Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Russian
Size:
10K - 100K
License:
language: | |
- ru | |
multilinguality: | |
- monolingual | |
pretty_name: Kinopoisk | |
size_categories: | |
- 10K<n<100K | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
license: mit | |
### Dataset Summary | |
Kinopoisk movie reviews dataset (TOP250 & BOTTOM100 rank lists). | |
In total it contains 36,591 reviews from July 2004 to November 2012. | |
With following distribution along the 3-point sentiment scale: | |
- Good: 27,264; | |
- Bad: 4,751; | |
- Neutral: 4,576. | |
### Data Fields | |
Each sample contains the following fields: | |
- **part**: rank list top250 or bottom100; | |
- **movie_name**; | |
- **review_id**; | |
- **author**: review author; | |
- **date**: date of a review; | |
- **title**: review title; | |
- **grade3**: sentiment score Good, Bad or Neutral; | |
- **grade10**: sentiment score on a 10-point scale parsed from text; | |
- **content**: review text. | |
### Python | |
```python3 | |
import pandas as pd | |
df = pd.read_json('kinopoisk.jsonl', lines=True) | |
df.sample(5) | |
``` | |
### Citation | |
``` | |
@article{blinov2013research, | |
title={Research of lexical approach and machine learning methods for sentiment analysis}, | |
author={Blinov, PD and Klekovkina, Maria and Kotelnikov, Eugeny and Pestov, Oleg}, | |
journal={Computational Linguistics and Intellectual Technologies}, | |
volume={2}, | |
number={12}, | |
pages={48--58}, | |
year={2013} | |
} | |
``` |