Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Size:
1K - 10K
ArXiv:
Tags:
lost-in-the-middle
License:
metadata
license: apache-2.0
configs:
- config_name: kv75
data_files:
- split: test
path: data/kv75.jsonl
- config_name: kv140
data_files:
- split: test
path: data/kv140.jsonl
- config_name: kv300
data_files:
- split: test
path: data/kv300.jsonl
- config_name: qa10
data_files:
- split: test
path: data/qa10.jsonl
- config_name: qa20
data_files:
- split: test
path: data/qa20.jsonl
- config_name: qa30
data_files:
- split: test
path: data/qa30.jsonl
task_categories:
- question-answering
tags:
- lost-in-the-middle
size_categories:
- n<1K
Datasets for Lost In The Middle
This repository contains datasets used in the paper "Lost in the Middle: How Language Models Use Long Contexts", focusing on multi-document question answering and key-value retrieval tasks.
Datasets Overview
The datasets provided are as follows:
Key-Value Retrieval Datasets
kv75
: Key-Value pairs with 75 keys.kv140
: Key-Value pairs with 140 keys.kv300
: Key-Value pairs with 300 keys.
Multi-Document Question Answering Datasets
qa10
: Questions with answers derived from 10 documents.qa20
: Questions with answers derived from 20 documents.qa30
: Questions with answers derived from 30 documents.
Loading the Data
You can load these datasets using the Hugging Face datasets
library:
from datasets import load_dataset
### Example for loading the kv75 dataset
dataset = load_dataset("bzantium/LITM", "kv75")
### Example for loading the qa20 dataset
dataset = load_dataset("bzantium/LITM", "qa20")