr.columns):
print(i + 1, j) | code |
18103775/cell_9 | [
"image_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.describe() | code |
18103775/cell_23 | [
"text_html_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import matplotlib.pyplot as plt
import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']]
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.sample(100)
df_partition.set_index('image_id', inplace=True)
df_par_attr = df_partition.join(df_attr['Male'], how='inner')
df_par_attr.head(5) | code |
18103775/cell_30 | [
"text_html_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']]
def load_reshape_img(fname):
img = load_img(fname)
x = img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)
return x
datagen = ImageDataGenerator(rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
img = load_img(example_pic)
x = img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)
plt.figure(figsize=(20, 10))
plt.suptitle('Data augmentation', fontsize=28)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.subplot(3, 5, i + 1)
plt.grid(False)
plt.imshow(batch.reshape(218, 178, 3))
if i == 9:
break
i = i + 1
plt.show() | code |
18103775/cell_40 | [
"image_output_1.png"
] | from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.callbacks import ModelCheckpoint
from keras.layers import Dropout, Dense, Flatten, GlobalAveragePooling2D
from keras.models import Sequential, Model
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.utils import np_utils
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']]
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.sample(100)
df_partition.set_index('image_id', inplace=True)
df_par_attr = df_partition.join(df_attr['Male'], how='inner')
df_par_attr.shape
def load_reshape_img(fname):
img = load_img(fname)
x = img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)
return x
def generate_df(partition, attr, num_samples):
df_ = df_par_attr[(df_par_attr['partition'] == partition) & (df_par_attr[attr] == 0)].sample(int(num_samples / 2))
df_ = pd.concat([df_, df_par_attr[(df_par_attr['partition'] == partition) & (df_par_attr[attr] == 1)].sample(int(num_samples / 2))])
if partition != 2:
x_ = np.array([load_reshape_img(images_folder + fname) for fname in df_.index])
x_ = x_.reshape(x_.shape[0], 218, 178, 3)
y_ = np_utils.to_categorical(df_[attr], 2)
else:
x_ = []
y_ = []
for index, target in df_.iterrows():
im = cv2.imread(images_folder + index)
im = cv2.resize(cv2.cvtColor(im, cv2.COLOR_BGR2RGB), (img_width, img_height)).astype(np.float32) / 255.0
im = np.expand_dims(im, axis=0)
x_.append(im)
y_.append(target[attr])
return (x_, y_)
datagen = ImageDataGenerator(rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
img = load_img(example_pic)
x = img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
if i == 9:
break
i = i + 1
x_train, y_train = generate_df(0, 'Male', training_sample)
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input, rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
train_datagen.fit(x_train)
train_generator = train_datagen.flow(x_train, y_train, batch_size=batch_size)
inc_model = InceptionV3(weights='../input/inceptionv3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', include_top=False, input_shape=(img_height, img_width, 3))
x = inc_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model_ = Model(inputs=inc_model.input, outputs=predictions)
for layer in model_.layers[:52]:
layer.trainable = False
model_.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
checkpointer = ModelCheckpoint(filepath='weights.best.inc.male.hdf5', verbose=1, save_best_only=True)
hist = model_.fit_generator(train_generator, validation_data=(x_valid, y_valid), steps_per_epoch=training_sample / batch_size, epochs=num_epochs, callbacks=[checkpointer], verbose=1) | code |
18103775/cell_41 | [
"text_plain_output_1.png"
] | from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.callbacks import ModelCheckpoint
from keras.layers import Dropout, Dense, Flatten, GlobalAveragePooling2D
from keras.models import Sequential, Model
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.utils import np_utils
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']]
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.sample(100)
df_partition.set_index('image_id', inplace=True)
df_par_attr = df_partition.join(df_attr['Male'], how='inner')
df_par_attr.shape
def load_reshape_img(fname):
img = load_img(fname)
x = img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)
return x
def generate_df(partition, attr, num_samples):
