File size: 9,236 Bytes
f19283f 2ddce02 f19283f 64b82ee 059868d 6943c9a 059868d 698ba1b 6943c9a 059868d 6943c9a 4ecc66e 698ba1b 6943c9a 059868d 6943c9a dfc172c 6943c9a 4ecc66e 059868d 6943c9a 7d0d28a 6943c9a 4ecc66e 6943c9a 64b82ee 6943c9a 4ecc66e 6943c9a 4ecc66e 6943c9a 4ecc66e 7d0d28a 2ddce02 7d0d28a 4ecc66e 1a96a71 7d0d28a 4ecc66e 6943c9a 4ecc66e 6943c9a 4ecc66e 6943c9a 4ecc66e 6943c9a 64b82ee 2ddce02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
---
task_categories:
- audio-classification
- text-to-video
language:
- en
tags:
- audio-visual
- physical-properties
- pitch-estimation
pretty_name: Sound-of-Water 50
size_categories:
- n<1K
configs:
- config_name: default
data_files:
- split: train
path: "splits/train.csv"
- split: test_I
path: "splits/test_I.csv"
- split: test_II
path: "splits/test_II.csv"
- split: test_III
path: "splits/test_III.csv"
---
<!-- # <img src="./assets/pouring-water-logo5.png" alt="Logo" width="40"> -->
# π° The Sound of Water: Inferring Physical Properties from Pouring Liquids
<!-- <p align="center">
<a href="https://arxiv.org/abs/2411.11222" target="_blank">
<img src="https://img.shields.io/badge/arXiv-Paper-red" alt="arXiv">
</a>
<a target="_blank" href="https://colab.research.google.com/github/bpiyush/SoundOfWater/blob/main/playground.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
<a href="https://your_gradio_demo_link" target="_blank">
<img src="https://img.shields.io/badge/Gradio-Demo-orange" alt="Gradio">
</a>
</p> -->
This dataset is associated with the paper "The Sound of Water: Inferring Physical Properties from Pouring Liquids".
Arxiv link: https://arxiv.org/abs/2411.11222
<!-- Add a teaser image. -->
<p align="center">
<img src="./assets/pitch_on_spectrogram-compressed.gif" alt="Teaser" width="100%">
</p>
*Key insight*: As water is poured, the fundamental frequency that we hear changes predictably over time as a function of physical properties (e.g., container dimensions).
**TL;DR**: We present a method to infer physical properties of liquids from *just* the sound of pouring. We show in theory how *pitch* can be used to derive various physical properties such as container height, flow rate, etc. Then, we train a pitch detection network (`wav2vec2`) using simulated and real data. The resulting model can predict the physical properties of pouring liquids with high accuracy. The latent representations learned also encode information about liquid mass and container shape.
## π Table of Contents
- [π° The Sound of Water: Inferring Physical Properties from Pouring Liquids](#-the-sound-of-water-inferring-physical-properties-from-pouring-liquids)
- [π Table of Contents](#-table-of-contents)
- [π Dataset Overview](#-dataset-overview)
- [π₯ Video and π§ audio samples](#-video-and--audio-samples)
- [ποΈ Splits](#οΈ-splits)
- [π Annotations](#-annotations)
- [Container measurements and other metadata](#container-measurements-and-other-metadata)
- [Container bounding boxes](#container-bounding-boxes)
- [π¬ YouTube samples](#-youtube-samples)
- [π Citation](#-citation)
- [π Acknowledgements](#-acknowledgements)
- [π
π» Potential Biases](#-potential-biases)
## π Dataset Overview
We collect a dataset of 805 clean videos that show the action of pouring water in a container. Our dataset spans over 50 unique containers made of 5 different materials, 4 different shapes and with hot and cold water. Some example containers are shown below.
<p align="center">
<img width="650" alt="image" src="./assets/containers-v2.png">
</p>
Download the dataset with:
```python
# Note: this shall take 5-10 mins.
# Optionally, disable progress bars
# os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = True
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="bpiyush/sound-of-water",
repo_type="dataset",
local_dir="/path/to/dataset/SoundOfWater",
)
```
The dataset is stored in the following directory structure:
```sh
SoundOfWater/
|-- annotations
|-- assets
|-- audios
|-- README.md
|-- splits
|-- videos
`-- youtube_samples
6 directories, 1 file
```
## Demo
Check out the demo [here](https://huggingface.co/spaces/bpiyush/SoundOfWater). You can upload a video of pouring and the model estimates pitch and physical properties.
## π₯ Video and π§ audio samples
The video and audio samples are stored in the `./videos/` and `./audios/` directories, respectively.
Note that we have trimmed the videos between the precise start and end of the pouring action.
If you need untrimmed videos, please contact us separately and we may be able to help.
The metadata for each video is a row in "./annotations/localisation.csv".
## ποΈ Splits
We create four splits of the dataset.
All of the splits can be found in the `./splits/` directory.
The splits are as follows:
<table>
<style>
table td:nth-child(n+2), table th:nth-child(n+2) {
text-align: center;
}
</style>
<tr>
<th>Split</th>
<th colspan="2">Opacity</th>
<th colspan="3">Shapes</th>
<th>Containers</th>
<th>Videos</th>
<th>Description</th>
</tr>
<tr>
<td></td>
<td><i>Transparent</i></td>
<td><i>Opaque</i></td>
<td><i>Cylinder</i></td>
<td><i>Semi-cone</i></td>
<td><i>Bottle</i></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>18</td>
<td>195</td>
<td>Transparent cylinder-like containers</td>
</tr>
<tr>
<td>Test I</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>13</td>
<td>54</td>
<td>Test set with seen containers</td>
</tr>
<tr>
<td>Test II</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>19</td>
<td>327</td>
<td>Test set with unseen containers</td>
</tr>
<tr>
<td>Test III</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>β</td>
<td>25</td>
<td>434</td>
<td>Shape clf. with unseen containers</td>
</tr>
</table>
## π Annotations
An example row with metadata for a video looks like:
```json
{
"video_id": "VID_20240116_230040",
"start_time": 2.057,
"end_time": 16.71059,
"setting": "ws-kitchen",
"bg-noise": "no",
"water_temperature": "normal",
"liquid": "water_normal",
"container_id": "container_1",
"flow_rate_appx": "constant",
"comment": null,
"clean": "yes",
"time_annotation_mode": "manual",
"shape": "cylindrical",
"material": "plastic",
"visibility": "transparent",
"example_video_id": "VID_20240116_230040",
"measurements": {
"diameter_bottom": 5.7,
"diameter_top": 6.3,
"net_height": 19.7,
"thickness": 0.32
},
"hyperparameters": {
"beta": 0.0
},
"physical_parameters": null,
"item_id": "VID_20240116_230040_2.1_16.7"
}
```
#### Container measurements and other metadata
All metadata for the containers is stored in the `./annotations/` file.
| **File** | **Description** |
| --- | --- |
| `localisation.csv` | Each row is metadata (e.g., container) for each video. |
| `containers.yaml` | Metadata for each container. |
| `liquids.yaml` | Metadata for each liquid. |
| `materials.yaml` | Metadata for each material. |
#### Container bounding boxes
The bounding box annotations for containers are stored here: `./annotations/container_bboxes/`.
These are generated in a zero-shot manner using [LangSAM](https://github.com/luca-medeiros/lang-segment-anything).
## π¬ YouTube samples
We also provide 4 samples searched from YouTube. These are used for qualitative evaluation.
<!-- Add a citation -->
## π Citation
If you find this repository useful, please consider giving a star β and citation
```bibtex
@article{sound_of_water_bagad,
title={The Sound of Water: Inferring Physical Properties from Pouring Liquids},
author={Bagad, Piyush and Tapaswi, Makarand and Snoek, Cees G. M. and Zisserman, Andrew},
journal={arXiv},
year={2024}
}
```
<!-- Add acknowledgements, license, etc. here. -->
## π Acknowledgements
* We thank Ashish Thandavan for support with infrastructure and Sindhu
Hegde, Ragav Sachdeva, Jaesung Huh, Vladimir Iashin, Prajwal KR, and Aditya Singh for useful
discussions.
* This research is funded by EPSRC Programme Grant VisualAI EP/T028572/1, and a Royal Society Research Professorship RP / R1 / 191132.
We also want to highlight closely related work that could be of interest:
* [Analyzing Liquid Pouring Sequences via Audio-Visual Neural Networks](https://gamma.cs.unc.edu/PSNN/). IROS (2019).
* [Human sensitivity to acoustic information from vessel filling](https://psycnet.apa.org/record/2000-13210-019). Journal of Experimental Psychology (2020).
* [See the Glass Half Full: Reasoning About Liquid Containers, Their Volume and Content](https://arxiv.org/abs/1701.02718). ICCV (2017).
* [CREPE: A Convolutional Representation for Pitch Estimation](https://arxiv.org/abs/1802.06182). ICASSP (2018).
## π
π» Potential Biases
The dataset is recorded on a standard mobile phone from the authors themselves. It is recorded in a indoor setting. As far as possible, we have tried to not include any personal information in the videos. Thus, it is unlikely to include harmdul biases. Plus, the scale of the dataset is small and is not likely to be used for training large models.
|