df_ = df_par_attr[(df_par_attr['partition'] == partition) & (df_par_attr[attr] == 0)].sample(int(num_samples / 2))
df_ = pd.concat([df_, df_par_attr[(df_par_attr['partition'] == partition) & (df_par_attr[attr] == 1)].sample(int(num_samples / 2))])
if partition != 2:
x_ = np.array([load_reshape_img(images_folder + fname) for fname in df_.index])
x_ = x_.reshape(x_.shape[0], 218, 178, 3)
y_ = np_utils.to_categorical(df_[attr], 2)
else:
x_ = []
y_ = []
for index, target in df_.iterrows():
im = cv2.imread(images_folder + index)
im = cv2.resize(cv2.cvtColor(im, cv2.COLOR_BGR2RGB), (img_width, img_height)).astype(np.float32) / 255.0
im = np.expand_dims(im, axis=0)
x_.append(im)
y_.append(target[attr])
return (x_, y_)
datagen = ImageDataGenerator(rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
img = load_img(example_pic)
x = img_to_array(img) / 255.0
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
if i == 9:
break
i = i + 1
x_train, y_train = generate_df(0, 'Male', training_sample)
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input, rotation_range=30, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
train_datagen.fit(x_train)
train_generator = train_datagen.flow(x_train, y_train, batch_size=batch_size)
inc_model = InceptionV3(weights='../input/inceptionv3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', include_top=False, input_shape=(img_height, img_width, 3))
x = inc_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(512, activation='relu')(x)
predictions = Dense(2, activation='softmax')(x)
model_ = Model(inputs=inc_model.input, outputs=predictions)
for layer in model_.layers[:52]:
layer.trainable = False
model_.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
checkpointer = ModelCheckpoint(filepath='weights.best.inc.male.hdf5', verbose=1, save_best_only=True)
hist = model_.fit_generator(train_generator, validation_data=(x_valid, y_valid), steps_per_epoch=training_sample / batch_size, epochs=num_epochs, callbacks=[checkpointer], verbose=1)
plt.figure(figsize=(18, 4))
plt.plot(hist.history['loss'], label='train')
plt.plot(hist.history['val_loss'], label='validation')
plt.legend()
plt.title('loss function')
plt.show() | code |
18103775/cell_2 | [
"image_output_1.png"
] | from IPython.core.display import display, HTML
from PIL import Image
from io import BytesIO
import base64
plt.style.use('ggplot')
import tensorflow as tf
print(tf.__version__) | code |
18103775/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum() | code |
18103775/cell_19 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.sample(100) | code |
18103775/cell_1 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import os
import warnings
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import cv2
import seaborn as sns
from sklearn.metrics import f1_score
import os
print(os.listdir('../input'))
import warnings
warnings.filterwarnings('ignore')
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Dense, Flatten, GlobalAveragePooling2D
from keras.callbacks import ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.utils import np_utils
from keras.optimizers import SGD | code |
18103775/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.head(5) | code |
18103775/cell_8 | [
"image_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.head(5) | code |
18103775/cell_16 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']]
sns.countplot(df_attr['Male'])
plt.show() | code |
18103775/cell_35 | [
"text_plain_output_1.png"
] | from keras.applications.inception_v3 import InceptionV3, preprocess_input
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
inc_model = InceptionV3(weights='../input/inceptionv3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', include_top=False, input_shape=(img_height, img_width, 3))
print('number of layers in the model : ', len(inc_model.layers)) | code |
18103775/cell_24 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import matplotlib.pyplot as plt
import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']]
df_partition = pd.read_csv(main_folder + 'list_eval_partition.csv')
df_partition.sample(100)
df_partition.set_index('image_id', inplace=True)
df_par_attr = df_partition.join(df_attr['Male'], how='inner')
df_par_attr.shape | code |
18103775/cell_14 | [
"text_plain_output_1.png"
] | from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import matplotlib.pyplot as plt
import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape
img = load_img(example_pic)
plt.grid(False)
plt.imshow(img)
df_attr.loc[example_pic.split('/')[-1]][['Smiling', 'Male', 'Young']] | code |
18103775/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns | code |
18103775/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
main_folder = '../input/celeba-dataset/'
images_folder = main_folder + 'img_align_celeba/img_align_celeba/'
example_pic = images_folder + '000506.jpg'
training_sample = 10000
validation_sample = 2000
test_sample = 2000
img_width = 178
img_height = 218
batch_size = 16
num_epochs = 5
df_attr = pd.read_csv(main_folder + 'list_attr_celeba.csv')
df_attr.set_index('image_id', inplace=True)
df_attr.replace(to_replace=-1, value=0, inplace=True)
df_attr.columns
df_attr.isnull().sum()
df_attr.shape | code |
73090970/cell_21 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
Crm_Cd_Log = np.log1p(crimes['Crm Cd'])
Premis_Cd_Log = np.log1p(crimes['Premis Cd'])
Weapon_Used_Cd_Log = np.log1p(crimes['Weapon Used Cd'])
crimes.insert(7, 'Crm Cd Log', Crm_Cd_Log)
crimes.insert(12, 'Premis Cd Log', Premis_Cd_Log)
crimes.insert(14, 'Weapon Used Cd Log', Weapon_Used_Cd_Log)
crimes
crimes | code |
73090970/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution | code |
73090970/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum() | code |
73090970/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes | code |
73090970/cell_23 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split, cross_val_score
import numpy as np
import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
Crm_Cd_Log = np.log1p(crimes['Crm Cd'])
Premis_Cd_Log = np.log1p(crimes['Premis Cd'])
Weapon_Used_Cd_Log = np.log1p(crimes['Weapon Used Cd'])
crimes.insert(7, 'Crm Cd Log', Crm_Cd_Log)
crimes.insert(12, 'Premis Cd Log', Premis_Cd_Log)
crimes.insert(14, 'Weapon Used Cd Log', Weapon_Used_Cd_Log)
crimes
train_features = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'Vict Age', 'Premis Cd Log', 'Weapon Used Cd Log']]
train_label = crimes['Crm Cd Log'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(train_features, train_label, test_size=0.2, random_state=11)
print('Shape of X_train: ', X_train.shape)
print('Shape of X_test: ', X_test.shape)
print('Shape of y_train: ', y_train.shape)
print('Shape of y_test: ', y_test.shape) | code |
73090970/cell_26 | [
"text_html_output_1.png"
] | from sklearn.linear_model import LinearRegression, LogisticRegression, Ridge, Lasso, ElasticNet
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split, cross_val_score
import numpy as np
import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
Crm_Cd_Log = np.log1p(crimes['Crm Cd'])
Premis_Cd_Log = np.log1p(crimes['Premis Cd'])
Weapon_Used_Cd_Log = np.log1p(crimes['Weapon Used Cd'])
crimes.insert(7, 'Crm Cd Log', Crm_Cd_Log)
crimes.insert(12, 'Premis Cd Log', Premis_Cd_Log)
crimes.insert(14, 'Weapon Used Cd Log', Weapon_Used_Cd_Log)
crimes
train_features = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'Vict Age', 'Premis Cd Log', 'Weapon Used Cd Log']]
train_label = crimes['Crm Cd Log'].astype(int)
X_train, X_test, y_train, y_test = train_test_split(train_features, train_label, test_size=0.2, random_state=11)
lr_reg = LogisticRegression(solver='liblinear')
lr_reg.fit(X_train, y_train)
lr_preds = lr_reg.predict(X_test)
lr_mse = mean_squared_error(y_test, lr_preds)
lr_rmse = np.sqrt(lr_mse)
print('MSE : {0:.3f}, RMSE : {1:.3f}'.format(lr_mse, lr_mse))
print('Variance score : {0:.3f}'.format(r2_score(y_test, lr_preds))) | code |
73090970/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes['DATE OCC'] = pd.to_datetime(crimes['DATE OCC'])
crimes['YEAR OCC'] = crimes['DATE OCC'].dt.year
crimes['MONTH OCC'] = crimes['DATE OCC'].dt.month
crimes['DAY OCC'] = crimes['DATE OCC'].dt.day
crimes | code |
73090970/cell_19 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
# Check distribution of each features
fig, axs = plt.subplots(nrows=2, ncols=4, figsize=(20, 10))
for i, feature in enumerate(crimes_distribution.columns):
row = int(i/4)
col = i%4
sns.distplot(crimes_distribution.iloc[:, i], ax=axs[row][col])
plt.suptitle('Distirbution of features')
plt.tight_layout
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
Crm_Cd_Log = np.log1p(crimes['Crm Cd'])
Premis_Cd_Log = np.log1p(crimes['Premis Cd'])
Weapon_Used_Cd_Log = np.log1p(crimes['Weapon Used Cd'])
crimes.insert(7, 'Crm Cd Log', Crm_Cd_Log)
crimes.insert(12, 'Premis Cd Log', Premis_Cd_Log)
crimes.insert(14, 'Weapon Used Cd Log', Weapon_Used_Cd_Log)
crimes
crimes_distribution_log = crimes[['Crm Cd Log', 'Premis Cd Log', 'Weapon Used Cd Log']]
crimes_distribution_log
fig, axs = plt.subplots(ncols=3, figsize=(15, 5))
for i, feature in enumerate(crimes_distribution_log.columns):
col = i % 3
sns.distplot(crimes_distribution_log.iloc[:, i], ax=axs[col])
plt.suptitle('Distirbution of features log converted')
plt.tight_layout | code |
73090970/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.head() | code |
73090970/cell_18 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
Crm_Cd_Log = np.log1p(crimes['Crm Cd'])
Premis_Cd_Log = np.log1p(crimes['Premis Cd'])
Weapon_Used_Cd_Log = np.log1p(crimes['Weapon Used Cd'])
crimes.insert(7, 'Crm Cd Log', Crm_Cd_Log)
crimes.insert(12, 'Premis Cd Log', Premis_Cd_Log)
crimes.insert(14, 'Weapon Used Cd Log', Weapon_Used_Cd_Log)
crimes
crimes_distribution_log = crimes[['Crm Cd Log', 'Premis Cd Log', 'Weapon Used Cd Log']]
crimes_distribution_log | code |
73090970/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes | code |
73090970/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes | code |
73090970/cell_17 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
Vict_Age_0 = crimes[crimes['Vict Age'] == 0].index
crimes.drop(Vict_Age_0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
Crm_Cd_Log = np.log1p(crimes['Crm Cd'])
Premis_Cd_Log = np.log1p(crimes['Premis Cd'])
Weapon_Used_Cd_Log = np.log1p(crimes['Weapon Used Cd'])
crimes.insert(7, 'Crm Cd Log', Crm_Cd_Log)
crimes.insert(12, 'Premis Cd Log', Premis_Cd_Log)
crimes.insert(14, 'Weapon Used Cd Log', Weapon_Used_Cd_Log)
crimes | code |
73090970/cell_14 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes
crimes_distribution = crimes.iloc[:, [1, 2, 3, 4, 6, 7, 10, 11]]
crimes_distribution
fig, axs = plt.subplots(nrows=2, ncols=4, figsize=(20, 10))
for i, feature in enumerate(crimes_distribution.columns):
row = int(i / 4)
col = i % 4
sns.distplot(crimes_distribution.iloc[:, i], ax=axs[row][col])
plt.suptitle('Distirbution of features')
plt.tight_layout | code |
73090970/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes | code |
73090970/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
crimes = pd.read_csv('../input/crime-in-los-angeles-data-from-2020-to-present/Crime_Data_from_2020_to_Present.csv')
crimes
crimes.drop(['DR_NO', 'Date Rptd', 'Rpt Dist No', 'Part 1-2', 'Mocodes', 'Crm Cd 1', 'Crm Cd 2', 'Crm Cd 3', 'Crm Cd 4', 'Cross Street', 'LOCATION'], axis=1, inplace=True)
crimes
crimes.isnull().sum()
crimes.dropna(axis=0, inplace=True)
crimes.reset_index(drop=True, inplace=True)
crimes
crimes_desc = crimes[['Crm Cd Desc', 'Premis Desc', 'Weapon Desc', 'Status Desc']]
crimes = crimes[['YEAR OCC', 'MONTH OCC', 'DAY OCC', 'TIME OCC', 'AREA', 'AREA NAME', 'Crm Cd', 'Vict Age', 'Vict Sex', 'Vict Descent', 'Premis Cd', 'Weapon Used Cd', 'Status']]
crimes | code |
72101116/cell_21 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from optuna.visualization import plot_optimization_history, plot_param_importances
plot_param_importances(study) | code |
72101116/cell_13 | [
"text_html_output_1.png"
] | cat_features = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']
df_cat = feature_matrix[cat_features]
feature_matrix = feature_matrix.drop(cat_features, axis=1)
feature_matrix.head() | code |
72101116/cell_25 | [
"text_html_output_1.png"
] | from lightgbm import LGBMRegressor
from sklearn.model_selection import KFold, train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import math, random
from sklearn.model_selection import KFold, train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import LabelEncoder
pd.set_option('display.max_columns', 100)
from lightgbm import LGBMRegressor
SEED = 47
PATH = '../input/30-days-of-ml/'
df_train = pd.read_csv(PATH + '/train.csv')
df_test = pd.read_csv(PATH + '/test.csv')
df_sub = pd.read_csv(PATH + '/sample_submission.csv')
target = df_train['target']
features = df_train.drop(['id', 'target'], axis=1)
cat_features = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']
df_cat = feature_matrix[cat_features]
feature_matrix = feature_matrix.drop(cat_features, axis=1)
study.best_params
optuna_params = study.best_params
optuna_params['metric'] = 'rmse'
optuna_params['random_state'] = SEED
optuna_params['n_estimators'] = 10000
X_train, X_test, y_train, y_test = train_test_split(feature_matrix, target, test_size=0.2, random_state=SEED)
model_optuna = LGBMRegressor(**optuna_params)
model_optuna.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=300, verbose=300) | code |
72101116/cell_19 | [
"text_html_output_1.png"
] | from optuna.visualization import plot_optimization_history, plot_param_importances
plot_optimization_history(study) | code |
72101116/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |